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Die.Ta~ung über "Schiefkörper" stand unter der Leitung von

P.M.Cohn (London) und G.Michler (Essen] und richtete sich nicht

nur an Experten, sondern sollte auch jüngeren Mathematikern eine

Einführung in das Arbeitsgebiet bieten. Demgemäß nahmen Vorträge

mit Uberblickscharakter, in denen die hauptsächlichen Fragestellun­

gen und Methoden erläutert wurde, einen relativ großen Raum ~in.

Die Vorträge von G.M.Bergman und P.M.Cohn.behandelten 4as Problem

der Einbettung eines gegebenen. RLnges in einen Schiefkörper. Für
\

gewisse Ringe, etwa die sog. Se~ifirs, wurde eine "universelle"

Lösung dieses Problems angege~en. 'In den Vorträgen von S .A.• Ami tsur

wurden Anwendungen der Theorie der Ringe mit Polynomidentitäten

auf die Beschreibung von .endlich dimensionalen Dfvisionsalgebren

dargestellt. Der zahlentheoretische Aspekt der Theorie stand. im

4It Vordergrund der Vorträge von G.J.Janusz, wo fUr einen algebraischen

Z~hlenkörper K oder die Vervollständigung eines algebraischen.

Zahlenkörpers die Schur-Untergruppe der Brauer-Gruppe Br(K) stu­

diert wurde. Diese besteht aus den Klassen, die einen K-zentral

einfachen direkten Summanden der Gruppenalgebra K[G] einer end­

lichen Gruppe Genthai ten. . .

Wesentlich ergänzt wurden diese Uberblicksvorträge durch 15 Spezial­

vorträge, in denen über methodische und inhaltliche Fortschritte

auf dem Gebiet der Schiefkörper 'und ihrer Anwendungen berichtet

wurde.
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Vortragsauszüge

s. A. AMITSUR Polynomial" id'ent-i-tie's 'and 'fi'nt te dimensional

divis'ion a"l'gebras

Po~ynornial identities have originated in division algebras

(Dehn 1921), and the fact that matrix rings over fields satisfye identities was first given by Wagner (1936). Some of the weIl

known identities whieh are satisfied by all eentral simple alge­

bras (e.s.a.) of dimension n 2 are the standard polynomial

S2n[x] = I: sg (1 x a (l) x o (2)

and the Capelli identity

o (Amitsur-Levi·tzki)

d n2+
1

(x;y) = I: sga xa(l)- Yl.x o (2) Y2 ••• Yn 2-1 X
o

(n2 ) Yn2 ~o(n2+1)=O.

The eentral polynomials of Formanek and Razmyslovhave been exten-

ded, and there is a eentral identity whieh holds for all MnCK) :

S( xl' •.• , x 2 ; Yl' ••• , y 2 ] • The identities whieh yield ele'-
n n -1

ments of the symmetrie polynomial in eigenvalues of a matrix were

used to prove that every e.s.a. eontains a separable element, and

also a generie representation of e ..s.a~ in the matrix ~ing over a

maximal eomrnutative field.

e The notion of an J - pivotal monomial yields the following

charaeterization of division algebras of dimension n 2 (0: CentD)=n2

if n is the minimal integer $ueh that n·,( 1 - gf , f) 1 for any

two polynomials f(A), g(A) E D[A] •

Another applieation of identities is to deseribe the universal

solution of the problem of embedding R inta an nxn - matrix ring

over a commutative ring. There exists such a maximal embedding and

for a division ring R of finite dimension the corresponding ring

i5 an affine domain, whose points eorrespond to t~e splitting fields

of R.
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s. A. AMITSUR

The ring of generic rnatrices k(X) 1s a generic'ring for all

2division algebras 0 of dimen~ion n over a center containing
I

k - in the sense that "for every 0 * q(X) E k[X] , and every 0

, 2
with' center K 2 k and dimk 0 = n there exists a hornomorphism

<p : k[X] ~ 0 such that <p(q):I= 0 and q>(k[X])K = D." This homo-

morphism can be extended and induces an isomorphism between the

residue fleld k[X]12 I 12 k[X] of, the localization of k[X] at

12= ker ~ and a subdivision algebra of '0 of the same dimension.

It has been described how to use this to show that k(X) has ex-

ponent n ·and that k(X) 1s not a 6rossed produet under certain

conditions on n, e.g. if p3'1 n for some prime p. Other generic

rings for classes of division algebras are: Saltman's ring Qm,n'

obtained with the aid of generic matrices and the universal doroain

cf the embedding of k(X)n/m, 15 ~ generic ring (in the previous

sen~e) for the elass of all division algebras of dimension 0
2

and

exponent m • This can be used to show that Q i5 not a crossedm,n

product and also.that it i9 not decomposable under eertain re--

strictions on m and n. The idea of a generie ring for the elass

of division algebras which arecrossed products of a fixed grOUPG~

was suggested, and the group algebra k(F/R') seems to be one,

where 1 ~ R ~ F ~ G ~ i8 a rep~esentation of G by a free group

Fand relations R. Finally, k(X) has a normal splitting field

with Galois group' G 1ff every division algebra of the eorresponding

class will have a splitting field with a Galois group . H~ G . This

as weIl can be deduced from the, generic properties discussed above.

A corollary 1s that if k(X) 15 not a p-algebra, it i5 not even

similar to'a cyclie algebra.
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Finite dimensional repres'e'n"t'ät"i'on's' "o"i" "in'fi'ni"t"e groups:

Some problems and" conjec·tur·es

Let r be a finitely generated group with a faithful finite

dimensional (f.d.] complex representation. Let Xn denote the

isomorphism classes of irreducible representatlons p: r ~ GLn(~)

i t is open in the affine variety >Cn = X, U ••• U Xn . We ask about

~ the group theoretic significance of representation theoretic in-

variants. Examples: ,. Interpret the asymptotic behavior of dimX
n

There are interesting ari thmetic groups r such .that ~im 'in '= 0

for all n. I know Da other k~nds of exampl~s.

2. Suppose that the Zariski closures p (r) (p E U Xn ) have
n

bounded dimension. What does ,this imply? E.g. is dim'Xn = 0 for

all n?

3. Consider subfields Fee over which r hasa faithful f .d.

representation, and let tr deg Cf) min trdegcn, (F) for such F·.
. F

Interpret tr d~g (f) • Is

tr deg cr) max tr deg (f')

r •

where r' ranges over solvable subgroups of r ?

P.M.Cohn has shown that if .R i5 a ring, every epic R-sfield 0

1s determined up to isomorphism by the cla5s of square matrices

over R which have singular -images over D. He gives necessary

and 5ufficient conditions for a class of square matrices to corres-

pond to an R-sfield, and a construction for this sfield from that

data.
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We look ät the same data as telling what families of elements

of free modules Rn become linearly dependent in Dn., give an

alternative description of 6onditions for such "dependence-data"

to corne from an R-sfield, and abtain a new and simplerconstruction

for this R-sfield.

The constructlon i8 based on considering the class of R-modules

of the form Rn / K ,. where K is a maximal proper submodule closed

with respect to the given "dependence" structure. It is shown that'e

eve~y nonzero map amonq such modules i8 injective, and the class

of such modules has pushouts. It may be deduced that for any such

module M, the category of nonzero homoß'lorphisrns M -+ N (N another

such module) forms a directed partially ordered set. If M denotes

the direct limit of this system, one finds that nonzero endomor~-

,.."

phisms of Mare simply transitive on nonzero elements. One de-

duces that this endomorp~is~ ring is a_ sfield 0 and M a one­

dimensional D-vector space.

As examples, we show how th~ universal sfield of a semifir, and

. relatively universal sfie1ds for semihereditary rings may be ob-

tained. '

L. A. BOKUT Jordan dlvisi-ön' rlngs

Theorem 1 (Zelmanov, E.I.). Any special Jordan division algebra­

is isomorphie to one of the following algebras: 1) An algebra- :J).+ ,

where JJ is an associative division algebra, 2) An algebra ,., (1), .. )

of symmetrie elements of a skew field ~ with involution, 3) An

algebra of asymmetrie bilinear form.

Theorem 2 (Zelmanov, E.I.). Any exceptional Jordan division alge-

bra is a 27-dirnensional Albert algebra over the center.
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Theorem 3 (Bokut, L.A.). Let L, L1 , ... , L~ be countable Lie

algebras, such that every algebra Li:' 1 ~ i S. 4 , i5 the union of

an infinite increasing chain of subalgebras with the factors of

dimension ~o. Then the algebra L 15 embeddable into an alge­

braically closed Lie algebra ~ = L1 + .•. + L 4 ' which is the SUffi

of the algebras Li ' 1 ~ i ~ 4 .

Theorem 4 (Grishnov, A.N.). Any finite-dimensional simple binary

Lie algebra of characteristic zero 1s a Malcev algebra.

Theorem 5 (Anan'in, A~Z.). Any associative algebra with the

identities [x 1Yl] ••• [xnynJ = 0, [x" •.. , xn ] [Y1'···' Yn ] = 0 ,

n ~ 2 , is representable (by rnatrices over a "conunutative" algebra) .

\v. BORHO Skew fields and enve'lopin"g "a'lgebras öf L-ie "algebras

This was an introduction for non-specialists into'some touching

points between the two topies mentioned in the title. After ex-

plaining the nations of and basic facts on Weyl fields and enveloping

fields, 'the Gel'fand-Kirillov conjecture (1966) was formulated :

Every enveloping field of an algebraic Lie algebra is a Weyl- field

4It over its centre. A historical survey of the settled cases was given.

Ta settle the classification of these skew fields up to isamorphism

completely, Gel'fand and Kirillov have introduced a nation of a

transcendence degree of skew flelds. This is defined in a rather

cornplicated way, but turns out to be extremely useful in various

applications. For a better understanding of this nation, some ideas

and results of a joint paper with H.Kraft (Math. Ann. 2~O, 1976)

were explained. E.g. the growth invariant of a finitely generated

algebra (which is an equivalence class of functions), and various

facts about Gel'fand-Kirillov dimension (which is areal number or
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m, and has to be carefully distinguished from the more compli­

cated notion of transcendence degree). As one application it was

explained how knowledge on G R - dimension may s9metimes imply

Ore's condition for a multiplieative subset of a domain. Also,

an example was given for how computations of G K - dim~nslons are

used in the'study of representations of Lie-algebras and of the

skew fields occuring in this connection.

(Far an introduction iota this topie, cf. e.g. S~m. Bourbaki

n° 489, Nov. 1976.)

H. H. BRUNGS :' Right cha·tn r'ings' 'and th"e' 'geli'er'a"!'iz'ed' s'emlgröup

of divi'sibi"li'ty

Let R be a ring with unit element and without zero-divisors.

and let H(R) = {~: 0 * x in R} where x i5 the mapping from

the set of all non zero prinqipal right ideals of R into itself

defined by x (aR) = xaR. H(R) i5 a partially ordered semigroup

thatcan be considered as a generalization of the gro~p of divisi-

bility of a comrnutative integral doma!n. We study those rings for

which H(R) is totally ordered. They turn out to be localizations

of right invariant right chain rings and they are right invariant

if d.c.c. for prime ideals holds.

G. CAUCHON

If A is an artinian simple ring with center K, if '0 is an

endornorphism of A and (I) a 0 - derivation, we consider the skew

polynomial ring R ='A[x,o,c5] in which the multiplication is
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defined by the condition xa:::: 0 (a) x + Ö (a) (Va E A). Define

k :::: {a E K 0 (a) :::: a and ~ (a) = O} • Then, wehave the following

results: (I) R is P.I. e=> [A: k] < +00

(ii) If R is P.I., then it is a free module of finite

rank n 2 over i ts center. Moreover, if a E Inn (A) , R is an Azumaya

algebra ·with constant rank n 2 over its center and, if 04 Inn (A) ,

then ö may be chosen equal to 0 and, though R 15 not an

~ Azumaya ~lgebra in this case, the ring R' ~A[x,x-1,a] is an Azumaya

algebra with constant rank n 2 over its center.

These results may be used to construct central simple algebras

and give a new simple proof of a theorem of Dickson.

P. M. COHN

A semifir is a ring- *0 in which every finit~li generated. right

(ar equivalently left) ideal is free, of unique rank. These rings

reduce in the commutative case" to Bezout domains, but in general

include much more, e.g. free algebra~ and coproducts of fields.

They have the pleasant property of always possessing a f~eld of

~. fractions which is universal with respect to specialization. This

talk discusses the form which the elements of "this universal field

of fractions take, in particular, it compares the different forms

for a given element, and gives same applications on the structure

of centralizers of elements.
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w. OICKS

The inner rank PR (A) "cf an m xn matrix A over a ring .R 1s

the least integer r such that A = Be where B is an m x rand

C an r x n matrix over R. P.M. Cohn has shown that a semifir R

has the.following properties:

(1) R satisfies Sylvester's law of nullity :

PR (AB) ~ PR (A) + PR (B) - n where A is m x n and B is n ~·e

(lI) R is a subring of a skew fleld F in such a way that PR and

PF agree on matrices over R.

W~ show that(l) and (1') are equivalent, and that they imply

(2) ~ has weak global dimension at most 2 and all flat R-modules

are directed unions of free submodules of unique rank.

Such rings with weak global dimension at most

semifirs we started with.

are precisely the

For two-sided Ore dornains (2) implies (1), and. beyond that,

little 1s known.

s. ELLIGER :' Ober dl"e" 'gal'öi'ss'ch'e: HU1I'e' 'einer Erwe'it'erung ei"nfacher

Rin'ge

Seien A' 2 Beinfache artinsehe Ringe und der (B, B) -Modul A'
B B

halbeinfach. Notwendig und hinreichendfUr die Existenz einer

äußer galoisschen Erweiterung AlB einfacher Ringe mit A'~ A

und Z (A) ~ Z (8) :: C ist

i) das Tensorproduct T A'6j ~A' mit n =(A' :B) Fak-
B 8 B B

toren ist halbeinfach, etwa
k

1
St

k t
S1 einfach.-:'" Sl ED ••• ED ,
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11)
0,

e E9
0,

,(Si': C) k. alsA 51 ... 51 °i ~ , hat
B B

~

(End Si : C)

Endomorphismeoring den Gruppenring Ge , G endliche Gruppe.

ii1) A" besitzt in der Darstellung A'91 A'gn (nach i)
B B

und ii) als homomorphes Bild von T ) die Struktur eines

n
G-Moduls, nämlich n a i 9 i ).9 n a i 9 i 9 wobei G= UH9ii=1 i

die Nebenklassenzerlegung von G nach H =" {h E G , a' h a •

für alle a' E A'} bedeutet.

G. J. JANUSZ The Schur subgroup' o"f "the Brauer group

The Schur group of a field K 15 the subgroup cf the Brauer

group, B(Kt, consisting of those classes which contain a K-central

simple algebra which is isomorphie to a direct sunwand of a graup

"algebra, K(G), for some fin~te group G . We are mainly interested

in the case in which K 1s an algebraic number field or the corn-

pletion of an algebraic number field. In these cases the full

Brauer group 18 described by the Hasse invariants. One is 1nterested

~ in giving a description of the elements of the Schur group by Hasse

invariants. We shall first describe the work of Yamada which gives'

the Hasse invariants of elements in the Schur group of a (complete)

p-ad1c field. This is then used to describe the elements in the

5ch~r group of an algebraic number field which is an abelian ex­

tension of the rational field.
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v. K. KHARCHENKO

Let R be a dornain, Rr = ~ Hom{I;R) its left ring Qf
1*0

quotients in the sense of Martindale and let

Q =" {q E Rr ' 3 0* I <S R qI , Iq ~ R } and e = the center of Q

·(which 1s a fleld) . If G 1s a group of automorphisrns of R

then it can be cont1nuated to Q and we denote by B(G) the e-
subalgebra"of Q generated by elements corre8ponding to inner

automorphism~ of Q. We say'that G i5 regular 1ff· any inner

automorphism of R corre8ponding to an element of B(G) belangs

to G . The number dimC~ (G) • I Gi: Gint I 18 called reduced order

of Gwhich will be supposed finite.

A subring S of R is ca"lled anti-ideal if from the inclusions

sx ES, O:$: 8 ES, x E R i t follows that x ES.

Theorem 1. Let G be a reduced-finlte regular" group of auto-

morphisms of the doma!n R. Then there exists a Galois corres-

pondence between regular subgroups of the group G and the anti­

ideals of the domain R, containing the ring of invariants RG •

This theorem admits" a generalization in the case of prime rings

and semi-prime rings. This theorem together with the fact that

Q(F) = F for any non-commutative free algebra allows us to obtain ~

an interesting corollary for free algebras.

Theorem 2. Let G be a finite group af linear automorphisms of

the free ~lgebra F. Then there exists a Galois correspondence

between all the subgroups of G and all the free subalgebras con­

taining FG .
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Th"e he"art öf prjjIie" :i"de"a-l"s' '1:0" °s"roup" "a"l"g"eb"r-äs' "of

polycyclic groups

Let K[GJ be the group algebra of the polycyclic-by-finite

group G. We associate to every prim~ ideal p" in K[G]- a corn­

mutative field HCP) , called the heart of P, which is defined

to be the center of the sem1sirnple arti~ian ring of quotients

Q(K[G]/P). We show that in case the field K is non absolute

Ci.e. not algebraic over a finite field), the primitive ideals of

K[G] are precisely those prime ideals P in K[GJ such that the

field extension H(p)/K 1s algebraic. Using this characterization

of primitive ideals one can prove the following ideal theoretic

version of Clifford's classical restrietion theorem Given a

primitive ideal P in K[G] and.a normal subgroup N of G,

then there e~ists a primitive ideal Q of K[N] such that

p n K[N] = n QX. Also, one can give a formula .for the height
. x E G

of prime ideals P in group algebras of certain polycyclic-by- .

finite groups G involving.the transceodence degree of H(P) over

K and same group theoretic term pl(GiP) .

As to the structure of H (P) , we gi"ve same sufficient conditions

that imply the equality H(P) = Q.(Z(K(GJ/P» and an exarnple showing

that this equa1ity does not hold in general." At least, HCP) iso

~. always a finitely generated field extension of

degree at most hCG) , the Hirsch number of G

K of transcendence

- The results pre-

sented in this talk were obtained in joint work with D.S. Passman.

K. MATHIAK Valuations of ordered skew fields

A valuation ring B of a skew field K is called subinvariant

if there exists a valuation ring which 18 contained in Band is
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invariant under the group of inner automorphisms of K. The

value group o~ a valuation 1s linearly ordered 1ff the valuation

ring 15 5ubinvariant. A ~aluation of a linearly ordered skew

field 1s called compatible with the order of the fleld if the

valuation ring is a convex subset of K. These valuations are

subinvariant.

c. M. RINGEL Problems on division algebras arising from the

representati'on -t,he'ory of a-r t-in:ian, rings

Theorem: A hereditary artinian ring is of finite representation

type if ~nd only if a 'corresponding graph is the d~sjoint union of

the Coxeter graphs An' Bn (=Cn ) , Dn , 06' E7 , E8 , F 4 , G2 , H
3

, H4

and 1 2 (p) .' In case of an algebra, the cases H3 , H
4

, 1 2 (p) (p=5

or p~7) cannot occur and it 15 an open problem whether these

graphs can occur at all. A ring of type "3'"4 exists if and only

If there exists a'division ring F with a division subring G such

that dirn FG = 2, dirn GF = 3 and dirn GRom ( GFF' 'GG ) = 1 •

L. RISMAN Group rings and series

algebras

The arlthmetic cf division

We base our study of group rings on group extensions and valua-

tion theory. Let D be a division ring and T a group. Consider

a group extension 1~ D·~ E~ T-+ 1 , where T acts by ring

automorphisms of D. The group.ri'ng of E is the ring whose basis

over 0 Is {t tET'} and in which elements d€ multiply as in E •
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A morphism of group extensions induces a homomorphism of group

rings. The group ring of E iS_generic with respect to certain

crossed product algebras, generalizing and simplifying previous

results.

For T on ordered group, the group ring of E can be embedded

in a division ring of series. Valuation and ramification theory

characterize the structure of subfields of this division ring.

This characterization is applied in proving the non-crossed product

theorems.

s. ROSSET Group extension.and division algebras

Let r be cl virtuaily free abelian group, i. e. r is, an extension

1--. A --+ r ---+ G --. 1 where A is free abelian and G is fini·te.

Assume G is faithfully.represented on A. Let k be.a field.

Then the group ring kr has a total ring of fractions kCr) .

Denote the field of fractions of kA by L (=k(A» .. In L *·. , A

can be identified as the group of monomials,' G acts on Land

i: A---+L* is a G module map. We prove i.: H2 CG,A)-+ H2 (G,L*)c'B'rCK)

~ is injective. Here K = LG • It is easilyseen that kIf) is central

simple over K and its Brauer class is i.o where o E H
2 (G,A)

represents r Thus the order of [k (f)] in BrK equals that of 0

Theorem 1 . Given a finite group G , JGf = n , an integer m

such that mln and m,n have the same prime factors, there is a'

(unirational!) extension K of k and a division algebra over K

of dimension 0
2 of order m (in BrK).

By the above this results from
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Theorem 2. Given G and m as above, there exists a G module A

and 0 E H
2 (G,A) such that (a) A 1s free abelian (f.g.),

(h) 0 represents a torsion free extension, (c) G acts faithfully

on A, (d) order (0)' = m •

M. SCHACHER

We are concerned with the foilowing question: which abelian

torsion' groups can ar ise as the Brauer group B (F) of some f ield F?

One does not know, for example, whether the cyclic group of order 3

i5 the Brauer group of same field. A conjecture of Auslander~Brumer

says that i~ B(F) has non-zero elements of order p, 2*p a prime,

then 'B(F) contains a p-divisible subgrotip.: this would say a finite

Brauer group roust be a 2-group.

In this talk we report on same joint work with B.Fein on these

questions. We prove:

Theörem 1. Let G be a countable torsion group with 2G - div.i­

sible. Then G ~ B(F) for some fleld F algebraic over the rational

fleld Q .

Theorem 2. If k i5 aglobai field of character'istic q* p ,

p a prime, and t 1 , ••• , t n are indeterminates over k, tqen

B( k(t
1

, •• '. ,tn » contains reduced elements x of order p which

have infinite height (the equation has solutions

for all n). We determine the Uim length of these groups, and partial

information about the Ulm invariants~

Finally, we show any divisible torsion group whose p-rank is in-

finite for' all primes p does arlse a·s the Brauer group of some field. '
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Polynomials over division rings

is not

The following theorems were discussed

Theorem 1. If 0 is a division ring and D[x1 , ... ,x
n

] R

polynomials in commutating variables, then simple R-modules.are

finite-dimensional over D.

Theorem 2. Rand D as in Theorem 1. R i5 primitive, if

_ and only if Mt (0) contains a subfield of transcendence degree > n

(over the center of D).

Examples are given of division rings, D(i), such that

D (i) [ . ) . " t' b t 0 (i) ( ].x 1 ' • • • , x i ~ ~ pr~m~ ~ve , u x 1 ., .. · ., X u ' u > ~

primitive •. - The above is joint work with S.A".Amitsur.

M. Lorenz (Eisen)
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