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MATHEMATISCHES F'ORSCHUNGSLNSTITU·T OBER\VOLFACH

Tag u n g 5 b e r ich t

Maßtheorie

1. 7. bis 7. 7. 1979

'28/1979

Die Tagung, an der 60 Wissenschaftler aus 18 Ländern teilnahmen, stand

unter der Leitung von D. KBlzow (Erlangen). In ihrem Verlauf wurden

insgesamt 43 Vorträge gehalten; abgeschlossen wurde sie mit einer

"Problem Session".

Es ist geplant, einen "Tagungsbericht zu veröffentlichen, wenn möglich

wieder in den HLecture Notes in Ha"thematics" des Springer Verlages.

Die Tagungsteilnehmer möchten sich an dieser Stelle beim Direktor d~s

Mathematischen Forschungsinstituts, Herrn Professor Dr. Barner, und

seinen Mitarbeitern für die große Unterstützung bedanken, die den er-

.folgreichen Verlauf der Tagung möglich machte.
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Vortragsauszüge

Allgemeine Haßtheorie

D. BIERLEIN

Heasure extension according to functions vith and vithout measurable

neighbours

'.zu gegebenem liahracheinlichkeitsfeld (M.(I(, ....> und gegebener Funktion

f: M-+ E: =(0. 1] interessiert die Menge 1" = 1"( lrlet •f) : =1r.\&<.. :0'.10( .. C"'IOt }

aller (~-additiven) Maß-Fortsetzungen von ö\~ auf die von Olund f erzeugte
("'!:!'

li-Algebra 0(4. (Aussagen über 5- in diesem Fall !qssen sich ohne vei teres

übertragen, wenn ~ durch ein beliebiges ~-finitee Haß und "E durch'R er

setzt werden).

Hit Hilfe einer meäsur~ble selection-Technik erhält man Haß-Fortsetzungen

einee speziellen TyPS~, bei dem jede Fortsetzung mit einem meßbaren
~ ~

"Nachbarn" von f korrespondi~rt. Im allgemeinen ist aber .t.\. "" nicht leer.
,....., ,--

Insbesondere interessiert .f im Fall ~ = ~. Für atomare und atomfreie

Haße vurde eine Uberaicht über das Auftreten der Fälle ·~1/~, ~ = ~ I- ~,

und ~= ~ gegeben und durch Angabe von Kriterien und Beispielen belegt.

eJ.p.R. CHRISTEKSEK

5mBll ball theorems and problems

A bounded eigned measure on a metric space need not be uniquely determined

by ita valuee on all balls. Hovever, for a large class or metr~c 6pacee

(including Hilbert spaces) it is true that a signed measure vanishea if

it vanishes on all balls with radius less than e for some e 0 (emaIl

ball theorems). Some positive results were proved and many open" problems

diecuased. While we have a eatisfyl.ng "email ball theorem" for Hilbert
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spaces we do not know, even for Hilbert spaces, how to find a me3sure

if we know it on small balls Ce.g. whether we can compute the measure

of a set by' forming infima of sums of coverings>. The methods and problems

are potential theoretic in spirit rather than combinato~ial as it is in

classical geometrie measure theory. (Ref.: J.P.R. CHRISTENSEN, The small

ball theorem for Hilbert spaces, Math~ Ann. 237 (1978), 273-276)

G.A. EDGAR

A long James spaee

Properties of the James-type Banach space J(U'~) on the first uncountable

ordinal were inv~stigated. J(~~) is the set of all eontinuous functions

f: [0 ,~~,""R:~····with·r( 0) =" 0 such that ·the norm Rfn = sup {.( Z; It~.;, -~l~;_"111

~L.-~.~~ is finite. J(~\) is a second conjugate spaee with the Radon

Nikodym property (rlNP) which does not embed in a weakly compactly genera-

ted space (this answers a question of P. }~OR~IS). The space is a dual

space with the RNP, but there exists a bounded scalarly measurable f~nction

on some probability space taking values in J(~~) that i6 not weakly equi-

valent to a Bochner measurable function; previously known exam~les with

these properties depend on the existence of a measurable cardinal. J(uJ1 ) ..

is a dualspace with RNP, but the weak and weak~ Borel sets do not coin-

c~de (this ansvers a question of M. TALAGRAND and the author).

E. GRZEGOHEK

(reporting on joint work ~ith C. RYLL - NARDZEWSKI) ~:

Universal null and universally measurable sets

A ~-field ~ on a set X is called measurable if there exists a continuous

probability measure on 01..

Theorem: Ci) There exists a subset X of the real line which is not Lebesgue

measurable and there exists apermutation p of :{' such that the 6'-field
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genera ted by I,. (X) u p( ß,<X» is not measurable (& (X) denoting the Borel

subeets of X). Remark that ~<X} and p('-(X») are measurable. (ii) If

all subsets of R of" cardinality less than 2~ are Lebesgue messurable, there

exists apermutation p .of R such that the ö-field generated by ß (R) and

p(~ (R» i8 not measurable. (iii) If X and Y are subsets of Rand p is a

bijectioD of X onto Y then the n-field on Y generated by ~ (I) and p( t (X})

is not measurable i~f the graph of p is a universal nullset in R-R.

4IIly) Tbere -exists a universal null subset-of R which does not have property·.~
c. (v) ~here exiets a universally measurable subset of R which does not

belong to the 6'-field generated by &(~) and the ideal of universal null

eubeets or R.

In that theorem, R can be replaced by any uncountable Borel subset of some

Poliah space.

11.G. rgJ.LpD

Baire Be~8 in product 8paces

GiTen aa arbitrary index set I aad topological 'spaces Xi' iEl f the follov

iug problem was treated: Under vhich conditions ia there equality betveen

tbe Bair. 8StS ~(ifzXi) ot the product space and the product ~(Xi)

• tll. Baire K-alg.bras ~Jl the factors. Hain result: .l'('1-Xi) ~r"'(Xi) ,___

~ all fillite producte lrT Xi' T~I finite, are Linde'löf. The explicit

conditioll 18 given by fI Xi6 . {aeeond countable, ö-compact, SUBlinJ for

all if:I.

J. LEKBCU

On a theorem of Bierlein

The tolloving reault, due to ASCHERL and LEHN, generalizes a theorem of

BIERLEIJl.
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Let {.o., ~ •((""> be a fini te measure space and lAi: i E, I ~ be a family of

pairvise disjoint subsets of.o.. •. Then there exists a "-additive extension

of ü' to the ir-algebra· ! \ ge ne ra ted by Sand {Ai: i ~I J.
It vas shoYn that one gets such ab-additive extension by preordering

the (non-ellJpt,.> set rs of a"ll finite"ly additive extensions of S' to -S'bY

\) , ..,' iff V(A.) .. J{A.) for all i f: I t and taking a maximal element of ~ •
1. 1.

Such a maximal element always exists.

W.F. PFEFFER

(reporting on joint work vith R.J. GARDENER)

Seme undecidability queations concerning Radon measures

Let X be a locally co~pact Hausdorff space, and let b be aRadon measure

defined on the Borel subsets of X. Assuming Martinis Axiom together vith

the negation of the Continuum Hypothesis the following statements are true:

(i) Ir x ie meta-Lindelöf and t' i6 6-finite, then ~ is regular.

(ii) If X ie hereditarily separable and Er i6 regular and·diffuse, then
J"

~ is d-tini te.

On the other hand, aSBuming the Continuum Hypothesis, there i6 an example

contradicting s'tatement (i), and assuming Jensen 's axiom Q., there is an

example contradicting (ii).

F. TOPS~E

Thin trees and the geometrical 6tructure of Lebesgue nullsets

The proceSB of Buccessively halving the unit interval I, vhich involves

the dyadic rational intervals, may conveniently be pictured by a tree.

A closed subaet of I vhoBe complement i6 a union of dyadic rational inter-

vals ~hen corresponds to a subtr~e whose infinite branches represent the

points of" the closed set. Criteria were given which enBure that there are

                                   
                                                                                                       ©



                                   
                                                                                                       ©



- 6 -

50 few infinite branches, that the closed set is a Lebesgu~ nullset.

Using this idea - which also leads to a Vitali type theore~ - a necessary

and sufficient condition for a subset of RU to be a nullset was given.

The talk ended with a discu5sion of the fact that this result is not com-

pletely satisfactory. A counterexample by M. TALAGJAUD to a satisfactory

condition was mentioned.

e.F. WHEELER

Extensions cf ~-additive measures to the· projective cover

If X is a completely regular ~ausdorff space, then there i5 an (e55entially

unique) extrem~lly disconnected space E(X), called the projective cover

or absolute of X, and aperfeet irreducible map ~of E(X) onto X. Let

~ and V be positive linear functionals on C~(X) and C·(E(X», respecti-

vely, represented as finitely additive Baire measures. Then ~ i8 called a

functional (resp., measure) extension of r- if ~(f.~) = -. r< f) for all f

in C·CX) (resp., 11 C.......-1 (B).) =. ~(B) for all Baire sets B). Every measure

extension is a functional ex~ension, but the converse holds for all ~ if

.and only if X satisfies a certain weak normality condition.

It was ahovn 'that if ~ i8 ö-additive and X i6 either measure compact or

weak eh, then every functional extension of ~ must again be ~-additive.

~ODditiOns for every measure extension to be d-additive were also obtained.\

Finally, connections were drawn between these ideas and the weIl known

problem of extending a ~-additive Baire measure to the Borel sets.
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Meßbare Selektionen

H.P. ERSHOV

Some selection theorems for abstract spaces

The concept of a '* -operation (where ~ is a cardinal number) as a map

2X 2X
from 2 into .2 was intro~ucedf examples for such operations being clo-

sure of a subfamily of 2X under union, intersection, Suslin operation and

~-algebra operations. Using this concept abstract measurable selection

theorems for partitions of a·set X were proved. For exampl~:
... -~.... .... -;. .....,;.:...

Theorem: Let cJl be a partition of a set X, X~2X', oard lt ~ ~1! Assume that

-( i.) the family Jt v 1t separates points of X

(ii) for each Ab Jt. the .cIaes ~A~: Hc-x.]has the finite intersection pro-

perty

Then there exi~ts a selection for Je (i.e. a map f: X -'X Buch that for

all At;Jt '. f(A) = 'xl~A ) such that for all H~X the Bet f-
1

(H) belongs to

the ö-algebra generated by the sets of the form U iA: AfI\ H1t\··· "Rn # ~J
where H

1
, ••• ,H

n
belang to·"'X...

c. GODET ~ THOBIE

S'ome results about roul timeasures and their selections

Let (lL,&) be a measurable space and X be.a locally conveX space. An

X-valued multimeasure on e i6 a map H from ~ to the nonempty Bubsets

of X which satisfies certain conditions of ö-additivity. Different defi-

nitions for infinite sums of subsets of'X give rise to different notions

of multimeasures (e.g. strong, normal and weak multimeasures). ror a

multimeasure M the Bet of all selectioDs, i.e. all X-valued meaBures m

on E such that m(A) 6 H( A) far all At is denoted by SM- Various condi tions

on M were given vhich ensure equality of tbe sets H(A) with either of the
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Finally a result on measurable families of selections of a multimeasure

vas given.

s. GRAF

_ •• a;:-~..;:~

A parametrization of measurable seetions via extremsl preimage measures"

"4Itet (X.Ol,~) be a finite measure space, Y a Hausdorff topological space,

ir(y) t'be Borel field 0"[ Y and p:Y -) X a f, (y)-OC -measurable map.

Let M denote the Bet of all measures L> on rlr (y) whose image p( lJ) vi th

reapect to p is the given meaaure ~ • Generalizing a result of EDGAR

(Illinois J. Math. 20(1976), 630-646) it is shovn that aRadon meaaure ~

on Y i8 an extreme point of M if and only if there exists "an Ot~- ~(y)

measureable veak section f for p vith V = f(~). Further, sufficient con

ditiona vere given "hieh ensure that every extreme point cf M is the image

of ~ under some measurable section for p. In the ease that X and Y are

Poliah' spac8B and p i8 -& (Y)- '(~)-mea8urable, onto, ~d oe.. 18 the field

of universally meaaurable Bubsets of X the following result was deduced:

If E i8 the set of extreme points of H equipped with the narrov topology

there exists a ~(E)~'O{ - ~(Y)-meaBurable map g from E~X into Y such

that (i) tor every 1.1 ~he IDap· g( U f ~) 1s an OC- ~(y) -measurable section

4Ilt p and (ii) tor any measurable section f of p there exists a measure ~
in E vi tb g('" , x) = fex) for r -a~most all x f:: X.

D. HAULDIN

A coanalytic set and Borel parametrization

First, a natural example of a co-analytic non-Borel set was given in

the folloving

Theorem: Let M .- {f6C«(o,1]): f does not have a finite derivative anywhere}
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The set H farms a co-analytic non-Borel set of C([o,']).

Second, necessary and sufficient conditions were determined in order that

a Borel subaet of the unit square be filled up by pairwise disjoint Borel

uniformizationa whieh "are Ifparametrized' in a Borel fashion:

Theorem: Let B~ 12 be a Borel set. The following are··equivalent:

(i) B contains a Borel set which has perfeet vertical sections

(ii) there is a map r:I ... A(I)-I)R such that ~(x,.) is a Borel probability

_ measure tor all x, öC.,E) is Borel measurable for all E~ßCI) and

~(xtBx») 0 for all x

(iii) B haa a Borel parametrization, i.e. there is a bijective Borel

measurable map g: 1~I-'B such that g(x,I)

H. TA.LAGRAND

Selections end liftings

B for all x.x

For X compact let Ba(X) be the Baire-~-algebra and CO(X) be the ~-algebra

defined by: All CO(X) ifr there exists a sequence of ope~ sets such that

A ie a union of atoms of the ö-algebra generated by that sequence. (Hence

CO(X) contains all Borel sets). Let ~ be a mea8ure on X, Bupported by X,

~ be a linear lifting of L~(~) and B(~) be the 6-algebra generated by

~ (L~b». The !olloving results vere proved:

e L If $ is strang, then for any compact Y and continuous p:Y·...X onto~

there exists a B(S>-Ba(M'(Y)-measurable map ~6 from X into M1(y) such
. + x +

that e (p-1(x»' = 1 for all x.
x

2. Let card I'),~. Z:= ~o, 1} I and X be the space of closed subsets of Z

equipped vith the Hausdorff topology. Then there is no CO(X)-Ba(M'(Z»-
- +

measurable map F..... 6"'"F such that t'F(F) = 1 for all F."

3. Let X be aa in 2. Then X supports a measure and for ~ measure ~ sup

ported by X there iB a strong lifting of Lo-(~) such that B(!) $I CO( X).

4. Let I be a set of regular cardinality,A< card I. If there is a Baire
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lifting cf the eanonieal measure OD· X:= tOl1}I (i.e. B(J)~ Ba(X) ) then

each continuous map p:Y-tX (p onto, Y compact) has a Ba(X)-Ba(Y)-measu-

rable section.

D.H. WAGNER

Survey cf measurable selection theorems: an update

An update vas given of the autborts IISurvey cf measurable selection

tlttheoremS Il • SIAM J. ~ontrol and Optimization 15(1977). 859-903. for which

a IlRussian literature supplement" was given by IOFFE, Ibid. 16(1978), 728-

732. Emphasis was on representation, i.e., parametrization, results of the

following form: Given a measurable space (T,~, a topological space X,

and ~ 'I F( t) ~ X for te T, find a nice (e. g. Polish) 6pace Z and a nice

(e. g. Carath~odo~y or Borel) map f: T ~ Z -. X such that f( t, Z) >= F( t), t 6' T.

These are largely by lOFFE, MAULDIN, SRIVASTAVA, and GRAF, folloving WESLEY

and CENZER & HAULDIN. Among additional topies revieved were results on

compact-valued maps, optimal m~asurable selections t selections for par-

titions, and measurable veak sectioDs. Over 70 titles were added to the

bibliography.

Liftings

A.G. BABlKER

Almost strang liftings and t' -addi tivi ty

For completely regular space X and finite topological measure, i.e.

a Baire or a Borel measure, on X was discussed the existence of streng

liftings for the associated topological measure space. It was shown that

when X is locally metrizable, the ~-additivity of the measure relative

to the given topology on X, whieh is alvays necessary for the existence

of almost strong liftings, is Buffieient to ensure that all liftings are
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almest strong. There were given examples of locally metrizable, non-metri-

zahle spaces with finite, ~-additive, non-trivial topological measures on

them for which the existence cf a strang lifting" can·· not.:. be" deduced from

ether sufficient canditions known in the literature. Astrenger t'-addi-

tivity criterion far a given lifting to be almost strang was given and this

was used to show that a ~-additive Lebe5gue measure space may admit 1if-

tings vhich are not almost strang.

P. GEORGIOU

On "idempotent ll liftings

Let (T,~) and (X,m) be two campact measure spaces with common-Hyperstanean

space (S,v) such that there is a continu~~s mapping ~:X""T with ~ =: W(m).

I~ (T, r-) has the strang lifting property, then there i8 an Itidempotentlt

lifting of ~~(Xtm).

Note: The "idempotent" lifting is defined as an idempotent element af the

semigroupt vhich i5 defined on the set of liftings of ct~{x,m) (cf. Math.

Annalen 208(1974), 195-202).

v. LOSERT

ARadon measure without the strang lifting property

~ The example, due to the author, cf aRadon measure m on a compact space X

vhich does not admit a strong lifting vas presented. (For details see:

V. LOSERT,"A measure space without the strong lifting. property, Math.

Annalen 239(1979). 119-128).

In addition, it vas remarked that the following can be proved in a similar

way: there exist compact space X, Y, aRadon measure m supprted by X and

a continuous surjective map p: Y-+X which does ~ admit a section measu

rable with respect to the Baire sets on Y and the m-measurable sets on X.
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Differentiation von Haßen und Integralen

H. DE GUZHAN

Some results and open guestions in differentiation

Consider R2 vith Lebesgue measure.· Let (8 k) "be a seq~ence in [0,2 u[and

l.t Be be the differentiation basis of all-open rectangles vith ODe side

in directioD ~. Resulta: If Qk = 1/kP , Polo, then Be does not even differen

eiate Lila. Ir ~k = 1/2k then Be difterentia.tes LP tor P) 1 (STROMBERG,

CORDOB.A-FEFFERMAN, STEIN-WAINGER). If the ~k determin~ the endpoints

of iBterYals in the successive stepa of the constructio~ of a Cantor type

set of positiTe meaaure, then Be is AB bad aB in the first case. It is un

knowD.what happens if the ß k ar1se in the cODatruction of an ordinary

Cantor set. The problem i8 connected vith multiplier theorems for the

Fourier transfors.

Anotheroproblem: can one differentiate vith respect to the dilatations

of a fixed unbounded etarsbaped set of positive measure ? The aosver is

",.eos" "for LP and p) 1. If the fixed set satiefies a certain entropy con

ditiO~t then it i8 also ",.e8" for L1 (CALDERON, PERAL). This problem ia

COAnect.d vith the conatrUction of approximations of the i~entity by means,

ot th. dilatationa of a !ixed kernel in L1 •

e
W.A.J. LUXEMBURG

The Radon-Hikodlm theorem revieited

VariOUB forms of the Radon-Nikodym theorem were diecuBsed vith emphasis

on the differentovays the theorem may be proved. In particular it was

ShOWD in which case a nonstandard proof may give some additional insight.

It was shovn that extensioDs"of the classical theorem to positive opera-

tors may be obtained with"the help of the Haharam property.
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P. MATTILA

· _.•" ~. --=----...-..------·.-=--------------------:,f
i
I

I

Differentiation of measures on uniform spaces

The question what" kind of differentiation theorems for measures on uniform

spaees are consequences of homogeneity properties of the basic mea6ure

was considered. A special esse of the results presented is the following:

Let ~ b~ a regular Borel measure on a separable metric space X. Ir there

are a non-decreasing function h: (0,00 )~(Ot ClIO) lIIith lim her)
r~o

o and

c, 0 such that ~.h(r) =" Ct(B(x,r»~ her) for tt--almost all x6X and for r

greater than 0, then for any f6 LP(,), 1~ p,oo,

(Ö(B(Xtrl)-1SB(Xtr)f,dr~f(X) in LP(b) as r~o.

Examplee can be constructed to show that the uniform bounds fort{B(x,r»

c anno t be re pIace d b Y 1 i m in f r- (B ( X , r ) :~h ( r ) ")/ C or 1im 6 up r (B ( X t r ) )~ 1 ,

and that the mean convergence cannot be replaced by pointviae converegence

almost everyvhere. Results of this type ean also be p~oved for more

general measures on uniform spaces.

On differentiation of Daniell integrals

Let I be a Daniell i~tegral on t
1

• Define I.. Q6 by: k '- ;J.~ iff k· fei, for

all f~ ~. Then d/:,IIO: = {A: 1A~ J.s.c} is a ~-algebra. Let J be the ö-ideal

of . sets T, such that I( 'T· f) = 0 for all ff: cl
1

• Let Jigo be the vflllCl-measura

ble functions and ~1 be the Stone-measurab1e functions vith r~Bpect to ~1.

I is called localizable if vt~J i6 a complete lattice.

Theorem 1:.The fo11owing are equivalent: Ca) I is localizable (b) for

each 1'«1 there is a gb<AlJI} such that I t (f) = JC f· g) for all f in the

intersection of ~ 1(1) and i 1(1 1
) (c) EachK..c:< I has a Hahn decompo-

sition

A Radon-Nikodym derivative g of l' with respect to I is positive, iff

f ~ V'K. 1 (I) and f.g e '" 1(1) "implies ff: ~(II) and r'(F) :: l(f- g).
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Theorem 2: For every positive derivative g of I' w.r.t. I the set

{x:g(x) 0) is 1 1 null iff there exists a strictly positive function

in~•.

Examples: 1. There i5 a non-positive derivative (negative solution to a

problem posed by KÖLZOW) 2. There i5 a Daniell integral with no strictly

positive functions in vC(,.

4Itvektorvertige und Gruppenvertige Maße

P. MASANI

Stationary measures in Banach and Hilbert spaces

Let X be a Banach space over the real or complex numbers, G be a locally

compact (additive) group, ~ be aprering of pre-compact Borel subsets of

G, f be a finitely additive measure onJP with values in .X, and Sr=

ö( S (D): D e/l) . We say that S is stationary, iff there exists a strongl,.

continuoU6 group cf isometries U(.) on sI onto Ss ' parametrized be G,

such that for all D~1 and all te G, S (D+t) U(t)-tr<D>}.

It vas shown that every stationary me~sure S over Rq·has the folloving

canonioal form, whare ':P is the prering of subintervals of Rq,

S (A) = T(A)- (~), AE: '?

Where alt: X and TC.) ia a fini tely addi tive Sr - to S! operator valued

measure on~ , explicitly definable in terms of U(.).

With G = Rq and X = H, a Hilbert space, an explicit spectral representation

rar ! CD) and for the covariances (s (A 1), S (A2)~H vas obtained.

P. HcGILL

Elementary integrals

One of the advantages of using an elementary integration procedure is

that the range space can be extremely general - usually a topological group
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or a uniform semi-group. However such integrals are difficult to werk

with since they sometimes lack the usual propert~es. This talk dis-

cussed one approach which yields an integral which is quite general but

nevertheless seems to possess enough structure to be useful. The definition

is a generalisation of the Ito-belated .integral of McSHANE using a contral

measure wi th values in a uniform semi-group•.By using the work of DREW-

NOWSKI and SION it is possible to clarify the difficulties encountered,

Relationships with ether integrals were explored and a Domi~ated Conver-

gence Theorem was proved.

P. MORALES

Regularity and extension of semigroup-valued Baire measures

For a non-empty class ~ of subsets of a given set, the symbols geüt),

S( \Jl) will denote, respectively, the ct-ring, S-ring generated by vt, •.Let

X be a Hausdorff locally compact space. and let l<. ,)( denote, respecti-
o

vely, the class of compact, com~act GS subsets of X. Thus d(J() , b(J{o)

are the class of Borei, Baire sets of X. Let G be a Hausdorff uniform

semigroup. We say that a G-valued set function ~ defined on ~(~) (ff(J{o»

i5 a Borel (Baire) measure if: Ci) tf- is ö-additive; (ii) the restrietion

~'6(J<) (~\H(J(o» is locally s-bounded. The main results were the

following:

Theorem 1: Every Baire measure is regular.

Theorem 2: If G is complete, then every Baire meaaure extends uniquely to

a regular Borel measur~.

These results improve the well-known classical theorems, and generalise

the recent group-valued results of SUNDARESAN and DAY (Proe. Amer. Math.

Soc. 36(1972), 609-612) and KHURANA (Bull. Acad. Polon. 22(1974), 891-895).
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K. HUSIA~

A martingale characterization of the weak Radon-Nikodym property in

Banach spaces

Let (5,% p) be a complete probability space, X be a Banach spa~e and
~ .-.... .....-......;:-

~(S,1 ,p;X) be the space of all X-valued Pettis integr~b1e functions on

(S, I ,P) endowed with the Pettis norm.

Theorem: For a Banaeh"spaee X the fol1owing conditions are equiva1ente ..,hen holding for all cOlDplete probabili ty spaces (5, Z ,P) :

(i) X haB the veak Radon-Nikodym property.

(ii) Given any directed set lT and a terminally uniformly integrable

martingale (f.. , '2:. lrellof X-valued Pettis integrable functioDs on (5,2:: ,P)

tben (f~,7~~ii is convergent in ~(5'~iPiX).

(iii)Given any directed set 11 and a uniformly bounded martingale (fW'~G)

of X-valued Pettis integrable functions on (S", P), then. (frr ,~n) 1T is

conv~rgent in ~ (S, ~ ,P;X).

In the above condi tions '"ir ean be taken to be the set. of natural numbers

and the funetions f V may take on1y a finite number 'of va~ues. Also

(S,~,P)· ean be chosen to be the unit inter~a1 vith Lebesgue me~sure.

E. PAP

~ Integration of functions ..,ith values in cOlDplete selDi-vector spaces

Ueing soma ideas of HIKUSINSKI' s approach to the Bochner integral, an

axiomatic treatment of integrals of semigroup valued funetions was pre-

sented.

Let X be a commutative semigroup with neutral element 0 and with a com-

plete metric d satisfying d(x+y, 0), d(x,O) + d(y,O) for x,y in X. Let

K be an arbitrary set and U be a fami1y of functions from K to X. Assume

that a function S (calIed integral) is defined on U such that the following

axioms are satisfied: (N) O~ U and So = 0, (D) If f and g are in U, then
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d( f ,g) is in U and d( Sf, Sg) ~Sd(r ,g) , (E) Ir (fn) is a sequence in U

such that ! J d(r ,O}<.oO and the equality fex) = I f (x) holds at every
n n

point x in X where Z d{fn(x) ,0) <. 00 , then fE: U and f f = ~Ji n -

If the metric d satisfies also Id(x,O) - d(y,O)1 ~ ~(x+y,O) and is trans

lation invariant, then the theory of such an integral can be enriched with:

completeness of the space U (the set of all classes), dominated convergence

theorem, Riesz theorem, Fubini theorem and others_

~ If K = Rq and X is a complete semi-vector space (in the generalized sense),

then, ifaxiom (N) is replaced by axiom (H)"If f E U and ~'/o, th~n ""-.f e.U

and f.cof lJ\. Sf " and if the metric satisfies some natural condi tions, a

model for the RED-integral can be constructed. In special cases MIKUSINSKI's

REH-integral, the Bochner integral and the Lebesgue integral are obtained.

Stochastische Integration und Wahrscheinlichkeit

K. BICHTELER

The stochastic integral a6 a vector measure

Given a right-continuoUB process Z, consider the elementary integral it

defines as a linear map dZ:' -f LP(P). The collection E of elementary

integrands is given the sup-norm topology. For dZ to have an extension

S.. dZ satisfying the Dominated Convergence Theorem, it suffices that

dZ: E~ LP(p) is continuou6, 06 P '0-. Daniell' 5 method then produces the

ectension. If o~ p< q ,,2 th~re is a probability PI~'p so ~hat dZ: f-'Lq(P')

is continuous and its moduluB of continuity is controlled by that of

dZ: i' -iJ' LP(P) _ This permits the pathwise computation ·of stochastic inte

grals Jx dZ for left continuous integrands with right limits and of the

solution of a stochastic differential eqation controlled by an arbitrary

semimartingale •
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c. DELLACH~RIE

A survey of stochastic integration

Let CA, r; ,P) be a probability space with a filtration (3t ) t f::. R+ satis

fring the usual conditions (i.e. (~t) is right continuous, ~ is complete

and ~ contains all null sets).
o

A survey of that part of stochastic integration vhich depends only on the

e class of null sets of P vas given. The important notion of a semimartingal:,_

was introduced and it vas ShOVD, that in some strang sense, these are the

only reasonable processes with respect to which it i6 possible to integrate.

The stachastic integral vith respect to a semimartingale was defined aod

the IIcalculus" for such an integral developped: ITO'a formula for change

of variables i existence and uniquenesB of Bolutiona of stochastic differ-

ential equationa satisfying a global Lipschitz condition.

v. GOODHAN

The law cf the iterated logarithm in Hilbert spaces

Let (Xi) be a sequence of identically distributed random variables vith

values in a separable Banach space B. Assume that for ~=~(X1) the dual

of B is contained in L
2 <'tt-) and that SB(y,x;'S"(dX) 0 for all y eB~e CODsider the cluseer set of T {Cl: Xi) (2n lnln ~)-1/2J for almost

allw. By a theorem of KUELBS one has: There exists a non-random cluster

set Ki S ~~~.,X)X~(dX) exists aB a Pettis integral in the space of

bounded operators from B- to Band can be continuously extended to an

operator defined on the closure of F! in.L2( tt) i K':= {Sy: (8y ,1) 1..1 r
is bounded and contains K. For B = H a separable Hilbert space one has:

2 . .
Theorem 1 (GOODMAN, KUELBS, ZINN): If S is compact and (a) x~lxn InlnUxP

is in L1(~} and sup {t
2

• ft ( 1\ x\\ ')r t): ·t ~ oJ~oo or (b) x ....lxI2~nlnlnlx./lnlnaxß

is in L
1
(t'), then T is compact with probability 1 and K = K' is compact.

Theorem 2: Ir S is bounded and (a)-ar (b) a5 above hold, then T is

bounded.
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D.A. KAPPOS

A kind of random integral

Let (~,p) be a probability ~-algebra and 1C be the stochastic space oS

real valued random variables over (~,p) (~ee D.A. KAPPOS, Probability

algebras and stochastic spaces, Acad. Press 1969). Let S be a nonempty

set and f ·-.- fes, '/.) be the space cf random functions f: S --+ tl... Then

~ is a conditionally complete lattice algebra. On f the notions of o-coo

vergence and uniform convergence are defined. Let .J' be a Boolean 6'-algebra

of subsets of S. A function r-: IA~ '?/... is called a random measure iff

it is positive and ö-additive w.r.t. the o-convergence. Modifying o-coo-

v.ergence and uniform convergence modulo tt one g'et~ t"-convergence and

almost uniform convergence v.r.t. ~. Properties o~ and relations betveen

these notions of convergence were investigated:

Then .the spaces of simple measura~le, measurable and ~-integrable randem

functions were introduced. The ~-integral was extended from the space

of simple functions to the space of integrable functions and - among other

results - a dominated convergence theorem proved.

L. SUCHESTON.

(reporting on joint work with A. MILLET)

Martingales, stopping timest Vitali conditioDS

Let (~t) be an increasing fami"ly of ö-algebras indexed by a directed set

J. It was shown that every L1-bound~d real·valued martingale converges

essentially if and only if a weak type of maximal inequality holds for

all mart~ngales: A: p( e-lim sup IXJ 7, ~\ ~ 1im E( lXJ ). A new covering

condition C stated in terms of multivalued stopping times was introduced

and characterized in terms of maximal inequalities. C was shown to be

strictly weaker than the Vitali condition V, than SV (see.C.R. Acad. Sei.

Paris, 288(1979), 595-598), and also sigma-SV. Under C, L1-bounded
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martingales taking values in a Banach space with the Radon-Nikodym property'

converge essentially. Also a point derivation version of condition C was

given, sufficient to obtain Lebesgue's theorem.

W.A. VOYCZYNSKI

On Harcinkieviez-ZlgmUnd lava of large numbers in Banach space and

rel_ted rates of convergence

~ It was 8hown. in particular. that tor independent atrongly measurable

random variables (Xi) taking valu8a in a .real 6~parabl.e Banach apace B

and havins uniformly bounded tail probabilities the implication

• if E~'Xi" P)LOO, E(Xi ) = 0 then Snl n 1/p -') 0 almost surely 11

depends in an essential vay on IP not being.finitely repreaentable in B.

LP - Räum. und yerwandte Gebiete

A. KATAVOLOS

Hon-eommutative 'L~-BpaceB

Given a von Neumann algebra M equipped vith a semifinite faithful normal

trace t, one constructe the the non-commutative LP-spaces LP(M,t) vhich

are 8anaeh 8paces for p ,,1. Giyen a linear mapping T betveen tvo such

e. 8paCDa LP(Ml't,) and LP(M2.t2 ). tor p'7t2. vhich mapa normal elements to'
\

normal elements. ud is ·isom~trico on normal elements, it was shown that,

.iot the trac8s are lini te and T preserves ~~e ,ide~tity, then T restrieted

to "1 must be isometrie, ultraweakly continuOUB, and the direet sum of

a - -homollorphism and a .. -a.ntihomomorphi~m. Further i t was shovn that

the existence of an isometrie linear bijection between a non-commutative

and an ordinary LP-apace i~plieB, for p~2, that the underlying von Neu

mann algebras are isomorphie aB von Neumann algebras, and hence °both must

be Abelian. Th~~ the non-commutative LP-spaces form a new class of
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Banach spaces, distinct from classical ones.

w. SCHACHERHAYER

2
Integral operators on L -spaces

Let (X, ft') and (y tU) be fini te measure spaces. The following characteri

sation of.integral operators was given:

Proposition: T: L2 ( \J ) -') L2 ( r-) is an integral operator (i.e. represen

~ table by a kernel function) iff T transforms order-bounded sets into

equi-measurable sets.

The method of proof depends on the following principle: Consider a kernel

k: X.Y-1~ aB a function from X inta a vector space of functions on Y.

Using the same method one can also prove:

Proposition: If T: L2 ( .., ) --+ L2( 6"') is integral then for each 1 ~ P ~2

the coiDposition cf T vi th the canonical injection of L2 ( ~ l into LP( ~)

is compact.

D. SENTILLES

Stone space representation cf vector functionsand operators on L
1

1.., -
An operator T on L (..n, ". r-) into a Bnach space X easily admi ts a weak

integral repre6e~tatioD (T" ,x .):: S~' ,DT)d U for ~ ~L1
where S i5 the

Stone space cf Z / ßL'-1 (0) a~d DT: S -)X' '. T is Bochner representable

on ..sz. as vell iff DT- 1
(X", X) is nowhere dense and T is weakly compact

iff DT(S)~X. In either case DT is then norm continuous on an open dense

8-compact set in Sand the Bochner representative o! T on -!t i6 related

to DT on S in the following way: There exist closed nowhere dense sets

Cw ~ S, with dense union, such that T is strongly diffe.rentiable at

iff DT \C w is constant and norm continuous (and then equal on Cw to

the strang derivative). A method of lifting ~OO(..R.I'l. ,C",X) results.
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,.,
s. TOHASEK

Uber einen Isomorphiesatz

Es sei t= eine Klasse von topologischen Vektorräumen, die bezüglich der

üblichen algebraischen und topologischen Operationen (Bildung der voll-

ständigen Hülle, des assozierten separierten Faktorraums,von Unterräumen,

von kartesischen Produkten) stabil ist. Es seien E und F zwei separierte

Vektorräume in (; • In E e F wird eine Tensortopologie definiert t und zwar
t

die projektive Tensortopolo~iet die durch alle u E: l(E,F;G) ~ G~', erzeugt .... -

wird.Wir schreiben dann E~,F.

Satz: Ist E~F separiert und zu C gehörig, so sind die Tensorprodukte-- ,
A """ '" ~ • .

(E) ~iF) und E &(.F (topologisch) isomorph.

1 ....... - 1 )Elementare Folgerung: L (r). F:a Lftr .r lo t F metrisierbar, lokalkonvex

L
1(r )i L

1
( LI) ;; L

1
( ()t8L') t r, ~ ~o

Integraldarstellungen

M.M. RAD

Local functionals

If F is a (linear) function space on some set, then a mapping M from F

• into the scalar field is called a local functional (in the sense of

GEL'FAND) if M(f+g) M(r) + H(g) for all f,g in F vith r.g = o. These

arise in the theory of generalized random processes t~king independent

values at each point, and elsewhere. It is of intereB~ to get integral

representations of such functionals under suitable conditions. The spaces

F of interest for probability are the Schvartz spaces of infinitely orten

differentiable functions with compact support, or F

nuous scalar functions on a locally compact space G having compact support •.

Elsewhere F is a Sobolev or a Lebesgue space. On each of these spaces the

methods of representation are not the same, even though one may describe
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them as certain Lebesgue-llikodym type results. An account of some of this

work was presented for general locally compact G.

E.G.F. THOHAS

Integral representation in convex cones

Let F be areal locally convex Ha~sdorff space which i6 quasi-complete

and ~~ F a closed convex proper cone. ext ~ denotes the set of extreme

.• generators of rand (in case ext I"' I fil) S a fixed subset of ext r , not

containing 0, meeting each extreme ray in precisely one point and satis-

fying some measurability condition. The following definition does not

depend on the choice of S: a f; r bas a (unique) integral r.epresentation .

by means of extreme generators iff there .exists a (unique) Radon measure

m on S such that for all le F': 1 ~L1(m) and l(a) = Sl(X) m(dx) •

Problem: For vhich cones' T' does every a 6 r have a (unique) integral

representation by means of extreme generators.

Generalizing a classical theorem of CHOQUET and theorems by EDGAR and the

author, the following result was ob~ained:

Theorem: Let I'" be t'-conuclear, .the sets in t" being bounded convex Susli"n

sets·with the Radon-Nikodym Property, then every point in r"has an integral

representation by means of extreme generators. This representation i5

unique for each point if and only if r is a lattice in its own order.

Integraltransformationen von Haßen

A: HERTLE
'.

'7' .'.

The Radon transform of measures

The Radon transform (RT).defined by (Rf)(x,p) ~ ~ )_ f(y)dy can be
....n.,y -p

considered as an operator from L'(Rn ) to L1(Sn-1x R). First it was shown

that the inversion problem for the RT cannot be properly posed on L1 •

Guided by that result, .the RT was·extended to finite measures on Rn an~
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on separable Hilbert spaces H as follows

(Rm)(g) = - fs ~ ~"g(x.p) l.Jc~)~ p dm(y) dp dr.i(X)

Rere, is a Gaussian measure on Hand
S"".

the surface measure induced

by 6t on the sphere S of H (in the case H = Rn t is the normal distri 

.bution). After that, the inversion problem for the RT is vell~posed. In

particular, a. function on H is uniquely determined by i ts r- -surface inte

grals over all'hyperplanea in H. Among other things, theorems of HELGASON

~. and JOHN can be generalized from fUDCtioDS o~ RD to meaaure6 OD H.

Verschiedenes

c. CONSTANTINESCU

Spaces of multipliable families in Hausdorff topological graups

Let G be a Hausdorff topological group, I be. a linearly ordered set,

lPCI) be ~he power Be~ of I endoved vith the compact topology obtained

by identification vi th {o, 1] I, and let 1 be the set of·' fa:milies (xi) ieI

in G such th~t (xi)i~J i6 multipliable for every ~ ~I.

Theorem 1: For every (x~) in 1. th.e map J.~~ ~ x from ~(I) into G• . iE:J i .-

18 continuous.

Theorem 2: i~ a aequence in 1 such ~hat ( J..~IJ x .)
~ n,l. n

converges for el,.,ry J~ I, then the convergence is uniform in J, the

family (11m x .). I belangs to 1 andn,l. l.~

tor every J '-- I.

Ti· .'_J(ll.m x .) = 1im
1- M n,l. ~

Some coro1lariea of' these theorems were presented,. among them generalizations

to the non-commutative case of results oi ANTOSIK, DREWNOWSKI, KALTON,

LABUDA and THOHAS.
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T.E. DUNCAN

A geometrie approach to some stoehastic problems

The solutions to some problems of estimation end contral for linear pure

delay time systems were given. Such a system can be viewed a6 a system

over a ring of polynomials formed from the delays and the corresponding

algebraic vector bundle can be formed. The estimation and eontrol problems

are formulated ~n the symplectic vectOL" bundle obtained from the Lagrangian

Grassmannian description of these problems in each fiber of the vector

bundle that describes the system. In addition, the infinite time estimation

problem vas shown to be weIl posed given a natural o~servability condition

in the fibers cf the vector bUDdle. Same geometrical remarks were also

made on some other related stochastic problems.

F.Y. HArnA

A convergence property for solutions of Euler eguations cf certain

integral functionals

Let U be an o!len set in Rn and fex, t, r) be areal function on U ~ R Jt-.rtD

which is convex and C' in (t,~). The Euler (-Lagrange) equation for the

integral functional leu) = ff(X,~,~U)dX is formally written as

Lu = - d,iv \1r f(x,u,Vu) + D
t

f(x,u,~u) = o. Le~ H be the set of all weak

solutions of Lu = 0 on U. The problem here is to see vhether H is "closed1t

·1

in the following sense: If u ~ H, lu \ i8 loeally uniformly bounded andn . -l n.l

U
n
-. u almost everywhere on U, then u f.: H.

If f satisfies certain structural conditions, then H has this property.

w. S~OWIKOWSKI

Abstract path spaces

One eonsiders a unitary group with reflection, which ~6 a triplet

(H, U(.), Ho)' where H is a Hilbert space, Ho a subspace of Hand U(.) a
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unitary group on H such that the set of translations of Ho by U(.) is

total in H. Assume tbe reflection principle, i.e. LoU(t)E
o

' where E
o

is

the projection onto Ho' is selfadjoint for all t. Then the reflection ~

is introduced, vhich is the ~dentity on Ho and intertwines U(t) and U(-t)

rör all t. Denote by E+ the projection ente the linear span of U(t)Ho '

t 7't o. Require positivi ty of E':- E+ which is called the Osterwalder-Schrader

condition. Let Fo be the orthogonal projection cf H+ = E+H ento the ortho

gonal complement of the nullspace of E;" E+. F 0 U( t) t t ~ 0, extends to a

contraction semigroup on the completeion F ef F H with respect to the
o + .

norm 11 (E ':atE ) '/~ Q1 "here
+ + u· u is the norm in H. By use of spectral theory

it was proved that every contractive semigroup of selfadjoint operators on

a Hilbert space F which moves a-subspace Ho over a total subset of F, up to

unitary equivalence, originates in a unique way fram a unitary group with

reflection as described above. This result was connected "ith a result of

KLEIN"(Journ. Funct_ Anal. 1978) on measure preserving groups. All groups

and semigroups are assumed strongly- continuous.

•
Berichterstatter: G. Hägerl
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