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Universelle Algebra

15.7. bis 21.7.1979

Die Tagung fand statt unter der Leitung der Herren W. Felseher

~ (Tübingen), G. Grätzer (Winnipeg) und R. Wille (D~8tadt).

Die Themen der Vorträge lassen sich schwerpunktmäßig gliedern
in: Varietäten "universeller Algebren (Kongrue~zrelationenver­

bände - Mal'cev-Bedingungen - modelltheoretische Fragen);
Theorie spezieller Algebren; kompositionsabgeschlossene Funk­

tionenalgebren(lIclones fl ); Verbände und geordnete Mengen; Alge­

bren und ·Automaten.
Zusätzlich fand eine nproblemsitzWlg" statt, auf der jeweils

mit einer kurzen Einführung. offene Probleme vorgestellt ~~Tden,

die z.T. im Zusammenhang zu den Vorträgen. standen.

Vortragsauszüge

SCHMIDT, E.T.: Congruence lattlces cf lattlces

The congru~nce lattice of an arbitrary latti.ce is a distributive

~ algebraic lattice, i.e. the ideal lattice OI a distributive semi­
~attice with O. The converse of this statement 18 a long-standing

conjecture of lattice theory. It 18 proved:
THEO~I. Let L be the lattice of all ideals of a distributive
lattice with O. Then there exis~s a lattice K such that L is
isomorphie to the congruence lattice of K.
The basic step is the following: if Bt J l f: I, are four-element

Boolean algebras and L is a bounded distributive lattice such

that we have for each iE I a {o,:J! - v-homomorphism 'pi: Bi ~1,

then there exists a lO,1l v-hom. l' of the fre~ {O,1{ .-distibutive

product B =- 1r ~ Bi into L satisfying f lEi. = fi •
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DAY, A.: Varieties of congruence latti.ces

The form of' Polin' s algebras and in particular the form cf
congruence lattices of these algebras leads to a set of functors
defin~d on (finite) lattices. Let A be a finite Boolean algebra
and L a finite lattice; TA (L). = (Ca, f) e A l( LA: :f monotone and

:r (x v a) = fex) (x E: A) I . Lemma 1: TA preserves and refiects
monos, epis, subdirectlYirreducibleness, bounded (McKenzie).

Lemma 2: TA)( B~ TA 0 TB- Other properties of these functors
and their applications to congruence varieties are discussed •

FRIED, E.: Connection between the congruence-lattiee and poly-
nomial properties

This i8 a joint werk wi th E. W. Klas. Relations between the

fol1owing properties are deseribed: Congruence-permutability,
congruenee-dlstributivity, filtrality,.semisimplicity, having

complement.for ea~h (principal) congruence, (dual) discriminator
variety,having restricted unifonn eongruence scheme, congruence
extension property. Some of the main results: RUCS implies CD,
FI is equivalent to CD + Fee, a variety i8 a diseriminator­
variety iffit 18 CF + CD + poe. The method, used, is the poly­
nomial description of the abcve condit1ons. These conditions give
us how can ane build up achain fram c to d, using principal
congruences. To get equations we define Pixley conditions which
i8 a generalization of Malcev's condition when, also, the
operations"are included. These conditions describe FI or RUCS

wi. th a similar manner as the one used by B. Jonsson t 0 deseri be

CD. Any of these h~s a three- and a four-variably version. A
problem, stated that GM + ce yields pe, was solved by eh. Herr­
mann a few days before the meeting, in the affirmative.

HUTCBINSON, G.: Applying Lattice Ward Problem Algorithms Ta

Related Theories

The ward problem for a lattice variety generated by all lattices
of submodules for modules over a fixed ring R i8 known to be
computable in terms of certain simple properties of R. Several
algebraic and category theories that are closely related to the
theory of modules over a fixed ring R are discussed. Classes of
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problems in these theories ~hich can be systematically reduced
to lattic.e word probl"ems are identified. Computational methods
are discussed.•

TRACZYK, .T.: On a variety' arising from ari thmetic and set theory

Let us consider a varietyVof algebras of similari ty type (2,0)
defined"by the following setef identities: (1) (xy)z = (xz) y,

(2) x{xy) = j(yx). (3) ~ = 0, (4) XO = x.
It is lmown (K.Iseki, S.Tanaka) that variety 'lL of meet semi­
lattices wi th 0 is representable in 'V'. The representation is

given by the defl.ni ti.on (5) X" Y = x{xy). 11 and Y are not
equivalent. However~ in the finite case we have the following
THEOR.El\i. Let L be a fini te member of lL. There exists an operation,

• , on L such that (1) - (5) hold if and only if, for every maximal
element x in L, the interval CO,x] is a product of chains.
COROLLARIES. 1. A finite semilattice is consistent either with
none or wi th exactly one member of V'. 2. If L in V' i8 finite
and has the greatest 'element 1 then its congruence lattice is

a Boo~ean algebra. However, the lattice of congruences of an
arbitrary member ofVI is"a distributive lattice, only.

BOSBACH, B.: Quaderalgebren

Q = (Q,*,1) heiße eine Quaderalgebra, wenn Q die Gleichungen

(a * a)* b = b, a *(b * c) = b x{a * c), (a * .b)* b = (b * a)* a,
1 * a = a *" a erfüllt.
Hauptsatz: .Alle Quaderalgebren entstehen i.w. dadurch, daß man
in einer abelschen Verbandsgruppe ein Element 1~O wählt und
a *" b: = 0 u (b - a) erklärt. Als eine spezielle Quaderalgebra

stell t sich !EI (E = tXl O '- x '- 1-) bezüglich a '* b = max (0, b-a)
dar.-

In dem Vortrag wird u.a. die Frage geklärt, welche Quaderalgebren
Würfelalgebren, d.h. Unteralgebren von (EI ,*,1) sind. Dabei kom­
men maßtheoretische und topologische Aspekte mit ins Spiel.
Wesentlich scheint die Bemerkung, daß die angestellten Untersu­
chungen nur unwesentlich an der Kommutativität der Verb~dsgrup­

pe hängen.

:-~!".... -, ....
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ROMANOWSKA, A.: On free .-distributive bisemilattices

A.bisemilattice i8 an algebra W1th two binary operations which

satisfy 311 axioms cif lattices without absorption ~~ws. A bi­
semilattice:which further "satisfies the identity x(y+z) =
xy + Xz i's caJied .-"diBtributi~e ( .DBSL"). For some years,
these algebras have been investigated in papers 01" R. Balbes,

R. Padmanabhan, J. PloDka, A. Romanowska. The, known theorem
about a representation of free,distrlbutive lattices as a ring
of semif11tera 01" the set' of all ncilempty subsets 01" a set cane be genera1·iz~d as 1'ollows. Let X be a set 01' the cardina1ity cl,

and Pf(X) the' set of all finite nonempty subsets 01" X. Def'ine.

~~ =.lt c Pf(Pr(X»:. v,~ ~ t implies u v v ~ tJ ' and t.e =

tuvv: ut:t, VEt}~ t + s = tvsvts. Then (B4(.,+,.) i8 a free
.DBSL on ~ generators. This theorem 1s a base for to give a
construction 01" free .DBSL's as sem11attices 01" lattices 01"

Boolean semilattlces and bounds for the number of elements 01"

fin! te free .DBSL' s.

BANDELT, H.'-J.: Median algebras (joint work with J. Hedlikov!l.)

..~
f •
"-.l

·e

Median algebraa are ternary algebras satisfying aJ.l the identities

tru.e for the median operat'ion (Xl\y) v (x·l\z) V(YAZ) in d.istr~­

butive 1att1ces. It ;J.s known f'rom results of' M. 'Sho1ander and
S.P. Avann that ·certain.meet-sem11atticea (so-ca11ed median
semi~atti?es) ,can be converted into median algebras and, conversely,
that every medi,an algebra can be viewed aa a median semilattice

(with,O). 0Ur main ob~ect was to glve several characterizations
for pairs of median semilattices wi th the same underlying set
which give rise to the same median aJ.g~bra.

TRNKOVA, v.: Algebras °and automata

Generalizing universal algebras, M. Barr introduced (1970) the
functorial al'gebras aa folIows: If ~ 1s a category and P:)<,-")(,
an endofunctor, then F-algebra 1s (Q,o), were cf :FQ -. Q 18

a 'X.-morphism. (E. g., groupoids are obtained by the. cho:1ce J<, to
be the cate'gory ~ of all sets and mappings, F sendlng ~y Q

to Q x Q.) The properties of functorial algebras heavi1y depend
on the f\mctor F and even in~ strange situatio~s occur. This

has been investigated in the Prague seminar from General Mathe-
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matical. structures. Seme o~ the obtained results will be summarized
(free algebras, finite congruences).
A elose connection between universal algebras and tree automata
was ebserved and investigated by Büchi, Thatcher, Wright, Eilen­
berg and others; Arbib and Manes extended this to functorial al­

gebras. Seme results ebtained-in Prague about fUnctiorial auto­
mata will be presented.

NELSON, E.: :Universal Algebraic Aspects ef Computer Science

The aim of the lecture was to eluc1date same cf the ideas of the
ADJ group (Goguen, UCLA, and Thatcher, Wagner and Wright, IBM)
concerning applications of "continuous algebraic theories" to
computer sc1ence. They describe flow charts as graphs whose
edges are label1ed with partial fUnc~ions S~S (for some set s)

BUch that edges w1th the same erigin are labelIed wi th partial

f'unctions whose domains of" defini tion are disj"oint. The behavior

of such a !lew chart 1s seen to be the least fixed point of a
certain type of equation in the algebraic theory whose objects
are the sets n x S and whose morphisms are all partial functions
between them. This motivates an interest in or~ered algebraic
theories, and hence in ordered algebras, with appropriate
completeness, as fellows: Suppose for each p.e. set P that

ZP i8 a set of subsets of P such that for any order preserving
f: P -Jl'Q, f(A) e ZQ whenever' AE ZP. Then P 18 called Z-complete

iff every set in ZP has a join, and Z-continuous maps are these
preserving Z-joins. The category ZAlgL censists of all partially
ordered, Z-complete L -algebras wi th least element land" Z-continuous
operations, and all Z-continuous J...-preserving L -homomorphisms.

For ZP = all countable chains in P, or all subsets of P such that
every pair of elements has a common upper bound in P, there i5 a
concrete description, via trees, of free Z-continuous ~-algebras.

For arbitrary Z the question of existence of such free algebras
is open.
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~~ffiRt H.: A duality for weakly associative lattices

Let ~ be a finite algebra and Raset of algebraic relations

on ~ (i.e. subalgebras of finite powers of R ) and R the class

of all closed subspaced of R = (P,R)discr. which are also
closed under those r~R which happen to be parti~ operations
an P, and ,let Ot. = ][.$ IP (~) be the quasiveriety generated by P•

.Then a+ := tx:! -7 ~ I x homomorphism 1 (At Cl )

and x.. := Lf:X-tPI f continuous and R-preservingj (XE~)

defines· a fu.11 duality (i. e. an antiisomorphism between thee categories OL and ~) provided the f'ollowing hold:
(i) Each R-preserving finitary operation on P is a

polynomial on ~.

(ii) E i8 injective in 'Il, •

(iii) Epimorphisms in 'at a.J;e onto.

Using this the'orem we can prove a f'ull duality :ror jiti _if we
choose R to be{,!!E} or l~,oJ for n=2·or 3, and R =t~161vAut(~n)

for n ~ 4. ~ can be characterized in purely topological terms.

JEZEK, J.: Medial groupoids

Groupoids satisfying the law xy.uv=xu.yv are called medial. Free
groupoids in the variety generated by medial cancellation groupoids

and the equational theory of these groupoids are described. It is
proved that for every medial groupoid G such that ·GG=G there exists

a commutative semigraup S(+) and its two commuting automorphisms
:f,g such that G~ S and xy=f(x)+g(y) for a11 x,yeG; in the .

~commutative case the condition GG=G can be deleted and we can
demand f=g. It iS.proved that every medial cancel1ation groupoid G
can be embedded into a medial quasigroup Q such that Q is generated
by G as a quasigroup; this Q i8 determined by G uniquely up to
iSQmorphism over G and satisfies the same identitißs as G. All
f'ini te simple medial groupoids are described. All niinimal varieties
of commutative medial groupoids are found.

GRÄTZER, G.: Finitely presented lattices

I proved w1th A. Huhn and H. I.akser the following structure
theorem:
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For every finitely presented lattice L there exists a congruence
relation 8 such that L/e in fini te and all congruence classes·
are embeddable in a free lattice.
Application: If ·L is finitely presented and modular, then L

i8 finite.

POGUN~; ·W.:: 'Flriiteiy 'generated lattices

We can .prove the following Theorem: There are infinitely many

3-gener~ted lattices of width 3; cnly fini tely many cf them are
° ,.

infinite. .

A certain infini.te lattice of width 3 i8 called the herringbone.
The above curious looking Theorem (together with an effective ~

listing of the exceptional i~inite lattices) comes out 'of the
following recent result o~· B. Sands and the author: every finitely
generated lattice of width 3 with an infinite descending chain°

.contains a sublatti'ce isomorphic to th,e herringbone. This resu1 t

i8 also an important step in proving the main resul t of the' .0'

Poguntke-Sands paper: every finitely generated subdirectly.
irreducible latti-ce of width 3 is finite.

QUACKENBUSH, R.: Tensor" Products cf Lattices • - t .~ ..,.... ~

Let A,B be lattices with 0 and let A ~ B be the tensor product of
A and B in So,the variety of v-semilattices with O.

Solution to the ~rd problem (G. Fra~er): Let a,a".,an€ A~(Oj;

b, b1 ' ••• , bnE B - {OJ' • Then (a, b) '- 'V' (a
1
" , bl.") i ff there isa .

. .."1 d
la~tice·polynomia1 p. such that a ~ p(a1 ' ••• 8n) and b 6 P (b1, ••• bn )
where pd i8 the dual cf p. . .

Examples: 1) Let'A,B b'e bO\Ulded distributive lattices, then ~

A ®"B ~ A·. B, the free product in Bounded· Dist.Lat.

2) Let B be bounded dist.lat., then M3~ B ~ FM (~13).

3) If A and B are fini te, then A® B i8 a lattice.·
Let F (FA,FB} be the free lattice (over A,B) gen. by x1' ••.• ; let
fA (fB) be the canonical homomorphism from F to FA(FB). We say'

B i8 A-lowez\bouilded if for every pE- FA' ..f'B(f~(p» has aleast
element.
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Theorem: Let A be Iocally finite and B A-lower bounded;" then

A'8>B is a lattice.
Cor: If A and B are locally finite or"let B be distributive; then
A{i) B 18 a' Iattice,

Main Thm.: Let C0ni(C) ,be..the Iattice of lattiee congruences cf C;
let A be loe. fini te .and ~ A-lower bounded; then ~o~ (A ~ B) ;:
CO~(A) ~ Co~(B) •
.~: A~B is simple' (s.i~)" 1ff bot~. A and B are simple' (s.i.).·

KELLY, ·D.:
, .

On the prcduct cf lattice varieties

.(Jointly with George Grätzer)

För classes !. and '!!, of lattices,' ! O!, the product cf ! and 'Ji,
18 the class of all lattices L such.that there ,exists a congruence
e of L such that every class of e i8 in V and L /e E.. W.

,.." . ,...."

If ! and !! are varieties, then ! 0 i!. 18 not necessarily a
variety althoughit 1s closed under the formatio~o"f ideal lattices.
There are continuum many varieties ! such that ! 0:n i8 a
variety (includingthe cases' V = D. and V = M). The variety

-.J ......, ....., ,...,

D 0 ~ contains, and 1s contained in, continuum many varieties of
lattices. If V and W are nontrivial varieties of lattices,

~ ~. ,

then any lattice in ! 0 ~ 1s contained in a subdirectly irreducible
lattice in .!o ~ • 9onsequ~ntly, any variety of ·the form ! 0 ~

1s join irreducible.

A structure theory for -ordered sets

One of the most natural problems that arises in the investigation'
of any algebraic or relational system 18 that of representing the
system as a whole in terms of certain distinguished subsystems,
by means of canonical constructions. Por relational systems (and
especially ordered sets) the concept of "retract" can be combined
with the tldirect product" construction to fashion an effective

subdirect representation theory.
Following this subdirect representation theory we are led, rather
naturally,·to the concept of a "variety" of ordered sets, whi~h

19 a class of ordered sets closed under the formation of retracts

and direct products.
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Tm-U, J.: Combinatorial methods in lattice theory

A special type of embeddings of the partition lattice on four­
element set into ether partition lattices en finite sets has

a combinatori~ structure which can be described by the notion
cf pelyhedron. These polyhedra have addi tional properties, e. g.
the dual polyhedra are simplicial complexes, which are triangulations
of compact topological varieties of d±mension two.
Questions concerning orientability and genera of these varieties

tIt are d1scussed.

BRUlfS, G.; Some finiteness conditions for orthomodular lattices

Far an orthomodular lattice L let O'L(L) be the set of' a1l
maximal Boolean subalgebras' (blocks). We consider (with R. Greechie)

the·conditions: ~: I~(L)I 6 nj Bn : there exists t~~ ~(L) such

that lt>--t6 n and U~= Lj Cn: I{C(x) I X6L}1 ~ nj Dn : out of any

n + 1 elements of L at least ~ocommute.

It is our co~jecture that if X,Y stand for any two of A,B,C,D
then for any n there exists m such that whenever L satisfies ~
it also satisfies Ym• We have been able to prove:.

~ 7 C2~1 ' On ~ ~!' Bn r- Dn , Dn ~ Bn ! ' B1 ==-> A1 , B2 ==9 A2 ,
B3 =) A3, B4 ==) ~ • Since ~ =9 Bn holds trivially the only

implication which ~s still mi~sing in Bn ~ ~.

WEGLORZ,B.: . +-Completeness of Boolean Algebra
-. -

Known: 1) If t8 i8 a Je -complete B.A. and' ':! is a '" -complete
ideal on IC then mI'J is IC-complete .

2) If 'J is tc.-complete normal ideal on " then tf(r,)/ J is
t-complete

Questions: 1) Does for each ~-complete B.A. 8 there exist a

"-complete ideal '] such th~t 'BI) is t -complete?

Theorem: Let 'J be any IC,-complete ideal on IC" • Then there exists

a lC.-complete 7~ J such that (1{/C.)/') 1s IIt-complete.
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!1cNULTY, G.F.: Burnside Style Theorems for Equational Classes

In 1905 Burnside asked if every finitely generated group

satisfying xn=1 is finite. In 1968 Novikov and Adjan resolved
this question in the negative by providing a system of finitely
generated groups which are infinite and which satisfy xn =1 for
certain numbers n. At issue in Burnside's problem is_ the
connection between the syntactic form of a set of equations
and Hhether or not the set of equations possess an ini"ini te

tIt made1 which 1s finite1y generated. The present paper 1s cancerned
with this connection for arbitrary sets cf equations - not just
those which hold in groups. The collection of finite ~ets of
equations which have infinite finitely generated models is not

algorithmically recognizable. But seme easily recognizable

properties ~ out to be sufficient to insure the existence of
such models.

I~ .....

~ll{, B.H.: Fibonacci varieties

This is areport on same recent werk carried out by Mr. Ann Chi Kim
(of Busan National University, Busan, 'Korea) wbile at the Austra1.1an
National Univeraity. He has studied a family of varieties of
algebraic systems that are graupe w1th an additional unary

operat~on satisfying certain laws. The atudy was inspired by

the theory of Fibonacci graups, and the free one-generater
algebras of these varleties turn out to have, in fact, the

~ abe1ianized Fibonacc1 graups as their under1ying graups. Same
natural generaliaations lead to open problems.

NEFF, M.F.: A ,Variety of Near-rings

A result o:f J.D.P. Meldrum is that the variety generated by the
distributively generated near-rings is the same a;s the var1ety
~ of near-rings satisfying 0 X, = X 0 = O. A 'completely different
proo~ 18 given, af~ering a construction of a "free" distributively
generated near-ring and shawing that i t contains the free near-

ring in Q. The embedding presented is used to show also that the
free 2. near-ring is residually fini te and i8 cancel1ative. A
solution to the ward problem in the free ~ near-ring 16 developed.
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SI'UTH, J.: On the WliQueness of parallelograms

Defn. A Mal'cev operation P(x,y,Z;Vli/i< 1.) with ~ irrelevant

y~i"~~_~~~ {wi' il t ) in a Mal r cev variety t is an operation satis­
fying the identity P(x,x,z;wi ) = z= P(z,x,x;wi ).
Defn. t satisfies the generalised uniqueness hypothesis U(~) iff

there is at.most one ~ial'·cev operation P(X'YIZiWili(~) as element

of F{x, y, z, \'/i I i< l.J Cf)··
Defil. Big Dipper identity on ternary t-tal' cev op. (the parallelogram) :

Cy,~x,y,z)p)P=z. .
Theorem: t = D(~) ~ :f satisfies U(w) and Big Dipper.
Theorem: Let t have Big Dipper and type 1..

(a) If ~ has one nullary, nothing bigg~r than ternary, let t satisfy

u(o)
(b) If arities of 1. ar,less than 4+'1., for 0 (, 'I. !: W t let f satisty

U("L) •

Then ~ ~ r(f), and 'f' s clone is generated .~ by par.allelogram and

operations at most binary•.
Example" Foz:~ t the variety of" CH-quasigroups, f' satisfies Big Dipper

and ufo), but J(t) 18 strictly 1ess than 'f.
'Reference.On the uniqueness of Mal'cev Polynomials,
Ga'bor 'Cze'dli and Jonathan Smith (TH Darmstadt Preprint ~431).

OATES-WILLIAMS, S. ~ Min but not Max?

In arecent paper [1] M.R. Vaughan-Lee and' I gave an example of a
variety generated by a finite algebra which satisfied the maximum

condition on subvarieties,' but,not ~e mi~, and' a~k~d whether

there was a vari~ty generated by a fini~~ ~gebra wh~ch.satisfied

Min bu~ not Max, offeri~g as a po~sib~e· candi~ate . Var{M) where
M 15 the 3 elem~nt non-finitely·base~.gro~poid defined by Murskii
[2]. We proved that it certainly did ,not sati~fy Max! but left
open the question of whether or not it satisfied Min•.1 have

attempted to solve this problem by classifying all the.subvarieties·
of' Var(M). Let 1!i denote an element 'of the" in:fini te" ascending

chain defined in [1], let ~ =i91 Yi ' let x., .~, ~ be the sub­
varietles defined respectively by the laws x2= x, XY=YX,
(xy)z=x(yz). Then 1! 1'\ t{ = 1l"~. = y" and I conjecture that, wi th
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a fini te number of exeeptions, the subvarieties of var M are aJ.l

of the i'orm ~i v ~ , !li v ~ ~i v !.
[1] Sheila Oates Macdonald and M.R. Vaughan-Lee, "Varieties tbat

make one Cross", J'. Austral. Math. Soc. (Series A), 26 (1978),

368-382
[2] V.L. Murski1 nThe existence in three-valued logie of a closed

class with f~te bas~s not having a finite complete system of
ident1tlea", Soviet.Math. D6k1ady 6 (1965), 1020-10240

EVANS, T.: Some remarks on clones

We ctl:-scusa some top1cs in the theory of' c19nes wi th the main
emphasis on h~mogeneous clones~ ~~erous examples are g1ven with
corresponding~~epresentationtheorems .f9r-clones of functions,
clones of endomorphisms on a f're.e algebra and -clones of homomorphisms
of apower of an algebra. Same decision prob~ems for clones, e.g.·
~e word problem, aresh~wn tc.be unsolvable while athers are .
shown to be solvable. Identities in clones anä var1eties of"clones
are illustrated and connections .. shown between them and the hyper­
1dentities of W. Taylor and the var1ety of varieties of W.D. Neu­
manne The use of clones in combinatorics 1s i~lustrated by the
special. case of the clone of all binary"~perat1ons on a finite
set. Combinatorical properties of the tables of binary operations
are linked w1th algebraic properties in"the clone.

csiKiNY, B.: .Minimal Clones of Operations' on finite .sets
..

A set of operations on a set "A 18 a~i~ It contains all

the projections and it -ls close~ .under ~pe~~sit~a~~Clones on
A form a lattice with respect to inclusio~ whose zero is the
cl~ne of 811 projections. The atoms of this lattice are called
minimal clones an A.
The clone (of all polYnomial operations) of several algebras" (e.g;,
sem1latt1ces, rectangular bands, affine spaces over prime fieIds)
18 lalown to be minimal.

An operation" f on A 1s said to be homogeneous if every per­
mutation of A i6 an automorphism of the algebra (A; f) ".
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We determined all minimal clones on fim te A, consisting of

homogeneous functions. For 2 ~ lAI ~ 4, there is three such
clones; for 5 ~ lAI, there is two. In every case, the dual

discriminator d (d(x,y,z) = x if x = y, and d(x,y,z) = Z other­
'rrise) generates such a minimal clone.

KAISER, H.: Some results on interpolation in universal algebra

Let A be a universal algebra and f:Ak--)A (ke: iN). f is said to
have the interpolation property if for every finite Buhset N~ Ak

there is a polynomial function which represents f'on N. If every
function over A (of arbitr~y ar1ty) has the interpolation property,
then we' say that A has the interpolation property.
The following theorem and the relevant results one needs for its
proof are presented:

Theorem: Let A be a non-trivial universal algebra which contains
at leastfour elements and has a triply transitive automorphisin
group. Then A either has the interpolation property or is equivalent
to an affine space over GF (2).

This result was original1y abtained by L. Szab6 and K. Szendrei
for finite algebras and generalized to the infinite case by

H. Kaiser and L. Marki.

SCHWEIGERT, D.: On Ioeal clones (joint work with I. Rosenberg)

The 10cal clone L (D) of a clone n"ia the clone of all fUnctions
f: 'An-7A, ne (N BUch that for every tinite set B, B ~ A there 1s

a 't'-ED wi th ~'" = 'tim'" • A Ioeal. clone L (D) 18 -complete if' L(D) .
= F(A) where F(A) 18 the clone of all function of A. L(D)
18 preeomplete if ~or every function g; L(D) we have L CD v{gJ)
= F(A). Theprecomplete loeal clones ean be described by relations
of a finite arity (by a theorem of Romov). We' found the following
relations for precomplete clones: Type Oj j is a partial order
such that every finite subset has a lower ~d an upper bound.
(Concerning Ioeal order-polynom. algebra with a majority term
one finds the same characterization by tolerances as in the
finite case), Type C, Type Z, Type P and Type L, where also (A;+)
torsion free abelian 15 admitted. This list is not complete.
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BM~ER, K.A.: Definability and Congruences

Several kinds of first~order-definabilityconditions are of current
interest Ior varieties of algebras:' A) Existence of finite equatianal
bases. Recent results: C. Shallon (thesis, 179) has found a 4-element
algebra, based on the graph 0-0-0, that has Da f'ini te equational
basis. Park and Verman have shown- that the triangle [a,b,cl , with

a v b = b v a = b and other pairs cyclically, i6 fini tely based as an

algebra with single operation v. B) Definability of principal congru~

~ ences (DPC): McKenzie showed that no non-distributive variety of
lattices has DPC. Por varieties generated by a finite group G, the
speaker has improved a result of Burris and Lawrence to show that
Vax (G) has DPC· iff G obeys [[x,y],x] = 1. C) Definability of sub­
directly irreducibles (DSI), and D) Definability of finitely sub­
directly irreducibles : ·For congrUence-distributive varieties,

DSI implies DFSIj the relationship of DSI and DFSI in more general
settings remains to be determined. Another remaining area is to

find which conjunctions of DPC, DSF, DFSI, and finitegenera~ion

yield fini te bases.

BURRIS, S.: Modif'ied Boolean Powers

We introduce a constructlon which is useful for creating new
indecompoBable algebras and ~or proving undecidabl11ty results.
Theorem: If V(A) is congruence distributive and A 18 subdirectly
irreducible but not simple and 8 is the unique atom of Con A

~ then A ~,e]· i8 directly indecomposable.
Theorem; If V(A) is a CD variety and A 18 fini te t then Tb [V(A)]
is undecidable lf V(A) 18 not semi-simple-arithmetical.

GUMM, H.-P!: Factor Permutable Varieties

Factor pe~table (FP) varieties are introduced as such varietles
in which congruences on direct products permute with the canonical

factor ,congruences.
It is shown that modular varieties are FP-varieties as weIl as these

varieties studied by Fraser & Horn and by lb. Another simple ex~ple

i8 the variety of type (3,0) defined by p(xxy) = y, p(x,e,o) = x.
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We show that FP-varieties are weIl suited for a geometri~al treat­
ment where the geometry is Vlille I s IIKongruenzklassengeometrie ".

Among the results presented:,
TIm.: IfC(generates an FP-variety t.f.a.e.:

(i) CL is affine·

(ii) There 18 a common complement 8· of the factor-congruences

on o\"x ot..- •

(ii1) A = l(x,x) IXE"otJiS a congruence class on otxCL.
Cor,: The Kronecker product of two FP-varieties 1s a variety of
modules. '..

HERRMANN,C.: A cancellation theorem for congruence modular
algebras and its lattice theoretic backgroun~

A cancellation theorem (up to Ucentral." isotopy) can be proved
for algebras in congruence modular varieties assumdng a.e,c. for
congruences and d.c,c, for the center. It,relies on a special
refinement theoremgeneralising a result of R. Baer for loops.
The proofusesthe ~a1ysis of the modul~ l~ttice freely generated
by ~o· co~plemented pairs. This analy~is can be carried on to
determine the 112-dis:bributive ll part of the free modular lattiee
with four-generators,

BEIDEMA, J.: Axiomatising miDiaturised classes of models~in

large intimtary languages (.j·oin-t "wo-rk wi th 11. A,

Labuschagnel

In any LrA~ i t i8" impossible to giv.e·· first-order axiomatisations

of, e,g., the following classes of ·structures: complete semila~tices,

complete latti.ces, complete· Boolean algebras,. topological spaces,

compact spaees or complete unifo~ spaces.
SUppose that there exists a model of set theory in which there are
two inaccessible cardinals, e 1

L 6
2

, and the two re~ting subuni­

verses U and V of all sets. of rank L ~1 and rank L e 2 respectively.
A set 1s called U-small if it belongs .to U. Ls2 8 2 1s an infinitary
language vti th conjunctions o~ ~.e ~ formulas,· quantification over

sets of variables of cardinality <. e 2 and predieates of ari ty '- e 2­

It then becomes possible to specify theories in L e 2 9 2 "rhieh
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axiomatise the sets cf all U-small complete semilattices, all
U-sma11,complete lattices, etc. This leads to model-theoretic
methods of, i.a., constructing complete Boolean algebras free

w1th respect t~. all U-small complete Boo.l~an algebras, and of

proving the Tychonoff product theorem for topological spaces.

Since U 18 itself a model of set theory, there 18 no great 10ss

o f general i ty•

Functional completeneS8; subalgebras cf direct

powere cf partial algebras

We present the following resu1~s:

1." Characterizat10n of funetionally'complete-f1nite algebras
··in congruenee distributive varieties.

2. Fanctlonal completenesB cf single generated or surjective
algebras ..

3. Large classes of tunctionally complete algebras .
4. Subalgebra systems of direct powers of partial algebras .
!rhe first three are adaptions of a primality er!ter1an wIDle
the last translatea' the problem to :fu1.1 algebras -'bY"-;a(1j61ning

an abaorbing element to the universe.

SICHLER, J.: Quotients of rigid algebras

Theorem (M'.E. Adams, J.S'-) Par a conn~cted ~gebra A = (XiO\,ß
w1tho(,~ . unary the following ar~ equivalent:

(i) The clasa of all alg'ebras having A- as a quotient forms

a binding categoryj
(11) A 18 a quo~ient of a rigid algebraj

(iii) There 18 no homomorphism fram 'A"into the free one-generated
algebra.

The above theorem holds also for all binding subvarieties of the
var1ety cf all (X; ~ , ~) wi th ~2. ~0\, ~ 2 =ß • ~
Problem: Does it remain valid in every binding variety of bi-unary

algebras?

'-~"
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STONE, M.G.: Abstract representation results fox subalgebras
and endomorphisms (joint \'1ork wi th N. Sauer)

A monoid M and a l"attice L are al~ebraic if for same algebra UL
the endomorphisms EndOl ~ M and the subhlgebras Su OL ';; L. For
the ~iO element chain, 2, it is weIl knO\in that if M and 2 are
algebraic then M and L are algebraic also, for every
algebraic lattice L:2 2. B. J6nsson poses the problem (Top1cs in
Universal Algebra, Springer Notes, p. 147) as to whether or not
the same statement is true with 2 replaced by 3. We use concrete
representation results to prove the following:
Theorem: .If "L is an algebraic lattice with at least one atom 80,
then M and 3 algebraic ~mplies M and L algebraic also ••.
Further, we .g1ve an example cf a monold M wi th M and 3 algebraic,
and a lattice L (atomless) with L ~ 3 for which M and L are not

" -
algebraic. The anawer then to the question posed be J6nsson is
Uno" in ge~e~~, but "yes U for, at least, L finite.

SAUER, N.: On the structure of the lattices of subalgebras anq

the mono1ds ·of endomorphisms of universal. algebras;
yersatile 'lattices,

We say that an algebraic lattice L and a monoid M are algebraic
if there exists a universal algebra A = < A ; P).. with SU A =t L and
End A ~ M. It i8 known that every monoid which 1s algebraic wi th

the 2-chain is algebraic with every lattice containing at least
~ two elements and that each element in such a monoid 18 either a

right zero or right cancellatlve. M. Gould who did most of that
work ca1.1ed such monoids versatile« We will call a lattice L
versatile if the only monoids which are algebraic ~ th L are
the versatile monoids. Quite surprisingly there exist,infinitely
many such lattices and we characterise all of them in purely
lattice-theoretical terms.

We ~dll point out that the methods used to gain those results
are of a more general nature and probably basic in any problem
concerning the structure of a latt1ce L which i6 algebraic
~~th a monoid M.
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ADiMEK, J.: Categorial constructions of algebras and automata

In a simple categorical setting, an algebra is a set X equipped

\-rith an l1operational" map d: FX--)X , where F is a given set­

functor (called the signature). Several closely related problems

are
(i) !ree completion of partial algebrasj

(ii) !ree products and colimits of algebrasj
(iii) minimal realization o:f behaviors of algebraic automata.e \'1e exhibit iterative categorical constructions which solve these ,-.

problems (depending on the properties of the signature-functor F).
Some of these resul t hold generally :tor algebras and automata in
an arbitrary category K (the signature 1s here a f'unctor
F: K---;K )~ Yet, even in "nice tJ categories, like topological
spaces and poseta, pathological cases ar1se: e.g.· the existence
of free algebraa does not. guarantee cocompleteness.

Berichterstatter: W. Poguntke, Darmstadt

",--,
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