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Die Tagung fand unter der Leitung der Herrn E.Looijenga (Nijmegen),
Th.Bricker (Regensburg) und D.Eisenbud (Waltham) statt. Im Mittel-
punkt des Interesses standen Fragen der Singularitidtentheorie.

Yortragsausgiige

H. BRODERSBEN:

® determinacy of smooth map germs

Let & denote the space of germs of C™ functioms f:(R%,0) » R. We
say that f ¢ P is = determined if for each g € eP with j7(g) =

= 37(£) we can find a germ of a C* diffeomorphism h:(R®,0) + (R%,0)
such that f = g.h. Considering germs of homeomorphisms and (}k
diffeomorphisms define finitely (resp «) topologically and finitely

ck determined germs in an obvious way. Then all these notions are

equivalent. Let m c & denote the maximal ideal, put m: =N u%,
: k
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and consider the ideal I(f) c & generated by the p X% p minors

in f'(x), and the & module mn<%,...,%§:> c eP. Then

ng c I(f) » n\: eP c mn<%,...,-%> o f is « determined. This

generalize a theorem of Ngu?en, et al. for functions and is in

analogy with Mathers theorem of finitely determined map germs.

J.W. BRUCE:

The duals of generic hypersurfaces

By applying s transversality theorem due to Looijenga we first
discuss the structure of. the dual of a generic hypersurface e

in Rn‘m. We then show that for generic projective algebraic hyper-
surfaces in ¢®®*? (or RP**"1) gimilar results hold provided the
degree i‘ of the hypersurface is sufficiently large. The methods
employed are novel insofer as they entail proving transversality
theorems in the complex algebraic category. A sample result is:

For n € 6 and 4 3 2n+5 the dual of a projective hypersurface is
locally the intersection (transverse) of the discriminant varieties
of simple singularities. )

K.B.: The author remarks, that the results are in a preliminary ‘

form and may need correcting and rewriting.

J.N. DAMON:

Finite determinacy and topologicel triviality

In this talk, I will describe the role that finite A - determinacy
plays in the topological triviality of unfoldings of weighted homo-

geneous polynomial germs
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£:x5,0 + k¥,0 (k = R or C).

The original results for topological triviality concerned hyper-
surface germs and were obtained by Le-Ramanujam, Teissier, and

Pimourian. I will describe how these results have been extended
to non-hypersurface germs including versal unfoldings by results

of looijenga, Wirthmiiller, and myself.

G.-M. GREUEL:

Duality and isolated singularities

Let (X¥,x) be a pure n-dimensional germ of a complex space with
isolated singularity and let ﬂ§ be the sheaf of holomorphic p-
forms on X. A theorem of I.Naruki (Publ. RIMS 13, 1975) asserts
the following strange duality between local cohomology groups:

* By} (08) = Bz (0f )", 2 € g <01 .

This is proved by a combination of Serre duality and an approxima-
tion theorem of Andreotti and Grauert. We use this duality and
local duality of Grothendieck to show the following theorem:

Let (X,x) be a complete intersection and n » 1. Let p be the Milnor
pumber of (X¥,x) and v be the Tjurina number of (X,x) (i.e. the dimen-
sion of the base space of the semiuniversal deformation of (X,x)).
Then 1) p » v if the neighbourhood boundary 3X of (X,x) is a
) Betti ephere.

2) u= v if (X¥,x) is quasibomogeneous.
Ve conjecture that pu » ¢ always holds (which is true for curves
and hypersurfaces).

How assume that (X,x) is a quasihomogeneous complete intersection
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and n » 2. Then Naruki showed H'(3X,¢) = & EP(RYU, (i*qp) )
p+Q=T

(where i:X-{x| - X denotes the inclusion) which provides a rich
structure on nr(ax,c). Using the duality (¥) and pu = T we can
show: For an n-dimensional isolated singularity, n even, to be
topological equivalent to a quasihomogeneous complete intersec-
tion it is necessary that dincEn(ax,c) is even. This was first
proved by Steenbrink (for hypersurfaces) and later by Varchenko
with quite different methods.

A. HAMM:
Weighted homogeneous complete intersections

The topological type of an affine weighted homogeneous complete.
intersection with isolated singulerity depends only on the neigh-
bourhood boundary K. There is a natural 81-action on K, and K/Sq
is a subvariety of a weighted projective space. Since the xy-genus
of /8" nas been computed [Funkcional.Anal.i Prilozen. 11, vyp.1,
87-88 (1977)], it is easy to derive a formula for the rational
homology of K. To get the torsion part of the integral homology
is harder; there is an inductive procedure to compute it. The
special case of Brieskorn varieties has already been treated by
R.Randell [Topology 14, 347-355 (1975)].

A normel surface singularity is smoothable if their exists a flat
family ¥ -+ D of normal surfaces over & small disc such that the
special fibre is isomorphic to V and such that the generic fibre

is smooth. In 1973, Mumford gave first examples of surface singu-
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.larities which are not smoothable. These examples are certain

cones over smooth curves. For example, it turns out that cones
over smooth rational curves are always smoothable but cones over
smooth elliptic curves are smoothable if and only if their degrees
are less than 10.

Let g(V,p) denote the genus of a normal surface singularity. For
rational cones, the number is equal to zero, and for elliptic cones
it equals one. More generally, one calls (V,p) rational (elliptic)
if g(V,p) = 0 (g(V,p) = 1). Thus rational (elliptic) singularities
are smoothable if they can be deformed into cones over rational
curves (resp. elliptic curves of degree < 10). Using deformations
of resolutions, Artin showed that rational singularities can be
always deformed into rational cones. The only thing one has to do
is to smooth the exceptional set. However, deformations of resolu-
tions of non-rational singularities blow down to deformations of
given singularities if and only if the genus does not jump. In case
of elliptic singularities one has therefore to make sure that the
minimally elliptic cycle E in the sense of Laufer lifts to the de~
formations. The aim of the talk is to outline a proof of following
result.

Theorem. Elliptic singularities are smoothable if the selfinter-

sections of their minimally elliptic cycles are not less than -9.

H.C. KING:

The topology of real slgebraic sets

This talk will be on the problem of when a topological space is
homeomorphic to an algebraic set (the set of solutions of polynomial

equations). For instance in low dimensions it is possible to give
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necessary and sufficient conditions.

H. LAUFER:

Adjacencies via resolutions .

Let (V,p) be a normal two-dimensional singularity of one of the
following types: simple, unimodal, bimodal, rational triple point .

or quotient singularity. Let m:M -+ V be a resolution of V. Let
©:7 + Q be the versal deformation of M. The simultaneous blow-
down subspace T of Q can be easily described. Then one can cal-
culate which singularities are above T. For the unimodal and bi-
modal singulsrities, this gives all adjacencies between singular-
ities with the same 2-Z (degree). A computer is needed for some

of the calculations.

LE DUNG TRANG:

~ ~
Demonstration du “thﬁ&reme" de Zariski psr Fulton et Deligne

e
Soit C une courbe projective complexe plane dont les singularites

sont des points qﬁadratiques'ordinaires. Le groupe fondamental de

7 7
son complementaire dans P2 est abelien.
/ c s
La demonstration de Zariski repose sur un resultat de F.Severi dont
/ . .
la demonstration est inconnecte.On ignore en fait encore si ce resul-
tat de F.Severi est vrai ou non.
r/ / / 7 7 ) .
Le resultat enoncé par Zariski a été demontreé par P.Deligne en
suivant une demonstration de Fulton du theor;me "algébrique“ corres-
pondant au théoréme de Zariski. Precisément (sur ¢) Fulton obtient:

2

Soit C une courbe projective plane dans P“ dont les seules singula-

rites sont quadratiques ordinaires. Alors tout rev€lement galoisien
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de P2 ramifi€ le long de C est ab€lien.
Ce théoreéme implique que le complété w1(P2-C.’) de wq(P2-C,*)
pour la topologie des sous-groupes d'indice fini est abélien.
Ceci implique que w1(P2-C,*) est abelien si 1'intersection de
ces sous-groupes d'indice fini est triviale.
La démonstration de Fulton repose sur le thébréme suivant de
‘l' Abhyenkar:
Soit V une surface non sinsuliébe algébriquement simplement connexe
(i.e. wﬂ(vu) = 0), soit C € V une courbe de V dont les singularit;s
A .
sont quadratiques ordinaires. Soit f:V' o V un revetement Galoisien
de V ramifig de long de C; si deux composantes irreductibles de
f“1(c) = D s'interaeétent, on a que le groupe de Galois des corps
des fonctions ¢(V') de V' sur €(V) est abelien.
Dans le cas ou V = P2, Fulton remarque que pour démontrer que tout
revetement Galoisien de P2 remifie le long de C est abélien, il
suffit de demontrer que pour un cel revaement ramifié,f:V' - P2,
1'image inverse r"(ci) d'une composante irreductible C; de C est
irr éduct ible. ‘
Pour obtenir ce resultat, Fulton fait l'ingénieuse construction
‘ suivante:
Soit C; &> C, la normalisation de C;, Notons m:C; = P
1'application composé; de n et de l'inclusion C; < P2. On a alors
Fa=mxf:C x L AN P2 b P2. On appelle p:C; x V' » V' la pro-
jection. On remarque alors que, si A est la diagonale de P2 > Pz,

on a:

p®(8)) = £7cy).

yd
Fulton obtient son resultat en remarquant: i) l'image par p d'une

composante connexe de F'1(A) est une composante irreductible de
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f'1(ci). 1) F~1(a) est connexe.

Le i) est facile a verifier. Le ii) est cons/equence d'un

recent tlfeor;ne de Hansen et Fulton:

Soit £:Z » (Pd)n un morphisme algjebrique d'une variét/e Aalg/ebrique
irreductible projective dans (Pd)n. Si dim £(2) > d(n-1), l'image
inverse f'1(A) de la diagonale A de (P‘l)n est connexe.

La d/enonstration de Deligne du “th’éorekme“ de Zariski utilise des .
résultata un peu plus gén,eraux que ceux utilise/s par Hansen et

Fulton. En particulier il utilise le thior'éne suivant:

< ) . .- J
Boit Z une sous—vari/ote non singuliere connexe localement fermee

de (P‘i)n avec dim Z > d(n-1). La diagonale A de (Pd)n a un systeme
fondamental V (4) de voisinages tels que VG(A) N Z est connexe et
w,l(z n VG(A)) -+ m‘(z) surjectif.

H. LEVINE:

Lifting 3 - manifolds out of the plane

Let be M a compact 3-manifold and f:M - R2

be a C -stable map. To
study such maps generally and to find out when such maps can be

lifted to immersions of M into R4

, introduce the following equivalence
relation on M: x,y are equivalent if x and y are both in the same
connected component of f'1(f(x)). Let W, be the quotient by this
relation, and let q:M -+ W, be the quotient map. If ¥(f) is the set

of points at which Tf has ramk 1, W, fails to be a 2-manifold exactly
at q(Z(£)). However since the singulerities of f are very limited, the
local description of Vf at the pon-manifold points is very limited:
1) Helfplane

q~-image of a neighbourhood of a point at which

f has the form: (u,x,y) - (u,12+ya)
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q-image of a neighbourhood of a point

at which f has the form: (u,xe-yz)

provided the point is not a double

point of q/F (f).

q-image of a neighbourhood of a point

atbwhich f has the form:
. (u,x,7) » (u,y2+xu+u’).

(GO

g~image of a neighbourhood of two

distinct points into common gq-image, at
which f has the form:
(u,x,y) » (u'x2_y2)

By first immersing We. in R5 over fag-1: Uf - r? with only normal
crossings in the regular points, I think one can show that for all
orientable M, f can be lifted to a immension of M into R*. For non-
orientable M; one needs a further assumption on the ofientability
of the circle bundles over neighbouring regions of Uf—g(z(f)). This

condition was not stated explicitly due to lack of time.

This work is an collaboration Qith Leon Kushner and Paulo Porto.

W. NEUMANN:

Topology of normal surface singularities

We show that the oriented homeomorphism type of the link (i.e.
regular neighbourhood boundary) M3 of .a normal surface singularity
(V,p) determines the topology of the resolution. Except for obvious
exceptions (lens spaces and certain torus bundles) m, (M) already
suffices. Analogous results are also obtained for degenerating

families of curves. The method is Waldhausen's classification of
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graph manifolds, which also has some other corollaries for the -
topology of surface singularities and degenerating families of

curves.

A.: DU PLESSIS

Determinacy of smooth map-germs .

A (smooth) map-germ f is said to be r-determined if every germ with
the same r~jet is equivalent to f under (smooth) changes of co-
ordinates in sources and target.

In 1969 Mather gave a qharacterization of finitely-determined germs
(i.e. germs that are r-determined for some r < ®); the method also
gave an estimate.for the actual order of determinacy, but this was
extremely large. (Better estimates have since been obtained by
Gaffney and Martinet).

Rather precise estimates are naturally essential in order to carry
out any classification of map-germs; such precise estimates will be
derived in the lecture. Indeed the ideas involved also lead to

rather generally applicable classification methods.

| F. RONGA

A geometric approach to the arithmetic genus of a
projective manifold of dimension three.

(This is a joint work with R. Piene (Oslo)). -

Let VB»Pg be a complex projective three-dimensioqal manifold (i.e.
non-singular) and let f:VBaP4 be a generic projection. Let x(Ov)
dencte the arithmetic genus of V, i.e. X (Ov) = 2(-1)idim(Hi(V,ov)),

where 0v denotes the structure sheaf of V. It is a consequence of
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Hirzebruch's Riemann-Roch theorem that x(Ov) equals c1(V). c2(V)/24
evaluated on the fundamental class of V, where c,(V) denotes the
i-th Chern class. We prove this equality by examining the singu-

larities of f.

‘l' JAYANT SHAH:
Insignificant Limit Singularities
The question is, "What kind of restriction one must impose on the
singularities that varieties acquire as they vary in a family?".
In this context, Mumford has introduced the notion of insignificant
limit singularities. Briefly, if the fibers in a one-parameter
family of varieties are restricted to such singularities, then any
blow-up of the family produces exceptional‘divisions which can only
be birationally ruled varieties. We present a (presumably complete)
list of hypersurface singularities of dimension 2 which are
insignificént limit singularities. We also interpret the role of
these singularities in the cpntext of the theory of mixed Hodge

structure.

PETER SLODOWY:

Monodromy Representations of Weyl Groups

Let G be a semisimple group over an algebraically closed field k,
x & nilpotent element of its Liealgebra and Bx the set of Borel-
subgroups of G whose Liealgebra contains x. We put B=B°. Let C(x)
be the component group of the centraliser of x. Under some mild

restrictions char(k) T.A. Springer defined representations of C(x)xW
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in the l-adic cohomology H:(BX,QC) 1X char(p), or in the singular -
cohomology in case k=C, We give a different comnstruction for

((x) x W actions as H*(Bx) which is inspired by the construction of
monodromy representations in the study of isolated singularities
(Brieskorn, Milnor, Pham,...). We can show that Springer's
representations and the monodromy action agree at least on the image

* *
of the canonical map H (B) » H (Bx). This map is surjective in case

G-SLu. As an application we give as interpretation of a Conjecture

of Lusztig in terms of a generalised Picard-Lefschetz-formula.

|
\
JOHN SCHERK:
On the monodromy theorem for hypersurface singularities
Let f=f(X 5...,X;) be an anslytic function defined in & neighbour-
hood of O in C®*1 | Agsume that £(0)=0 and that O is an isolated
critical point of f. Let b be the monodromy of f.
Monodromy Theorem: (a) The eigenvalues of & are roots of unity.
(b) If &% is unipotent, then (8%-1)%*7=0.
The result discussed in this talk is the following:

(6m_1)r+1_0. ’

Conjecture: Let ann 29 a {get ixo,..,xnll(fo...,fn) I fjg-ol

' Theorem: If £%*) G(fo,...,fn) cC ixo,...,xnl (fj=ad/axa), then
then dim ann ﬂj < dim ker (!‘)‘n-‘l)‘-j Jj > 1.

Equality definitely does not hold.

Idea of proof:

1. Embed the Milnor fibration in a family of projective hypersurfaces.

2. Using results of Brieskorn and Halgranée. obtein a condition on
the Gauss-Manin connection of the Milnor fibration.

3. Use Griffiths' description of the primitive cohomology of a smooth

hypersurface, translate this condition into a condition on the
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Gauss-Manin connection of the projective family.

4. Take "limits" in the sense of Schmid to obtain a condition on
a logarithm of the monodromy.

5. Use Schmid's theorem on the limit mixed Hodge structure and the

invariant cycle theorem to prove the theorem.

J.H.M. STEENBRINK:

(following V.I. Danilov)

We discuss a result of V.I. Danilov (Functional analysis and its

appl. 13:2 (1979), 32-47) concerning the computation of the mixed
Hodge structure on the vanishing cohomology for complex polynomials

of a special type. One requires that f has an isolated singularity

at the origin, that its Newton diagram & is a simple polyhedron,

equal to Rf outside a compact set, and that f is nondegenerate with
respect to A. In this case Danilov determines the numerical invariants
of the mixed Hodge strucéure in a combinatorial way from A. Key
ingredients are the us of toric varieties and the computation of the
Hodge numbers of hypersurfaces in these by Danilov, A.G. Hovanski

and A.N. Kirillov.

D.J.A. TROTMAN (Orsay):

Transversality and intersection type of transversals

Let X be a ¢’ submanfold of R® such that near O the frontier of

X is a ¢! submanifold Y containing O. Tzee-Char Kuo has proved that
if X is Whitney (a)-regular over Y at O, and if X and Y are C =,

then any two transversals to Y at O have the germs of their inter-

section with X homeomorphic, i.e. (X,Y) is (h)-regular at O. We
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describe an improvement of Kuo's result: We suppose X and Y are just

1 -

C', and use only (t)-regularity (weaker than (a)), which says that

transversals to Y and_O are transverse to X near O. We further show
that (h)-regularity implies (t)-regularity, which is of interest in

the analytic case since then (t) implies (a).

JONATHAN WAHL: . ‘l’

Smoothings of normal surface singularities

We study the Milnor fibre F of a smoothing of an n-dimensional local
analytic space V, with isolated singularity. F has the homotopy type
of a complex of dimension n. We conjecture b1 (F) = 0 if V is normal,
and prove it for smoothings of negative weight. F depends on the
particular smoothing; but if dim V = 2 and the deformation globalizes,
we depive formulas for the Euler characteristic and signature of F,
plus the dimension of the irreducible component of the moduli space
where the smoothing occurs. If V is Gorenstein, formulas for the first
two were found by Laufer and Durfee, respectively. The globalization
applies if V is either: a. complete intersection; Cohen-Macaulay, of
codimension 2; Gorenstein, of codimension 3; or a rational singularity

with C®_action (i.e., V= CQ/G, G a finite group). '

C.T.C. WALL: (work of Bruce, Giblin, Wall).

Whitney regularity in versal unfoldings

Motivated by Mather's C®-stability theorem, where C°-stable maps are
donstructed as those multitransverse to a'canonical stratification" S
of jet space, which in turn is constructed by stratifying versal un-

foldings, several of us at Liverpool have studied the simplest cases:

results so far are disappointing.
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Each simple singularity gives a canonical stratum: as to unimodals,
hyperbolic omes to two and the 14 exceptionals to 1 or 2 each. Bruce
has shown that for K,, and K14 (and one guesses the same will happen
for the rest) Whitney regularity breaks down at A=0 (although topo-
logical triviality holds). Detailed calculations for Eg (and 57 )y
though still incomplete, give breakdown at equiunharmonic curves
(and harmonic); perhaps nowhere else.

A similar situation arises in stratifying spaces of functions: the
canonical stratification of Looijanga is easy to work with only for
simple singularities: for E;, at least 17 curves (all with JeQ) are

singled out as separate strata.

Y. YOMDIN:

The local topological structure of the central set
of & bounded domain in R".

Let G be a connected bounded open set in R%. A closed ball contained
in G which is not a proper subset of another ball in G is called a
maximal ball. The set C(G) consisting of the centers of all maximal
balls is called the central set of G. This notion was initially
introduced in the theory of Pattern Recognition. It was recently
shown, that if the boundary 3G is Cz-smooth, then C(G) is a compact
subset of G and is a deformation retract of G.

We study the local topological structure of stable central sets
(which do not change their topological type under small deformations
of G. In considered cases stability turns out to be a generic
property). A complete description is obtained for G - the polyhedron,
and, on the other hand, for 3G - ¢® - smooth and n = 2,3. Partial
results are obtained for 3G - ¢® - smooth, n » 3. We prove also that

generically the pair (G, C(G)) can be triangulated and G collapses
to C(G).

Berichterstatter: F.Hendlmeier
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