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Orders and their applications

22. bis 28.6.1980

Die Tagung fand unter Leitung von Klaus Roggenkamp (Stuttgart)
statt. Ein, guter Teil der Vortrige stand unter dem Aspekt von An-
wendungen der Darstellungstheorie von Ordnungen. Hier sind ins-
besondere zu nennen:

1.) 3 Vortrﬁéé von W.H.Gustafson iiber die geschichtliche Ent-
wicklungsvon Ordnungen, beginnend mit der Komposition qua-
dratischef Formen iiber elliptischen Kurven und komplexer
uultiplikation zu Anwendungen in der Zahlentheorie,

2)) Vbrtrﬁge uber Anwendungen in der Galoismodulstruktur von.

. A.Fréhliéh, J.Queyrut, J.Ritter, L.Scott, M.Taylor,
St.V.Ullom,

3.) Zusammenhiange mit der Topologie: Die Wall'schen Arbeiten und
neuere Ergebnisse von Ch.Thomas,

4.) Quaternionenordnungen fiir minimale Modelle in der algebrai-
schen Geometrie terniarer quadratischer Formen: J.Bréezlnski,

5;) Grothendieckgruppen von Ordnungen, deren Studium aus der

Differentialgeometrie initiiert war: H.Bass,
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~8.) Halbgruppenarithmetik in Asano Ordnunéen: E.-A.Behrens. ».)
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6 ) Kristallographische Gruppen° W. plesken

Daneben ‘wurden neuere Entwicklungen in der Darstellungstheorie.
der Ordnungen behandelt: .

1.) Zeta-Funktionen auf Ordnungen: I.Reiner - C.Bushnell.'

o 2,) Béinahé ierfallende Sequéﬂzeh,fAuslandef;Reiten Grapheh:

von . Blécken .und Darstellungstypen von Blocken:

M.Auslander, Ch.Bessenrodt, M.C.R.Butler, E.Dieterichs, .»
H.-G.Quebbemann, Th.Theohari-Apostolidi, A.Wiedemann.

' 3.) K-Theorie und Klassengruppen: B.Magurn, L.McCulloh, M.Stein,

S.M.J.Wilson.
4.) Einheiten 1n Gruppenringen: G‘C11ff H. Zassenhaus'wB Saddling
hat uber die bisher unveroffentlichte Doktorarbeit von
'VG.Higman berichtet, die 1940 schon sehr viele in den letzteni
Jahren erneut bewiesener Resultate enthidlt. '
5.) Projektive Moduln und Aufldsungen: J.L.Alperin, J.F.Carlson,
P.J.Webb, . ' o
6.) Relationeﬁoduln und Zerfall des'Augmeﬁtationsideals:
" W.Kimmerle, J.Willlams. ' -
7.):A1gorithmische Bestimmung von Erzeugénden bei Haﬁptidealen:

0.Taussky-Todd.

Zu meiner.groﬁen Freide konnte von den .acht elngeladénén eowieti-

schen Wissenschaftlern Fiau'L.Nazarova kommen, die iiber Darstel-

lungen von'teilwedse geordneten Mengen vorgetragen hat. Zu Ge-

sprachen mit Frau Nazarova sind am Dienstag P.Gabriel und am

Mittwoch-Donnerstag C.M.Ringel nach Oberwolfach gekommen.
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Trotz der durch Vortrige ziemlich ausgefiillten Tage fanden mathe-

matisch.fruchtbare Gespriche statt, und auch das gesellige Leben’

kam nicht zu kurz.

Zusammenfassend glaube ich, sagen zu konnen, daB die Tagung fir

die Teilnehmer sowohl Initiativen fiir die eigene Forschung ent-

und Anwendungen gab,
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hielt, als auch einen iUiberblick iiber die relevanterr Entwicklungen
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”.J.L.ALPERIN: Projective modules and resolutions for finite;greups

A survey of recent work on complexity of modules and related topics

The latest developments 1nv01ve certain affine algebraic varieties

Tl

: which ‘can be’ attached ‘to modules S ‘

M.AUSLANDER: Preprojective lattices over orders over Dedekind

: ) ’ domains

The notions of preprojective partitions and preprqjective_latti-

"ces were presented, together with outlines of theif_exietence

theorems, It. was aieo shqwﬁ that an order is of finite tyﬁe'if
end'only if eYery lattice is preprojectiee as well as ‘the fact - -
that theﬁbnpreprojective lattices have no splittiné projectieee.
and have no finite covers, at least when the oreer is in a eimple

algebra.

H.BASS: Lenetra 8 Calculation of G(R[nj) , and Moree-Smale‘

Diffeomorphisms : . . o PR ‘

‘Let f:M =+ M .be a diffeqmorphiem of a compact smooth manifold.

Shub -and Sullivan proved: f Morse-Smale = the.eigenealues of
£, :0_(M,n) 5 are roots of unity. Shub and Franks found an obstruc-
tion to the converse, which lives in a groub here denoted SSF ;

they proposed calculating SSF . Two presentntionsvof SSF were

obtained by myself and by Dan Graiaon; With>ne1ther of these how-

ever could we decide whether SSF # O .  Lenstra later solved the

pioblem, using the first presentation, by proving that

0@
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SSF =~ @& Pic(Z[Cn, 9n]) .
n=1

This is easily deduced from the following beautiful formula, (#).

If R 1is a noetherian ring write G(R) for the Grothendieck
group of finitely generated R-modules (+ exact sequences). Let

n be a finite abelian group. Then there is an isomorphism

(=) GR[nhH =~ @ G(R(p>) .
p€C(n)

Here . C(n) denotes the set of cyclic quotient groups of n
If p € C(n) has order n , and generator t , then R{(p) =
R(o)[%] , where R(p) = R[p]/bn(t)R[p] , and o is the nth

cyclotomic polynomial. -

E.-A. BEHRENS: A non-commutative arithmetic for semigroups

and its application to Asano orders

Let (01, 1€ I} be the set of maximal orders, equivalent to the
Asano order '01 =@® in its quoiient ring % . The common product
Ahiajk of two normal ideals is normal again, but if Ahiand BJk

is integral then A is integral iff 1 = j . Instead of

niBjk
Brandt's limiting the products to a partial groupoid the author

extends the proper products to a new multiplication on the set ®M

of normal ideals by defining Ahio Bjk = Ahi'Mij'Bjk’ where Mij
is the distance from Oi to oj . This gives a completely simple
semigroup (M,0), partially ordered under & , with the set &

of normal integral ideals being a subsemigroup. Then (01001.) +
® 50 Y=o o® defines a V-semilattice structure on I which
k1 1vk® 1

together with the bound function ,oiookooi = (bd(i,h))o1 from

Forschungsgemeinschaft © @
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"I x I to the group G of the (o 0)-ideals determines the arith-

metic of ﬁ completely.
The whole theory can be generalized to a convenient setting

in the theory of semigroups by replacing the module theoretic

-arguments in the elassieal,theory by semigroup theoretical ones{;'

CH.BESSENRODT: On blocks of finite lattice type . . .

Let G be a finite group, p a prime number divlding |Gl , R
a finite unramified extension of Z . v;
Proposition: If D is cyclic of order oz, then all indecompo-

sable RD-lattices are absolutely indecomposable.

_Now suppose R/ is a splitfing field for G - and its sub-
J(R) . . : -

- groups then the following main result is proved:

Theorem: Let B be a block of RG with cyclic defeoi group D ,
inertial degree t . Then
(1) Every abeoiutely indecomposahle RD-lattice "induces" exactly
t non-isomorphic indecomposable RG-lattices in B . V
(ii) There is a vertex-preserving bijection between the set oiA
n-orbits of absolutely indecomposable non-projective RD-

lattices and the set of n-orbits of "induced" RG-lattices ‘

in B . o
(1ii) All n-orbits are finite and n-orbits of induced lattices
have length t  or. 2t corresponding to n- length 1 or 2

of the n-orbit of a source

With the above proposition we have the following corollary to ]

the theorem:

Corollary: . Suppose |[D| = p2 . Then

& |
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(i) B has exactly (4p+1)t indecomposable RG-lattices which
are gll generéted by 2 elements.
(1i) There is a vertex-preserving bijection between the set of
q-orbits of 1ﬁdecomposab1e non-projective RG-lattices in B,
(111) A1l q-orbits .of indecomposable non-projective RG-lattices
. . in B have length 2t. One of the orbits consists of all

RG-lattices in B with vertex of order p .

J.BRZEZINSK]I: Algebraic geometry of ternary quadratic forms

and orders in quaternion algebras

Let f E‘A[XO,XI,le be a quadratic form with coefficientes in
a Dedekind ring A (or, more generally, .L an A-lattice on a
ternary quadratic space (V,q) over the field of fractions F of A).
The quadratic form f defines two objects: a projective SpecA-
scheme M = ProJ(A[XO,xl,XZ]/(f)) and an A—érder 0o(f) in a
generalized quaternion'algebra Q over F - the even part Co(f)
of the Clifford algebra C(f) of f
Theorem 1: The orders O(f) in Q are precisely the Gorenstein
‘ orders in Q . .

* Theorem 2: The SpecA-scheme Proj(A[Xo,Xl,XZ]/(f)) is regular
if and only if the corresponding order O(f) 1is hereditary. ‘
Theorem 3: Let A/p be perfect for each priﬁe ideal p € SpecA,
p # (0) , and assume that p does not divide the discriminant of
the hereditary order O(f) . There is a one-to-one correspondence
between the k(p)-rational points of the fiber ME and the inte-
gral (left) O(f)-idealg with norm equal to p sSuch that elemen-

tary transformations at two k(B)-ratlonal points of Mq give

DFG Deutsche
Forschungsgemeinschaf ©



‘DFG

of ¢

-structure of A . Moreover, we have A_ = A'p , and hence ) .

Deutsche
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isomorphic SpecA-schemes if and only 1f the riéht orders 5£ the

" left ideals corresponding to these points are isomorphic.

We apply these results to some arithmatical questions conser-

ning integral representations by ternary and quaternary duadratig

forms.

C.J.BUSINELL - I.REINER: Zeta-Functions of Orders . o .

Let A be a finite-dimensional semisimple Q-algebra, and A an

order in A . Solomon induced the zeta-function

CA(s) = £ (A8 s€C, R(s) large
© LSA

where the sum is taken over all left ideals of A of finite in-
dex in A . Special cases of this have a long history, nbfably
the Dedekind zeta-function and the Hey zeta-function (wheré A
is siﬁple,' A is maximal). | A

Using a subscript p tb denote. completion at p , we.have

¢, (8) =n ¢ (s) , where ¢ is the obvious local analogue
A p Ap Ap )

A If A is a maximal order in A containing A ,

CA,(s) may be computed explicitly in terms of the Wedderbufn

p

¢, = ¢y » for almost all p .. The first major result is that
p A ; , '

the "correction factor" mé(s) = CA (8)/CA.(S) is a polynomial
' P P )
s

in p~ with coefficients in Z . In the special case A = RG ,

R the ring of integers i a number field, these ®p have a symme-

) 1-2s
try, or functional equation mp(s) = (AS:RPG) ¢p(A-s) consistent

with the functional'equation of CN

The results are proved by expressing the CA as local integrals,

o0&
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as in Tate's thesis., It 18 easy enough to generalize Tate's
work to cover the problems at hand. Alternatively, one may ap-
peal to the much more general work of Godement and Jaquet in

this direction.

M.C.R.BUTLER: Grothendieck groups and almost split sequences

Let £ denote either the category of finitely genérated modules
over an Artin algebra, or the category of lattices over an order

over a complete discrete valuation ring of rank 1 in a seﬁisimple

'algebra. Then £ possesses almost split sequences, namely the

representatives of non-zero elements in the socles of finctors
Extl(-,A) , A 1ndecomposable. Suppose also that ¢ has only
finitely many indecomposables, so that the Extl(-,A) functors
have finite cémposition length, Using induction on these lengths,
I showed that.the Grothendieck group of £ may be presented as
the group generated by the objects A,B,C,... modulo only these
relations B = A+C corresponding to sequences QO+ A=+ Ba C~ O
which are either split exact or almost split exact. This means
that the combinatorial structure alone of the Auslander-Reiten
quiver of £ suffices to define uniquely the composition factor

structure of the indecomposables in ¢

J.F.CARLSON: The varieties of a module over an elementary

abelian group
Let K be an algebraicaily closed field of characteristic p>0,
and let G = (xl....,xn) be an elementary abelian p-group. To

any KG-module M , we may associate two varlqtieé V(M) and W(M)

Forschungsgemeinschaft © @
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n

in K . The first is the zero element together with the set

of all o = (ul,...,d ) such.that the unit 1 + ¢ oy (xi-l)é KG

n
does not act freely on M . The ideal of the variéz; W(M) is
related to the annihilator in Ext;G(K,K) of the class of the
identity element in Ext;G(M,M) . It is shown that V(M) € W(M) .
Both varieties have dimensioé equal to the complexity of M .

One conseﬁuence of these results is a recent theorem of Kroll ‘
which characterizes the complexity of M 1n”terﬁs-6f the order

of G and of the maximal generalized subgroup of units in KG

that acts freely on M

G.CLIFF: On units of integral group rings

Let U,(ZG) denote the units of ZG of augmentation 1 , for a
finite group G . We consider the following problems:
1) Does 1 -+ G = UI(ZG) split?

2) If so, is the kernel torsion free?

1) was raised by K.Dennis, and 2) by D.Passman. We show that'l)

and 2) cﬁn both be Qnswered in tﬁe affirmative, if G .15 a meta-
belian group having an abelian normal subgroup A , with
(|A],[G:A]) =1, and |A] odd. (This is Joint work with S.K. .
Sehgal and A.Weiss.) B ' ' R

E.DIETERICH: Representation types of group rings over complete

discrete valuation rings

Let R be a complete discrete valuation ring with valuation . ,

a finite group, A = RG , aﬂd L the category of A-lattices.

Deutsche .
DFG Forschungsgemeinschaft . . © @
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Call A to be of"wild representation type"_if there exists a’
full:subcategory of £ which is representation equivalent to
the category of matrix paifs over some field. Call A to be of
"tame represént;fion type", 1f it 1is neither of finite nor of
wild type. )
Examples have been given, where the representation type of A
‘ ‘ can be -determine‘d by relating £ to some category of represen-
tations of a poset or a species: ) -
i.) If A=RCg,p>2, 1< y(p) <o, then A 1is of wild
repreSentazion type. .

A2.) If A = RCp B p'>'2 , v(p) = 2, and the p-th cyclotomic
polynomial decomposes into two irreducible factoré, then A
is of finite representation type, and has 2p + 3 1ndec6mpo-~
sable lattices up to isomorphism; .

3.) If A = RC3 , v(3) = 2, and if the third cyclofomic ploy-
nomial is irreducible, then there are 7 indecomposable A-lat-

tices up to isomorphism,

A.FROHLICH: Hermitian class groups

. The motivition comes from the trace form on number ﬂelds or '
' local fields. The object of study are Hermitian modules (X,h) ,
-given by a locally free fil-module X and a Hermitian form on
X @u A over A, where A 18 a semisimple algebra with invol-
ution, % an order on A admitting the 1anlution. The Qroblem
solved is the generalization of discriminants‘of lattices to this

situation.

Deutsche . . .
DFG 2 s | oD
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W.H.GUSTAFSON: Orders in geometry, topology and number theory

We discuss the history of the theory of orders, with emphasis

‘on the applications that caused its development. We hope to out-
line éonneétfons,of the theory with the classification of elliptic )
curves and constructive classfield theory, with surgery of mani-

folds, with holonomy of flat.affine surfaces, with chrystallogia-

phy and with the arithmetic of algebraic number fields.

W.KIMMERLE: Relativevrelafion modules as generators

Let G be a group, H< G and F a free group admitting aﬁ.
~epimorphism- A from F « H onto G such that 2 hrestrléted:

to H is the identity. Denote by K the kernel 6f‘ f ,ﬁthén
k/[K,K] viewed via conjugation as ZGJﬁattice'is-called a relation-

module of G relative to H .

Usiné this relativation one obtains.the followiné iﬁtegrai-répre—
sentation theorat;cal characterization of finite groups. Equi-
' valent are ' ‘ -
(1) [6,G6] 1is not nilpotent.

(i1) A1l relation modules of G relative to at least one maxi-.

mal subgroup a;eAgenerators. »
(iii) A1l relation modules of G relative téigt ieasf one bﬁb; v.
group are generators. ' )
It should be noted that a characterization of finite groups by
considering only_o;dinary relation modules (H=1) with respect

to the génerator property seems to be far from solution.

Deutsche . ’
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B.A.MAGURN: Uses of units in the Whitehead group

It is conjectured for finite groups G , KIZG is the direct
product of SKIZG and stabilized unifs. This is proved for di-
hedral groups,. and a simple form‘of representative units is used
to solve realizability problems by Whitehead torsions of self-
equivalences of connected finite CW-complexes, and of finite

CW-pairs.

L.R.McCULLOH:‘ Stickelberger relations in class groups of orders

in abelian group rings

Let G be a proddct of cyclic groups of order 1? , 4and let H

‘be its lnrgestvelementary abelian subgroup. The group algebra QG

decomposes_és Q(G/h) x A. Let A be the image of 2ZG under
projection QG- A . (When G 1is cyclic, A = Z[;;ln].) The .
Stickelbefgerurelafions and associated class number formulae for
cyclotomic fields are generalized to the order A and its class
group Cl(A). When G 1is eiementary abelian, these results
apply directly to C1(ZG). The Stickelberger ideal needed is a
relative of bne used by Kubert and Lang to describe cuspidal di-

visor class groups of modular function fields.

L.A.NAZAROVA: Poset representations

Let % = {al,az,...,an) be a finite partially ordered set (poset).

A representation 8 = (V,Vl,...,Vn) of the poset M over the
field k is given by subspaces V1 of the finite dimensional

vectorspace V for each o € %, such that if oy < «a then

3!

o
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VieVy .

It is easy to define representations of posets over rings, consi-
dering finitely generated k[x]-modules instead of vectorspaces.
Posets of infinite type (having infinitely many indecomposable

representations) are devided into two classes: tame and wild.

A poset M has taﬁe‘fyﬁe (over k), if it has infinite type and
for every dimension ,d tﬁere exists a finite set ud(m) of re-.
presentations of %.. over k[x] (k[x]= the ring of polynomials
in one variable) such thatlalmost all indecomposable representa-
tions (V,Vl,...,Vn) of M of dimension d over k are ob-
tained by a representation (V,Vi,...,vn) € My (R) in the follow-
ing way; V =V ® B, vy = Vi ® B, for some finitely generated
k[x]-module B .

Posets of tame type are naturally devided into two classes:

1.) finite growth, for whiéh the number of representations in .
M4(R)  is bounded by a fixed number N for all dimensions d;.

2.) infinite growth or Gelfand's posets for which the number of
representatiohs in Md(m) increases infinitely with increa-

sing dimension d .

Theorem (Zavadski, Bondarenko, Nazarova): A poset R 1S of ‘

finite growth, if and only if it does not contain the subset

G : [>K<] e .

Moreover, N = 1 for all the posets of finite growth. A domestic
criterion was givén, and the complete list of faithful posets of

tame type.

’

Deutsche
Forschungsgemeinschaft ©




- 15 -

W.PLESKEN: Algebraic Aspects of Crystallography

Some basis problems in the theory of crystallographic groups can
be solved by methods of the theory of orders. The following prob-
.lems are relevant: A
(1) Find all éublattices of a ZG-lattice L , which have
- l finite index in L and decide 1somorph1ém (G a finite
. group) . .
A (ii) Decide isomorphism of two given ZG-lattices and construcﬁv
an isomorphism, if it exists.
(1i1) Find a finite set of generators of the unit group of a
given Z-order (usually the centralizer-ring of 2 finite .
subgroup of GL(n,Z) in ™M,
These problems and their background in the theory of space groups

were dicussed.

H.-G.QUEBBEMANN: Integral orthogonal and symplectic represen-

tations of the cyclic group of prime order

Let n be the cﬁclic group of prime order p . The classifi-
. ’ cation of representations 1n -+ Sp, (Z) is reduced to the classi-
fication of certain skew-hermitian forms over Z[¢], ¢+ 1,

h root of unity. The corresponding result for orthogonai re-’

a pt
presentations is weaker, but allows e.g. to classify selfdual
lattices Lc RP*! with the property that . p divides |Aut(L)]|.
Ff Cc = kgrnel of the norm map qﬂ(t) - Ch(c+c'1) (CK = ideal’
class group of K) has odd order, then there is a bijection be-

tween classes of such lattices and pairs (B,y) , where 8 is

DFG Deutsche
Forschungsgemeinschaft ©
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a reduced positive definite form (g 2) such that ac-b“ =p

(g) =1, and vy 1is an orbit of Aut(@(¢)/Q) in C~ .

J.QUEYRUT: §S-Grothendieck groups and Galois module structure

of rings of integers

Let N be a number field and I' a group of automorphisms of N .

The ring of integers of N, Zy has a Z2(r ]-module structure. The ‘
description of the structure of ZN is achieved with the help

of new Grdthendieck.groups. Let S8 be a set of primes of ZN s
we denote by as(z[r]) the Grothendieck group of the category

A S(Z[r]) of Z-torsion free finitely generated modules M. which
are locally projective outside of S and we denote by [M] the
class of such a module M . If S contains the_primes which are '
wildly ramified in N, Z, is in sls(z[r]).' Oné can now con-
sider the element Uy . = [2y] - r[z[r]] of .uhé‘gr‘oup‘. éos(z[r]),.
wuere r 1is the rank of ZN . Firstly, UN/K is in thekforsion
subgroup & s(Z[l‘])' of & s(Z[l‘]) . Let @ S(i{r]) be the tor;:
sion subgroup of the Grothendieck group which is nssociated to

the category of Z-torsion free, finitely generated Z[P]—modules

and which is defined modulo the exact sequences which split out- .
side of- § . ‘There is a surjective homomorphism from R SairDd

in Eés(z[r]) . The image of Uy x is uriviel To show. this ’
result, I- give a complete description of these. Grothendieck

groups and more generally I define and desc;ibe S-Grothendieck

groups of an order in a separable algebra,

Deutsche © @
Forschungsgemeinschaft
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I.REINER (s.BUSHNELL)

J.RITTER: Frohliche Klassengruppen

The aim of my lecture was to give a report on Fréhlich's descrip-
tion of the class group C1l(8) of locally free fi-lattices for an

arithmetic order 1 sitting in a semisimple algebra A.

Denote by Z the centre of A , by J(Z) the idélegroup of 2 ,
and by U(%) the group of unit idéls of # , that is U(2)-08)";
finally denote by nr the reduced norm from A to Z . Tﬁenp
C1(8) = J(2)/Z*nru(a) , and, moreover, one has a cancellation pro-
perty which means that two lattices of rank at least two are iso-
morphic if and only if they induce the same element in Cl (%) ,

this fact being also true in case of rank 1 1f A satisfies the

Eichler condition. When 8 = OKG which is the inteéral group
ring of a finite group G over the integers of a npmber field
K, one can nicely separate the components of Z by using the
characters §f G to get Frohlich's fundamental isomorphism

C1 (OKG) > HoﬁG(RG,J(E))/HomG (RG,E') Det U(%) and also to get
the corresponding isomorphism with respect to the kernel sub-
group which shows up when OKG is embedded in some maximal
order: D(0,G) = Homg (RG,U(0)) /Homg' (RG,0)Det U(Z) . There
RG denotes the ring of virtual complex characters of G , E

is some splitting field for G and a finite Galois extension

o
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of K with group 6 , and Det(a) , for some unit idele o ,

is the homomorphism which sends an 1rreddcib1e charactep x to
det(Tx(a)) , Tx being the corresponding representation. The

+ sign in the description for DODKG) indicates that only those
homomorphisms are to be cpnsidered whoée values at the irredu-

cible characters of the Schur index 2 over the reals are posi-

tive at each infinite place of E . - These homomorphism groups ‘
reflect very nicely the'functorial behaviour of the class groups
with respect to field embeddings and various group homoﬁorphisms.

An essential example in the theory is the ring of 1ntegérsA OL
of a“Galois extension L|K with group G , viewed as a ng-mo-
dﬁle. ﬁ is locally freevif-and only 1f-the extension is tamely
ramified, and in this case in Ci(oKG) it is reﬁresented by the
homomorphism x B (b]yx)/(a|x) , where a generates a normal ba-
sis of L|K and (alx) 18 Frohlichs generalizédAresolvent,.na-
mely (a]y) = det( zG a¥ Tx(y-l)) , and where b is the 1déle

Y€ . : : .
given by ©, = b o, G and where again (b|y) is its resolvent.
. L,» “rK,p

The contributions of Graham Higman's 1940 thesis, Units in Group

R.SANDLING: " Graham Higman'é thesis

Rings, are not widely known: most of the results have been redis-
covered over the years. In.it many yet unsolved problems are rai-
sed for the first tiﬁe such as the isomorphism problem and the

existence'of zero divisors and non-trivial units for the case

o®
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. of torsion-free groups. The classification of group rings having

only-;rivial units, done for ZG in his earlier paper of the
same title, is complefed for RG, R an arbitrary ring of alge-
braic integers. It is based on a comparison of U(RG) -with

uM), M a m§x1m31 order containing RG . The interpretation

of RG as an order is also used for other purposes. Mos£ of the
significant results on units of finite order which are known at
present appear,:They are established by ﬁethods (representation
theory, augmentation ideals) now taken for granted. The finite .
subgroups‘of U(RG$ for certain finite metabelian groups are de-
termined: for the nilpotent case, in which the main ideas of the

proof of the isomorphism problem for the general finite metabe-

‘lian group are present; for the case of the affine group of a

field of odd prime order, in which an explicit integral représén-
tation is constructed. For infinite groups, the two unique pro-

ducts condition is introduced and exploited.

L.SCOTT: Hecke actions on Picard groups

" This work is joint with Klaus Roggenkamp, and was 1nsp1red'by

Robert Perlis' paper on arithmetically equivalent number fields.
We formulate Perlis' method in terms of functors, and ebse;ve‘

this gives improvements in class group ;heorems of Nehrkorn and
Walter. In particular we show the class group of an abelian ex- '

tension K/Q@ can be computed in terms of the class groubg of

o®
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KH for G/H ranging over the elementary (in Brauer's éense)
quotient groups of the Galois group of K . We show, moreover,
that Perlis' method is quite general and holds for Picard groups

of commutative rings and usually even for schemea.'ln'particulaffj*

we prove ' ' .

Theorem: Let G be a group acting on a commuthti%elriﬂg A .

. a . a
Then there is*‘cont.ravariant additive functor from the category N .
of permutation modules for G to abelian groups, which for any o

subgroup H of G, assigns ZG/H  to PicAH . Y -;}t;f_"

An important ingredient in the proof is a relative Pichrd -J
group simiiar to the locally free Picard group 1ntroducéd by
Frohlich for or%ers: Let (s,os) be a ringed space and A a"
commutative os-glgebra. Define S-Picll to be the set of 180- ;_f_;f'
morphish classes of #i-modules for which there is an open cover
u of é with m/d o~ ”/U for each U in U , A ﬂﬁandard T
ﬁrgument shows S-Pictl > Hl(S #%) . Now the idea is to consider
the composition of functors ZG/H et H (s, a* ) where G -

acts on 8 , and then to use commutative algebra to return {o

M.R.STEIN: K, of integral group rings

Algebraic K-theorists have recently developed several refinéménfs;
of Mayer-Vietoris sequence techniques which allow the computation

of the K2's of certain integral grpup rings of interest to topo-

|
o®



- 20 -

logists and number theorists. The principal new example dis-

cussed in detail was

K,@[Cy x Cy]) 1s an elementary abelian 2-group of rank 6,

where C2 is a cyclic group of order 2,

' 0.TAUSSKI-TODD: Some facts concerning integral representations

of ideals in an algebraic number field

An integral representation by n x n matrices given for ideals
in an order of an algebraic number field of degreé n via a re-
gular representation of the field referred to a basis of inte-
gers. It is ,knofvn that the ring A Y integral matrices is

a principal ideal ring and that any set of elements in this ring
has a greafest common right divisor (gcrd) which can be obtained
by a routine method. This method goes back to Du Pasquier., The
g-crd -i8 determined up to a unimodular factor on one side. Let
(.‘.¢l be a reprgéentative of this set for an ideal ¢ . It was

shown by MacDaffee that Ga is a so-called ideal matrix (a con-

cept going back to Poincaré), i.e. a matrix which transforms a

The deteimination of Ga - i8 of importance for finding the gene-

. basis Lo TEERFL for the order into a basis Ay sy for the
ideal
¥1 b
G -
¥n “n
|
|

rator of a princpal ideal, Such a generator 1s an dement of the
map of the ideal. However, a unimodular factor of Ga may pre-
vent this happening here; hence further work is necessary to de-

termine a factor U , which when multiplied by a particular Gc

DFG Deutsche
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commutes with all the elements of the ideal. This leads to a
set of linear equations, which e.g. for n = 2‘, has a solu-
tion depending on 2 parameters. To ensure that U 1is also uni-
modular leads then to constructing a binary quadratic form>1n
these two parametefs which haé to assume the value +1 or -1,

If the ideal is not principal then for all unimodular U's the

product of U and Gd‘ will not commute with all the elements
of the map of the ideal. Hence q{ generates as one-sided prin-

cipal ideal in an“

. In the case n - 2, Gh for a non-prin-
cipal prime ideal has eigenvalues in some quadratic field in
which the corresponding rational prime number splits into prin-

cipal ideal factors.

ST.V.TAYLOR: Frohlich's conjecture and logarithmic

methods

The talk started wiﬁh a statement of the theorem that Frohlich's
conjecture holds for any ring of integers of E of a Galois ex-
tension of M with the property that the prime divisors of (E:!)
are non-ramified in E)D.u fhe remainder of the lecture was devoted

to a description of the aig'eb‘raic technique used in the proof .

of this result. In_particular the use of a new “1nt9gra1" loga-
rithm on the group of determinants of local group“iihgs was des-

cribed.

TH.THEOHARI-APOSTOLIDI: On integral rejresentations of

twisted group rings

Let R be a complete discrete valuation ring #with quotient field

DFG Deutsche
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K, L/K a Galois extension of finite degree with Galois groﬁp
G, :S4 the valuation ring of L and Poi(resp.P) tﬁe-priqq
ideal of R (resp.S).
The purpose of'fhis lecture is to give some results about the
representation type of the twisted group ring &4 = 8°G. Thisis
‘ - - well knowniffhe case of tame extensions, but here the general case
ramified
is examined, including the wildly“extensions. The main theorem
18 the following:' .
A 1s of finite r%?reseﬁtatidn type if and only if the first
- ramification grouﬁébf the prime ideal P in -the extension L/K
is of order 1 or 2 . If G = Gy and |G|=2 the integral repre-
seufationa of A are characterized by the three non-isomorphic
1ndecompdsﬁble A-lattices A, S, P . In this last case radA =‘-
. radr, where T 18 the intersection of maximal orders in L°G
containing A . This permits easily the computation ofb% function

of A .

CH.THOMAS: Integral representations in the study of fipnite

Poincaré complexes

Let I be a finite group and D(ZI') the subgroup of the pro-
jective class group consisting of elements [P] such that P

becomes free over a maximal order car . I1f (r,z) denotes

Pr
the rank 1 projectige module generated by r (coprime with |T|)

and I , the sum of the group dements, the classes'[kr,z)] form
a subgroup T(Zr) of D . Under favourable hypotheses' (such aé
n.(y) nilpotent over Zr), the Wall finiteness obstruction o (Y) "’

for a finitely dominated CW-complex lies in D(Zr) - provided
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we allow multiplication by the. Artin exponent A(Tr') , when T

is not nilpotent. Furthermore there are circumstances in which
thg nodule (r,Z) can be used to modify the homotopy type of Y .
In one direction this can be used to test whether (;,2) naps
ito (o] in fo(ir) , thus using representation theory over ¢

for the group D;qg , the extension of a cyélic"gronp of order
pa Aby one.of order. q , we can show that (r,) ~ 0 'if

r = Sg (mod p) & r = Sg(mod qz) . In the-other\diréction algebra
can'be used to prove non-trivial topological resul%s;;‘tnns when

'h+(p) is odd, there exists a free action of D;p (q=2 above) on.
S4k-1

(k22j'.' such that the orbit manifold- is not homotopy équi-.

valent to a space of constant positive curvature. (Bestdes knon; R

ledge of the subgroup T(Zr) 1in this case, one needs to have

the structure of the surgery obstruction group L3(ZP).)

ST.V.ULLOM: Galois module structure for intermediate extensions .-

We compare the Galois module structure of the ring of integers
of tamely ramified extensions N and N' of F satisfying
(1) Gal(N/F) e Gal(N'/F) = quaternion group H4n , and

(2) N and . N' are quadratic over a field K containing F .

Le E be a quadratic extension of F such that K/E 1is cyclic. f )

: cyclic group of order 2" , 0= integers of E = 1nt E . The

A
class of the ratio (int N') (int N)"1 in the ‘class group C1(04)
i8 related to the ratio of Artin root numbers WN,/WN . for.qua-

ternion characters.
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P.J.WEBB: Restriction to elementary subgroups for lattices

We describe a theorem which bounds the ranks of ZG-lattices,

where G 1is a finite group, in terms of the ranks of their non-~

projective coreés on restriction to elementa:y abelian p-subgrouﬁs

qf G .

Theorem: Let G be a finite group. There exists a constant B
‘ with the property that if M is a ZG-lattice there is a prime

pl|G] and an elementary abelian p-subgroup E of G for which

ranLl core(M) s rankl core(MsE) . ‘ .

This result is an integral version of a recent theorem of J.Carl-

son., It can be ‘used to prove an integral version of a theorem of

Alperin and Evens concerning the complexity of modules.

A_.WIEDEMANN: Auslander-Reiten graphs of orders and blocks

. of cyclic defect two

Let R be a complete Dedekind domain and let A be an R-order

in a separable aléebra over the quotient field of R .’ o

Criterion for finite la-ttice type: Assume A to be twosided

indecomposabie. If € 1is a finite component of the Auslander-
‘ Reiten graph 2(A), them A has finite lattice type, and

€ =a(@) .

The compohénta of stable Auslander-Reiten graphs with a periodic

vertex were described. Moreover, a classification of those orders

with loops in their Auslander-Reiten graph was given in case

R/rad R is finite.

Let G be a finite group, R the p-adic integers. In the second

Deutsche
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part, the Auslander-Reiten graph of a block ® of RG with cyc-
lic defect group of order p2 was indicated. Using the above
criterion one gets immediately the number (4p + 1)-e of indecom-

posable B-lattices (e = #simple B-modules).

J.WILLIAMS: Prime graph components of finiﬁe grbdps

Let G be a finite group, define the priine graph as follows: .

The vertices are the primes dividing the order of G and an edge
joiha p,q 1iff G contains an element of order pg . A subgroup
H ‘of G is isolated (CCT) if H N A% = (1) or H and
cG(h)gn\/hezﬂ. '

Theorem: Let G be a group all of whose composition factors

are elither simple Chevelley groups or a sporadic group or C;,
let my be a closed connected component of the prime graph and
Suppose mn, ¢ n(G) gnd 2¢ "y . Then eithgr' G is Frobenius
or 2-Frobenius or G  contains an isolated Hall nl-subgroup which
is nilpotent.. » B

This yields to following application to ;ntegral representations.
Theorem: Let G be a group all of whose compqsitiﬁn factors

are simple groups-of K-type, then the following are equivalent:
(a) Z 18%e11er (b). 8 , the augmentation ideal,_ﬁecomposes

(¢) n(G) has more thanvone component (d) G contaiﬁ# an iso- '

lated subgroup.

S.M.J.WILSON: Miyata's Theorem on the transfer map from the

class group of a dihedral group to that of a
cyclic group A '

Miyata has proved the following theorem:

Deutsche
Forschungsgemeinschaft




UFG

Deutsche
Forschungsgemeinschaft

H.ZASSENHAUS: On F.C.subrings of rings

- 26 -

"Let G be a cyclic group and Do = Co x I be the corresponding
dihedral.éroup then the restriction map Cl(ZDo) - Cl(ZCo) is

injective."

.In this talk I indicated a proof of a generalization of this re-

sult where Co is assumed only to be finite abelian with cyclic
2-torsion (the conclusion remaining the same), I acting by in-
version.

My proof, which 18, reputedly, shorter than that of Miyata, in-

volves some simple facts about twisted group rings, uses the ide-

_lic formula for the class groups as given in my paper "Reduced

norm8 in the K-theory of orders" J.Al1g.1977, and employs the
inclusion ZDB € AD ® ZD correéponding'to the cartesian square
Z D° - 2D
] ]

A D = (Z/nZ2)D

D,
where D 18 the Sylow 2-subgroup of D, ,n = | °/D| and
D,
A =2(°/p)/(z groupelts). (Miyata's proof also uses this diagram).
Among other applications, one can use this result to deduce that

every Do-extension L/K of algebraic number fields has a normal

integral Z-basis. (This uses the result of Taylor for abelian

- extensions,)

A theorem of A.Williamson (1978) "The supercentre of a group G
defined as SC(G) = {x|x € G : |x U(Z(")l < =} is a characteristic

subgroup of G containing the centre C(G) of G . It con-

o®
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tains C(G) properly precisely if there is an element x of
2 2

" order 4 and another element ¢ of G such that ¢“ = x° = (cy)2

for all ¥ of EG(x) . In this event either G = SC(G) is =

hamiltonian 2-group or else SC(G) = (x,C(G))>" suggested to 1hef1:.

speaker jointly with Sudarshan K.Sehgal the definition of the ’

F.C.subring of an arbitrary ring A as FC() = (x|x € A :

FC(A) “is a characteristic subring of A containing‘the pentré
C(A) of A . If A 1is finite or commutative then FC(A) = A"
If A is inifinite simple then FC(A) = C(A) Q‘rcasfgl Ay =

s
@y FChyp .

Theorem 1: If A 1is a Z-order then the maximal ideal [CAsFC(A)] =
[FC(A):A] of A contained in FC(A) 1is the intersection of the
kernels of the irreducible representations A of A over C

for whiéh QA A is a totally definite quaternion-algebré, and
FC(A) fAFC(A)] = CAfAtFC(A)) . FC(A) 1s commutative

e (U(A) : U(C(A)) < =, otherwise the unitgroup UM) of K

contains a free subgroup on 2 génerators. The proofs use thy

Dirichlet's unit theorem, in particular the remark that the
number of fundaméntal units of an algebraic number field E
and a proper subfield F coincide preciaeiy if‘vF' is totally

real with E as totally complex quadratic extension.

Theorem 2: If A 1is the group ring ZG of a finite group G
then the kernels occuring in theorem 1 are in 1-l-correspondence

with'thevfactor groups of G of the form (a,b) with defining

2 . b™ = (ab)? and representations 4 defined by

Deutsche
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' n
cos , cos — + bi
a(a) - [1 ‘1] YOS n

~-co8s

IJ|Ia B

+ bi , cos —

2 = 1) such that

S1E]

(b real, b2 + coszaﬁ + cos

n = 4 or 5 projective tetrahedral (SL(2,3)), octahedral

1]
or icosahedral (SL(2,5)) groups. - As a corollary an order-
theoretic proof of Williamson's theorem is obtained. An alter-
native specially group ring theoretic argument was sketched

already in S.K.Sehgal's book on group rings.

~

In this connection a simplyfied proof characterizing _8SL(2,5)
as nontrivial finite group such that every subgroup of order pgq
is cyclic - p And q rational primes - is given (Zassenhaus

1934).

A.Wiedemann (Stuttgart)
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