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Scattering Theory
3.8. bis 9.8.1980

Dié Tagung fand unter der Leitung von Herrn P .Werner (Stuttgart)
und ‘Herrn C.H.Wilcox (Salt Lake City, USA) statt.

This was the fourth meeting on Scattering Theory to be held at
Oberwolfach. The majority of the talks presented at the first

three meetings (1971,1974,1977) dealt with quantum-mechanical -
scattering problems. The scope of this meeting was broadened

to reflect recent developments in the applications of scattering
theory to problems of classical and applied physics. The three
years since the last meeting have again seen rapid progress in

all branches of scattering theory, stimulated in part by scientific
contacts which took place at these meetings.

Topics discussed this year included scattering problems of quantum
and classical physics (e.g.long-range potentials, thermoelastic
media, diffraction gratings, moving obstacles), and inverse
problems with applications to geophysics, speech and hearing,
computer-assisted tomography.

Vortragsausziige

T.S.Angell:
Scattering control for the Robin Problem

Using a boundary integral equation formulation for the exterior
Robin problem for the Helmholtz equation developed elsewhere, we
consider the problem of control of scattered fields. The'power in
an angular sector of the far field is taken as the cost functional.
The problem discussed is that of maximizing this functional over

a control set of admissible impedences (Robin boundary data)
consisting of a closed bounded, convex set in Los -
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V. Barcilon:
Inverse Sturm- L1ouv111e lTike Prob1ems

1y work on Inverse Eigenvalue Problems has been motivated by the

problem of inferring the internal structure of the Earth from its
natural frequencies. To that effect, it was necessary to investigate
inverse eigenvalue problems associated with differential systems of

order 4 or higher. Since problems associated with operators of the

form L = ao(x)a% ml(x)a% R Eg an(x), where ai(x)>0,-are natural
extensions of Sturm-Liouville operators, they provide a natural

point of departure'. The vibrating beam, which falls within this class‘
of operators, is an ideal candidate for this study.

I shall present a survey of the current state of these problems and
touch upon questions of existence, uniqueness and construction of
solutions.

R.Colgen: .
Some Remarks on Enss' Method in Quantum-Mechénical Scattering Theory

A result in abstract scattering theory (in the two space setting)

is presented which provides strong asymptotic completeness of the

wave operators (in the sense of the Enss' Theorem) under conditions
that are quite general and easy to v9r1fy (compared with Enss' Theorem
and other generalizations). The proof is based on Enss' method (and
Simon's generalization) and requires little additional effort. As

an application, Klein-Gordon operators are considered.

J. Cooper: . .

The Scattering Amplitude for Moving Obstacles

In the scattering of acoustic waves by a fixed obstacle in R", n odd,
the scattering amplitude is a function of the incident frequency o and
direction variables. This function has a holomorphic extension for

Im ¢ < 0 and a meromorphic extension for Im o > O.

When the obstacle is moving, the reflection of a-plane wave 6f frequency
o no longer has a single frequency. The scattering amplitude is now a
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distribution in frequency variables o' and o. When ¢'-0 is real

we find that it is still possible to construct a holomorphic extension
for Im o < 0.-

If the motion is .periodic, the scattering amplitude has a méromorphic
extension for Im o > 0 and may be written as a sum of partial ampli-
tudes located at o' = ¢ + mv where m is integer and v is the frequency
of motion of the body.

J.A. DeSanto:
Coherent Scattering from Rough Surfaces

The mathematical formalism for calculating the Green's function for
scattering from a rough surface is discussed with the aid of Feynam
diagrams. For an arbitrary deterministic rough surface the scattering
part of the Green's function satisfies a Lippmann-Schwinger-type
integral equation with a non-central and complex “potential".

For a random surface with homogeneous statistics the ensemble average
(coherent part) of the scattered Green's function satisfies a one-
dimensional singular integral equation(Dyson equation). With a
Gaussian distributed surface and plane wave incidence an approximation
of this equation has been solved numerically and the result compared
with experimental data and single scattering theories. Results support
the conclusion that contributions from multiple scattering are
necessary to account for the experimental data at large roughness.

V. Enss:
Finite total cross Sections in Quantum Scattering

Using time dependent geometric methods we obtain simple explicit
upper bounds for total cross sections o
particle scattering.

tot in potential- and multi-
Yot is finite if the potential decays a bit
faster than r'-2 (in 3 dim.) or if weaker direction dependent decay
requirements hold. For potentials with support in a ball of radius R
bounds are given which depend on R only.

We obtain upper bounds on %ot for large coupling constant i, the
power of ) depending on the fall off of the potential. For spherically
symmetric potentials the variable phase method gives a lower bound

growing with the same power of 2.
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In the multiparticle case for charged particles interacting with
Coulomb forces the effective potential between two neutral clusters
decays sufficiently fast to imply finite total cross sections for-
atom-atom scattering (joint work with BSimon).

J. Hejtmanek:
The Problem of Reconstructing Density Functions from Projections

as an Inverse Problem in the Scattering Theory of the Linear

Transport Operator

Scattering theory of the linear transport operator was initiated by .
J.Hejtmanek (1975) and further developed by B.Simon (1975) and

J.Voigt (1976). A survey of this theory can be found in the book:

Reed, Simon, Modern HMethods in Mathematical Physics, vol.3, XI.12.

The linear transport equation, which describes the time behavior of
the photon density function for the CT model,is a simple version of
the neutron transport eduation,Awhich was the focus of much mathe-
matical work during the last 30 years for reactor engineers and
neutron physicists. It is proved that the Heisenberg operator is

a mult1pl1cat1on operator, and that it is a one-to-one mapping from
the positive cone L ( m xS ) onto itself. The inverse problem can
be solved by the 1nverse Radon tranformation formula.

The aim of this lecture is to demonstrate equivalence between the
following two problems: Reconstruction of density functions from
brojectiéns and the inverse problem in the scattering theory of the
linear transport (Boltzmann) operator.

Teruo Ikebe:
A Stationary Approach to the Completeness of the Long-Range Modified

Wave Operators

A completely stationary method is proposed for the proof of the
completeness of the wave operators for the Schroedinger operators
with long-range potentials. No use will be made of the existence
result for the wave operators already known in a time-dependent
setting, but which will be shown in our approach. (This is a joint
work of H.Isozaki and myself.)
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A. Jensen:
Time-delay in Scattering Theory

Consider H =-a, H=-a+V in LZ(R") with V(x) real-valued, VeLZ, _(R"),

loc
Y(x)=0(|i|'8) as x»= with at least B>2. Existence and completeness
of Wi=s-lim e‘tHe"tHO is well known. Let S={S{(x)} be the decomposi-
tote :

tion of the scaitering operator in scattering matrices in the spectral

representation. The Eisenbud-Wigner time-delay operator is in the
spectral rep. given by T= {-iS(a)* g—S(A)}. T exists for 8>2 and is

essentially selfadjoint, commuting with H
Let P be the spectral projection for [- ", r] for the generator of

1

the dilation group D= VES (x-V+7-x). Requ1r1ng g>4 we get for a dense

set of f

Vin [ (P et _f12 - e TP Mor)2)ar < Cr,TE) |

ree -o .

The integrals exist for each r and represent” differences in time
spent in PrLz(R") for a freely and a fully evolving state. PrLZ(R")

corresponds classically to requiring |x-p|<r in phase space.

E1 Mabrouk:
Scattering Theory for Linear Thermo-elasticity

We develop a scattering theory for a class of dissipative systems,
which generalizes the well-known energy-conservative theory of Lax-
Phillips. This is then used to investigate the problem of asymptotic
behavior of the thermo-elastic waves scattered by a bounded obstacle
with homogeneous Dirichlet type conditions.

B. Najman: o
Scattering Theory for Matrix Operators and the Indefinite Innen_Product

We investigate the operators associated to the abstract second order
2 ' -,
. : : d u(t s du(t) ; . :
d1ffereqt1al equation —;:é—l - iK + + Hu(t) = 0 in a Hilbert.space.
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dzu t
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This equation is a perturbation of the free equation + Hou(t)=0;

the Klein-Gordon eduation is of this form. There are different ope-
rators and a whole scale of spaces associated with these equations.

It is shown that the usual theorems from the scattering theory hold

for these operators. )

It should be noted that the operators corresponding to the perturbed
equation are not selfadjoint if H is not positive definite; however
they are selfadjoint in an indefinite inner product. Using the spectral
theory for selfadjoint operators in Krein spaces it is possible to
construct a local scattering theory. ‘

D.B.Pearson:
Localisation of States in Position and Energy

Let H be a self-adjoint extension of -A+v(r) acting on Cow( R3\(0}),
where v(r)»0 as |r|+= but v may be singular at r=0. To estimate
the degree to which states may be localised in the region |r|<R and
in the interval £ of the spectrum of H, define the limits
u(z) = ;ig ”E,£|<R Eges!l and u(r) = lig “E|£|<R E|H->\|<€”

' R-0
It may be shown that, for given x,u(x) = 0 or 1,( u(r)=1 = "singular
point”, w(a)=0 = regular point) and that u(=£)=0 or 1 unless the end
points of £ are singular points. ’
A complete enumeration can be given of phenomena giving rise to
singular points. These include breakdown of asymptotic completeness,
presence of singular continuous spectrum, and a discontinuity of
the scattering amplitude at a given energy.. '

R.S.Phillips:
Scattering Theory for the Wave Equation with a Yedium Range

Perturbation

One of the disadvantages of the Lax-Phillips approach to scattering
has been its inability to handle perturbations which extend over
unbounded domains. This paper develops just such an extension of
this theory for spaces of odd dimensions. To be precise the wave
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equation: Upy = ai(a

and a.

jj 2ju)-au is treated when q=0(r %)a>2,

o(r By. = 3 3550 ,8>1. Although the result is a well

i " %4

‘known consequence of Schrodinger scattering theory, it turns out

that an adaptation of the Enss argument to hyperbolic systems is
both simpler and more straightforward than the original Schrddinger
argument.

A.G.Ramm:

Nonseifadjoint Operators in Diffraction and Scattering

The following questions will be discussed:

1)

When have the integral operators arising.in d1ffract1on and scat-

tering theory root system which forms a basis of a Hilbert space?

2)

3)

4)

5)
6)

When have these operators no root vectors?

What can be said about location and properties‘of the .complex
poles of Green functions? How to calculate these poles? Stability
of the poles under perturbations of the boundary of an obstacle.
Variational principles for spectrum of compact nonselfadjoint
operators. '

Miscellanea.

Unsolved problems.

A.G.Ramm:
Wave Scattering bySmll Bodies of Arbitrary Shape

The following questions will be discussed:

1)

2)
3)

How does the scattering amplitude depend on boundary cond1t1ons7
How to find an approximate analytical formula for scattering
matrix in electromagnetic and scalar scattering problems?

How to treat many body problem?

Scattering in the medium consisting of many small particles.

P.Sabatier:

Exotic Topics in Inversion Theory

Inversion theory is the common knowledge on exact inversion methods,
single ways of appraising ill-posedness of inverse problems, construc-
tion methods for solutions or quasisolutions. Exotic applications use
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this knowledge for purposes that have nothing or little to do with
inverse problems. Four examples are aiven: :

(1) We .study a linear and._irrotationnal model of water waves generation
near a sloping beach by ground motions offshore. The direct
problem is ill-posed and is relevant of inversion theory. One
constructs a couple "source-response” in which the source is
"s§-1ike" and the response is locally the constant depth one. It-
is possible to improve easily the 6-ness if the ratio maximum
depth/minimum depth is bounded. In any case, provided the slope
is everywhere smaller than 45%, a good approximation can be
derived. . ' .
(2) The second example uses exact inversion methods, e.g. the
Gelfand Levitan method, out of the range in which they are
consistent. This can yield singular potentials (e.g. Chadan's
potentials, and a new exactly solvable potential at fixed energy,
any 1 , a symptotic to~r-lsin 2r as r goes to =). It cah also

yield transformation operatofs that do not derive from a symmetric
Kernel.

(3) The third example is a method redﬁcing an inverse problen tnat is
defined by a finite number of equalities for implicit func-
tionals to a problém that is defined by a finite or infinite

number of inequalities for explicit functionals of a given para-
meter. This can be used to get inequalities for explicit functionals
of the Earth density and Lame _parameters, where the right hand -
side is given by experimental results. :

(4) The fourth (and last) example is that which succeeded the greatest
achievements: using the inverse spectral problem like an inverse
transform for solving non linear partial differential equations
(e.g. Korteweg-de Vries). .

A.W.Saenz:

Asymptotic completeness for Scattering by Periodic Surfaces with

the Homogeneous Dirichlet Boundary Condition

Write x€R”(v>2) as x = (X,x,), with Xer¥"! and x ER. Let @ be a
domain of RY such that (i) (('i',xv)ERV:xrﬂ}cnc(('i’,xv)elRV: x>0} (i1)
the periodicity property (?(',xv)en - (’;‘(’H,xv)m holds for all rez¥ 1,

" Define the wave operators W, = W, (H,H)) = s-1im exp(itH)Pexp(-itH ),

UFG
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where H is the negative Laplac1an in df = LZUR”), H the negative

D1r1chlet Laplacian in X = L (e}, (D(H) = (fELz(n): AfELZ(Q) and
(9))), and (Pf)(x) = f(x), fe ,xen . Then: (a) Wt are partially

1sometr1c with initial sets {fedf lf(k k,) =0, kv £ 0) and final

set X = {(fe H: 11m" exp (-1tH)f" ( )- 0,050} (scattering
L2(a

scatt toteo

a
states), where e, = {(X,x )En X <u), (b) asymptotic completeness

holds: & = x/scatt@y(surf’ where}Cs rf ~ (fed: ]allna igg l/ °xP

-itH)f| =0
(-itH) JLZ(NG) }

by reducing the problem to a family of scattering probiems in a
oistorted cylinder, using direct-integral methods analogous to
Lyford's procedures. Our methods also work in the case of the
homogeneous Neumann boundary condition.

(surface. states). We proved (a) and (b)

Y. Saito: .
Inverse Scattering Problem for Short-Range Potentials .

Let F(k,w,0'), k>0,w,m'€$2, be the scattering amplitude for the
Schroedinger operator -aA+V(y) in RS> with V(y) = 0(|y|'2 £y
Starting with a formula in which F(k,w,w') is directly represented
by the potential V(y), we shall investigate the properties of. the
scattering amplitude F(k,w,0') in a unified way. Further, an answer
for the inverse scattering problem will be given:- : R

C.G.Simader: -
Essential Selfadgo1nters of Schroedinger 0perators wsth
magnet1c Vector Potentials o

Report on a recent joint work with H. Le1nfelder (Bayreuth) is. g1ven
m
Consider a formal Schroedinger operator Qf X (Dj‘1aj)

51 -
with coefficients aj,q defined on R™. Under the conditions L
- 2 mym ! m -

(C.1) a = (al,...,am)€ L loc( RY)", 0<qe€lL loc( B y .-

it is proved that the maximal and the minimal form associated with
}C coincide. Further, a maximum principle holds true. If.in addition

Deutsche
Forschungsgemeinschaft ©




- 10 -
‘a = (a a )ELA' ( ﬁm)m divace L2, (r" i
17 %m loc ’ ’ loc
(C.2) \ ) -
1(in the sense of distributions), 0 < q € L21oc( Rm)

holds true, X is essentially selfadjoint on C:(l?m). Various
ageneralizations - concerning q - are aiven. Tha assumntions (C.1)
and (C.2) as far as they concern a, seem to be possible. This
work improves recent results of T.Kato (1978) and B.Simon (1980).

H. Sohr: .

Remarks on Pctential Scattering with a Time-Dependent Hamiltonian

We consider a time-dependent Hamiltonian of the form H(t) = Ho+V(t),
where Ho = -A and V(t) = V(t,-) is a potential. Using a perturbation
lemma we get the following conditions for the existence of evolution
operators U(t,s) (t,s€R) and wave operators

W, = s - lim U(0,t)exp(-ith ) : V(t)ec'(R"), v(t) > 0,

- t-»im
- -1 .
"’V(t) =3;V(0) (for all teR), taV(t)(V(0)+1) strongly continuously

differentiable,IVxV(t)l? < 4a(V(t)+C)3 with constants 0 < a < 1,

» —%+1+e+r o
c >0, v(t,-)(1+!-] Ml = K(t+]t])" with constants

e>0, reR,K>0. This theorem applies to the case V(t,x) = c(t)|x]|®
with q > 0, xe R".

4.M.Sondhi:
Inverse Scattering Theory Applied to Problems in Speech and Hearing

The theory of one-dimensional inverse scatterina can be used to
infer properties of the vocal tract as well as those of the inner
ear. After bhriefly sketchinag the relevant theory, I will discuss
results of our recent experiments on the vocal tract. I will also
discuss computations of inner-ear parameters based on measurements
made at other laboratories.

F.Stenger: Siehe S. 13
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H.Tamura:

The Principle of Limiting Ahsorption for Propagative Systems in
Crystal Optics with Perturbhation of Long-range Class

The principle of limiting absorption is proved fer the steady-state
wave problems of crystal optics in an inhomogeneous medium with
perturbations of long-rance class. As an application, it is shown
that a solution with finite enercy of the perturbed Maxwell equation
has a local energy decayina property for initial data orthogonal

to the eigenspace. The Maxwell equation in crystal optics is an
important example of non-uniformly propagative systems. In this
talk, only a special problem is dealt with, but the method here

is also applicable to other wave propagation phenomena of classical
physics such as elastic wave in crystals, which is also. an example
of non-uniformly propagative systems.

H.Ueberall:

Resonance Theory of MNuclear, Acoustic, Elastic and Electromagnetic

Scattering

We demonstrate that the methods of nuclear résonance theory may be
applied to classical scatterino problems, and we interpret in this
way the scattering of acoustic waves by elastic bodies, of elastic
waves by cavities and inclusions, and of electromagnetic waves by
dielectric or conducting targets. It is shown that the resonances
provide information on the properties of the target, i.e. help
solve the inverse scattering problem. In the nuclear domain, reso-
nances in electron and heavy-ion scattering are considered. In all
cases, the oriain of the resonances is traced back to the phase
matching of surface waves generated in the scattering process.
(Supported by the National Science Foundation, Theoretical Physics
Section, the Office of Naval Research, Code 420, and the Naval Air
Systems Command, AIR-310 B). ‘

H.Ueberall:
Theory of Mode Coupling in Sound Propaaation under the Ocean

Studies on the propagation of scalar fields in laterally non-uniform
ducts have been performed, with application to acoustic propagation
in under-ocean sound channels. The method of calculation used was

Deutsche
DFG Forschungsgemeinschaft © @

-



UFG

Deutsche
Forschungsgemeinschaft

the adiabatic mode theory of Pierce and Milder. This theory, however,
in addition furn1shes mode coupl1nn terms. _
We consider the following examples: (a) ad1abat1ca11¥ a homogeneous

wedgeshaped duct; a parabolic wave number profile which opens up with
range; a numerically aiven ceneral profile with general range depen-
dence: (b) including mode coupling: the parabolic profile openinag

up with range. A program for the generally z- and r-dependent case

has also been written.

The same approach has also been used for the problem of coupled mode
propagation in the ioﬁospheric day-night transition region.

(Supported by the Office of Naval Research, Code 486, and by the .
Naval Research Laboratory, Washington, DC, Code 8120).

H.Wickel:

On Initial Boundary Value Problems of Linear Thermoelasticity

The initial boundary value problem for the linear thermoelastic
equations in anisotropic inhomogeneous bounded and unbounded media
is treated by means of semigroup theory. It is shown that for t-w
the temperature deviation u and the exnression 5% (x)a U(x,t)’
tend to zero (U displacement field, (g. J) stress- temperature tensor).
The final part contains some remarks on the "hyperbolized" case
describing physical phenomena in which temperature behaves lfke

a damped wave.

C.H.Wilcox:
Scattering Theory for Diffraction Gratings ’

A domain GcR2 is said to be a grating domain if mzthdRzo

G+(21M,0) = G where RZC = {(x,y) : y>cl. Scattering theory is
developed for the pair of selfadjoint operators A =-A(G) in L (G)

and A_ = A( mz ) in L,( m2 ) defined by -A and the dirichlet or
0 0 2
1/2 A1/2

and

Neumann boundary condition The wave operators w+ = W (A J )
are shown to ex1st and sat1sfy W= o *6- where m: L (F) » LRy )

" and o, :L ( R, ) -1 ( m ) are un)tary operators def1ned by comp]ete

sets of genera112ed e1genfunct1ons for A and Ao respéctive]y. The
completeness of w is shown to hold in the case where A admits no

surface waves.

o®



- W.W.Zachary:
Discrete Spectrum of Schroedinger Operators for a Sum of Potentials.

Connection with the Inverse Scattering Formulation of Nonlinear

Evolution Equations

Solutions of the Korteweg de Vries equation have been found which are
either rapidly decreasing at large distances or periodic in the spatial
coordinate. However, no solutions have yet been found which embody
both of these features, such as, e.g., a linear combination of the
two types. .
If one tries an inverse scattering solution of the latter problem
. similar to that known in the rapidly decreasing case, then one
encounters various difficulties due to the fact that the spectral
| theory of Schroedinger operators is not as well known as the rapidily
| _ decreasing case. _
We discuss results concerning the followinn aspects of the spectral
theory of Schroedinger operators corresponding to potentials of the
formU =V + Q : (1) Estimates of eigenvalues when V is periodic
and Q = 0; (2) Asymptotic distribution of eigenvalues for V periodic
| and Q rapidly decreasing; (3) Upper bounds on the number of negative
energy eigenvalues for V bounded below and QeLn/Z( Rn) n ; 3
(4) Exponential decay of negative energy e1ngenfunct1ons for V
| bounded below, Q€ suitable LP classes.

F. Stenger:
An Algorithm for U]trason1c Tomography Based on Inversion of the
Helmholtz Equation 7% +[m /c (r)]u = 0.

A numerical procedure is described for reionstruct1ng the function

f(r) = ;.)2[c(F)'2 ), where c(r) denotes the speed of sound

in a bounded body and o denotes the speed on sound in the medium
| surrounding the body, for both the case of plane wave excitation,
| el (ker - wt)  and spherical wave excitation,
| [4n]¥ - 7 117 explik|F - F |- iwt)

Berichterstatter: P. Werner (Stuttgart)
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