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Tag ur n 9 s b e r ich t

Scattering Theory

3 . 8. bis 9. 8. 1980

35/1980

Die Tagung fand unter der Leitung von Herrn P.Werner (Stuttgart)
und 'Herrn C.H.Wi lcox (Salt Lake City, USA) statt.

This was the fourth meeting on Scattering Theory to be held at
Ob e rw 0 1fa eh. The maj 0 ri t Y 0 f t heta 1ks .pres e nted .a t t he f i r s t
three meetings (1971,1974,1977) dealt with quantum-mechanical
scattering problems. The scope of this meeting was broadened
to reflect recent developments in the applications of scattering
theory to problems of classical and applied physics. The three
years since the last meeting have again seen rapid progress in
all branches of scattering theory, stimulated in part by scientific
contacts which took place at these meetings.
Topics discussed this year included scattering.problems of quantum
and classical physics (e.g.long-range potentials, thermoelastic
media, diffraction gratings, moving obstacles), and inverse
problems with applications to geophysics,' speech and hearing,
computer-assisted tomography.

Vortragsauszüge

T.S.Angell:
Scattering control for the Robin Problem
Using a boundary integral equation formulation for the exterior
Robin problem for the Helmholtz equation developed elsewhere, we
consider the problem of control of scattered fields. Th~ power in
an angular sector of the far field is taken as the cast functional.
The problem ~iscussed is that of maximizing this functional over
a control set of admissible impedences (Robin boundary data)
consisting of a closed bounded, convex set in L~.
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v. Barcilon:
Inverse Sturm-liouville-like Problems

'1Y work on Inverse Eigenvalue Problems has been motivated by the
problem of inferring the internal structure of the Earth from its
natural frequencies. To that effect, it was necessary to investigate
inverse eigenvalue problems associated with differential systems of
order 4 or higher. Since problems associated with operators of the

d d dform l = 0o(x)crx Ql(x)crx ... dX 0n{x), where 0i(x»O,·are natural
extensions of Sturm-liouville operators, they provide a natural
point of departure. The vibratin9 beam. which falls within this classe

of operators, is ~n ideal capdidate for this study.
I shall present a survey of the current state of these problems and
touch upon questions of existence, uniqueness and construction of

s01utions.

R.Colgen:
Some Remarks on Enss' Method in Quantum-Mechanical Scattering Theory

A result in abstract scattering theory (in the two space setting)
is presented which provides strang asymptatic completeness of the
wave operators (in the sen~e of the Enss' Theorem) under conditions
that are quite general and easy.to verify (compared with Enss' Theorem
and other generalizations). The proof is based on Enss' method (and
Simon's generalization) and requires little additional effort. As

an application, Klein-Gordon operators are considered.

J. Cooper:
The Scattering Amplitude for Movinq Obstacles

In the scattering of acoustic waves by a fixed obstacle in rn n , n odd,
the scattering amplitude is a function of the incident frequency 0 and
direction variables. This function has a holomorphic extension for

Im 0 < 0 and a meromorphic extension for Im 0 > O.
When the o~stacle is moving, the reflection cf a-plane wave of frequency

o no langer has a single frequency. The scattering amplitude is now a
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distribution in frequency variables 0
1 and o. When 0 1 -0 is real

we find that it is still possible to construct a holornorphic extension
fo r Im 0 < 0.·

If the motion is ,periodie, the scattering amplitude has a meromorphic
extension for Im 0 > 0 and may be written as a sum of partial amp1i­
tudes located at 0

1 = 0 + rnv where rn is integer and v is the freq~ency

of motion of the body.

J.A~ DeSanto:
Coherent Scatteri ng' fromRough Surfaces

The mathematical forma1ism for ca1cu1ating the Greenls function for
scattering from a rough surface is discuss~d with the aid of Feynam
diagrams. Far an arbitrary deterministic rough surface the scattering
part of the Greenls function satisfies a Lippmann-Schwing,er-type
integral equation with a non-centra1 and complex "potential".
For a random surface with homogeneous statistics the ensemble. averag~

(coherent part) of the scattered Greenls function satisfies a one-
d'; men s ionals ;-n9 u1 a r integral equat ion (Oys on eq"u at i on) .Wi th- a

Gaussian distributed surface and plane wave incidence an approximation
of this equation has been solved numerically and the result compared
with experimental data and single scattering theories. Results support
the conclusion that contributions from multiple scattering are
neces s ary t 0 ac co'u nt f 0 r t he e xper i me ntal da t a a t 1arg e r 0 u9hne s s .

v. [nss:

Finite total cross Sections in Quantum Scattering

4It Using time dependent geometrie methods we obtain simple explieit
upper bounds for total cross sections 0tot in potential- and mu1ti­
partic1e scattering. 0tot is finite if the potential decays a bit
faster than r- 2 (in 3 dirn.) or if weaker direction dependent decay
requirements hold. For potentials with support in a ball of radius R
bounds ar~ given which depend on ~ on1y.
We obtain upper bounds on 0tot for 1arge coupling constant ~, the
power of A depending on the fall off of the potential. For spherieal1y
symmetrie pote~tia1s the variable phase method gives a lower bound
growing with the same power of A.
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In the multiparticle case for charged particles interacting with

Coulomb forces the effective potential between two neutral clusters
dec-ays's uff-i c-iently fast to ; mp1y , f in ite tot a1· 'c-rosssec t;o ns f or­
aton-atom scattering (joint work with aSimon).

J. Hejtmanek:

The Problem of Reconstructina Density Functions from Projections
as an Inverse Problem in the Scattering Theory of the Linear
Transport Operator

Scattering theory of the linear transport operator was initiated by 4It
J.Hejtmanek (1975) and further developed by B.Simon (1975) and
J.Voigt (1976). A survey of this theory can be found in the book:
·Reed, Siman, Modern ~·1ethads in tv1athematical Physics, vol.3, XI.12.
The linear transport equation, which describes the time behavior of
the photon density function for the CT model,is a simple version of
the neutron transport equation, ,which was the foeus of much mathe­
matical work during the last 30 years for reactor engineers and
neutron physicists. It is proved that the Heisenberg operator is
a multiplieation operator, and that it is a one-to-one mapp;ng from
the positive cone L~( ~2xSl) onto itself. The inverse problem can
be sol ved by the inverse Radon tra'nformati on formul a.
The aim of this lecture ;s to demonstrate equ;valence between the
f 01 1ow i n9 t W0 pro b1ems: Re c 0 ns t ru c t ion 0 f den s i t Y. fun c t ; 0 ns f rom

projections and the inverse problem in the scattering theory of the
linear transport (Boltzmann) operator.

Teruo Ikebe: 4It
A Stationary AEE!0ach to the' Completeness of the Long-Range Modified
Wave Operators

A completely stationary method is proposed for the proof of the
completeness of the wave operators for the Schroedinger operators

w i t h 10 n9- ra nge .p 0 te nt i als. No us e wi 11 be made 0 f t he exis te nce
result for the wave operators already known in a time-dependent
setting, but whieh will be shown in our approach. (This is a joint
work of H.Isozaki and myself.)
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A. Jensen :
Time-delay in Scattering Theory

Consider Ho=-~' H=-~+V in L2 (R n } with V(x) real-valued, VEL210C(Rn),

~(x)=O(lxl-ß) as x~m with at least 6>2. Existence and completeness

of W+=s-lim eitHe-itHo ts well known. Let S={S(l)} be the decomposi-
-t++m

tion of the scattering operator in scattering matrices in the spectral
representation. The Eisenbud-Wigner time-delay operator is in the

• spectral rep. g;ven by· T= {-iSP)lI- hSp)}. T exists for ß>2 and is

essentia11y selfadjoint, commuting with Ho.
let Pr be the.spectral projection for [~r,r] for the generator of

the dilation group D= ~ (x·~+\7·x). Requiring B>4 we get for a dense
t:l .

set of f

1im
r+CD

•

The integrals exist for each rand represento differences in time
spent iri PrL2(Rn) for a freely and a fully evolving state. ~rL2(Rn)

corresponds classically to requiring Ix·pl~r in phase space.

[1 Mabrouk:
Scattering Theory for Linear Thermo-elasticity

We develop a scattering theory for a class .of d1ssipative"systems,
which generalizes the well-known energy-conservatiye theory of lax­
Phil1ips. This is then used to investigate the problem of asympt6tic
behavior of the thermo-elastic waves' scattered by a b.ounded obstacle
with homogeneous Dirichlet type conditions.

B. Najman:
Scattering Theory for Matrix Operators and the Indefinite Inner. Product

We investigate the operators associated to the. abstract second -order
2

differential equation d u~t) iK dät t )· + Hu(t) = 0 in a Hi~ber.t.; space.
dt
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This equation is aperturbation of the free equation d u(t) + H u(t)=O; -

d t 2 0

the Klein-Gardon equation is of this form. There are different ope­
rators and a whole scale of spaces associated with these equations.
It is shown that the usual theorems fram the scattering theory hold
for these operators.
It should be noted that the operators corresponding to the perturbed
equation are not selfadjoint if H ;s not positive definite; however
they are selfadjoint in an indefinite inner product. Using the spectral
theory for selfadjoint operators in Krein spaces it ;s possible to

construct a local scattering theory. •

D.B.Pearson:

Localisation of States in Position and Energy
co 3Let H be a self-adjoint extension of -~+v(!) acting on Co ( ~ ,{O}),

where v(!)-.Q as I.!:.I-.(X) but v. may be singular at !=O. To estimate
the degree to which states may be localised in the region I.!:.I<R and
in the interval L of the spect~um of H, define the limits

)J ( L) = ~ ~~ 11 E I.!: I <REHEI: 11 a nd )J (A) = ~ ~~ 11 EI.!: I<R EIH- AI< E 11

R-+O

It may be sho~n that, for given A,lJ(A) = 0 or 1,( u(A)=1 :: "singular
p0 i nt 11, lJ ( A) =0 !I re 9u1a r p0 i nt) a nd t hat lJ ( !: ) =0 0 r 1 un1.e s s t he end
points of r are singular points.
A complete enumeration can be given of phenomena giving rise to
singular points. These include breakdown of asymptotic completeness,

presence of singular continuous spectrum, an~ a discontinuity of
t he s ca t te r i n9 am pli tu de a.t a 9 i ve n e nergy ..

R.S.Phillips:

Scattering Theory for the Wave Equation with a ~ed;um Range
Perturbation

One of the disadvantages ·of the Lax-Phillips approach to scattering

has been its inability to handle perturbations which extend over
unbounded domains. This paper develops just such an extension cf

this theory for spaces cf odd dimensions. To be precise the wave.
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-0
equa t ; 0 n: ut t ai ( a i j. aj U ) - qu ist re a ted wh.e n q=0 ( r ) a> 2 ,

and a .. - 6.. Q(r- B). = a. a .. ,B>1. Although the result is a well
lJ lJ 1 lJ

"known consequence cf Schrödinger scattering theory, it turns o~t

that an adaptation of the En5s argument to hyperbolic systems is
both simpler and more straightforward than the original Schrödinger

argument.

A.G.Ramm:
Nonselfadjoint Operators in Oiffraction and ScatterinQ

_ The following questions will be discussed:

1) When have the integral operators arising. in diffraction and scat­

tering theory root system which forms a basis of a Hilbert space?
2) When have these operators no root vect~rs?

3) What can be said about location and properties·of the .complex
poles of Green" functions? How to calculate these poles? Stability
of the poles under perturbations of the boundary of an obstacle.

4) Variational principles for spectrum cf compact nonselfadjoint

operatOrs.
5) Miscellanea.
6) Unsolved problems.

-
A.G.Ramm:
Wave Scattering bySnall Bodies of Arhitrary Shape

The following questions will be discussed:
1) How does the scattering amplitude depend on boundary conditions?

How to find an approximate analytical formula for scattering
matrix in electromagnetic and scalar scattering problems?

2) How to treat many body problem?
3) Scattering in the medium consisting of many small particles.

P.Sabatier:

Exotic Topics in Inversion Theory

Inversion theory is the common knowledge on exact inversion methods,
single ways of appraising i.ll-posedness of inverse problems, construc­
tion methods for solutions or quasisolutions. Exotic applications use
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this knowledge for purposes that have nothing or little to do with
inverse problems. Four examples are 9iven:

(1) .We -s.tudya line.ar and_.trrotationnal model of water wavesgeneration
near a sloping beach by ground motions offshore. The direct

problem is ill-posed and. is relevant of inversion theory. One
constructs a couple lIsouree-responsell in wh;ch the souree ;s

lI ö -like ll and the response ;s loeally the constant depth one. It·
is possible to improve easily the 6-ness if the ratio maximum
depth/minimum depth is bounded. In any case, provided the slope
is everywhere smaller than 45 0

, a good approximation can be

derived. ~

(2) The second example uses exact inversion methods, e.g. the

Gel fand Levi tan. method, out of the ran~e in whi ch they are
consistent. This ean yield singular. potentials (e.g. Chadanls

potentials, and a new exactly solvable potential at fixed energy,
any 1 , a symptotic to~r-lsin 2r as r goes to ~). It can also

yield transformation operators that do not derive from asymmetrie
Kernel.

(3) The ~hird example is a method reducing an inverse problem tnat is
defined by a finite number of equalities for ;mplicit func~

tionals to a problem that is defined by a finite or infinite
number of inequalities for explicit functionals of a given para­
meter. This can be used to get inequalities for explieit functionals
of the Earth density and Lame .parameters, ~here the right hand
side is given by experimental results.

(4) The fourth (and last) example is that which succeeded the greatest
achievements: using the inverse speetral problem like an inverse
transform for solving non linear partial differential equations
(e.g. Korteweg-de Vries).

~
A.W.Saenz:

Asymptoti e campl eteness for Scatteri nq by 'Peri adi c Surfaces wi th
the Homogenebus Dirichlet Boundary Cbndition

Wr i tex eJR v ( v > 2) a 5 x = (x, x ), wi t h XEIR v-I and x EJR. Let n be a
- v v

domai n 0 f IR v 5 UC h th at (i) {('x t X ) E~ v: xr > 1 }cnc{ (X', x )EJR v: x >0 }; (i i )
. v v v

the periodicity property ('Xtx )EO -> CX+T,X )EO holds for all TEZ v
-

1.
v v

Define the wave operators W+ W+(HtH o ) s-~~:~ exp(itH)Pexp(-itH o)'
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wh e re His t he ne 9a t i ve l ap1ae i a n i n "/t = l 2 (IR v), H t he ne ga t i veo 0
Diriehlet laplaeian in Je= l2(Q), (D(H) = {fEl 2 {n): 6fEl 2 {Q) and
fEHol(n)}), and (Pf)(x) = fex), fE~,xEn . Then: (a) W.:t, are partially
isometrie with initial sets {fe:dt : If(k',k ) = 0, k 9" O} and finalo v v
set Je t t = {fE'"Je: 1 i m U ex p (- i t H) f 11 2 = 0, a >o} (s ca t te r i n9

sea t-++oo. L (0 )

states), where n =I{(X,X )En : x <al; (b) asy~PtotiC eompleteness
Cl v v .

hol ds : ;je = lts ea t t l!) ~s ur f' wh e re 'X s r f = {f e: ~: 1 i m s up 11 ex p
u a-+CX) tER

( - i t H) f IJ 2 = o} (s ur f ace _ s tat es). We pro ve d (a) and (b)
l (n .......o

a
)

~Y reducing the problem to a family of scattering problems in a
distorted eylinder, using direct-integral methods analogous to
lyford's procedures. Dur methods also work in the ease of the
homogeneous Neumann boundary eondition.

Y. Saito:
Inverse Scattering Problem for Short-Range Potentials,.

let F(k,w,w'), k>0,oo,oo'(5 2 , be the scattering. ampli~~de' for the
Schroedinger operator -LHV(y) in 1R 3 with V(y) = Onyl-2-E)·....
Starting with a formula in'which F{k,w,w l

) is directly represented
by the potential V{y), we shall investigate the properties of~ the
s ca t ~e r i n9 ampli t ud.e F( k , w , w') i n a uni f i ed 'VI ay. Fur t he .r.: aDan s wer
for the inverse scattering problem will be given;'

C.G.5imader:
Essential Selfadjointers of Schroedinger Operators with

.. .._~

magnetic Vector Potentials

Report on arecent joint work with H.Leinfelder (B~yreuth) ~s. given.
it m .2'

Consider a formal Schroedinger operator ~ := - 'L (O.-1a.) +-q
j=l J J

with coefficients aj,q defined on mm. Under the conditions

(C.I) a = (a1, ... ,am)E L2
loc ( [Rm)m, 0 ~ q E·L l

lOC ( ~m) .

it is proved that the maximal and the minimal form associated with
"J( coincide. Further, a maximum principle holds true. If··i"n addftion
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{ a

(C.2) 'l"

~in the sense cf distributions), 0 < q E L7
1 (~m)- oe

holds true, Xis essentially selfadjoint on c:( mm). Various

generalizations - eoncerning q - are ~;ven. lha assumntions (C.1)
and (C.2) as far as they concern a, seem to be Dossible. lhis
work imrroves recent resu1ts of l.Kato (1978) and B.Simon (1980).

H. Sohr: ~

Remarks on Potential Scattering with a Time-Dependent Hami1tonian

We consider a time-dependent Hamiltonian of the form H{t) = Ho+V(t),
v/here Ho = -11 an"d V(t) = V{t,·) is a potential. Using aperturbation
lemma we get th~ fol1owing conditions for the existence of evolution

oper a tor 5 U( t , s) (t, S EIR) and 'I' ave 0 per a- tor s

W = s - 1im U(O,t)exp{-itH o ) : V(t)EC 1 ( IR"), V(t) ~ 0,
+ t~+co

A'. er -1
_"'j V( t) =Qt.j V(0) (f 0 r a 11 t ER ), t ...V( t ) {V(0 )+1 ) s t r 0 n91y CO" tin U0 Us 1y.

differentiab1e, 1"<' V(t) I( < 4a(V(t)+c)3 with constants 0 < a < 1,x -
n. -Z+l+E+r .

c ~ 0,11 V(t,·)(l+[·1 )II
LZ

~ K(l+ltl)r with constants
E>O, rEfR,K>O. This theorem applies to the case V(t,x) = c(t)lxl q

with q > 0, xE ("Rn.

~.M.Sondhi:

Inverse Scatterinq Theory Applied to Problems in Speech and Hearinc

The theory of one-dimensional inverse scatterin~ can be used to ~
infer pro~erties of the vocal tract as wel1 as those cf the inner
ear. After hriefly sketching thp. relevant theory, I will discuss
results of our reeent expp.ri~p.nts on the voca1 tract. I will also

discuss computations of inner-ear oarameters based on measurements
made at other laboratories.

F .Stenger: Siehe S. 13
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H.Tamura:

The Principle of Limiting Ahsorption for Propagative Systems in

Crystal Ontics with Perturhation of Long-ran~e Class

The principle of limitin~ absorption is proved for the steady-state
wave problems of crystal optics in an inhomogeneous medium with

perturbations cf lang-range class. As an application, it is shown
that a solution with finite energy of the perturbed Maxwell equation

has a local energy decaying property for initial data orthogonal

tothe e i 9e ns pace. The Ma x\'/ e 11 equa t ion i n c ry s tal 0 pt i c 5 isa n

important example of non-uniformly propa9ative systems. In this
talk, only a special problem is dealt with, but the method here
is also applicable to other wave propagation phenomena of classical

physics such as elastic wave in crystals, which is also. an example

of non-unifarmly propagative systems.

H.Ueberall:

Resonance Theory of Nuclear, A~oustic, Elastic and Electromagnetic
Scatterinq

We de~onstrate that the methods of nuclear resonance theory may be
~pplied to classical scattering problems, and we interpret in this
way t he s ca t t e r· i ng. 0 f ac 0 us t i c wave s . by e 1ast i c b0 die s, 0 f e1ast i c

wa ve s by ca'vi t i esan d i nc1us ion s, a nd 0 f e1e c.t roma gne t i c \'1 ave s by

dielectric or conducting targp.ts. It is shown that the resonances
provide information on the properties of the target, i.e. help
salve the inverse scattering problem. In the nuclear domain, reSQ­

nances in electron and heavy-ion scattering are considered. In all
cases, the origin of the resonances is traced back to the phase
ma tc hin gof s ur f ace \'1 ave s gen e rat ed i n t he· s ca t te r; n9 pro ces s .

(Supported by the National Sc;ence Foundation, Theoretical Physics
Sect'ion, the Office o·f Naval Research, Code 420,and the Naval Air
Systems Command, AIR-310 8).

H.Ueberall:

Theory of Mode Coupling in Sound Propaqation under the Ocean

Studies on the propagation of scalar fields in laterally non-uniform
ducts have been performed, with application to acoustic propagation

in under-ocean sound channels. The met~od of calculation used was
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the adiabatie mode theory of Pierce and ~ilder" This the~ry, however,
in addition furnishes mode coupling terms.
We consider the following examples: (a) adiabatically: a homogeneous
wedgeshaped duct; a parabolic wave number profile which opens up with
range; a numerically 9iven Qeneral profile with general range depen­
dente: (b) ineluding mode couplinq: the parabolie profile opening

up with range. A program for the generally z- and r-dependent case
has also been wrftten.
The same approach has also been used for the problem of coupled mode
propagation in the ionospherie day-night transition region .
(Supported by the Office of Naval Research, Code 486, and by the

Naval Research Laboratory, Washington, OC, Code 81Z0).

~!. Wi ekel:

On Initial Boundary Value Problems of Linear Thermoelasticity

The initial boundary value problem for the. linear thermoelastic
equations in anisotropie inhomogeneous bounded and unbounded media
is treated by means of semigroup theory" It is shown that for t~~

the temperature deviation u and the exoression a~ 9ij(X)d j U(X,t) 0

tend to zero (U displacement fie 19, (gij) stress-temperature tensor).
The final part contains same remarks on the "hyperbolized" case
describing physical phenomena in which temperature behaves like
a damped wave.

C.H.Wilcox:
Scattering Theory for Diffraction Gratings

A domain GcR 2 is said to be a grating domain if fR2hcGdRZO and

G+ ( 2n , O) = G \'1 here fR 2c { ( X t Y) : y > C }. Sc a t te r i n9 t he 0 r y i s
developed for the pair of selfadjnint operators A ='A(G) in L2{G)
and A = A( fR2 ) in L2 ( jR2 ) defined by -~ and the i);richlet or

o 0 0 1/2 1/2
Neu man n b Qund a r y c 0 nd i t ion 0" The wa ve 0 per a tor s 1~ + = \,J + ( A0 ' A , J G)

are shown to exist and satisfy W+= I!> -J(,,_ where °tt>-:L
2

(G) ... L
Z

( ~ 2}
2 . _ 0 + ~ 0

0

and ~o:l2( ~o ) ~ L2 ( rn o
2 ) are unitary operators def~ned by complete

sets of generalized eigenfunctions for A ~nd Ao respectively. The
completeness of W+ is shown to hold in the case where A admits no
surface waves.
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~I • w•Zach a ry :

Discrete Spectrum cf Schroedinger Operators for a SUfi of Potentials.
Connection with the Inverse Scattering Formulation of Nonlinear
Evolution Eguations

Solutions of the Korteweg de Vries equation have been found which are
either rapidly decreasing at large distances or periodic in the spati
coordinate. However, no solutions have yet been found which embody
both of these features, such as, e. g., a 1i nea':' comb; na ti on of the
two types.
~f one tries an inverse scattering solution of the latter problem
similar to that known in the rapidly decreasing case, thenone
encounters various difficulties due to the fact that the spectral
theory of Schroedinger operators is not as well known as the rapidly
decreasing case.
We discuss results concerning the follöwin~ aspects of the speetral
theory of Schroedinger operators corresponding to potentials of the
f 0 r m U = V + Q : (1) Es tim a te s 0 f e i gen val ues \'1 hen V i s per iod i e
and Q = 0; (2) Asymptotie distribution 6f ~igenvalues for V periodie
and Q rapidly deereasing; (3) Upper bounds on th~ number of negative
energy eigenvalues for V bounded below and QEL n/ 2 ( mn), n ~ 3;
(4) Exponential decay of negative energy eingenfunctions for V
bounded below, QE suitable LP elasses. '

F. Stenger:
An Al orithm for Ultrasonic Tomography Based on Inversion of the
Helmholtz Eguation ~ u +[w Je (r)]u = O.

A numerical procedure is described. for reconstructing the function
- 2 - -2 -2 -f(r) = w [c(r) - Co ), where c(r) denotes the speed ?f sound

i -n abo und ed b0 dy andeo den 0 te s t he s pe edon s o·u nd i n t he me d i um
surrounding the body, for both the case of plane wave excitation,

i(r·~ - wt) d h . 1 't .e ,an sp erlca wave eXCl atlon,
[4nlr - rsl]-l exp[iklr - ~sl- iwt] ·

Berichterstatter: P. Werner (Stuttgart)

                                   
                                                                                                       ©



14

Liste der Teilnehmer:

Jr. Hans Jieter Alher
Ins t. f. An9e\'l. ~·1 a t he Ma t i k
Universität Bonn
Hegelerstr.l0
J-5300 Bonn

Prof. T.S. Angell
De pt. 0 f "1 a t hema t i cs Sci.
University of Delaware
Ne\'1 a r k, !) E 19 7 11, USA.

Prof. V. Barci lon
Geophysical Sciencp.s Oept.
University of Chicago

-Chicago, IL 60637, USA.

Dr. R. Caloen
~athematis~hes Institut
Universität Frankfurt
Robert-~4ayer-Str. 10
6000 Frankfurt/"l. 1

Prof. Jeffery Cooper
) e pt. 0 f ;,1 a t hem at i c s
University of ~aryland

College Park, ~o 20742 USA.

Dr. J .A. DeSanto
Naval Research Laboratory, Code 8340 Q
l·!ashing.ton, De 20375, USA.

Dip 1 • ;'4 a t h.. G0 dher Ebe r 1ein
Fachbereich Mathematik
Universität Darmstadt
SchlossQartenstr. 7
6 100 Da rrn s ta d t

Prof. Vnlker [nss
Hi, ~!; ,~: md t -i c; ehe ~ J n s t i tut
U~i~ersit~t Gochun
;~tl:U Br)chul!l

Herr ~arkus Faulhaber
!"1 a t h. Ins t ; t u- t A
Uni ver s i t ä t S tu t t Q·a r t
Pfaffenwaldring 57
7 Stuttgart 80

Jr. Otto 3artmeier
Höhenkirchenerstr. 42
8011 Hohenbrunn h. ;'~iinchen

•

                                   
                                                                                                       ©



15

Prof. Or. J. Hejtmanek
"1 a t h. Ins ti tut
Universität \-lien
Strudlhofoasse 4
A-l090 Hien

Prof. T. Ikebe
Faculty of Science
Kyoto University
Kyoto 606, Japan

Prof. A. Jensen
'·1ath. Oepartment
University of Kentucky
Lexington, Kentucky, USA.

Prof. T. Kato
Dept. 'of ~athematic

University of Califarnia
Berkeley, CA 19711, USA

Prof. S.T.Kuroda
College of General.Education,
Pure & Applied Science,
University af Takyo,
381 Komaba ~eouro Ku
Tokyo (153), Japan

Prof. N.Latz
~1 a t h. Ins t i tut
Techn. Universität Berlin
Strasse des 17. Juni, 135
1 Berlin 12

Prof. Rol f Lei s
Ins t. f. An 9 e'.",. r-1 a t hema t i k
Universität Bonn
Wegelerstr. 10,
5300 Bonn

:) r. ~., 0 n9i E1 j., abr 0 uk
Dept. de Math~matique

Service de M~caniaue

Univ. des Sc;ences et Technique de Lille
B.P.36, 59650 Villeneuve d'Ascq, France

Prof. E. 'teister
Fa c ., be re ich ;·1 a t he n! a t ; k
Technische HochschIlle
6100 0 arms tad t

Jr. ß. Najman
De pt. 0 f ~" a t hemat 1cs
University of Zagreb
POß 187, 41001 Zagreh, Jugoslawien

                                   
                                                                                                       ©



16

Prof. D.B.Pearson
oept. 0 f App 1 i ed ~~ a t h .
University of Hull,
Hu 11HUG 7R.X, In.gl a.nd

Prof. Ralph S. Phillips
De pt. 0 f ~1 a t he ma ti c
Stanford University
Stanford CA 94305, USA

Dr. Rainer Picard
Ins t. für An9e\"J. :1 a t hemat i k
Universität Bonn,
Wegeler Str. 10
5300 Bann

Jr. K.S.Rao
Inst. f. theoret. Kernphysik
Universität Bonn
Nussallee 45,
5300 Bonn

Prof. A.G. Ramm
Dept. of ~athematics

University of Michigan
Ann Ar~or, MI 48104, USA.

Prof. B.C.Sabatier
Laboratoire de physfque math~matique

Universite des Sciences de Languedoc
34060 ~ontpel1ier C~de~, France

Dr. W.A.Saenz
Naval Research Laboratory,
Code 66035
Was hin 9ton, DC. 20 375 ,. USA.

Prof. J.Saito
Dept. 0 f :~ a t hema t i c s
Osaka City University,
Su 9 i mo t 0 - c h0, Sumi y'o s. h i - k u
Osaka, Japan

Pro f. Dr. C. G• Sima der ~

Fakultät f.Mathematik und Physik
Universität Bayreuth
Postfach 3008,
8580 Bayreuth

Prof. H.Sohr
Mathematisches Institut
Gesamthochschule Paderborn
4790 Paderborn

or. '". ~~. So ndh i
Bell Telephone Laboratories
:~urray Hill NJ. 07974., USA.

                                   
                                                                                                       ©



17

Prof .. F.Stencer
Dept .. of ~at~ematies
~niversity of Utah
Salt lake City, Utah 8a112, USA.

Prof. U. überall
Dept .. of ··1athemati es
Catholic University of America
Washi ngton :JC 20064, !J Sß.•

Prof. Dr. N. Weck
~athematisches Institut
Universität Essen
4300 Essen

Dr. Karl-Joseph Hitseh
Inst. f. Anoe\-I. :~atherr.at;k

Universität-Bonn
~Jegelerstr. 10
5300 Bonn

·Jr. W.W.Zaeharay
Naval qesearch Laboratory
Washington JC 20375, USP.

                                   
                                                                                                       ©



, .
I

                                   
                                                                                                       ©


