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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH
Tagungsbericht 48/1980

Analytische Zahlentheorie

2,11, bis 8.11,1980

Vom 2. bis 8. November fand im Mathematischen Forschungs-
institut Oberwolfach unter Leitung der Herren Prof. Dr.

H.F. Richert (Ulm), Prof. Dr. W. Schwarz (Frankfurt) und

Prof. Dr. E. Wirsing (Ulm) eine Tagung iliber elementare und
analytische Zahlentheorie statt. Die neue Rekordbeteiligung
von 70 Teilnehmern aus 15 Lindern beweist das groBe Interesse
an dieser Tagung. Neben den 53 Vortrdgen trugen zahlreiche
Diskussionen sowie die schon zur Tradition gewordene "Problem-

sitzung” zum Geiingen der Tagung bei.

Vortragsauszﬁse
G.J. BABU: The Riemann hypothesis and strong recurrence.

The speaker reports on some results recently obtained by

B. BAGCHI that relate the zero-free regions of the Riemann
zeta function to its general asymptotic behaviour in the
critical strip. The terminology usedAin stating the results,
as also the tools used in the proofs, are borrowed from
the&heories of topological dynamics and probability. He
requires a series of definitions in order to arrive at

the crucial notions of spectrum and strong recurrence.
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P,.T. BATDVAN The arlthmetlc mean of the d1v1sors of an

integer. The follow;ng theorems were obtalned in a recent
paper of Bateman, Erdds, Pomerance, and Straus. In what

follows d(n) = T 1 and o(n) = d .
dln dln

I. The set of positive integers n for which g(n)/d(n) is
not an integer has asymptotic density zero; in fact, if
N(x) denotes the number of such integers not exceeding x,

we have N(x) = x exp(-(1 + 0(1))2/log(2) Jloglog(x)). .

%

II. If d(n) = n »p and B8 is a positive real number,
pid(n) [Bcp] . Then the set of n for which

let (d(m)®)y =
pld(n)

(d(n)e) devides o¢(n) has asymptotic demsity 1 if g < 2,
1/2 if B = 2, and 0 if B > 2.

. .2
III. £ o(n)/d(n) = (1 + o(1)) —XX— for a certain
néx log(x

positive .

V. #in | o(n)/d(n)
positive u.

In

x} = (W + o0(1)) x log x for a certain

V. The number of distinct rational numbers of the form
og(n)/d(n) not exceeding x is O(x (log x) ') for a certain
positive v. A more complicated argument than that given in
the paper shows that v can be taken as any number less than
1 but not as 1 itself,

H.J. BENTZ: On a conjecture of Shanks. . .
"Conjecture: Let 11 be a quadratic residue mod q, 12 a
non-residue mod q. Then there are '"more'" primes = 12 mod q

than = 11 mod q." One notices that this formulation is not
very precise. To understand why, it is best to look at the
history of this conjecture. .

a) One sense of the "more" was given by Chebyshev. He

asserted (case q = 4) that (1) lim ¢ (_1)(p-1)/2 e-p/x
x> p>2

= = ® . From this one could deduce a preponderance of the
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P 3 mod & over those = 1 mod 4. But (1) is very deep,

for it is fully equivalent to an analogue of the Riemann-

hypothesis, namely (2) L(S'Xl) 4+ 0 in Re(s) >1/2, X, the

nonprincipal character mod 4, as was shown by Hardy,
Littlewood, and Landau.
b) A second case, whic? was investigated, is the following:

Ax) = ﬂl(X) - n3(x) < 0, at least for x > x,. Here ﬂs(x)

is the number of primes not exceeding x, whicg are = j mod 4.
Although numerical calculations show that A is predominantly
negative, the assumption above is wrong. Hardy and Little-
wood have proved that A is not bounded in either direction.
¢c) Knapowski and Turé&n have investigated this phenomenon

with a different weight-function: (3) lim T (_1)(p -1)/2
X>2 p 2

log(p) e-logz(p/x) i

- ® , This is also equivalent to

(2) - as they have.shown - and therefore the answer is not
known at preseﬁt.

Lét us now look at some numerical data. As already mentioned
the difference A seems to be predominantly negative. Sign
changes are found to be very rare. For example: case q = 4
; = Ty occurs at 26861 (calculated
by Leech, Wrench, and Shanks); case q = 3: no sign change
was found up to 35000000 i.e. ﬂl(x) "2(X) for x 35000000
(calculated by myself); case q = 98: o= TS has its first
sign change at 588067889 (calculated by Hudson and Bays).

By these(and other) data one is forced to look for a meaning

first sign change of 1

of these discrepancies. Now, I myself tried to work with
another weight-function and got the following results.

Theorem 1. (case q = 3,4) lim Z xl(p) log(p) P
X = 0O

= = o for all g in O£ g £1/2 , ¥ nonprlnc1pa1 mod q.

1
Theorem 2.(case q = 8). Let e(p,q,ll,lz) =1if p =1, mod q,
-1 if p =1, mod q, O else; 1 quadr. residue, 1_ quadr.

2 -(log(p)) 2/
nonresidue. Then lim § e(p,8 1, 12) log(p) p~ ¢ sip x
p

x >

== -® for O0ctq<1/2.
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Similar results may be obtained for other moduli as well
(sometimes,however, only in a weaker form, e.g; "ihere is
at least one non-quadr. res. class, in which there are
more primes than in each of the quadr. res. classes'").

The method for these theorems uses explicit formulas for
L-series. The results depend on the location of the "first"
zero of L(s,¥) in the crirical strip. More precise, the
condition is "there is no zero in |Im s| ¢ |Re(s~ 1/2) 1|,
O<“Re s< 1", This is known to be true for q <« 25 by cal-
culations of Davis, Hazelgrove, and Spira. A different

method was suggested by J. Pintz.
Theorem 3(Bentz,Pintz). If the above condition is fulfilled
for all L(s,y) mod q, q fix, then

\ 2
lim T €(PyQt11tlz) log(p) p ¢ e-(log(p)) /x = - = for
X

0£q4&1/2. References: D.Shanks, Quadr. Residues and the
Distribution of Primes, Math. Tables and Aids to Comp.

13 (1959) 272-284. H.J.Bentz, Discrepancies ‘in the Distribution
of Prime Numbers, to appear, H.J.Bentz,J.Pintz, Quadr.

Res. and the Distribution of Prime Numbers, Monatsh. fiir

Math. (1980).

B.C.BERNDT: Chapter 5 of Ramanujan’s Second Notebook.
Chapter 5 of Ramanujan’s second notebook contains more

number theory than any other of the remaining 20 chapters.
The chapter contains 94 formulas or statements of theorems

Most of the results are concerned with Bernoulli numbers,

Euler numbers, Eulerian numbers, and the Riemann zeta-
function. As one would expect, the majority of Ramanujan’s
findings in these areas are not new. Ramanujan’s published
papers on Bernoulli numbers and irregular numbers have
their genesis in this chapter. Chapter 5 also contains
some interesting theorems on difference equations and an
intriguing, but incorrect, power series identity involving

primes,




H. DELANGE: On some subsets of N whose characteristic

function is almost veriodic Bl.

An arithmetic function f is said to be almost periodic

(resp. limit-periodic Bl) if, for every positive ¢, there
exists a trigonometric polynomial P (resp. a periodic
arithmetic function P) such that

lim sup + 3 |P(n) - £(n)] < ¢ .
X = 0O *n x

If f is a.p.Bl, then, for every real 1}, 11m— Z f(n) ~2m
x>*he¢x

exists and is finite, = C, ()\) say. Of cause C (k) depends

only upon the fractional part of ). The spectrum of £,

which we denote by Sp f, is the set of those \ € [0,1[ for

which Cf(k) % 0. If infinite it is denumerable. The Fourier

series of f, which we denote by F, is T Coln) 2™,
. \ESp, £

f is l.p.B1 if and only if it is a.p.31 and Sp f contains

ondy rational nugbers. Then each term of F_(n) is of the

form Cf(h/a) e2111(h/q)n, where qeN, 1 ¢h zq, and (h,q) = 1.

We say that Ff(n) is a "Ramanujan series" if Cf(h/q) depends

only upon q, so that, by grouping together the terms

corresponding to the same q, it may be written as 2 a c (n)

where c (n) is Ramanujan’s sum. It is known that, 1f f 1s

real-valued and a.pe. B? then it has a limit dlstrlbutlon.

If Op

each x where Cp is continuos, the set of those n for which

is the corresponding distribution function, then for

f(n) < x has the natural density of(x). In other words the
funétion I of has the mean - value cf(x0§ here Ix(t) =1

if t'<x and O else.

In a recent paper in the Proceedings of the Academy of Japan,
J. Mauclaire states the following result: Let f be a real-
valued nultiplicative functlon such that f(n) 21 for every.
n, and suppose f is l.p.B « Then for each x where of(x) is
continuous, Ix° f is l.p.B1 and its Fourier series is a

Ramanujan series. As examples he quotes f(n) = n/o(n)

DF Deutsche
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and f(n) = o(n)/n. I prove the following result.

Theorem 1. Let f be a real-valued arithmetic function.

(1) If £ is a.p.Bi, then for each x where Oy is continuous
I ef is a.p.Bl; (2) If £ is 1.p.B!, then for each f where
Op is continuous, I_o f is l.p.Bi; (3) If £ is l.p.B1
and if its Fourier series is a Ramanujan series, the for

each x for which O¢ is continuous, ng £ is 1.p.B1 and

its Fourier series is a Ramanujan series.

Examples of (3): f such that T |f° (n)|n"t ¢ = , where : ‘

£°(n) = ? uw(d)f(n/d). In particular, f multiplicative
n

such that % |£(p¥)-£(p* 1) |pF ¢ oo (which includes the
PyT '

functions quoted by Mauclaire). - Any real-valued multiplicative
function which is a.p.B1 and has a non-zero mean -value. -

Any real-valued additive function which is a.p.Bi.

I also prove another theorem which gives subsets of N

whose characteristic function is l.p.B1 with a Fourier

series which is a Ramanujan series.

Theorem 2. Let f = Fo g, where g is a complex-valued

arithmetic function such that T n—ic w and F is
g(n)#0
defined on g(N), and bounded. f is l.p.B’ and its Fourier
series is a Ramanujan series.
Corollary. Let g be a complex-~valued arithmetic function
such that ¥ n l< e .If E is any subset of €, then the
g(n)$0

characteristic function of the set of those n for which g(n) .

€ E is l.p.81~and its Fourier series is a Ramanujan series.

In particular, if a is any element of g(IN), the set of those

n for which g(n) = a has a natural density 5, say. It is
easy to see that T aa = 1.
Examples: 1. f additive such that T p 1. 2. £ such

£(p)+0

vp(n)
that f(n) = f(qn), where q, = np
2
p°In

o0&




J.M. DESHOUILLERS: Additive number theory and integral

points on curves. The aim of the lecture was to underline

connection between the number of representations of-an
integer as a sum of two elements from a given sequence
and the number of integral points on a curve.
(P)

Let P be a positive integer and denote by B

of C(P)
a(P)

the class
-class functions a: R'» R" , al(o) = 0, a(1) = 1,

>0 (p = 1,...,?). Define r, (t) = {(n 4.0eymy) | ¢t =
. a(n ) + eee + a(n-h)} -1-

Theorem 1. Let a be in ]0 1] and P>O, one has (i) 2 (ii) = (idii)

vae B® 1 or () « (a(en® .

ai)vee 8P . {ncx , £(n)€m} (ﬂ:l (£ ()% at)C
(iii) vaea(p) : (¥psP : (-1)PAP50") > r,(t) « (A(t))T
In the special case P = 2 sentences (i) and (iii) are

equivalent, and it is even possible, by a direct construction
to prove Theorem 2: In theorem 1, for P = 2, (i) and (ii)
hold with @ = 2/3 and implied"constant"(3/rr2)1/3(1+o(1))_,

and these are best possible. ‘
The case P = 3, in conjunction with a result by Swinnerton -
Dyer leads to Cor. 1: For P23, r (t) <5 (a(¢))3/3 * €,

Cor. 2. For P23, r (t) =, (a(e)® - 773 + €

It is however impossible to go much further in this direction
Theorem 3. J ae B . r2(t) = Q( (A(t))i/z);VKESBa ¢ B
r(8) = q((a(e)h=?

E. FOUVRY: On the level of distribution of some sequences.

. For a # O the Bombieri - Vinogradov theorem implies
= . _ mx) ~A
Ve>0 VA . ‘xl/z -c |1T(x,q,a) Q)ml <« x (log x)
(gqsa) = 1

The constant 1/2 has never been improved, and the purpose
of this lecture was to explain the construction of sequences

approaching the sequence of primes with a better constant.

Theorem A. Let z‘.—x1/883 and 1 ¢lal < x, then for any A>0
- - 1 -A
2. l b 1, - &y z 1 l <« x (log x)
1:;5x11/21 n& x ofq n<x
(q,a) = 1 n = a mod q (n,q) = 1
pln:p>2 pin 3 p>2

Deutsche
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(this theorem has been proved by H. Iwaniec and the speaker).
Let us recall R* - hypothesis, conjectured by C. Hooley:

For 1 £ A, - A, < r , We have

2~ A
T e(dBlsy o (A, - a2 (4,512 € |
A< s<A r 2 i :
1 2
(s,r)=1

If we have to study the level of distribution of the sequence

mn - a , where m and n belong to particular sequences, we must

study
' 1
E : 1 - 1 <<
(E) Zi-e L | L o 2 I
q<N m <M n&N £N
(q,a)=1 (m,q)=1 neé€P n€pP
mn= a mod q ) (n,q)=1

MN(log(MN))™®  for MZN, 1 ¢lal £ MN, and P CN.

Ve proved the following:
Theorem B. On R*-hypothesis: If P satisfies, for (b,q)=1 and
for all B, '

b 1 = — 2 1+ o(x(1 =8
nep o@ Tp (x(1og x) ),
né x né¢x

n= b mod q

and ir N¢M/3 =% 50, then (E) is true.

Theorem C. If P is the sequence of primes, and if N# M10/9 - 6°,
then (E) is true. i .
The conditional theorem B gives the exponent 4/7 - ¢ with the
optimal choice of N and theorem C the exponent 10/19 - €.

J. FRIEDLANDER: Sifting short intervals.

Let g(x) denote a real-valued function tending to °© with x.
Heath - Brown (1978) proved that for all y in [0,x] apart from a
set of measure o(x), the interval (y,y+o(y) contains a P3,

where o(y) = (log y)35g(y) for arbitrary g as above. Wolke
(1980) proved a corresponding result for P2 with o(y) = (log y)A

o0&
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for a rather large value of A. We attempt, by sacrificing
the number of prime factors, to reduce the length of the
intervals. .

Theorem. The corresponding result holds for P& with o(y) =
(log y)’g(y).

Remark. We are currently unable to further reduce the length

of the intervals even for Pr with large fixed r.

S.W. GRAHAM: A class of extremal functions for the Fourier

transform. Let A be a positive number, and define

; = - S M T L.-wm ]
M.(x) = (3in m,2 y = - D e L T 2 .
by ™ o (x;n)z fop Xn = x {

Then Ml(x) has the following properties: .

(1) MX(X) 2 e-"‘x for x 20,

v

(2) MX(X) 2 0 for x< 0,
(3) ﬁ)\(t) = 0 for it|21,

(4) of all functions that satisfy (1), (2), and (3), ﬁi(o)

is minimal.

We give some applications of this result. One application is

a generalization of the Wiener - Ikehara tauberian theorem.
Other applications involve generalizations of inequalities
usually proved by the large sieve. The results represent joint
work withJ.D. VAALER.

G. GREAVES: Weighted sieves and their applications.

Last year in Durham I reported some results on the l-dimensionaX
X

sieve problem. For simplicity suppose#{a ¢ A_,d la] = 3+ 0@1)

and write y = x(log x)"2. The results imply that if a< y® for
all a in Ax then: if g <R - GR’ then some a has at most R
prime factors. Here the (positive) numbers 6R are defined

by a theorem leading to the following numerical approximations:
§, = 0.,06373..., 63 = 0.10000..., & > 0.12482... as R-eo,

2 R
I give some details how these approximations were obtained.

o®
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The differential - difference problem
%;(sT(s)) + T(s+1) = 0 (Re s>0), sT(s)>1 as s-0,

has a solution analytic in the half plane Re s >0 :
oD ”_t

T(s) = [ e 5% exp(-,{:— dt ) dx .
L
I needed approximations te T(1), T7 (1), T"(l),...,T(n)(l),... .

I worked with the difference - differential equation rather than

with the integralrepresentation of its solution. We remove

7

successive singularities by setting \";o(s) = 1/s, T(s) = 1/s .
s 4

- fo(s), SWj(S) = 5 Wj_l(w+1) dw, fj(s) = Wj(s) - fj~1(s);
then %g(sf.(s)) + f.(s+1) = '.(s+1) (Re s> =-j-1) so that

T = wo - w ? - ...b in a sense we describe. The equatlon
for fJ gives sf n+1)(s) + (n+1)f§n)(s) + f;n)( +1) = W(n (s+1).

Take s = O and represent f(n)(o) by its Taylor series about 1.

(n) (n)
¢J

computed the Wi(l)). The error in the resulting estimate for f;

Replace f. for n,>N by O and solve what is left (having

does not exceed (1/log 2)n (§:§)J (225—2)V+1 (>0 as j>=
if N21).

G. HALASZ: Distribution of additive and mean values of

multiplicative functions. A short introduction is given to

the probabilistic theory of additive functions. It is shown

how the characteristic function method leads to investigating
mean values of multiplicative functions and for this an analytic
approach is scetched. Some applications, such as generalization
of a formula of Sathe - Erdos - Selberg concerning local be-
haviour of the number of prime divisors and large deviation

versions of the Erdds - Kac - Kubilius theorem are discussed.

E. HEPPNER: Multiplicative numbertheoretical functions in

several variables. At first the results of a joint paper

with W. Schwarz on '"related" functions are generalized to

the case of several variables. Then, under some weak assumptions,

Deutsche
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it is shown that a multiplicative function in two variables
has a mean value different from zero if and only if the two
functions fl(n) = f(n,1) and fz(n) = f(1,n) have non zero
mean values. (There is no difficulty in extending this result

to more than two variables.)

J. HINZ: Eine Anwendung der Selberg’schen Siebmethode in
algebraischen Zahlkorpern. Es sei K ein algebraischer Zahlkorper

iiber @ vom Grade n = ry + 2r2 (in der iiblichen Bezeichnung).
Die n Konjugierten einer Zahl § € K werden mit g(k), k = 100040,
bezeichnet. Eine Zahl -y ¢ K heift prim, wenn das Hauptideal
(w) ein Primideal in K ist. Fir die reellen Zahlen Py21yeen,

2 i = eee = p, U = oo .
p,2 1 mit p Py P, gelte Py Piir fur k r1+1, 1T T,

1
Ferner sei R = { we¢K, w prim, m(k)> 0 4 k= 1,e00,r,, \w(k)l
z

r4 pk s k = 1,...,n} -

Satz. Es sei F(x,y) ¢ K[x,y] ein von x und y abh&ngiges irreduzibles
Polynom vom Grade g2> 1 mit ganzen algebraischen Koefi-‘izienten

und ohne festen Primteiler. Fiir ein Primideal p in K bezeichne

L(p) die Anzahl der ganzzahligen L&sungen mod p von F(a,8)

=0 mod p mit (e,p) = (B,p) = 1. Es sei L(p) < (Np - 1)2 fiir

alle Primideale p mit Np < g+i. Dann gilt:

a) 2 Z 1 & 2 ¢ (F,K) p%/(log p)Pf1 + o(2ogiosp '

weR weR log p
F(w,w ) prim

b) 'L 12 3 O(F K) p /long , pzpo(F,K).
w<€R w<R
Q(F(w,w’)) ¢ g+1
Dabei ist cO(F,K) eine von F und K abhingige Konstante. Qi(a)
bedeutet die Anzahl der mit ihrer Vielfachheit gezihlten Prim-
idealteiler des Hauptideals (q).
Die untere Abschitzung stellt die Verallgemeinerung eines
Resultates von G. Greaves dar. Zum Beweis werden Ergebnisse
von W. Schaal zum linearen Selbergschen Sieb in algebraischen
Zahlkorpern fiur groBere Anwendungsbereiche hergeleitet. Ferner
bendtigt man eine geeignete Verallgemeinerung des Satzes von

Barban und Davenport - Halberstam auf Zahlkodrper.

Forschungsgemeinschaft © @




UFG

Deutsche
Forschungsgemeinschaft

- 12 -

K.=-H. INDLEKOFER: Some results on the behaviour of additi}re
and multiplicative functions. In this talk the spaces Lc.

= {£: W—>¢€, Uf) < =} of arithmetical functions f Y
with bounded (semi-) norm llflld t= {limsup x'1 2> |f(n)la}
X = oo

ns£x

) «
(a 21) resp. bounded (semi-) norm [[f)] := limsup x1 7 @)
< X —> oo nzx

(0< g £1) are considered. Defining the space L* of uniformly
summable functions by £ ¢ L* :¢<=> 1lim sup <=1 2 if)| = o,

K>%0 x21 néx
|£(n)]2K )

the author gives a complete characterization of additive
functions feLa (a>0) and of multiplicative functions g e L*.

'As an application of these results the asymptotic behaviour

of . f£(n) (f additive éLi) and of Z g(n) (g multiplicative
ne&sx néx

€L* ) is described. Furthermore, additive and multiplicative
functions which are almost-periodic resp. almost-even, are
completely characterized.

A.IVIC: On some problems concerning the number of non isomorphic

abelian groups of finite order. Several problems concerning

a(n), the number of non-isomorphic abelian groups with n
elements are discussed. It is indicated how a result of the

type b 1 = (d.k + o(1))h  can be obtained by estimates
x <n ¢ x+h
a(n)=k

for the error term A(1,2,2;x) in the asymptotic formula for

2. 1 . The best result that T am able to obtain at present
klzmaé x .
is h2x% @ = 0.3305... by B.R. Srinivasan’s method of two-
dimensional exponent pairs.

Formulas for the iterated function a(a(n)) are also derived,

e.8. S a(a(n)) = Cx + O(xllz(log x)q).
nex

The values of the function a(n) can be naturally compared to

the values of some other arithmetical functions such as d(n),

o{n), Q(n) etc.. In the first case I can prove

o&®
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2 1 = x + 0(x(log x)e-l), x loglog x 7 4
n £x log x n&x
d(n) > a(n) d(n)=a(n)

<« x(log x)€°1,

H. IWANIEC: Kloosterman sums in analytic number theory.

The Linnik - Selberg conjecture on average is proved. Let
TO(Q) be the Hecke congruence subgroup, @ = ;]:' , (h,k)=1, kiQ
be a cusp of TO(Q) and let pju(n) be the n-th Fourier -
Bessel expansion of Maass wave uj(z) around q, i.e.
uj(oaz) = ﬁnéo pju(n) Ki-c“ (2minly)e(nx)

. -1 _ _ s .
where g_°° = a, % Ty o, = G I‘a stabilizer of a in T,(Q)
and G - stabilizer of °° in PSL(2,Z). Then :

Theorem 1. (Deshouillers and speaker) For K21, N 21 and any
complex numbers we have

2 2
2 , Z aop. (n)l << (K2 + UN1+€) Z Ianl ,
.gsx N cn ¢ 2N Ja N<¢n 42N
o= (k|Q/k)/Q -

An analogous result holds for Fourier coefficients of holomorphic

I
ch ﬂa_ta'

cusp forms. Theorem 1 and a summation formula of Kusnietsov

and are used to prove the following result 4
(Deshouillers and speaker) Theorem 2. Let g(n,m,c) be a

function of C2 class such that supp gln,m,c) C[N,2NJ¥D(,2M]X[(, 2C]

N,M,C 21 and , mﬂg(n,mlc) l ENF M e |, 0 ¢ P4P,P5 £ 2.
-
Let S(n,m,c) = 2. e(n% + m%) be Kloosterman sum where

d mod ¢
dd = 1 mod c. Then for Q21

I LI apsnmelstme « ¢ eV L iR+ clhn(cfa + i c )

(L1 iz

n\ -

Three applications of theorem 1 and theorem 2 were presented.
I) Let p, be the greatest prime factor of n2 + 1@; jf €>0
then there are infinitely many n such that pnz n
II) Let d(n) be the number of positive divisors of n. Then

-3 d(n)d(n+1) = xP(log x) + 0(:.:1/2 + e}
nex

polynomial with leading coefficient 6/m2,

wher P is a quadratic

Forschungsgemeinschaft © @



oF

Deutsche

Forschungsgemeinschaft

- 14 -

III) Let T21, 15N f—Tl/s. For any complex numbers a We have

/ v .
(lga/z + it | 5= ann:'tlz at « ¢ 5 jaf.

° n&N n& N

M. JUTILA: On the mean value of L(1/2,%) for real characters.
Let xd(n) = (%) (Kronecker s symbol) and L(s,yd) the

corresponding Dirichlet L-function. In a recent paper,

D. Goldfeld and C. Viola (J. Number Theory 11 (1979), 305f320)
conjectured asymptotic formulae for the sums ZL(JZ'-, xd) s Where .
d rund over the fundamental discriminants either in the interval™
(0,D] or in the interval [-D,0), and also formulae for similar
sums with yy replaced by the Legendre symbol (%), with p = v

mod 4, v = 1 or 3. Such formulae, as well as an asymptotic

formula for the mean sqare of L(-;—,xd), are proved in a forth-
coming paper of the author. The talk deals with results and
methods of this paper.

H.-J. KANOLD: Zur elementaren Abschiatzung von m(x).

Wie iiblich sei m(x) = 2. 1; fir x >0 definieren wir n
pseXx

= M};‘_’.L"_ . Mit elementaren Methoden werden fir u"
Abschitzungen nach unten und nach oben hergeleitet. Die
Ergebnisse sind in den folgenden drei S&dtzen formuliert.
Satz 1. Fir 10<ne® gilt 7 >7 = -3—(1) 1og(6210%) > 0,921292.

Satz 2. Fir reelles x >0 gilt N £Myqy = BOM-L) < 1,255059

113
— 6 .
Satz 3. Es ist n<¢lim £ 1lim £ =n<1,105551.
> NEME M= 0% HRE5N T @
Diese Ergebnisse sind bekannt, aber die hier verwendeten

Beweise weichen von den bekannten ab, sie sind ohne Computer
nachzuv_ollziehen und erfordern nur eine Primzahltabelle, in

der die Primzahlen bis 380 000 angegeben sind. Die Untersuchungen
wurden in Zusammenarbeit mit Herrn Heiko Harborth und Herrn
Arnfried Kemnitz durchgefiihrt.

o®
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I. EATAI: On arithmetical functions defined by some expansions
N ==

of integers. Let q ( >1) be a fixed integer; N = (N, ; N be-
. k=1

sets of natural numbers, with the fqllowing property: for
every nonnegative integer there exists one and only one k
_ k
and mkeNk such that: n = m, mod q m.ki-n. Set Nk =,§mkf,
m denotes the general element of Nk' If N is given £9 then
every n has a well-defined decomposition: n = m + 2 ifmk + eee
1 o2

K
+f2 7% eee | . We call a function f(n) to be N-additive
mkv-l mkv

UFG

Deutsche

v{(n)
if it can be written in the form (1) f(n) = J_  H(m_ ,j).
j=1 3

It is obvious that the N-additivity is a generalization of
the g-additivity that was introduced by A.0. Gelfond. There
are a lot of open questions concerning the distribution of
N-additive functions. Assume that J_ ca.rd(Nl)/ql =1 holds.
I guess that the convergence of

(a) L I Hm,i/e* , ® L I Bm,5)/d"
j=1 meN j=1 m &N

is sufficient and necessary for the existence of a limit
distribution of f(n). I can prove that it is sufficient if

m >q*"® for an1 m € N with a suitable t. If H(m,j) does
not depend on j, and J_ card(Nk)kz/qk < =© then

£(n) "02 111° 2 has the Gaussian limit distribution.

G. KOLESNIK: On _the order of A.(x).
7

Let (x) be the error term in the asymptotic formula for
D,(x) = 2. 1. Chen proved that A, (x) « 15/11 * €, e
3 omk £ x 3

43/96 + €. The result is

improved this result to A3(x) & x
obtained by using the improved estimates of double exponential

sSumse.

Forschungsgemeinschaft
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J. KUBILIUS: On _an inequality for additive arithmetical functions.

Let f(m) be a real-valued strongly additive aritbmetical
function. Denote '
2 n

A = L ER) g% = L LR s (£) = I (£lm)-a_(£)3.
n P n P n n

pen pfn . m=1
In 1954 I proved that the inequality Sn(f)é cn Bﬁ(f) is true
with some absolute constant c. The aim of this talk is to
evaluate the constant c. Let r = sup Sn(f)/(anzl(f)) .

o kp @
Then the inequalities 1.5 + o(1)s¢ Ta41+ YT-1 + o(1) _

hold.for all even positive k's. Here T = g ) g duy...dy,

pow £ Bgeeety
i
“j‘“&"
it
For k = 2,3,6,8 Tk = C(k). Hence it follows that 'rn$1.502...
+ o(1). I guess that T, = ¢((k) for all even positive k’s.

If this is true then lim Tn = 1,5. Similar results are true

for arbitrary complex-valued additive functions.

D. LEITMANN: On the prime number theorem of Pjateckij - Shapiro.
In 1953 Pjateckij - Shapiro proved his famous theorem

J 1 ~ xY/(leg x) (y = 1/c) for 1<e <12/11.
p<x

p=[nTnewW

The range for those c for which this asymptotic relation holds

was widened to 1< c <10/9 by Kolesnik in 1967. Now the upper

bound of this interval can be improved to 69/62. This is an .
immediate corollary of the following

Y
Theorem. O <Y< 1, 1 $k£N1-Y1052N. Then 2 A(n)ean;u k
1 n<N
N -y

«, ( + 1) N02/69:,7n.

L4

The proof depends on the following tools: 1. Vaughan’s identity,

o YeLY Y
2. Kolesnik’s estimate for P 2 o 2Tl (y'=(y+) )
XX ye¥Y
Xy ¢ NY
3. Estimation of  J e2M™M™ (15>0) by iteration

X<¢x<«X%e2X
of van der Corput’s method.

Forschungsgemeinschaft : © @
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M.-C. LIU: Some results in Diophantine approximation.

Let Xj y J =1,.0.,8 , be any non-zero real numbers such
that not all )‘j are of the same sign and not all ratios
)‘j/)k are ratiopnal. In this talk the following result

by M.C. LIU, S.M. NG, and K.M. TSANG is given.

If n, O are any real numbers with 0 < g <3/70 then the
inequality |n + Z AL ng j< gu‘niz‘:a n,)"° has infinitely
many solutions in pos:.t:.ve integers n_.. The result

gives a better error term than an estimate in (H.Davenport
and K.F. Roth, Mathematika 1955).

J. LOXTON: Irregularities of distribution.
Let ZirZgyeee be an infinite sequence of points on

the unit circle and set f _(z) = r (z-zJ) and A =
j=1

sup loglf (z)] « Erdds asked whether it is possibla to
jzl=1

find a sequence so that An is bounded. Last year, Wagner
showed that this is impossible and, in fact, An >> loglog n
infinitely often, for any sequence of points. Wagner
obtained his result by adapting the method used by
Schmidt in his work on irregularities of distribution
for sequences of points in the unit interval. Halész
has recently shown how to obtain Schmidt’s results

by a modification of the earlier work of Roth. The

same idea can be used to discuss the polynomial dis-
crepancy and yields An > (log n)1-e infinitely often,
for any ¢ >0.The best possible lower bound would be
An»log n infinitely often; indeed, it is probably

true that An» log n for almost all n.

L. LUCHT: Natural bounderies of power series with

oultiplicative coefficients. Denote by K the set of

maltiplicative functions f: N =>C with the following
properties:

Forschungsgemeinschaft
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a) There exists a constant s = sfec with o >Re s20
and a slowly oscilating function L such that for each

qe N there is a comnstant cq with

2. £(n) x(n) =

n&£x

(x a,w)’

(cq+0(1))st(x) if =%y mod q
o(x%L(x)])  if X ¥ mod q

¥ running through the characters mod q, and %o denoting

the principal character mod q.

b) There is a q*¢WN with ¢ q* + O. v

c) For each prime p there 1s an ¢ > 0 such that Z f‘(r oze) .
v22p ’

d) The limit lim x°L(x) does not exist.

x>

The multiplicative functions investigated by Wirsing,

by Halédsz, and by Elliott substantially belong to the

set K. This is also true for suitable convolution products

of these functions. The following theorem answers (to

a certain extend) a question posed by W. Schwarz at

the Oberwolfach Meeting in Number Theory, 1978.

Theorem. Let fe€K, s = sf.Then the following assertions

are equlvalent.

A) Z £f(n)z® has the unit cirecle |z = 1 as a natural
n=1
boundery.
B) There are infin %tely many prmesaggwers p (8 eN)
1

£(p') £(
such that 2. - + .
v p’® o(p) o B=-1 s

M. MENDES FRANCE: Integral geometry and uniform distribution .
mod 1. Let T be a bounded plane curve of length |Tl.

Let D be a line and N(D) = card(DnT). When D runs through

the set () of straight lines which intersect T, the

average (expectation) of the number of intersection

points is E(N) = § N(D) db / § dD .
Q Q

Theorem (Steinhaus). Let K be the convex‘hull of T and
let | 9KI| be the length of the boundery of K. Then
E(N) = 2|TI/ K]

Suppose now that T is a curve of infinite length. For
every t > 0, define l‘t as the beginning portion of T of

length t. The average number of intersection points
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of D with 1‘t is E(Nt).

Definition. T is said to be superficial if lim E(N
t 2=

) = e°o

t
Let u = (“1’“2"") be a sequence of real numbers. Put wg = 0,

‘2: eznluk and consider the infinite polygonal 1line
k=0

the summits of which are WoiWiseee o Call T(u) the polygonal

n

line.

Theorem., The sequence u is uniformly distributed mod 1 if
and only if the curves T(u), T(2u), ... are all superficial.
The proof uses Steinhaus’ result. The above result is part

of joint work in progress with M. DEKKING.

H. MOLLER: Fundamental units of real quadratic fields.
Let K be a real quadratic field. A number Yy of K with con-

jugate v’ is called reduced if Y >1 and -1< vy < 0. If Y
is reduced, then the continued fraction algorithm Y = (Y - fY])-l
generates a purely periodic sequence of reduced numbers of K.
Theorem. The product of all numbers in the primitive period of
any reduced number of K equals the fundamental unit of K.

As a consequence we get the following result, where Y is the
character and D the discriminant of K :

> ' [/5] (VD _+b) /2] .
2 1%21 = V%r > log (EEEEE) .
n=1 b= 1 ac [{D‘ -b]+1
b= D mod 2 il
2
al D=b

H.L. MONTGOMERY: The error term in the prime number theorem.

We assume the Riemann hypothesis, ‘and enquire about the gap

between the two estimates ¢$(x) = x + O(xl/zlogzx), y(x) - x

= Qx(xi/alogloglog x). In proving the () estimate, Littlewood
used Dirichlet’s theorem, which is a tool of homogeneous

Diophantine approximation, to attack a non-homogeneous question.

o®
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His partial success was due to the fact that the problem
is almost homogeneous. One could obtain a sharper result
from a strong quantitative form of Kronecker’s theorem,

provided that we had good information concerming linear

forms in the imaginary parts Y of the zeros of the zeta

function. We formulate the following

Conjecture 1. Fogr every e¢> O and every K >0 there.is a

Ty(K,€) such that if T2 T,(K,c) then | 2k Y2 exp (-T1*€)

0<Y<T
vhenever the kY are integers, not all 0, such that lk ¢ K. .
From conjecture 1 and RH we can deduce that

oo o¥(x) - x

INV
1+
fm

1 2(logloglog x)2

In the proof we use the following lemma which is gof independent
interest.

N .
Lemma. Let h(y) = 2_ cncos(2ﬂ( xny+pn)) where the ¢ are
n=1

non-negative real numbers, the )‘n and p, are real. Suppose

that | )Ei kA |2 t whenever the k_ are integers, not all 0,
n=

with |k |< R. Then in any interval [a,b] of length> R/},

there is a y for which h(y) 2 (1 - 5/R) E c, -
n=1

On the basis of these and other probabilistic results, I am
led to formulate -
Conjecture 2. Iim

$(x) -~ x- Y
1F(logloglog x)2 “om

M, NATR: On distinct values of the divisor function.

Let D(x) be the number of distinct values assumed by the °
divisor function d(n) for 14 n% x. P. Erdos and L.Mirsky
(1952) estimated D(x) by studyind a related function B(x)

and showed that B(x) ~D(x). The actual asymptotic formulae

for either function is still unknown. Write E(x) = D(x) - B(x).
Erdds and Mirsky proved that E(x) > cy
improved by Shiu (1978) to E(x) > exp(c (loglog x) /3/1ogloglos x).

logloglog x. This was
We have now managed to show that E(x) > exp(cB(log x) 2/1oglogx)

which is best possible apart from the value of ¢ (Joint
work with P. SHIU)

DF Deutsche
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W. NARKIEWCZ: Distributions of values of multiplicative

functions in residue classes. A function f(n) (integer -
valued) is called WUD (mod N) (weakly .uniformly distributed
(mod N)) provided for all j1,j2 with (jl,N)=(:jz,N)=; one
Sy (mod N)j ’
Jgy (mod N)}

i}

has #{nsx: £(n)

- 1.

#§ DEX: f(n)

Theorem. Let f be multiplicative, integer-valued and let

£(p) = V(p) (Ve Z[X]) for all primes p. If V = cWd (d>2,

We 2[3(]) then there exists a finite and effectively determinable
set E of primes such that if N has no prime factors from E,

then £ is WUD (mod N).

Corollary. If f is as above, then it is WUD (mod p) for every

prime p>1. (This answers a question of Erdds.)

J.L. NICOLAS: Big values of arithmetic functions.

Let p, be the k-th prime, 8(x) = 2 log p and N =23 cee Py
peEx

so that 8(p ) = log Ny . In Math. of Comp. 29, 1975, B. Rosser
and L. Schonfeld announce$ as a result of their extended
computations that they can prove e(pk) >k log k for k 213.
Actually this result does depend only on Chebychev’s result

m(x) = x/log x , because it follows from :

Px : Px
e(pk) = log x d(m(x)) = k log P - (m(x)/x) dx that
2 2

)

(*) n(x) X.x/ log x > 9(pk) = k(log k + loglog k + 0(1)).

It is well known that the maximal order of w(n) = 2 1 is

) pin
log n/loglog n. As N,_ is the smallest integer such that
m(Nk) = k , the maximal order of y is given by estimating
w(N) = k in terms of log N, = 8(p, ). So, using (*), G. Robin
(Univ. of Limoges) proves the following inequalities, with

1l = log n, 1, = loglog n

2
(1) ynx>3, wln)& 1.38 1/12 with equality for n = N9

(2) vyn23 , wln) £(1 + 1.46/12)(1/12) with equality for n=N47
(3) Vn 2267exp(exp(1.17)), w(n) £ 1/(1, - 1.17) with equality
for n = N189 . .

This last inequality improves a result of Norton (Mem. of the

o®
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A.M.S. n° 106). Using sharper estimates than (*) given by .

Rosser and Schénfeld, G. Robin proves also that if f(n) =

(n)igslz 2 , then f(Nk) is decreasing for k >9. This
property is equivalent to m(x)log x - 8(x) > 6(x)/(log x - 1)

for x>9 and implies (4) ¥n 23, w(n) £(1 + 1/12 + 2.9/12)(1/12)

with equality for n = N442. The same work can be done re-

placing w(n) by log d(n) / log 2 , and inequalities 1,2,3,4

are obtained with other constants. The numbers Nk have to

be replaced by the so called superior highly composite .
numbers N _of Ramanujan. Such a number maximises the function g
n>d(n)/n® and has a parametric representation in terms of

= 21/8. It is possible to extend these results to other

x
additive functions f such that £(p®) = g(a) does not depend
on p but only on a.

Let g(n) be the suﬁ of the divisors of n. We have og(n)/n £
n/@(n) where ® is Euler’s function. G. Robin deduces

(5) ¥nz23, oln)/n & eY12 + 0.65/1, with equality for

n = 12 (y Euler’s constant) from a similar inequality

for n/9(n) given by Rosser and Schinfeld and from the
behaviour of the colossally abundant numbers (which maximises
a(n)/n1+e). Rosser and Schinfeld asked whether n/g@(n)
eyloglog n for all but a finite number of n"s. I think that

I have proved during this stay, with the help of H.L.
Montgomery that this property is equivalent to Riemann’s
hypothesis.

H. NIEDERREITER: Complete mappings and equations over finite .
fields. This talk is about a class of mappings on finite

fields that arise from combinatorics and nonassociative

algebra and lead to interesting connections with the Stepanov -
Schmidt method for equations over finite fields. A bijection

8: Fq'%>wq is called a complete mapping if ¢ v 9(c) + ¢

is also a bijection. Since every mapping from a finite

field into itself is represented by a polynomial, we can

Forschungsgemeinschaft © @
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also speak more conveniently of a complete mapping polynomial
(c.m.p.). Note that f(x) &€ F [x] is a c.m.p. & f(x) and
f(x) + x are permutation polynomials (p.p.). For monomials,
we have the following: to fixed k> 1 3 inf. many q such
that xk is p.p. of F_. The study of which binomials are
PeP. S Or c.m.p.’s 1:ads to certain absolutely irreducible
equations over [F . W.l.0.g8., assume k > 2.

Theorem 1. Let k > 2. Then (i) if k is not a prime power,
then V Fq ;ith q 2(k2 - 2k + 2)2 there is n: pP.p. of Wq

of form ax + bx with ab % 0; (ii) if k = p , then V F
with q,_>_(k2 - 2k + 2)2, char F_ % p, there is no p.p. gf Fq
of form axk + bx with ab £ O. 4

Corollary. If k and q are as in Th. 1, then there is no c.m.p.

of F of form ax® + bx with a 4 O.
More generally, one can study the question of finding P.P.’s
of F_ of the form ax® + bx) with ab 4 0, 1% 3 <k. If k may
depend on q, then we can find c.m.p.’s of form ax + bx for
inf. many Fq, even when k is not a power of char Fq. Using

a Weil estimate for quadratic character sums, one shows

the following

Theorem 2. Let q be odd. Then N = cardg'be;mq:

is c.m.p. of Fq} satisfies N 2 q/4 - 5/2 -(3/4)q1/2 ir

x(q+1)/2 + bx

char wq >3, and for char F_ = 3 we have N = (gq-9)/4 if
q=1mod 4 4 N = (q=3)/4 if q = 3 mod 4.
) (q+1)/2

Corollary. C.m.p.’s of form x
for all odd q 213 and q = 7.

+ bx exist exactly

B. NOVAK: Lattice points in many-dimensional ellipsoids.

Let Q(uj) = Q(ui,...,ur), r>4, be a positive definite
quadratic form with a symmetric integral coefficient matrix.
Let Oyrlprecss Oy be real numbers. Let us put

a = e J=
n .

all systems My @,y ees il of integers such that Q(mj) = n.

s where the summation runs over

For the sequence a  an asymptotic formula can be derived

Forschungsgemeinschaft
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(involving Bessel’s function, Kloosterman and Gaussian sums)
. L r/4 - 1/% + ¢
with remainder term O(n e
f of a - the following inequalities hold: r/2 = 1 =r/(4(y+1))
¢ femax(r/2 -~ 1 - (r-1)/(4(y+1)), /4 - 1/4), where v

is the supremum of all B for which the inequality

For the exact order

kB max I ujkllazl has infinitely many splutions.
J

J. PINTZ: On Heilbronn’s triangle problem.
Let P,,P,,...,P_ be a distribution of n points (where n 2 3) .
in a closed disc of unit area such that the minimum of

1 areas of the triangles Pin (taken over all selections
\

P
of three out of n points) as§umes its maximum possible

| value A(n). Heilbronn conjectured over 30 years ago A(n) <<

n~2, It was proved by P. Erdés in 1950 that A(n) > a2,

K.F. Roth proved the first non-trivial estimate A(n) <<

n-i(loglog n)-l/2 in the same year. About twenty years

later this was improved by W.M. Schmidt to A(n) « n-}(log_n)

making use of a different method. Soon after this, using

an entirely new method Roth. proved A(n)«n H'€ with p =

2 - 2/{5 = 1.105... and somewhat later he refined his method

to yield to p = (17 - Y65)/8 = 1.117... . Very recently

the following theorem was proved in a joint work with

J. KOMLOS and E. SZEMEREDY:

Theorem. cin-zlog n £ A(n) £ n-8/7exp(c2(I;§_;)

with explicitly calculable positiv absolute constants c¢

-1/2

1
and c,.

P .
The upper bound was achieved by a further refinement of the .
method of Roth, the lower bound - which disproves Heilbronn’s

conjecture - by combinatorical methods.

S. PORUBSKY: On Voronoi’s congruence.

The following extension of Voronoi’s congruence involving
Bernoulli numbers Bk (in the even index notation) is proved

via non-archimedean Bernoulli distributions:

Deutsche .
DF Forschungsgemeinschaft © @
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2
N-1 N-
ok _ 2k-1 2k-1[ex 2k-1 2k-2 <2k-2fc
N B2k-4 =c 2 x [ﬁ— - 5 [ N [ J
x=1 x=
2k+1 2k-1
2 c -1 c (c=1)(2¢+3) (2k 3
mod N? for k24 and S—iNp, + 15 2B, o

N=1 N-1 2
= 2 2 <2 ;_x] - kel y 2 xzk-a[Jch_] mod N2 for
x=1 x=1

' k 2 3, where N is a positive integer and c¢ a rational number
prime to N ([x] stands ifor the greatest integer in'x).

E. RAMACHANDRA: Some problems of analytic number theory.

I give a brief report of the work done in colloboration

-with R. BALASUBRAMANIAN., Here I combine to a special case

of more general results which °v°ill appear 1:19 Hardy - Ramanujan

Journal 4 (1981). Let F(s) = 1T ((ks) = 3_ ann-s. F(s) is
k=1 n=1

defined by the series in g»> 1. But it can be continued

analytically in ¢ >0. It is regular except at simple poles
at 8 = 1, 1/2, 1/3, ee. » It may be remarked that g = 0
" is a natural boundery for F(s). Put A(x) = L a
n€x

v
A(x) = -él'— f F(s) x° s~ ds + E(x) ,
. ™ |s-11=1- o7

M(a,b) = max = (E(x)/(x

1/10
asx<thb i

exp((1/20)(log x/loglog x) 1/2y, ,

. where 0<a<b, m(a,b) = min (E(x)/txi/loexp((i/zo)(log x

acx<hb
1/2))9 and u(a,b) = max -(‘E(x)lx-i/G)_

asx<b

/loglog x)

Then we prove the following theorem

Theorem. For all y2> 100, we have

\ . M(e7,e10007) 5 197800 (¥ ,1000y) . _,-800 4

u(ey, 810007) > 10-800.

DFG Deutsche -
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The result on y follows from some work starting from our

2T . 3
result £ § | F(1/6 + it)|® dt >>T log T and the other two
T

results follow from some work starting from our earlier

result that max | F(1/10 + it)/> T exp((3/5)(log T/
T&£t< 2T

loglog T)1/2) for a1l T.

R.A. RANKIN: Recent work on modular forms.

The following topics were discussed:

(i) Newforms. The work of Atkins and Lehner (Math. Ann.
185 (1970), 134 - 160) and Li (ibid. 212 (1975)) extending
earlier work of E. Hecke and M. Petersson and so showing

that the space of cuspforms ffb(N),k,xfo s With o0ld form removed
has an orthogonal basis of newforms that are eigenforms for
all the Hecke operators Tn was briefly discribed.
(ii) Order of Fourier coefficients. Deligne’s work has
proved that for a cuspform coefficient(;el?/g(n(k-1)/2 + e),
but other

problems remain, such as the correct order of T(m) = Z a(m)

m<£n
which is O(nk/2 - 1/6 + €) but not O(nk/2 - 1/t!). Results

of H. Joris (Mathematika 22 (1975), 12 - 19) mentioned.
(iii) Divisibility properties. Work of Swinnerton - Dyer

or for a newform coefficient | A(p)]<¢2p

and Serre. Results holding for all, and almost all n. °

1v) Poincaré series. Identical vanishing and non-vanishing

1> e2™ETZ (. d4)"® for m > 0. Distribution

2 &y . ‘
|

of Gk(z,m) =

of zeros for m ¢ Z\N and for Poincaré series of more general

type.

A. REICH: Large values of zeta-functions.
In the case of the Riemann zeta-function f(s) = ((s) (also

for arbitrary L-series or the Dedekind zeta-function (.(s)

of an algebraic number field K) we give an answer to the

Deutsche
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infinite arithmetical progressions in the critical strip:
Let be 0>1/2, R>0, A>0, L = L(£,0,4,R) = { neiN :)£(g+in)l
>R}, and denote by p(L) = lim -1%- card/n : n¢L{ the lower
asymptotic density of L. For ¢ >1 one has the trivial
relation L = @ for R>Rj, but in the critical strip the
following holds (for example f(s) = ((s))
Theorem. For any A >0, and any disc DCfs €C : 1/2<Re s<1 }'
any holomorphic g: D—C without zeros, any ¢ >0 the relation
_1._1_15% cardfnelN : sup lf(s+ipn) - g(s)|<e§>0 holds.
A similar property $&Pshown for Dedekind’s gK(s) (to be
published in Arch. d. Math.). Therefore one has immediately
the Corollary. If 1/2 < g< 1 then £(L)> 0.
To get an uniform upper estimate for many A>0 it is shown
Theorem. There exists a countable (exceptional) set A er”
such that for ¢ >1/2, AdA, lim & ¥ [f(g+itm)|?
N->=" n=1
.01 T . 2
= lim 5 § [£(o+it)]|“ dt holds.
Tac= o
This leads to the o

Corollary. p(L)£R™2 5 1n™29 nolds for all A ¢ R*™ A
n=1

and all g »1/2.

G.J. RIEGER: Circles, triangles, and spheres of Ford.

For every rational number h/k (reduced) denote by C(h/k)

the open circular disc (= Ford circle) in the cartesian plane
X,y with center h/k,1/(2k?) and radius 1/(2k2). Any

two different circles are disjoint; they have a point of
contact if and only if they belong to neighbors in a suitable
Farey sequence‘Fn. The neighbors and this point of contact
form a right triangles. Given Fn, we denote by Ln the length
of the polygon joining O and 1 along the legs of these
triangles. Theorem 1. There exists a real number C with

1 € ( 1.28...) 2amdL_=C + 0(log’n/n). .

A similar result holds if the legs are replaced by the
corresponding arcs on the Ford circles. Also, remarks are

Forschungsgemeinschaft
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made about the generalizations to Q(J1) (see Crelle 303/
304, 1978) and a model i presented made out of wood.

I.Z. RUZSA: Additive functions and random variables.
Let f be an additive function and let §p (p prime) be

independent random variables with the distribution P(
=f(pk)) = (1 - 1/p)p-k. Heuristically we expect that the
distribution of f on the interval El,x] is more or less
similar to that of the random variables m_ = {_x gp ;

P ®

many celebrated theorems (e.g. Erdds and Wintner’s), though

stated in other terms, correspond to this principle. Among
others, we prove the following theorem. Let F be a non-
negative-valued increasing function defined on [O,°°) ’

f a real-valued additive function and M a.}real number. We

1
have =

x nzﬁ':x F(|{f (n) - M|) ¢ ¢ l:-)(l-‘(BI‘ﬂx - M|)) , where E
denotes expectation and ¢ is an absolute constant. For
F(x)
F(x)
can be obtained for functions with values in a topological

x2 this reduces to the Turfn - Kubilius inequality,

x2 has been recently proved by Elliott. Some results

group G, e.g. I can solve the problem of existence of a
limiting distribution when G is locally compact.

B. SAFFARI: An extremal problem for exponential sums.

Let I be a sub-interval of [0,1] of length |I| >0 and

whose interior does not contain the mid-point 1/2 of [0,1_7.

The problem is to determine C = sup i(lf(x)l2 ax / (S;lf(x)la dx .
f

where the supremum is taken over the sums of exponentials

of the form f(x) = J2_ exp(zm’.nkx) where n ,...,n_ are
k=1 a

arbitrary distinect integers. This problem arose out of a
functional analysis paper "Weak restricted and very restricted
operators on L2" by J.M. Ash (to appear). Since |f(1-x)| =
|f(x)|, it follows that C £1/2. Also, an old result of

Haldsz - Montgomery shows that, at least for some intervals

DF Deutsche :
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: I, one has C£1/4. On the other hand Ash had proved, as a
corollary to his paper, the very interesting result C2> CO
where CO is an absolute (ineffective) positive constant.
Pichorides proposed an elementary argument to show that
Co can be made effective (cf. appendix to Ash’s paper).

-2 4
Refinements of this idea lead at least to C 2 (2/112) max @ 2gin a
a>0

5 1/10. This lower bound can be improved by the same method.
Several people suggested other methods.

H. SARGES: Least quadratic non-residues in algebraic number
fields. (joint work with W, SCHAAL) Let v_ denote a positive

integer of an algebraic number field K such that v is a

least quadratic non-residue modulo a prime ideal p of K,
least in the sense that N(v ) is minimal. Then the following
generalization of Linnik’s result is shown:

For x 22 and ¢>0 l’{p |Np&x and N(vp) > Npeﬂ = Oe(loglog x).
The proof requires the large sieve in number fields and the

relation X 1 = @(c)Bx" + 0(x*/log x) where U = f al
aeU
pl aWpex"©

. ‘ r —_
a0, laMex121,000,uf, B= (2m 2/ /3 ( and olc) = 1 -

1
( @(t/(1-t)) dt/t , 12¢> 0.
c

JeP. SERRE: Selberg upper bound sieve.

This well known upper bound has nothing to do with prime
. numbers. It is a purely combinatorial statement on sets
from which one removes subsets. Two applications were
given. One, to abelian finite group, from which some classes
modulo subgroups are sifted. Another one, to questions as:
how many p°s, with p ¢ x, are such that the Ramanujan 1 function,

evaluated at p, is a square?

DF Deutsche
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H.P. SCHLICKEWEI: An extension of a result of Senge and Straus.

Generalizing a result of H.G. Senge and E.G. Straus we

show the following

Theorem. Let 91""’95 be natural numbers. Then the number
of integral s-tuples (n1,...,ns) satisfying N +e..+n_=0,
where for each i n; .has a sum of digits in base ei which
lies below a fixed bound M, is finite if and only if for any
pair i 4 j (1£i,j¢s) log 6§, /log 8; ¢ Q.

The proof of this theorem uses essentially the author’s

p-adic generalization of W.M. Schmidt’s subspace theorem .

concerning the approximation of algebraic numbers by rationals.

J. SCHOISSENGEIER: Zeta-function and sequences of primes mod g.
Let g(x) ¢ R[x] , 1i_.°m°°g(x) = o0 and m = &eg g(x). Define

x
p(x) = i g(xe”™/?) ana q(x) = x(xp’ (x))". Let w(z) be a
holomorphic function such that e" z)p,(ew(z)) = z if Re z &
(0,1) and if Im z > K, K large enough. Chose Im w(z) such that
| Im w(z) - n/2n)< n/m. Then w(z) is determined uniquely.
The following theorem is valid
Theorem 1. Let h2 1., There exists a K> 0 (depending only

on g) such that if N-< 2 A(n) e~ihg(n)
n<N

- {2n/h Z epw(p/h)-hp(ew(p/h))-inp/amq(ew(p/h))-1/2
Kh £ vy ¢ hNg’ (N) :
+ O(ﬁ 1ogahN). p = B+1iY runs through the non-trivial zeros

of the zeta-function.
o

Theorem 2. Let ¢ >0,0>0, g(x) =.ax ", h 21, Then for some

K >0, N»>*° , 5 An)e~ibg(n) ’
n=1

_ 'ra'n'/o Z_ ep/c log p/(hgooe)-imp/20 p-1/2

Kh £y hoN®
+ 0(1ogahN N1/2).

Corollary 1. ¥(N)

-l oT/4 z (zﬂ)-BYB-i/zeinosY(Zﬂe)
0< ys2mN
+ o(n210g%N).
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. Corollary 2. (Wolke, Stux) Let g >0, 0<g<1. Then (p% )p prime
is uniformly distributed.
Corollary 3. (Hardy, Littlewood) Let I £/0,%0), I compact,
a >0. Then . eaplog(-ip) <P p-a/2 = o(,I,(a+1)/2')
0<cy<«T
uniformly with respect to x e I.
Hardy conjectured that one can improve this estimate to

O('l‘i/2 * €), The editors of Hardy’s collected papers mentioned
that this is probably false. We can prove
’ Corollary 4. The estimation O(T(a+1)/2) is sharp if and

only if 1/a €N and xTe ¢ Q.

E.J. SCOURFIELD: On the property that (@(n),9(n+1)) has no
odd prime divisor. For f = @ (Euler’s function) or ¢ (the

divisor-sum function), denote by Nf(x) the number of positive
integers n< x such that the GE€D (f(n),f(n+1)) has no odd

prime divisor. Then we have
x
log x logloglog x

1/2

Theorem 1. For f = @ or o, << Nf(x) <<

exp(A loglog x (logloglogx)~ ) for any positive

S
log x
constant A satisfying A>cY2 yperec =2 TT (1 - (p-1)"2).
pz3

The proof depends on applications of results from sieve theory,
and the upper bound result can be generalized considerably.
Let SQ(x), Sc(x) denote the number of primes p £ x such tha‘t
there is no odd prime dividing (p-1, o(p-1)), (p+1, o(p+1))
respectively. Then the lower bound above is deduced from

. the following result, which is analogous in a sense to Erdos’
estimate for the number of integers n¢ x such that (n, o(n))=1:

C x .
Sf(x) ~ Tog ¥ logloglog x as x->% where C is

Theorem 2.

defined as above and f = @ or 0.

G. TENENBAUM: On the divisor density of an integer sequence.

Let n denote a positive integer, T(n) the number of its

divisors and 1(n,A) the number of those divisors of n which
belong to a given sequence A. R.R. Hall has introduced the
following definition: an integer sequence A is said to have
divisor density z, and one writes DA = z, if 7(n,A) ~ zt(n)

for almost all n“s. It can be seen easily that the squarefree
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numbers or any arithmetic progression distinct from [N fails .
to have divisor densii:y. Moreover, the asymptotiv formula

S T(n,A) ~ x T 3 vhich holds if the series J 1
n<x d<x de A
d€ A
diverges, might lead to the assumption that divisor density
is closely related to logarithmic density: this is not so
in fact, and Hall has shown that for any given pair (z,w) €
[o, 1]2 there exists a sequence A with the property that
DA = z:mid A = w (here and in the sequel 5 denotes the
logarithmic density). In the opposite direction, Hall proves .

the following result, first conjectured by Erdos:

Theorem 1. (Hall) Let fbj'ﬁ be a sequence of real numbers
satisfying bj+12 ch. for some ¢ »1 and all j“s, and set
A={d:33: sz «d<b
DA = z.

The concept of divisor density is also related to uniform

2j+17l « Then, if A = z, one also has

divisor distribution, also introduced by Hall: a sequence
of real numbers ff(n)} is uniformly divisor distributed

. 1 -
mod 1 if A(n,f):= sup | oy card{ d: d|n, f(d)e¢/u,v/mod 1
Otucvel T8

- (v-u)l tends to zero for almost all integers n.
Set A(z,f) ={d: £(d) <z mod 11, then, clearly, for any
u.d.d. function f, DA(z,f) = z for all z¢[0,1] . Hall showed

that the converse is also true. In the case of additive
- 5 e21'\':i.f(d)V

din
multiplicative for any v¢ 7,\%0} and this may be used to prove
uniform divisor distribution results. The function F(d) .

= log d has been studied by Hall and Erdoés; it is u.d.d.,

log M _ 4 Kkat&i
log 2

has shown that an additive function f is u.d.d. if and only

functions f, the Weyl sums cv(n,f) are

and one has A(n,log) &'r‘("n)-)‘ for any \<

if the series J_ va(‘p)"a/p diverges for every non zero
o -

integer v, where || x|| denotes the distance of x to the nearest

integer. Non additive functions are much more difficult to

o0&
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deal with. Hall showed that (log d)® and (loglog d)® are
u.d.d. for 0<a<1 + log 2 and B> 1; the restriction on B
is sharp, but he conjectured that a>0 is sufficient. This
conjecture is an easy éonseqtience of corollary 1 below.

I can prove the following results:

Theorem 2. Let A be an integer sequence with characteristic

function y. Then DA = z if and only if J_ | T _n”(x(n)-z)‘}-n(n)
kex n<x
n= o mod k

= o((log x)l/z) as x>%0 , where ((n) denotes the number of
. prime factors of n counted with multiplicity.
Theorem 3. Let b. be a sequence of real numbers satisfying
cardij: bj<x}= 0((log x)%) as x>=, for some q>0, and set
={d:7j: byytd by, +17{ Then if A = z, one also has
DA = z. :
Corollary 1. Let f be a differentiable real function. Suppose
£f°(x) 50 as x>»°® and the sequence {f(n) n(-leis t'miformly
distributed mod 1, then f£({(log d)%) is u.d.d. for any positive
a. Corollary 2. Let g be a differientiable function. Suppose
Ix g’ (x) log x|> was x> and that there exists an g such
that the function xbvx g’ (x) (log x)~% is monotonic and
tends to zero at infinity, theng is u.d.d..
Theorem 4, The following condition is necessary and sufficient
for f to be u.d.d.

k<x n<x
n= 0 mod k

. (v =21, 2,...).

This last theorem can be used to obtain Katidi’s criterion

for uniform divisor distribution of additive functions.

V.T. SO0S: Intersection properties os subsets of integers.

Let Al""’AN be a family of subsets of 1,...,n . For a
fixed integer k we assume that A n AJ is an ithmet:.c progression
of k elements whenever 1<1i< j ﬁN. We would like to determine

DFG >
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the maximum of N. For k = O with R.L. Graham, M.S. Simonovits
we proved that N 5(';)-«-(2)4»(2)4- 1. For k 22 the asymptotically
extremal system has N = (112/2‘; + o(1)) n? sets. (So for k2 2
the extremum depends on k very weakly.) For k = 1 the
maximum is between(;)-r 1 and (ﬂ2/2‘i + 1/2) n? + o(n?).
Probably the lower bound is sharp. These results form a

part of joint work with M. SIMONOVITS.

R.C. VAUGHAN: Some remarks on Weyl sums.

N : q
Let £(a) = J e(ax™, v(B) = ¥ e(py¥)ay, S(q,a) = e(ﬁrk), .

x=1 (o} r=1

G(a,q,a) q-ls(q,a)v(u-g-), E = f(a) - G(a,qya). It is shown

that if (a,q) = 1 and if |B| £ N/(2kqN*), then E<cq'/2 * €.

'Moreover, if the condition on 8 is relieved then one still has
E « q%(q + qul Bl )1/2. One consequence of this is that when

< i a -1.-3/2 _. a -1,.-3/2
k-Bandeitherla-Eleq N w:.thq)Nor[q-EI}q N R

then E « Nj/l* * €, This gives a new and completely different
proof of Weyl s inequality when k = 3. Also the relationship

between f(q) = . e(a1x+...+a,kxk) and J(lsc) - f l‘zlf(o.ﬂ 2s dg :
- x= X Jo,1] - - ‘
was discussed and an outline of the proof of the statement

2

If 7 §sa,q, s.t. 2234k, | o - %lsq‘ , (a,q) = 1, qenN,

then £(g) <« (J(k;“ (an) NE(E=1)/2 (=1 =1 gmdyy1/2s o0y

was given. - ) ‘

B. VOLEMANN: On Strassen’s law of the iterated logarithm.
(joint work with P. SzZUSZ) Kolmogorov's celebrated law of

the iterated logarithm (1929) has been generalized in a .
number of directions, notably by Strassen (1964) who proved

the following theorem: Let §1,§2,... be a sequence of independent

Deutsche
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identically distributed random variables with E(gi) =0
and D2(§i) = 1 + o(1); consider their partial sums S =
g + eee + E ., let Tn(:i.) = Si(anoglog n)-1/2 (i = 1,0004n)
and define, for each n, the function @ on [0,1] as linear
interpolation of the values wn(i/n) = Tn(i). Then the set
of limit points of ¢3’¢4’°" y under uniform convergence,
is almost certainly equal to the space Y of all agsolutely
continuous functions on [0,1] with x(0) = 0 and § x2(t) dt
°
£ 1., The authors have, instead of Strassen’s methods
(Brownian k-dimensional motion and functional analysis),
used the classical approach.of Kolmogorov in order to prove
a generalized ver;ion of Strassen’s theorem. The condition
of identical distribution could be dispensed with, and

1/2

Kolmogorov’s condition ]gnl = o(n(loglog n) /<) could be

replaced by a much weaker one which is less stringent than
requiring the existence of some fractional moment E(§f+e),
€ >0, i=1,2,+.¢+ + Furhtermore, a Strassen - type theorem
for weakly dependent random variables was established which
is applicable to continued fractions, thus generalizing

the Kolmogorov type law of the iterated logarithm due to

Sziisz (1971).

D. WOLKE: On the explicit formula of Riemann - von Mangoldt.

By means of mean value theorems for Dirichlet polynomials
and zero density results for the Riemann zeta - function
the following slightly improved version of the classical
Riemann - von Mangoldt formula is discussed: Let §> O,

1-c
x

xere . Let p = B + iY denote non trivial zeros of
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¢(s). Then there exists a TefT/a,BT/aJ such that §(x)

= Z A =x- 2 %P/ + oxr" log x)1/3). Tt is

néx pylvién
highly probable that this formula holds without the factor
(log x)1/2. A further improvement would give a better upper

bound for the difference of consecutive primes (if RH assumed).

Because of shortage of time the following two lectures could .

not be given.

M. HUXLEY: Two remarks on the )‘2 sieve.

1. Selberg§ upper bound for a sievable sequence A with
2. 1 =x p(d)/d + R(d) (where p is multiplicative)
a€A
a= O mod d
states that the number of members of A with no prime factor

€ z is at most £ x/G(z) + X Z2_ x(dl)x(dz)G-z(z)R([di,dzj)
4 q
1 2 .

where A(d), G(z) are constructed from )\(d) (Halberstam +
Richert in "Sieve methods"). If p(p) is k on average,

G(z) ~H 1ogkz. Under the one - side condition on p(p)
z p(_);op) = k log u + E(u) where E(v)<2E(u) + K
°

k+1
for u4 v one has G(z) 2 H logkz (B’ffzz—z-—",z—K—E )e

The error term can also be estimated as

0(e*z2fmax(1, log K)}Z max I R(a)] /p(a) )
d
2. In the sieve of Jurkat and Richert the error term O(L/(log y)1/1"

can be replaced by 0(L/(log ¥y) B) s 8 = (log 3 - 1)/(log 9/2 - 1)

< 1/5. (jointly wrought with GREAVES)
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W. SCHWARZ: Power =~ series with multiplicative coefficients.

“

The author reproves a result of Lucht and Tuttas: If f is a

multiplicative function with mean - value M(f) § O and /| fﬂ2
< oo , then the power - series T f(n)-z" either represents

a rational function or it is non - continuable beyond |z | = 1.
As an application, following Rubel and Stolarsky, all possible
functi;ns F(z) = L %T £(n)z" are determined, which are
bounded on the negative real axis (the assumptions on f are

as above).
The following problems were posed :

J.-M. DESHOUILLERS: If you shake an additive basis, will

it remain an additive basis?

Question: Let f: WN>N be such that for every additive

basis B, the sequence f(B) is an additive basis; does there
exist a positive constant g such that f(x) - gx is bounded?

To avoid trivial cases, assume f(0) = 0, f£(1) = 1,

Llim E{;ﬁ‘%’ > 0, Af20 (where Af(n) = £(n+1) - £(n)).
Comments. For some cases cf. Deshouillers - Erdds - Sarkozy
(A.A. 30 (1976), 121 - 132) and Deshouillers - Fouvry (J.L.
M.s. (2), 14 (1976), 413 - h422).

I know that the conjecture is true in the two extreme cases:

f(x) = x + o(x) or Azf > 0.
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P. ERDOS:
: = Caee = Suti
1. Denote by 1 d1< dz < dT(n) n the consecutive

- _or{n)-1 - 2 .
divisors of n, f(n) = {éi ((di+1/di) 1) . Is it true

that for infinitely many n f(n) < C holds?
2. Let f(n) = *1 be a numbertheoretic function. Is it true

that for every C there exist d and m such that
m

(1 1 7 flax) | > c.
k=1

(1) gehdrt offenbar zum van der Waerdenschen Ideenkreis.
I conjectured (1) nearly 50 years ago and I give 500 Mark
for a proof or a counterexample. Perhaps it is true that
N m .
(2) max | J_ f(dk), > C log x . It is easy to see that
mi€x k=1

(2) is best possible if it is true.

A. IVIé:'

Lét a(n) denote the number of non-isomorphic abelian groups
with n elements; let Cl,Ca,... denote positive, absolute
constants. Let N bela-highly composite if a(n) < a(N) for:

n'<N, and let G(x) = Z 1, H(x) = J_ a(N).
Nex N £x

1. Is it true that 1log G(x) = (C1 + o(1))loglog x,

log x

log H(x) = (C2 + 0(1)) Toglog X ?

2. Is it true that for anno(e) log a(n) + log a(n+1) <

log S5 log n
( i + ) loglog n ?
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3. Find the maximal order of magnitude of a(a(n)); it can
be shown that it is at least exp(CB(log n /loglog n)1/2)
and that it is not greater than exp(C[!(log n /(loglog n)2).

4, Let a(“j)(n) = a(...(a(n))..;). It can be shown that
j times

uniformly in § L a'9(m) = K(j)x + 0(x?210g*x) with
n<x

a suitable constant K(j) >0. Is it true that 2 K(n)
néx

= Cgx + 0(x1"¢€) 2

M. MENDES FRANCE:

1. A set HCIN is called a Van der Corput set if the following
implication holds: (um_h - un) is equidistributed mod 1

for all heH = (u) is equidistributed mod 1.

Examples: [N, alN (a¢ N), P-1 (P set of primes), P + 1, the
set of squares,... (see Kamae - Mendes France, Israel J.

of Math. 1978) Question 1: Is it true that if H is a Van

der Corput set then aH = gah | n eH? is a Van der Corput set
(aé N)? (RUZSA answered affirmatively)

Question 2: Suppose h.  €H, Is it true that if H is a Van

(]
der Corput set, then H \§h0} is again a Van der Corput set.
(RUZSA answered affirmatively)

2. Let n€N and let s(n) be the sum of the digits of n in
basis g (g2 2 is a given integer). Given m2 2 and a ¢

{O,i,...,m-l‘ , (m,g=-1) = 1. Consider the set S(a,m) =

fn ( s(na) = a mod mf . Is it true that S(a,m) has density 1/m ?
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This problem was actually posed by Gelfond (Acta Arith. 1968)
Commentary: It is weil khown that the séquenéé s(n) mod m
can be generated by a finite automata and this implies a
"good" behaviour of the sequence. Recently, J.P. Allouche
observed that the sequence s(n?) mod m cannot be generated
by a finite automata. This result measures to some extent

the depth of the question whether s(nz) mod m has a density. .

H.L. MONTGOMERY:

x+§ 2
i. Let f£(x) = inf sup [¢ ] 2: e(nx) |® dx / card % ,
8 M x-3 nel

where 1 is an arbitrary finite set of integers. Saffari

has shown that ¢ = inf f(x) > O; he obtained the bound
x

¢ > lmax vy~ !'sin®y = 0.2306... . He also wrote that £(0) = 1

£(1/2) Z 1/2, £(1/3) = 1/3, 1im £(x)& 1/4. Thus ¢ ¢ 1/k4.
x21/2

We would like to know the value of ¢, and likewise the value

of f(x) for all x. .

Related to the above, let C(a) be the inf of those constants

. T .
Csuch that ¥ [Fae*™t|2accc [ | b et )% at
' -aT @ 2 . =7 n

whenever the )5J are real, and lanl< b~ for all n. Halééz,'
Wirsing and I have shown that 1¢C(a)< 2 for O cas 1/2,
2£C(a)e 3 for 1/2<a <1, 3<C(a)2h for 1< a £3/2, eee ,
and that lim C(a) = 1.

as ot
2. We wish to show that log 3 / log 2 is not a badl?

approximable number. That is, we wish to show that the

continued fraction coefficients of log 3/ 1og 2 are unbounded.

o®
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I suggest this problem because of the following possible
approach: Let M = {2a3b: a2>0, b2 O} , and write the members
of Mas 1= my<my< mg< eve o By Feldman’s theorem it can

be shown that mi(los ﬂli)-A e m - my < ini(log mi)-b, where

i+l
0 <p<1<A. It can also be shown that log 3/ log 2 is badly

. . _ - -1
approximable if and only if m, , - m; % mi(log mi) . We seek

i
. to receive a contradiction from this by constructing a ~
generating function for M, say I w™% = (1-275)"1(1-37%)71,
mé&M

. Note, however, that the elements of the set M" = {eanb
a20, 520, w= (1 +(5 )/2 are well spaced. Thus it is
important to make use of the additive structure of M, namely

that Mc Z.

J.L. NICOLAS:
P. Erdos asked for the following problem (Colloq. Math.
“t. 42, 1979, Problem 1162, p. 399): Denote by 1(x) the

2
that for all i,j,, a; + aj is never a square. Choosing

maximal length of a sequence O <a,<a <...<a1(x) 4 x such

a; = 3i - 2 proves 1l(x)2 x/3 because a; + aj = 2 mod 3.

. In the other way, considering the set (ai}ufﬂi]z - a;] gives
that 1(x) i%(i + o(1)). J.P. Massias (Univ. of Limoges) has
found in June 1980 that the two following sets of 11 numbers :
{1,5,9,13,14,17,21,25,29,30] vf10 or 26 { verify that mod 32

N ai'+ aj is never a square. So this proves, considering
the set of a’s congruent mod 32 to one of these 11 numbers

that 1(x) 2 u.. Odlyzko and Lagarias have a proof of the
_ 32 _ A
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following:

Theorem 1. Let N and 0< a1<...7<an< N such that a; + aj is o
never a square mod N, then né% N, so the counterexample |
of Massias is optimal.

Theorem 2. 1(x)2 0.46 x (1 + o(1}).

Problem : Compute 1im 1(x)/x ?

K. RAMACHANDRA: ‘
1. Let ai,az,... be a sequence ooi; complex numbers with
Z a  =x+ 0(1). Put £(s) = 2 :—1nn"'s , where s = ¢ + i‘t,
nsx n=1
0 »1. Then f(s) - (s=1)"! is regular in g >0. Let N(g,T) denote
kthe number of zeros p of f(s) counted with multiplicity
satisfying Ré p20c, | Im pIgT, where T 2 10. In a recent paper
published in Crelle ‘J‘. I proved that, for any constant §
with O ;6 <1/2, N(1/2 - 3§,T) > T log T. Improve this result
to N(1/2,T) > T log T.

bz 1 l+k

az,rz(z)=2 where a = t—, b = t 5, t

2. Let £,(z) = 2

being a fixed transcendental number, and 1 and k be:i._ng any

two natural numbers. It follows from a result of Siegel ‘

and Schneider which was rediscovered by me[that one at least |

of 'the six numbers fi(z), f2(z) , Wwith z = 1, tk, 2K . ‘

must be transcendental, i.e. one at least of the four numbers’ |
1 I+k 142k 143k ‘

2t ,2t 2 2 must be transcendental. Let A denote

n
the set of natural numbers n for which 2t is algebraic.
Then A cannot contain any arithmetic progression 1, 1l+k,

1+2k,1+3k of four terms and hence by Szemeredy s theorem

Deutsche
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1 = o(x). Improve this to O(xi-e) for some € 0.

I.Z. RUZSA:

To every §>0 an € >0 can be found with the following

property: If f is a real-valued additive arithmetic'al function,

satisfying £(n) ¢ [a,a+1] for all but ex numbers n ¢x, then
there is a decql_nposition of f.into two additive functions
£ =1£, +f, such that f,(n)e¢ [b,b+1+6] for all n<x and
lfz(n) - c]<¢ b for all but tx nsx with suitableA b and c.
Probably the existing methods enable us to solve this with
€ = 6K for some large constant K; it would be nicecto obtain

ad with some fixed a ) O.

€

G. TENENBAUM: Let f be a multiplicative function satisfying
|£(n)]¢1 for every positive integer n. Then Daboussi proved '

that A f(n)eZman = o{(x) for any real non rational g.
n<x

Under which conditions on the (positive) multiplicative

function f can one prove that, for every a ¢ R\ Q,

Z g(n)e2™on _ (I Jg(n)]) 2
n<x ne x

R. TIJDEMAN:

1. Let A and B denote monotonic increasing sequences of
aQ

positive integers. A = fan}h is said to have bounded gaps
9

if there exists a constant k such that a, . - a, ¢ k for

i+l i
all i. A - A =fd:d=a, - aj 358,64, 8> a

£
i j} is called

Forschungsgemeinschaft
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difference set of A, Is it true that for every sequence A
with d(a) > d there exists a sequence B with bounded gaps
such that B - BSA - A ?

2. Let B"J. = (b‘ji,bjz,...,bjm)e R™ for j = 1,...,k denote
vectors with the property that the origin is in the convex
hull of these vectors. Let lbjile 1 for all j and i. It is
true that for every positive integer ﬁ thére exist non-

negative integers rl,rz,i..,r with sum n such that

k

. ¢ i =
(*) | rb o+ eee + by ]£€m for i = 1,.4.,m.

Is it true that for every e¢>0 the upper bound in (*) can

1/2 + ¢

be replaced by .m for m sufficiently large? It can

be shown that the right-hand side of (*) cannot be replaced

by mi/z/‘h_

E. Heppner (Frankfurt)
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