
MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e r ich t 48/1980

Analytische Zahlentheorie

2.11. bis 8.11.1980

Vom 2. bis 8. November ~and·im Mathema~ischen Forschungs

insti~ut Oberwolfach unter Leitung der Herren Prof. Dr.

H.E'. Richer't (Ul.m) t Prof. Dr. W. Schwarz' (Frankfurt) und

Prof. Dr. E. Wirsing (U1m) eine Tagung über elementare und

ana1~ische Zah1entheorie statt. Die neue Rekordbetei1igung

von 70 Tei1nehmem aus 15 Ländern beweist das große Interesse

an dieser Tagung. Neben den 53 Vorträgen trugen z~eiche

Diskussionen sowie die schon zur Tradi"tion gewordene nProbl.em

sitzungu zum Ge~ingen der Tagung bei.

Vortragsauszüge

G.J. BABU: The Riemann hxpothesis and strong recurrence.

The speaker reports on some results recently obtained by

B. BAGCHI that relate the zero-free regions of the Riemann

zeta function to its gener~l asymptotic behaviour in the

criticai strip. The terminology used in stating the resu1ts,

as also the taols used in the proofs, are borrowed from

the~heories of topol.ogical dynamies and probabil.ity. He

requires aseries of'definitions in order to arrive at

the crucial notions of spectrum and strong recurrence.
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P.T. BATE}~: The arithmetic mean of the divisors o~ an

integer. The following theorems were obtained in arecent

paper of Bateman, Erdös, Pomerance, and Straus. In what

follows den) = ~ 1 and a(n) = ~ d •
dln din

I. The set o~ positive integers n for which o(n)/d(n) is

not -an integer has asymptotic density zero; in fact, if

N(x) denotes the number of such ~tegers not exceeding x,

we have N (x) x exp ( - (1 + 0 ( 1) ) 2J10 g ( 2)' Jlo g10 g (x )') •

II. If den) = n pCp and e is a positive real number,

e pld(n) [ßa]. Then the set of n for which
let (d (n) ) = TI p P

pld(n)

(d(n)B) devides a(n) has asymptotic density 1 if ß < 2,

1/2 if ß = 2, and 0 if ~ > 2.

•
111. ~ a(n)/d(n) = (1 + 0(1»

n~x

positive )...

A x
2

. for a certain
Jlog(x)

(~ + 0(1» x log x for a certainIV. 11 n I a (n) / d ( n) ~ x \

positive u.
V. The number of distinct rational numbers of the form

a(n)/d(n) not exceeding x is O(x (log xl-V) for a certain

positive v. A more complicated argument than that given in

the paper shows that v can be taken as any number less than

1 but not as 1 itself.

H.J. BENTZ: On a conjecture o~ Shanks.

"Conjecture: Let 1 1 be a quadratic' residue mod q, 1
2

a

non-residue mod q. Then there are nmore n primes E 1
2

mod q

than == 1 1 mod q.11 One notices that this formulation is not

very precise. To understand why, it is best to look at the

history of this' conjecture.

a) One sense of the "moren was given by Chebyshev. He

asserted (case q = 4) that (1) 1~ L (_1)(p-l)/2 e-p / x

X~oO p :> 2

= - m • From this one could deduce a preponderance of the
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-l.og2(p/x) l
log(p) e - ~ • This is also equivalent to

(2) - as they have shown - and theref'ore the anSlf'er is not

p =J mod 4 over those =1 mod 4. But (1) is very deep,

for it is full.y equivalent to an analogue of the Riemann

hypothesis, namely (2) L(s''Xl) 4 0 in Re(s) >1/2, 'Xl the

nonprLncipal. character mod 4, as was shown by Hardy,

Littlewood, and Landau.

b) A second case, whicp was investigated, is the following:

6(x) := TT
1

(X) - TT
3

(X) ~ 0, at least for x ~ x
O

• Here TT
j

(x)

is the number of primes not exceeding x, which are =j mod 4.
Al.though numerical. calculations show that. 6 is predominantly

negative, the assumption above is wrong. Hardy and Little

wood have proved that ~ is not bounded in either direction.

c) Knapowski and Turan have investigated this phenomenon

with a different weight-function: (3) lim r (_1)(P-l)/2
)C.~oo P ~ 2

known at present.

Let us now look at some numerical data. As already mentioned

the dif'ference ~ seems to be predominantly negative. Sign

changes are found to be very rare. For example: case q = 4:
first sign change of '"1 - TT

J
occurs at 26861 (calculated

by Leeeh, Wrench, and Shanks). case q = J: no sign change

was found up to 35000000 i.e. nt(x) n
2

(x) for x 35000000

(calcu1ated by myself); oase q = 8: nl - n
S

has its first

sign change at 588067889 (calculated by Hudson and Bays).

By ~hese(and other) data one is forced to look for a meaning

~ of these discrepancies. Now, I myse1f tried to work with

anot.her weight-function and got the fo11o'''ing results. 2

Theorem 1. (case q = J,4) lim r Xl(P) 10g(p) p-n e-(log(p» /x
lC,.-I).OO p .

= - 00 for all n in o!: a ~ 1/2 , 'Xl nonprincipa1 mod q.

Theorem 2.(case q = 8}. Let e(p,q,11 ,12) = 1 if P =1 1 mod q,

-1 if p S 1 2 mod q, 0 else; 1
1

quadr. residue, 1
2

quadr. 2

nonresidue. Then lim r e(p,8,l
l

,12) log(p) p-n e-(log(p» Ix
)t-lJ>DO p

= = - 0) for 0 ~ a ~ 1/2.
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Simil.arresults may be obtained for other moduli as weIl

(sometimes,however, on.l.y in a weaker :Corm, e.g. nthere is

at least one non-quadr. res. class, in whieh there are

more primes than in each of the quadr. res. ciasses n ).

The method :Cor these theorems uses explieit :Cormulas for

L-series. The resuits depend on the Ioeation o:C the nfirst"

zero of L(s,X) in the crirical strip. MOre precise, the

condition is "there i5 no zero in tIm s 16 IRe(s- 1/2) 1,
o 4:. Re s <; 1 f1. This is known to be true :Cor q" 25 by eaI

cu1ations of Davis, Hazeigrove, and Spira. A different

method was suggested by J. Pintz.

Theorem 3(Bentz,Pintz). If the above eondition is fuIfiI1ed

-Eor all L(s, 'X) mod q, q fix, then
"2

iim L e(p,q,l
t
,1

2
) 10g(p) p-a e-(log(p» /x

x..... p
o ~ a. :: 1/2. References: D.Shanks, Quadr. Residues and the

Distribution of Pr~es, Math. Tables and Aids to Camp.

1) (1959) 272-284. H.J.Bentz, Discrepancies <~ the Distribution

of Prime Numbers, to appear, H.J.Bentz,J.Pintz, Quadr.

Res. and the Distribution of Prime Numbers, MOnatsh. für

Math. (1980).

•
B.C.BERNDT: Chapter 5 of Ramanujan's Seeond Notebook.

Chapter 5 of Ramanujan's second natebook contains more

number theory ~han any other of the remaining 20 chapters.

The chapter contains 94 formulas or statements of theorems

MOst of the results are concerned with Bernoul1i numbers,

Euler numbers, Eulerian numbers, and the Riemann zeta

function. As one would expect, the majority of Ramanujan's

findings in these areas are not new. Ramanujan's published

papers on Bernoulli numbers and irregular numbers have

~heir genesis in this chapter. Chapter 5 also contains

some interesting theorems on differenee equations and an

in~riguing, but incorrect, power series identity involving

primes.
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H. DEUU~GE: On same subsets cf N whese characteristic

fU~ction is almost oeriodic B1 •

An arithmetic function f is said to be almost periodic

B1 (resp. limit-periodic Bi) if, for every positive e, there

exis~s a ~rigonometric polynomial P (resp. a periodic

ari~hmetic function P) such that

lim sup .1 L IP(n) - f(n) I ~ € •
x....,.oO x n x

1 1 -2m.ÄnIf f is a.p.B t then, for every real A, I~ L f(n) e
l(~Xn~ x

exis~s and is finite, = Cf(A) say. Of cause C~(A) depends

on1y upon the f'ractional part of A. The spectrum of f,

which we denote by Sp f, is the set 01' those A E [O,t[ for

which Cf(~) ~ O. If infinite it is denumerable. The Fourier

series 01' 1', which we denote by F
f

, is L Cr(A) e 2niAn •
AEsp. f

f is 1.p.B1 if and on1y if it is a.p.B i and' Sp f contains

only rational n~bers. Then each term of Ff(n) i5 of the
form Cf(h/q) e 2 TT:L(h/q)n, where q~lN, 1 ~h ~q, and (h,q) = 1.

We say that F:r(n) is a IIRamanujan series" if Cf(h/q) depends

on1y upon q, so that, by grouping together the terms

correspondLng to the same q, it may be written as ~ a c (n)
i. q q

wbere c (n) is Rarnanujan's sum. It i5 knOl~ that, if f is
q 1

real-valued and a.p.B_, then it has a limit distribution.

If 0f is the corresponding distribution fUnction, then for

each x where Oe is continuo~ the set of those n for which

C(n)< x has the natural density crf(x). In other w~rds the

:f\m.cti6n I of has 'the mean''':' va1ue O,&>(x')"; bere I (t) = 1x ~ x
if' t~< x and 0 else.

In arecent paper in the Proceedings of the Academy of Japan,

J. Mauclaire states the following result: Let f be a real

va1ued multiplicative function such that f(n) ~ 1 for every.
1n, and suppose f i5 l.p.B • Then for each x where 0f(x) is

continuous, Ix 0 f is I.PaS
1

and its Fourier series is a

Ramanujan series. As examples he quotes f(n) = n/~(n)
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and f(n) = o(n)/ne I prove ~he follow~g resu~t.

nU!orem i. Let~ f be a real-valued ar:ithmetic function'e

(1) If f is aePen 1 , then for each x where 0f is continuous

I 0 f i5 a.p.B1 ; (2) If f is 1.PeB1 , then for each f wherex
a

f
i5 continuous, Ixo f i5 lepeB t ; (J) If f is l.p.Sl

and if its Fourier series is a Ramanujan series, ~he for

each x for which 0f is continuous, Ixo f is l.p.B 1 and

its Fourier series is a Ramanujan series.

Exampl.es of (3): f such that 1: lf' (n) !n- t < - , where . e
f'(n) = ~ ~(d)f(n/d). In particular, f multiplicative

dln

such that 1: If(pr)_f(pr-l) lp-r '" cD (which includes the
p,r

~ctions quoted by Mauclaire). - Any real-valued multiplica~ive

functi.on which is a.p.B1 and has a non-zero mean· -value. -

Any real-valued additive function which is a.p.B1 •

I also prove another theorem which gives subsets of N

whose characteris~ic ~ction is l.p.B1 with a Fourier

series which is a Ramanujan series.

Theorem 2. Let f = F<D g, where g is a complex-valued

arithmetic function such ~hat I: n- 1 < 'lIO and F is
g(n)=FO

defined on geN), and bounded. f is 1.p.B1 and its Fourier

series is a Ramanujan series.

Corol1ary. Let g be a complex-valued arithmetic function

such that 1: n -1 <. 00 • If E is any subset of ~, then the
g(n)*O

characteristic fUnction of the set of those n for which gen) ~

E E is I.p.st ·and it5 Fourier series i8 a Ramanujan series. ~

In particular, if a is any element of g(~), the set of those

n for which gen) a has a natural density &a say. It i5

easy to see that L 5a = 1.

Examples: 1. f additive such that ~ p -1 ~ 00 2. f' such
f(p) ~(o)v p n

that f(n) = f(q ), where q = TI P
n n p 2 1n
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J.N. DESHOUILLERS: Additive number theory and integral

points on curves. The aim of the lecture was to underline

connection between the number of representations of"an

integer as a sUm of two elements from a given sequence

and the number of integral points on a curve.

Let P be a positive integer and denote by B(P) the class
(p) . + + .

of C -class funct10ns a: R ~R ,a(O) = 0, a(l) = 1,

a (p) > 0 ( p =:= 1 t ••• ,P). De f ine r
h

( t ) { (n1 t ••• ,~ ) I t =
a(n

1
) + •.•• + a(~)l , A = a- 1

•.

Theorem 1. Let Cl be in ]0, 1] and P > 0; one has (i) => (ii) .w9 (-i-ii)

(i) Va € ß(P) r
2
(t) <..<.. (A(t»o.

(ii) Ti f ~ ß(P) : 4f f n f x , f{n) f ,Nl«(!(l + (f' (t» 2 dt) a

(iii) V' a ~ B (p) ( \j P !: P (-1 )pAP ~ 0
0

) Z;> r 2 (t) <Co (A (t) ) Cl.

In the special case P = 2 sentences (i) and (iii) are

equivalent, and it is even possible, by a direct construction

to prove Theorem 2: In theorem 1, for P = 2, (i) and (ii)

hold with a. = 2/3 and implied"constant" (3/TT2 ) 1/3( 1+0 (1) ).,

and these are best possible.

The case P = J, in conjunction with a result by Swinnerton 

Dyer 1eads to Cor. l; For P ~ J, ~t) «z (A(t»J/5 + e:

Cor • 2. F 0 r P :? 3, r
h

( t) <'<l (A ( t) ) n - 7 /5 + €.

It is however impossible to go much further in this direction
(~) 1/2 yo (~)

Theorem J. -3 a €: B r
2
(t) = 0< (A(t» ); ~?3~a f. B:

. h-2
rh~t) = n«A(t» ).

E. FOUVRY: On the level of distribution of some sequences.

For a ~ 0 the ßombieri - Vinogradov theorem implies

L ITT(x;q,a) - :fXq~ I « x (log x)-A.
L 1/2 -€ "t"q _x
(q,a) = 1

The constant 1/2 has never been improved, and the purpose

of this lecture was to explain the construction of sequences

approaching the sequence of primes with a better constant.

Theorem A. Let z!: x 1/ BBJ and 1 ~ \a I ~ x, then. for any A:> 0

L 11/21
q~x

(q,a) = 1

r 1.
n~ x
TI := a mod q
p In ~ p "> 2

1 I: 1
(ö'("qT n ~ x

(n,q) = 1
P In ~ p ,. 2

1 <:< x (log ) -Ax •
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(-th~s 'theorem has been proved by H.· Iwaniec and the speaker)..

Le't us reca11 R* - hypothesis, conjectured by·C. Hooley:

For 1 ~ A2 - At ~ r , we have

L e (kS;lS) <<. (A
2

- At) 1/2 (k,r) 1/2 r e

Al< S <. A2
(s,r)=1

If ve have to s'tudy the level of distribution of the sequence

mn - a , where .m and n belong to par~icular sequences, we must

study

(E) L L L 1 1 L 1 I «i(qf
q ~ N1- e m< !rl n~N n~N

(q,a)=1 (m,q)=1 nf:P n~P

mn.: a mod q (n,q)=l

for M!: Nt ·1 =\a , ~ MN, and P c. N.

We proved the fol1owing:

Theorem B. On R*-hypothesis: If P satisfies, for (b,q)=l and

for u1 B,

L 1
nEP
n~ x

nE b mod q

1
q;rqr ~ 1 + O(x(log x)-B),

nEP
nfx

and if' N ~Ml/3 -:6~ 6
0
'>0, then (E) is true.

Theorem C. If' P is the sequence of primes, and if N~ M
10

/ 9 - ()~

then (E) is true.

The conditional theorem B gives the exponent 4/7 - e with the

op~~al choice of N and theorem C the exponent 10/19 - €.

3. FRIEDLANDER: Sifting short intervals.

Let g(x) denote a real-valued function tending to 00 with x.

Heath - Brown (1978) proved that f'or all y in [O,x] apart from a

set of' measure o(x), the interval (y,y+~(y) contains a P3'

where ~(y) = (log y)35 g (y) for arbitrary g as above. Wo1ke

(1980) proved a corresponding result f'ar P2 with ~(y) = (log y)A
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for a rather large value of A. We attempt, by sacrificing

the number of prime factors, to reduce the length of the

intervals.

Theorem. The corresponding resu1t h01ds for Pq with ~(y) =

( 10 g y)5 g ( y ) •

Remark. We are currently unable to further reduce the 1ength

of the interva1s even for Pr with large fixed r.

s.w. ~I: A c1ass of extremal f'unctions for the Fourier

transf'orm. Let A be a positive number, and define

[
00 -An le- An -'X,n 1

M
A
(x) (sin TtX) 2 I. p. L L ..k..- (= 0+ .

1lX n=O (x:..:~)2 n=1 x-n n=l x

Then MA(x) has the following properties:

(1) :tof)..(x) ~ e - A.x for x ~ 0,

(2) M).. (x) ~ 0 for x ~ 0,

"""(3) M1(t) 0 for It'~l,

A

(4) of all functions that satisfy (1), (2), and (3), Mi(O)

i.s minimal.

We gi~e some applications of this result. One application is

a generalization of thtWiener - Ikehara tauberian theorem.

Other applications involve generalizations of inequalities

usually proved by the large sieve. The results represent joint

'Work WithJD. VAALER.

G. GREAVES: Weighted sieves and their applications.

Last year in Durham I reported some results on the 1-dimensional

sieve problem. For simplic i ty suppose ~ f a ~ A
x

I d 'a 1= ~ + 0 (1 )

and write y = x(log x)-2. The results imply that if a< yg for

all a in Ax then: if g < R - 6
R

, then some a has at most R

prime factors. Here the (positive) numbers Ö
R

are defined

by a theorem leading to the following nurnerical approximations:

6
2

0.06373 ••• , ö
J

= 0.10000 ••• , Ö
R

-) 0.12482... as R-'> 00 •

I give same details how these approximations were obtained.
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The differen~ial - difference problem

d
ds(sT(S» + T(s+l) = 0 (Re s >öl, sTls)~l as 5-:>0,

has a solu~ion analytic in the half plane Re 5 > 0
00 -t

() f -sx (S e )T 5 = e - eA~ -)( -t- d t dx.

I needed approximations to T(l), T'(l), T"(l), ••• ,T(n)(l), ••••

I worked with the difference - differential equation rather than J

with the integrafrepresentation of its solution. We remove

successive singular~ties by setting 'O(s) = 1/s, T(s) = 1/s .~

- f
O

( 5 ), sV. ( 5) = J W· 1 (w+ 1) dw, I. (5) = V· (s) - f. 1 ( s) ;
J 0 J- J J J-

then dd (SI. (5» + f. (5+1) = *. (5+1) (Re 5)0 -j-1) 50 that
S J J J

T = 1110 - .1 + V~ - ••• in a sense we describe. The equation
for f. give5 sf n+l)(s) + (n+l)f~n)(s) + f~n)(s+l) = W~n)(s+l).

J J J J

Take s = O' and represent f~·n) (0) by its Taylor series about 1.
(n) (n) J .

Replace f. , ~. for n ') N by 0 and solve what is left (having
J J (n)

computed the W.(l». The error in the resulting estimate for f.
~ J

does not exceed (l/log 2)n ~; (Nj + 12)j (.~..S_g)N+1 ( -.;;> 0 as j 4 cN
J. + J

if N 11).

G. HALASZ: Distribution of additive and mean values of

multiplicative functions. A short introduction is given to

the probabilistic theory of additive function5. It is shown

how the characteristic function method leads to inve5tigating

mean values of multiplicative functions and for this an analytic

approach is scetched. Some applications, such as generalizat10n~

of a formula of Sathe - Erdös - Selberg concerning 1oca1 be

haviour of the number of prime divisors and large deviation

versions of the Erdös - Kac - Kubilius theorem are discussed.

E. HE~?NER: ~mltiplicative numbertheoretical functions in

several variables. At first the results of a joint paper

with \'1. Schwarz on "related" functions are generali.zed to

the case of several variables. Then, under some weak assumptions,
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it is shown that a multiplicative function in two variables

has a mean value different from zero if and only if the two

functions fl(n) = f(n,1) and f 2 (n) = f(l,n) have non zero

~ean values. (There is no difficulty in extending this result

to more than two variables.)

J. HINZ: Eine Anwendun3 der Selbers'schen Siebmethode in

a1gebraischen ZahUtörpern. Es sei K ein algebraischer Zahlkörper

über Q vom Grade n = r
1

+ 2r
2

(in der üblichen Bezeichnung).

Die n Konjugierten einer Zahl i;eK werden mit g(k), k = 1, ••• ,n,
bezeichnet. Eine Zahl·oo ~ K heißt prim, wenn das Hauptideal

(w) ein Primideal in K ist. Für die reellen Zahlen p 1 ~ 1, ••• ,

Pn~ 1 mit P = pt···Pn gelte Pk = Pk+ r für k = r t +l,oDD,r1+r 2 D

(k) 2 1w(k),
Ferner sei R = ~ ·w~K, w prim, w > 0 , k l, ••• ,r1 , I

~ P~ , k = 1, ••• , n J •
Satz. Es sei F(x,y) f K[x,y] ein von x und y abhängiges irreduzible~

Polynom vom Grade g 2. 1 mi t ganzen algebraischen Koeffizienten

und ohne festen Primteiler. Für ein Primideal ~ in K bezeichne

L(~) die Anzahl der ganzzahligen Lösungen mod ~ von F(a,ß)

=0 rnod ~ mit (n,~) - (ß,~) = 1. Es sei L(~) < (N~ - 1)2 für

alle Primideale ~ mit N\)!:. g+1. Dann gilt:

a) L L 1 ~ 2 Co (F , K) p 2/( 10 g p) J {1 + 0 ( 10$10 Pi .E. ) 1p ~ 3
w~R w'ER log P I

F( w, W"') prim

2 . 2 J
1 ~ 3' cO(F,K) p Ilog P , p 2 PO(F,K).b) L L

l'J~R w'~R

O(F(w,w'» ~g+l

Dabei ist cO(F,K) ei~e von F und K abhängige Konstante. O(a)

bedeutet die Anzahl der mit ihrer Vielfachheit gezählten Prim-

idealtei1er des Hauptideals (a).

Die untere Abschätzung stellt die Verallgemeinerung eines

Resultates von G. Greaves dar. Zum Beweis werden Ergebnisse

. von W. Schaal zum linearen Selbergsehen Sieb in algebraischen

Zahlkörpe~n für größere Anwendungsbereiche hergeleitet. Ferner

benötigt man eine geeignete Verallgemeinerung des Satzes von

Barban und Davenport - Halberstam auf Zahlkörper.
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K.-H. nmLEKOF~~: Some resu1-ts on the behaviour o~ additive

and mu1tip1icative fUnetions. In this ta1k the spaces La

:= {f: IN ~ 4:, 11 f: JI <: 00 I of arithmetica1 functions f '1/0(

with bounded (semi-> norm 1I"f" He( := (limsup x-
1 L I f'(n) I a. I

.x -") 00 n 1= x 0(

(a. 2:.1) resp. bounded (semi-) norm IJ"f"JI:= limsup x-i L If(n)1
a( )(~OQ n~x

(0 < o. ~ 1) are eonsidered. Def'ining the space L· of uniformly

swmnabl.e f'unc'tions by f e L· ;(:r> lim sup x-i L , f(n) I = 0 t
K~OO )(.?1 n : x .-

1f"(n)J~K •

the author gives a comp1ete characterization o~ additive

f'unctions fELa. (0.>0) and of" mu1tip1icative functions gE.L·.

"AB an application of these resu1ts the asymptotic bebaviour

of L f(n) (f additive E: L t ) and of .2:. gen) (g mu1"tiplicative
n~x n"~ x

EL· ) is described. Fur'thermore, additive and mu11:ipli"cative

~ctioDS which are a1most-periodic resp. aLmost-even, are

eomp1ete1y cbaracterized.

A.rvIC: On some probl.ems coneerning the number of non isomorphie

abe1ian groups o-r finite order. Several problems eoncerning

a(n), tbe number o-r non-isomorphie abe1iail groups with n

el.ements are diseussed. It is indicated how a resu1t o~ the

can be obtained by estimatestype L 1 = (~ + o(t»b
x <: n ~ x+h
a(n)=k

far the error term ~(1t2t2;xr in the asymptotic formu1a for

L 1. The best resu1t that I am able to ob'tain at present a..
k12m2~ x ..

is h ~xe,. e 0.3305 ••• by B.R. Srinivasan's method of two-

dimensiona1 exponent pairs.

Formu1as for the iterated ~unction a(a(n» are also derived,

e.g. 2:.. a(a(n» = Cx + 0 (x1 / 2 (1og x) ~).
n~x

The values o~ the ~etion a(n) ean be natural1y compared to

the va1ues o~ some other arithmetical functions such as den),

m(n), O(n) etc •• In the first case I can prove
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x 10$10g x <<:
log x 1

~.z.. apo (n) f ,,<. (K2 + IJN1+ € ) L I a I~ ,
N <n ~2N n Ja N < n ~ 2N n

H. IWANIEC: K100sterman sums in analy~ic number theory.

The Linnik - Selberg conjecture on average is proved. Let
hlO(Q) be the Hecke congruence subgroup, ~ = k ' (h,k)=1, klQ

be a cusp of lO(Q) and le~ p. (n) be the n-th Fourier -
. . Ja

Bessel expansion of Maasa wave u.(z) around a, i.e.
J

u.(o z) = fY L p. (n) K. -<ti (2TT'nly)e(nx)
J a. n*O Ja .. t

. -1where On 00 = a, aa ra. an G, rn - stabilizer of a in ro(Q)

and G - stabilizer of: co in PSL(2,Z). '!ben

Theorem 1. (Deshouillers and speaker) For K ~ 1, N ~ 1 and any

complex numbers we have

Z. eh ;~
~fK

~ = (k,Q/k)/Q •

An analogous result holds ~or Fourier coefficients of holomorphic

cusp forms. Theorem 1 and a·summation formula of Kusnietsov

and are used to prove the fol1owing result

(Deshouil1ers and speaker) Theorem 2. Let g(n,'m,c) be a

function of C2 class such that supp g(n,m,c) C[N,2N])([)f,ZM])([f!,2C]
'dP,+f~+P!

N.M.C ~ 1 and I iJ..";)../'J,!' g(n.m~e) I=N-P, M-P, C-Pl • 0 ~ P1P~3 ~ 2.

Le"t S(n,m,c) L • e(n!!·+ m2.) be K100sterman sum where
d mod c c c

dd E 1 mod c. Then for Q~ 1

Tbree applications of theorem 1 and theorem 2 were presented.

I) Let p be the greatest prime factor of n
2

+ 1 • Ii' e > 0
n . [5;. -f.

then there are infinitely many n such thax Pn~ n 1

II) Let d(n) be the number of positive divisors of n. Then

- 2 d(n)d(n+1) = xP(log x) + O(x1/ 2 + €) wher P is a quadratic
D='X

polynomial with leading coefficient 6/n2 •
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III) Let. T ~ 1 t 1 ~ N ~ T1/ 5 • For any complex numbers an we have
T

[1't(1/2 + it)t'~1 x... a n it /
2

dt «T1+e I.. ja 12 •
n ~ N n n: N n

M. JUTILA: On t.he mean value of L(t/2,X) for real characters.

Let ~<n) = <*) (Kronecker's symbol) and L(s,~) the

corresponding Dirichlet L-function. In arecent paper,

D. Goldfeld and C. Viola (J. Number Theory 11 (1979), 305-320)

conjectured aS)'1Dptotic f'ormulae f'or the sums !:L(t.~) • where _

d runs over t.he fundamental discriminants either in the interval .

(0,0] er in t.he interval [-D,O), and also formulae for similar

sums wit.h ~ replaced by the Legendre symbol (~), wit.h P =v

mod 4, v = 1 er 3. Such formulae, as weIl as an asymptotic

formula for t.he mean sqare of L(%t~)' are proved in a fort.h

coming paper of t.he author. The talk deals with result.s and

methods of this paper.

H.-J. KANOLD: Zur elementaren Abschätzung von n(x).

Wie üblich sei TT(X) = L.
P!;X

1; :für x ') 0 definieren wir "\c

n(x);og x M1t. elementaren Methoden werden für ~

Abschätzungen nach unten und nach oben hergeleitet. Die

Ergebnisse s~d in den fo1genden drei Sätzen formulier~.

Satz 1. Für 10 <: nE (N gi1t Tl.x? 'rl = 3~ log (69105 ) ~ 0,921292.

103(113)
Satz 2. Für reelles x >0 gilt "\c!: Tl113 = JO 113 < 1,255059

6T1x ~ 5" < 1, 10555 1.Satz 3. Es ist ,,~lim '"x=G
'lIt~oO ')(~-o

Diese Ergebnisse sind bekannt, aber die hier verwendeten

Beweise weichen von den bekannten ab, sie sind ohne Computer

nachzuv_o11ziehen und erfordern nur eine Primzahltabe1le, in

der die Primzahlen bis 380 000 angegeben sind. Die Untersuchungen

wurden in Zusammenarbeit mit Herrn Heiko Harborth und Herrn

Arnfried Kemnitz durchgeführt.
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I. KATAI: On arithmetical ~ctions define~~ some eXpansions
~

of integers. Let q ( >' 1) be a :fixed integer; N = U N
k

; N
k

be .
k:"1

sets of natural numbers, with the following property: for

every nonnegative integer there exists one and only one· k

and ~€~ such that: n == ~ mod qk ,~,"n. Set Nk =,~~l,
~ denotes the general element of Nk • If N is given ~o, then

every n has a wel1-defined decomposition: n =~ + 2 1[~ + •••
k 1 2

[~ +[2 V-1~] ••• ] • We cal1 a f'unction f(n) to be N-additive
v-1 v yen)

if i't can be written in the form (1) :ren) = L H(~. ,j J.
j=l J

1t is obvious that the N-additivity is a generalization of

the q-additivity that was introduced by A.O. Gelfond. There

are a lot of open questions concerning the distribution of

N-additive f'unctions. Assume that 1.. card(N1 )/ql =1 holds.

I guess that the conv~rgence of'
GO

(a) L
j=1

(b) L
j=1

is sufficient and necessary for the existence of a limit

distribution of :ren). I can prove that it is sufficient if

k-t
~:>q f"or all ~E N with a suitable t. If H(m,j) does

L 2knot. depend on j, and card(Nk)k /q <. 00 then

:ren) - a log n
al10g D! has ~he Gaussian l~it dis~ribution.

G. KOLESN:tK: On the order o~ ~~.

Le~ ~J(X) be the error ~erm in the asymptotic formu1a for

D
3
(x) = L 1. ehen proved that ~(x)« x;'5/11 + e. W'e

nmk~ x

iJDproved this resul. t to llJ (x)« x 1t3/96 + e. TIle result is

ob~ained by using the improved estimates of doub1e exponential

sums.

                                   
                                                                                                       ©



- 16 -

J. KUBn..I~:On an ine9r':l_alit! for additive arithme-tical functions.

Le~ f(m) be a real-valued strongly additive arithm~tical

func-tion. Deno'te

ilil
p

n

Z
m=l

In 1954 I proved that the inequality S (f)~ c n B2 (f) is truen n
wi-th some absolute constant c. The aim of this ta1k is to

evaluate the constan-t c. Let Tn = sup S (f)/(nB 2 (f» •
n n

Then the inequa1ities 1.5 + 0(1)~ Tn~1 + VTk-1 + 0(1) ~
ho1d .. f'or a11 even positive k's. Here T

k
f. _.) dU1···d~

O L.~"~.., u1···~- ~
~. ·v-i+t 'k

1

4t.,1'··-; 1oC,1)

For k = 2,3,6,8 Tk = C(k). Hence it follows -that Tn ~ 1.502•••

+ 0(1). I guess that Tk = ,(k) for all even positive k's.

l::f':-1:his is true then lim 'fn = 1.5. Similar results are true

Cor arbitrary complex-valued additive functions.

D. LEITMANN: On the pr~e number theorem of Pjateckij

In 1953 Pjateckij - Shapiro proved his famous theorem

Sbap'iro.

L 1
pfx

p:::[n7,ne N

SV/(log x) (y = 1/c) for 1 <: c <12/11.

z... A(n) e 2tt.in 'Yk

nfN

The range for those c for whi~h this asymptotic relation holds

was widened to 1 < c < 10/9 by Ko1esnik in '1967. Now the upper

bound of this interval can be improved to 69/62. This is an

~edia~e corol1ary of the following

Theorem. O~y<l, lfk5:N1- Ylog2N. Then

.e

The proof depends on the fol1owing too1s: 1. Vaughan's iden~ity,

2. Ko1esnik's estimate for ~ L

J. Es'timation of L

x ~ X yf"~ Y
xy~ Ny

e2TTi'T1" ('Tl >0) by iteration
x<. x' X'~ 2X

o~ van der Corput's methode
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M.-C. LIU: Some results in Diophantine approx~ation.

Let A. , j 1, ••• ,8, be any non-zero real numbers such
J

that not a~l A. are o€ the same sign and not all ratios
J

lj/~ are rational. In this taLk the following resu1t

by M.C. LIU, S.M. NG, and K.M. TSANG is given.

:I:C T\, .0 are any real numbers with 0 < a < )/70 then the
8

inequality I" + L.. l.n~ I< (max n.)-a has infinitely
j=l J J 1~j~8 J

many solutions in positive integers n .• The result
J

gives a better error term 'than an estimate in (H.Davenport.

and K.F. Ro~h, Mathematika 1955).

J. LOXTON: Xrregu1arities of distribution.

Let z1,z2'... be an infinite sequence of points on

the unit circ1e and set fn(z) --A- (z-z.) and A =
j=l J n

sup 10glfn (z)I. Erdös asked whether it is possible to
Izr=1

find a sequence so that An is bounded. Last year, Wagner

showed that this is impossible and, in f"ac~, An ~"> loglog n

infinite1y of"ten, for any sequence of points. Wagner

obtained bis resu1t by adapting the method used by

Schmidt in his work on irregu1arities 01" distribution

~or sequences 01" points in the unit in~erval. Halasz

has receD~1y shown hoy to obtain Schmid~'s res~ts

by a modif'ication of the earlier work of Ro-th. ~The

same idea can be used to discuss the po1ynomia1 dis

crepancy and yields A '» (log n) l-e infini-tely often,
n

for any e :>O.The bes't possib1e lower bound woul.d be

An>~1og n infinite1y oftenj indeed, it is probably

'true that An ">"> l.og n for a1most a11 n.

L. LUCHT: Natural. bounderies of power series with

multiplicative coefficients. Denote by K the set of

mu1tiplicative functions ~: N ~C with the fol1owing

properties:
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a) There erists a constant s = sf~ C with a ~Re s 2. 0

and a slowly oscilating funci:ion L such that for each

qG IN there is a constant c q with

[

(e +0 (1) )xsL(x) if' -x.=~ mod q
L f(n)-x.(n) - q (x ~ 00),

n !: x - 0 (xer, L (x) J ) if' n -xo mod q

~running through the charac-ters mod q, and ~ denoting

the pr~cipa1 character mod q.

b) There is a q* EIN with c q * =t o.
L :C( v)

c) For each prime p there is an. E::> 0 such tha t 1v er-e)vz 2 p .

d) The l~it 1~ xSL(x) does not exist.
x~-o

The multiplicai:ive func-tions investigated by Wirsing,

by Halasz, and by El1iott substantial1y belong to the

set K. This is also true f'or suitable convolution products

of these fUnctions.'The following theorem answers (to

a certain extend) a question posed by W. Schwarz at

the Oberwolf'ach Meeting in Number Theory, 1978.

Theorem. Let f e: K, s = sf'.Then the :f'ollowing assertions

are equivalent.
00 n

A) L f(n)z has the uni1: circle tz I 1 as a natural
n=1

boundery.
ßB) 'Ibere are inf'initely many primesßE~wers p (ß EN)

such that 2: f(e:> • ~(;) f~E_1)~
v ~cß p P

M. MENDES FRANCE: Integral geometry and uniform dis~ribution

~. Let r be a bounded plane curve of length trI.
Le~ D be a 1ine and N(D) = card(Dnr). ~en D runs through

the set 0 of straight lines which intersect r, the

average (expectation) of the number of intersection

points is E(N) = )" N(D) d'D / 5 dD •
o 0

Theorem (Steinbaus). Let K be the convex hull of"r and

let I () K' be the length of the boundery of K. Then

E(N) = 2rr'/ldK\ •
Suppose now that r is a curve of infinite length. For

every t > 0, def"ine r t as the beginning portion of r of

length t. The average number of intersection points
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of D with r~ is E(Nt ).

De~inition. r is said to be super~icial if lim E(Nt ) =
t~eQ

Let u = (u1 ,u2 , ••• ) be a sequenee of real numbers. Put wO= 0,
n-1 2.

w = I- e m.~ and consider the infinite polygonal. line
n k=O

the summi~s of whieh are wO,w1 , •••• Call r(u) the polygonal

line.

Theorem. The sequence u is uniformly distributed mod 1 if

and only if the curves r(u), r(2u), ••• are all superficial.

The proof uses Steinbaus' result. The above result is part

oe joint work in progress with M. DEKKING.

H. MÖLLER: Fundamental units of real quadratic fields.

Let K be areal quadratic field. A number y of K with con

jugat.e y' is called reduced if Y ~ 1 and -1 '" y' ,,0. If y

is reduced, then the continued ~raction algorithm Y -:,. (y _ [y])-1

generates a purely periodic sequence of reduced numbers of K.

Theorem. The product of all numbers in the primitive period of

any reduced number of K equals the fundamental unit of K.

As a consequence we get the fol1owing result, where X is the

character and 0 the discriminant of·K

CliC' [fD] [e'lf) +b) /2]
(fö +b)L ~ 2

10' 2: ~ log
n=l

n
b 1 [W -b] 2a

b= D mod 2 a= -2- +1

2
, D-b

a q-

H.L. MONTGOMERY: TIle error term in the prime number theorem.

We assume the Riemann hypo thesis , "and enquire about the gap

be~een the two estimates ,(x) = x + O(X
1 / 21og2x), ,(x) - x

1/2= 0x(x logloglog x). In proving the 0 estimate, Littlewood

used Dirich1et's theorem, which is a tool of homogeneous

Diophantine approximation, to attack ~ non-homogeneous question.
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B1s par~ia1 success was due ~o the ~ac~ tha~ the prob1em

i:s almosthomogei1eous. One cou1-d· obtain a sharper resu1t

from a strang quan~itative form o~ Kronecker's theorem,

provided tha~ we bad good information concerning linear

forms in "the imaginary parts Y o~ the zeros of the zeta

func~ion. We formu1ate the fol1owing

CoDjec'ture 1. Fo,r every e > 0 and' every K >0 there >. is a

TO(K,e) such ~hat if T~TO(K,E:) then I 2- k y Y I~ exp(_T1
+€)

o <. y~ T

1Ihenev~r the k y are integers, not a11 0, such that /kyl ~ K.

Prom conjec1:ure 1 and RH ve can deduce that

are
N

Leama. Let bey) = L c n cos(21T( ~Y+Pn» where the c
n=1 n

In the proof ve use the fo11owing .lemma which is .of independent

iD:terest.

DOu-negatiTe rea1 numbers, the An and Pn are real.. Suppose

t.ha~ '11 .k n~ I ~ () lI'henever the kn are integers. not a~~ O.

wi:th I k n I ~ R. Then in any in~erva1 [atb] of .length 2. Rio,
N

'there is a y for which h(y) ~ (1 - 5IR) E. C n •
n=1

OB tbe basis of these and other probabi1istic resu1ts, I am

1ed 'to f'ormu1ate

CoDjec'ture 2. r- tex) - x·

-:! x 1 / 2 (1og1og1og x)2

H. NAIR: On dis~inct va1ues of the divisor ~ction.

Le~ D(x) be'the number of distinct values assumed by the

divisor fUnc'tion den) for 1 f n ~ x. P. Erdös and L.Mirsky

(1952) es~~a'ted D(x) by studyind a related function B(x)

and showed that B(x) -D(x). The actua1 asymptotic formu1ae

for ei~her fUnction is still unknown. Write E(x) = D(x) - Sex).

Erdös and Mirsky proved ~hat E(x) "> c 1 loglog1og x. This was

improved by Shiu (1978) to E(x»Io exp(c
2
(loglog x) 1/3/1og1og1og x).

Ve have now managed to show tha't E(x) ." exp(CJ(log x) 1/2/1og10gx) ...

which is best possible apart from the va1ue of c
J

• (Joint

work with P. SHIU)
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W. NARKIEWCZ: Distributions of va1ues of mu1tip1icative

functions in residue c1asses. A runction f(n) (integer 

va1ued) is ca11ed WUD (mod N) (weakly.unifo~y distributed

(mod N» provided for a11 j1,j2 with (j1,N)=(j2,N)=; one

has #1 n ~ x: f(n) - j1 (mod N)}

#i n!: x: f{n) == j2 (mod N) 3 -") 1.

Theorem. Let f be mu1tip1ic~ive, integer-va1ued and 1et

f(p) = V(p) (V E- ~[X]) for a11 primes p. If V = cW
d

(d ~ 2,e W~ ::iI [X]) 1:hen 1:here exists a f'ini1:e and ef'f'ec1:ive1y de1:erminab1e

set E of primes such that if N has no prime factors from E,
then f is WUD (mod N).

Coro~lary. I~ f is as above, then it is WUD (mod p) for every

prime p~>1. ('Ibis answers a question of Erdös.)

~.L. NICOLAS: Bi! values of arithmetic fUnctions.

Let Pk be the k-th prime, e(x) = L 10g p and ~ - 2-)- ••.• -Pk '
p~x

so that S(Pk) = log Nk. In Math. of Comp. 29, 1975, B. Rosser

and L. Schönfe~d announce4 as a resu1t of their extended

computations that they can prove 9(Pk) ~ k 1.og k for k ~ 13.

Actually this resu1t does depend only on Chebycbev's resu1t

rr(x) ~x/log x t because it follows from

O(P
k

) = }k 1og"x d(~(x» = k 10g P
k

- jk (~(x)/x) dx tha1:
2 2

(.) n(x) .::::: 'xl 10g x ~ e(Pk ) = k(10g k + 10g1og k + 0(1».

It is wel.~ known 'tha't the maxima1 order of wen) = L.. 1 is
p\n

l.og n/~og1og n. As Nk is the sma11est integer such ~hat

ta(Nk ) =.k , 'the maxima1 orde:r of: m is given by es'timating

w(~) = k in terms of 10g Nk =. S(Pk )'. So, using (.), G. Robin

(Univ. o~ L~oges) proves 'the fo11owing inequa1ities, witb

1 =. log n, 1 2 = ~oglog n

(1) 'v n ~ 3, wen) ~ 1.38 1/12 with equali'ty for n = N
9

(2) b' n ~ J t w(n)': (1 + 1.46/12 ) (1/1
2

) with equality for n=N
47

(3) \In ~267exp(.exp(1.17», wen) ~ 1/(12 - 1.17) with equality

for n = N1B9 •
This 1ast inequa1i'ty improves a resu1t of Norton (Mem. of the
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A.M.S. n° 106). Using sharper estimates than (*) given by

ROBser and Schönfeld, G. Robin proves a1so that if f(n)

w(n)~~:1~g n • 1:hen :f(N
k

) is decreasing :for k ~ 9. This

proper~y is eq~iva1en~ ~o n(x)1og x - Sex) > e(x)/(1og x - 1)

for x ~ 9 and implies (4) V n ~ J, wen) =(1 + 1/12 + 2.9/1~) (1/1 2 )

with equa1ity 'Cor n = N4~2. The same work can be done re

placing w(n) by log den) / loS 2 , and inequalities 1,2,3,4
are obtai.ned with other constants. The numbers Nk have to

be replaced by the so called superior high1y composite

numbers N of Ramanujan. Such a number maximises the function

n~d(n)/n~ and has a parametrie represen"tation in terms oe
x = 2 1/ e• It is possible to extend these results to other

additive ~ctions f such that f(pa) = g(a) does no"t depend

on p but only on a.

Let o(n) be tbe sum of the divisors of n. We have o(n)/n ~

n/~(n) where ~ is Euler-s funct~on. G. Rob~ deduces

(5) y n~), .a(n)/n =e V1
2

+ 0.65/12 with equality for

n = 12 (y Euler's constant) !rom a similar inequali~y

~or n/~(n) given by Rosser and Schönfeld and !rom ~he

behaviour of the colossally abundan~ numbers (which maximises

a(n)/n1+€). Rosser and Schönfeld asked whether. n/~(n)

e Vlog1og n for all but a finite number o~ n-s. I think that

I have proved during this stay, with the help of H.L.

MDntgomery that this property is equivalent to Riemann's

hypothesis.

H. NIEDERREITER: Complete mappings and eguations over f~ite

fields. This talk is about a class of mappings on finite

fie1ds that arise from combinatorics and nonassociative

alg~bra and lead to interesting connections with the Stepanov 

Schmidt method for equations over finite fields. A bijection

e: lFq -') lFq is cal1ed a complete mapping if C \4 e( c) + c

is also a bijection. Since every mapping from a finite

field into itself is represented by a polynomial, we can
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also speak more conveniently of a complete mapping polynomial

(c.m.p.). Note that fex) ~ 1F [x] is a c.m.p. <-=) fex) and
q

fex) + x are permutation polynomials (p.p.). For monomials,

we have the f"o11owing: to fixed k ~ 1 ::J inf. many q such

that xk is p.p. of F • The study of whicb binomials are
q

p.p.'s or c.m.p.'s leads to certain absolutely irreducib1e

equations over IF • W.l.o.g., assume k > 2.
q

Theorem 1. Let k > 2. Then (i) if k is not a prime power,

then V ~q with q ~(k2 - 2k + 2)2 there is DO p.p. of Wq
of form axk

+ bx with ab • 0; (ii) if k = pt, then V ~
q

with q~(k2 2k + 2)2, char tFq 4= Pt 1:here is na p.p. of F q
of" form ax

k
+ bx ~th ab f O.

Coro11ary. If k and q are as in Tb. 1, then there is no c.m.p.

of F of form axk + bx with a 4 O.
q

More genera11y, one can study ~he question of finding p.p. s

of tF of the form axk + bx j with ab ~ 0, 1!:: j < k. If k may

depe:d on q, then ve can find c.m.p.'s of form axk
+ bx for

:inf. many \Fq , even when k is not apower of char lFq • Using

a Wei1 estimate for quadratic character sums, ODe shows

the fo11owing

Theorem 2. Let q be odd. Then N = eard f b E:. [F : x(Q+1)/2 + bx

is c.m.p. of lF \ satisfies N ~ q.l4 - 5/2 _<5/4)q1/2 if
q

char lFq > :3, and for char Fq :3 we have N = (q-9) /lf: i:f

q E 1 mod 4 t N = (q-J)/4 if q =:3 mod 4.
- , (q+1)/2

Corol.lary. C.m.p. S of form x. + bx exist exact1y

for a11 odd q~1) and q = 7.

B. NoVAK: Lattice points in manY-dimensional e11ipsoids.

Let Q(u
j

) = Q(u
1

, ••• ,u
r

), r:>q., be a positive definite

quadratic form wi~h a symmetrie integral coefficient matrix.

Let a
1
,a2 , ••• ,Or be real numbers. Let us put

2TTi I:. a·m .
~ j=l J J
L- e , where the summation runs over

a11 systems m
1

,m
2

, ••• ,mr of integers such that Q(m
j

) = n.

For the sequence an an asymptotic formula can be derived
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(invo1ving Bessel's func~ion, Kloos~erman and Gaussian sums)

-ri-th remainder ~erm O(nr/lJ. - 1/4 + .E:).For the exactorder

f of an" the following inequalities hold: r/2 - 1 -r/(4"(y+l»

~ f.= max(r/2 - 1 - (r-l) /(4( y+1», r/4 - 1/4), where y

~s ~he supremum of all ß ~or which the inequality

k~ max 11 a.k 11 <-:: 1 has infini.tely many s,ol.utions.
J

J. PINTZ: On Heilbronn's triangle problem.

Le't P 1 ,P2' ••• ,Pn be a dis'tribu'tion of n poin'ts (where n ~ J) e
in a closed disc of UDit area such that the minimum of

areas of the triangles P.P.Pk (taken over a11 selections
].. J

of three out of n points) assumes i~s maximum possible

vaIue 6(n). Heilbronn conjectured over 30 years ago 6(n)«

n- 2 • It was proved by P. Erdös i.n 1950 that ~(n) ~> n- 2 •

K.F. Roth proved the first non-trivial estimate 6(n) «
n- 1 (loglog n)-1/2 in the same year. About ~wen~y years

Ia1:er this was improved by W.M. Schmid~ to ~(n)« n-~(log n)-1/2

makjng use of a different methode Soon after this, using

an en1:irel.y nev method Ro~h_proved "A(n) ~ n -lJ+€ with ~ =

2 - 2/{5 = 1.105 ••• and somewhat la~er he refined his method

~ yiel.d to ~ = (17 - {65)/8 = 1.117•••• Very recently

~he foI1owing theorem was proved in a joint work with

J. KOMLOs and E. SZEME~DY:

-2 -8/7.~'Iheorem. e
1

n logn ~ 6(n) 5: n exp(c
2 Ylog.n)

wi~h exp1icitly calcu1abl.e positiv absolute constants cl

and c
2

•

The upper bound was achieved by a fur'ther refinemen't of 'the ~
me~hod of Ro~h, the lower bound - which disproves Heilbronn's

conjecture - by combinatorical methods.

s. PORUBSK!: On Voronoi's congruence.

The fo1lowing extension of Voronoi's congruence involving

Bernou11i numbers Bk (in the even index notation) is proved

via non-archimedean Bernoul1i distributions:
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2k B2k
(c - 1) 2it

4·N B
2k

_4

mod N2 f'or k 2 4 and

N-l 2
~ c 2k- 2 N L X2k-2[CX]

2 x=1 N

c 2k+ 1_1 C2k- 1 (C_1) (2c+) (2k) J
2 NB2k + 12 2 N B 2k_ 2

2k N-1 2k[ ] N-1 fc: 2
;: c L x :X - kC

2k
-

1
N I.. X2k

-
2 LRX] mod N

2 for
x=1 x=l

k ~ 3, where N is a posit.ive integer and c a rationa~ number

prime to N ([x] s'tands rf"or the greatest integer in'x).

K. RAMACBANDRA: Same problems o'f" ana.lytic number theory.

X give abrief report of the work done in col1oboration

. rith R. BALASUBRAMANIAN. Bere I combine "to a specia~ case

of more genera1 res~ts whieh wi11 appear in Hardy - Ramanujan
00 ~

Journal 4: (1981). Let F(s) = TT eCks) = L ann-
s

• F(s) is
k=1 n=1

1 " f
2ni 218 - 1 \=1- 101

max (E(x)/(x1/ 10exp«1/20)(10g x/1og1og x)1/2»t
a !: X.~ b

A(x)

M(a,b)

def'ined by 'the series in a> 1. But it can be cont.inued

ana1ytica11y in C1" 0. It is regu.1ar except at. simp1e po1es

at ~ = 1, 1/2, 1/3, •••• It may be remarked that a = 0

~ is a natura1 boundery for F(s). Put A(x) = L an'
n~x

F(s) X
S

5-
1 ds + E(x) ,

Where 0< a< b, m(a,b) min (E(x)/{x1 / 10exp«1/20) (1og x
a ~ x~ b

/1ogl.og x) 1/2», and lJ(a,b) = max . (I E(x)' x- 1/ 6 ).a= x=b

Then we prove the following theorem

'Ibeorem. For a11 y ~ 100, we' have

M(eY,e100Oy) ~ 10-80°, m(eY,e100Oy) < _10-80°, and

( y 100Oy) > 10-800
~ e ,e •
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The resul1: on ,..,. follows from some work st.ar1:ing from our
1 2T 2

result T f I F (1/6 + i 1:) I dt. >::> T log T and 'the o1:-her two
T

resul1:s follow f'rom some work star1:ing from- our earlier

result 'that max I F(1/10 + it)/> T exp«)/S) (log TI
T~t~2T

loglog T)1/2) for all T.

R.A. RANKIN: Recent work on modu1ar f'orms.

The fo~~owing topics were discussed: ~

(i) Newforms. The work of A'tkins and Lehner (Ma'th. Ann.

185 (1970), 134 - 160) and Li (ibid. 212 (1975» extending

earlier work of E. Hecke and M. Petersson and so showing

that the space of cuspforms fro(N),ktXlo ' with old form removed

has an orthogonal basis of newforms thai: are eigenforms for

all the Hecke operators Tn was briefly discribed.

(ii) Order of Fourier coefficients. Deligne's work has

proved 'th.t for a cuspform coefficient a = O(n(k-1)/2 + €),

or fOT a newform coefficient IA(P)'~2p(k~1)/2but other

problems remain, such as the correct order of T(n) = 2: alm)
m~ n

which is O(nk / 2 - 1/6 + €) but not O{nk / 2 - 1/4). Results

of H. Joris (Mathematika 22 (1975), 12 - 19) mentioned.

(iii) Divisibi1i~y properties. Work of Swinnerton - Dyer

and Serre. Results holding for all, and aLmost a11 n.

lv) Poincare series. Identical vanishing and non-vanishing

öf ~(z,tD) = ~. L e 2TTimTz
(cz+d)-k for m > O. Distribution

e,d

of zeros for m ~ 7'(N and for Poincare series of more genera1

type.

A. REICH: Large values of zeta-functions.

In the case of the Riemann zeta-fUnction f(s) = C(s) (also

for arbitrary L-series or the Dedekind zeta-function 'K(s)

of an algebraic number field K) We give an answer to the

question, how often the ~unction assumes large values on
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infinite arithmetical progressions Ln the critical. strip:

Let be a > 1/2, R.,. 0, 6.:> 0, L = L( f t 0, 6,R) = { nEIN : J f( o+iAn) I
> R 1, and denote by ..2 (L) = 1im ~ card{n : n ~ L j the lover

asymptotic density of. L. For 0 > 1 one has the trivial

relation L = fiI for R:> RO' but in the critical strip the

following holds (for example fes) C(s»
Theorem. For any 1:1 > 0, and any disc D c f s € ~ : 1/2<: Re s < 1 },

any h010morphic g: D~t: without zeros, any € >0 the re1ation

!!!!!. 4card 1n E- rN : s up If ( s +i D.n) - g (s ) , < e J> 0 ho l.ds •

A similar property fäDshown for Dedekind's 'K(S) (to be

published in Arch. d. Math.). Therefore one has ~ediatel.y

the ·Coro11ary. If 1/2 <. a< 1 then ..e(L) > O.

To get an uniform upper estimate for many 1:1 > 0 i t is shown

Theorem. There exists a countable (exceptional ) set A ~ a+

such that for 0 > 1/2, 6. .. At 1im ~ d!:- I f( o+i6n) 12

N-l>eoo n=1

= lim .!.
T~-:a T

T
5 If(o+it)I 2 dt hol.ds.
o

This leads to the
-2Corol1ary. j>(L) ~ R

and all a >1/2.

I-
n=1

n-20 holds for all !:l 'R+ ....... A

G.J. RIEGER: Circles, triansles, and spheres of Ford.

For every rational number h/k (reduced) deno~e by C(h/k)

~he open circular disc (= Ford circ1e) in the cartesian plane

x,y wi~h cen~er h/k,1/{2k 2 ) and radius 1/(2k2 ). Any

~wo different circ1es are disjoint; ~hey have a point o~

contact if and only if ~hey belong to neighbors in a sui~ab1e

Farey sequence.Fn • The neighbors and this point of contact

form a right triangl.es. Given Fn , we deno~e by Ln the length

of the polygon joining 0 and 1 al.ong the lags of these

triangles. Theorem 1. There exists areal number C with
. 2

1 C ( 1.28••• ) 2 and Ln = C + O(1og n/n}.

A simi1ar result hol.ds if the legs are replaced by the

corresponding ares on the Ford circles._Also, remarks are
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made abou~ ~he generaliza~ions ~o Q(~) (see Crelle J031

304, 1978) and a model i presented made ou~ of wood.

I.Z. RUZSA: Additive fUnc~ions and randem variables.

Let f be an additive func~ion and let ~ (p prime) be

independen~ random variables wi~h the distribution P(~

=r(pk» = (1 - 1/p)p-k. Heuristical1y we expect tha~ the

distribution of f on the interval [1,x] is more or less

similar to that of the random variables '11x = L ~

p=x e
many celebrated theorems (e.g. Erdös and Wintner's), though

s~ated in other terms, correspond to this principle. Among

others, we prove the following theorem. Let F be a non

negative-valued .increasing function defined on [o,~) ,
f a rea~-valued additive ~ction and M areal number. We

bave ~ .f F(\f(n) - MI) ~ c E(F(J 1'1'1 - MI» • where En_ Je ·x

denotes expectation and c is an absolute constant. For

F(x) x 2 this reduces to the Turan - Kubilius inequality,

F(x) x a has been recently proved by Elliott. Some results

can be obtained for functions with values in a topological

group G, e.g.· I can solve the probl.em of' existence. of' a

1~ting distribu~ian when G is 1.0cal1y compac~.

B. SAFFARI: An extremal problem :rar exponential sums.

Let I be a sub-interval of' [0,1] of' length II t '> 0 and

whose interior does not contain the mid-point 1/2 of' [0,1]. •

The prob1em is to determine C = sup {If(x) I 2 dx / Slf(x) 1
2

dx
f' I 0

.bere the supremum is taken over the sums of exponentials
i..

of the form f'(x) = L exp(2TTi~x) where n
1

, ••• ,n are
k=1 q

arbitrary distinct integers. This problem arose out of a

functional analysis paper nWeak restricted and very restricted

operators on L 2
n by J.M. Ash (ta appear). Since lf(l-x) I

I f(x)', it follows that C f 1/2. Also, an old result of

Halasz - ~IDntgomery shows that, at least for same intervals
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-2 . 4a. sJ.n a.

X, one has C ~ 1/4. On the other hand Ash bad proved, as a

corollary to his paper, the yery in'teresting result C~ Co

where Co is an absolu'te (ineffective) positive constant.

PiChorides proposed an elementary argument to show that

Co can be made e~fective (cf. appendix to Ash's paper).

Ref'inements of "this idea lead at least to C ~ (2/".2) max
0.>0

> 1/10. This lower bound can be improved by the same methode

Several people suggested-other methods.

1 -and cp(c)

1L
ai:'U

lJ'a~'O~uc

(1) . l
a>O, \0. Ifx,l=l, ••• ,u I' B
1
( (1)( t / ( 1-t» d t /t , 1 ~ c "> O.
c

relation

H. SARGES: Least guadratic non-residues in algebraic number

fields. (joint work with w. SeEAAL) Let v denote a positive-p
in~eger of an algebraic number ~ield K such that v is a

"leas~ quadratic non-residue module a prime ideal l' of K,

leas~ in the sense that N(v ) is minimal. Then the following
l'

generalizatioD of' LiDn1k's result is shown:

For x ~2 and E:'">O "f-p I'N-p'!:x and N(v )}. N-pE:l1 = 0 (loglog x).
b E:

'Ibe proof requires tbe large sieve i.n'number fi.elds ärtd the

~(c)Bxu + O(xu /log x) wbere U = f a 1

J.P. SERRE: Selbers upper bound sieve.

'Ibis well known upper bound has nothing "to do vith prime

~ numbers. It ~s a pure1y combinatorial statement on sets

from ..hieb one removes subsets. Two applications were

given. One, to abelian finite group, fro~ which some classes

modu1o subgroups Are sifted. Another one, to questions as:

hoY many p's, with p~x, are such that the Ramanujan T f'unction,

eva1uated at p, is a square?
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H.P. SCHLICKEWEI: An ex~ension of a result of Senge and Straus.

Generalizing ·a resu! t of Ho.G•.Senge and E. G. Straus we

show the fol1owing

Theorem. Let e
1

, ••• ,8
s

be natural numbers. Then the number

o~ integral s-tuples (n1 , ••• ,ns ) satisfying 01+ ••• +n5=0,

where for each i ni·has a sum of digits in base Si which

lies below a fixed bound Mt is finite if and only if for any

pair i * j (1 =i,j ~ s) log e. flog e. ~ ~.
]. J

The proof of this theorem uses essentially the author's

p-adic genera1ization of W.M. Schmidt's subspace theorem ~

concerning the approximation of algebraic numbers by rationals.

J. SCHOISSENGEIER: Zeta-fUnction and sequences of primes mod a.

Let g (x) f. JR[x] f lim g (x) = 00 and m = deg g (x). Define
x~cO

p(x) = i g(xe-ni/ 2m ) and q(x) = x(xp'(x»'. Let w(z) be a

holomorphic function such that eW(Z)p'(ew(z» = z if Re Z e
(0,1) and if Im z '> K, K large enough. Chose Im w(z) such that

I Im w(z) - rr/2m/~ rr/m. Then w(z) is determined uniquely.

The fol1owing theorem is valid

Theorem 1. Let h ~ 1. There exists a K > 0 (depending only

on g) such that if N4-o L A(n) e-ihg(n) =
n~N

_ 12n/h I.. ePW(p/h)-hP(ew(P/h) )-in p/2m
q

(ew (p/h) )-1/2

Kh =y =hNg' (N)

+ O(~ log~). P = ß+iY runs through the non-~rivial zeros

of the zeta-function.

tbeorem 2. Let a"> 0, a:> 0, g(x) = .axO
, h.a 1. Then fOT some

K >0, N-') GO L. A(n)e -ihg(n)

n=l

~ p/a log p/(hnoe)-inp/2o -1/2
L- e p

Kh ~ y~ haNO

+ O(log~ N1/ 2 >.
Corollary 1. .(N)

+ O(Nl/21og~).

-{2; e-TTi / 4 L (2n)-ß yß-l/2e i Ylog Y(2TTe)

Q<y=211N
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Corol.lary 2. (Wolke, Stux) Let a '>0, 0 < 0< 1. Then (pOn )p ,,.,".-e

is uniformly distributed.

Coroll.ary 3. (Hardy, Littlewood) Let I =-[0,00), I compact,

a ~O. Then L eaplog(-ip) x p p-a/2 = O(T(a+1)/2)

O<:V<..T

uniformJ.y with respect to x ~ I.

Hardy conjectured that one can improve this estimate to

O{T1/ 2 + €). The editors of Hardy's coll.ected papers mentioned

that this is probably false. We can prove

Corollary 4. The estimation O(T(a+l)/2) is sharp if and

only if 1/a E IN and XTTe ~ <Tl.

E.J. SCOURFIELD: On the property that (~(n),~(n+1» haB no

odd prime divisor. For f = ~ (Euler's fUnction) or cr (the

divisor-sum fUnction), denote by Nf(x) the number of positive

integers n ~ x such that the Gen (:r(n) ,1"'(n+1» has DO odd

prime divisor. Then ve have

Theorem 1. For 1"' = ~ or G, log x lO~loglog x «Nf(x)«

-1x exp(A loglog x (loglog1ogx:)-1/2) for any positive
og x

constant A satisf'ying A,. C 1 / 2 where C = 2 e -y Tl (1 _ (p-l) -2).
P~J

The proof depends on applications of results from sieve theory,

and the upper bound result can be generalized considerab1y.

Lei: 5 (x), S (x) denote the number of' primes p ~ x such that
q:> 0 .

"there is no odd prime dividing (p-1, ~(p-l», (p+l, o(p+1»

respectively. Then i:he lover bound above is deduced from

1:he following result, which is analogous in a sense to Erdös'

estimate f'or the number of' integers n ~ x such that (n, ep(n» =1:

Theorem 2. () C x
Sf x ~ log x 10g10glog x

defined as above and f = ~ or o.

as x -') 00 where C is

G. TENENBAUM: On the divisor density of an integer sequence.

Lei: n denote a positive integer, T(n) the number of' its

divisors and T(n,A) the number of' those divisors of' n which

be10ng to a given sequence A. R.R. Hall has introduced the

fo11owing definition: an integer sequence A is said to have

divisor density z, and one writes DA = z, if' T(n,A) ~ ZT(n)

for a1most all n's. It can be seen easily that the squarefree
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numbers or any arithmetic progression distinc~ from ~ fails

to have divisor density. Moreove~, the asyml?t~tiv: formula
') 1 - 1 !2: T(n,A) ~ x '- d which holds if the series L-

n<x d<x d€-A d
d E: A

•= log d has been s~udied by Hall and Erdösj i~ i5 u.d.d.,
.... - A log TT

and one has ~(n,log) ~ T(n) for any A< log 2 - 1. Katai

has shown that an additive function f i5 U.9.d. if and orily

if the series l.. IIvf(P)1I2/p diverges for every non zero
p

integer v, where JlxH denotes the distance of x to the nearest

integer. Non additive functions are much more difficult to

diverges, might lead to the assumption that div~sor density

is closely related to logarithmic density:'this is not so

in :fact, and Hall has shown "that for any given pair (z,w) e

[0,1]2 there· exists a sequence A with the property that

DA = z~arld ÖA = w (here and in the sequel ödenotes the

logari~hmic densi~y). In the opposi~e direction, Hall proves ~
the :following result, :first conjectured by Erdös:

Theorem 1. (Hall) Let fbol be a sequence of real numbers
J

satis:fying b 0 1 ~ eb 0 for some c ') 1 and all j' s, and set
J+ J

A ={ d: 3 j: b 2j ~ d < b 2j +11 • Then, if öA = z, one also has

DA = z.

The concept of divisor density is also related to uni~orm

divisor distribution, also introduced by Hall: a sequence

of real numbers ff(n)j is uniformly divisor distributed

mod 1 if 6(n,f):= sup I~ card f d: dln, f(d)~lu,v{mod 1
o ~ u < V: 1 'T\nJ

- (v-u) I tends to zero for aLmost all integers n.

Set A(z,f) = f d: f(d) < Z mod ll, then, clearly, for any

u.d.d.f'unction f, DA(z,f") = z for all z~[Otl1. Hall showed

that the converse is also true. In the case of additive

funetions :f, the Weyl sums av(n,:f) = l: e 2nif (d)V are
dln

multiplicative for any Vb ~,'~i and this may be used to prove

uniform divisor distribution results. The function F(d)

                                   
                                                                                                       ©



- 33 -

deal wi~h. Hall showed th~t (log d)a and (10glog d)ß are

u.d.d. for 0 < a < 1 + log 2 and ß> 1; the rest.riction on ß
is sharp, bu"t he conjectured that a'> 0 is sufficient. This

conjec~ure is an easy consequence of corollary 1 below.

I ean prove the following results:

Theorem 2. Let A be an int.eger sequence with characteristic

function x. Then DA = z "if and only if ~ I 2: .n1 (x(n>_z)4- 0 <n)
k<:xn<x

ns 0 mod k

= o«log x)1/2) as X~C)O, where O(n) denotes the number of'

prime faetors o~ n counted with multiplicity.

Theorem J. Let b
j

be a sequence of real numbers satisfying

card lj: b j ~ x i = O( (log x) a) as x -~ aro, for same a:> 0, and se-t

A = {d: ~j: b 2j ~d<'b2j+1lo Then if 6A z, one also has

DA = z.

Corollary 1. Let f be a dif'f'erentiable real function. Suppose

f'(x)~O as x""OO and the sequence {f(n) nE-INJis linif-ormly

distributed mod 1, then f«log d)a) is u.d.d. for any positive

a. Corol1ary 2. Let g be a differientiable funet.ion. Suppose

Ix g'(x) log xl~ aoas x-':>cO and that there exists an a such

that the funetion x ... x g' (x) (log x)-a. is monotonie and

~ends to zero at infinity, theng is u.d.d••

Theorem 4. The fo11owing eondi~ion is necessary and sufficient

for f to be u.d.d.

L " 1/2
o «1og x) ) ,

k.cx n<x
nE 0 mod k

• (v = :t 1,:t 2, ••0.).

This 1ast theorem ean be used ~o obtain Katai's cri~erion

for uni~orm divisor distribution of addi~ive f'unctions.

V.T. SOS: Intersection properties os subsets of intesers.

Let A1' ••• '~ be a fami1y oC subse~s oC 1, ••• ,n. For a

fixed integer k ve assume that A.AA. is an ~thmetic progression]. J
of k e1ements whenever 1 f. i ~ j ~ N. We would l.ike to determine
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~be maximum of N. For k = 0 with R.L. Graham, M.S. Simonovits

we proved that N ~_(;.~(~)+(~.)+ 1. For k~ 2 the asymptotical1y

extremal system has N = (n2/24 + 0(1» n 2 sets. (So for k~ 2

the extremum depends on k very weakly.) For k = 1 the

maximum is be~een(~)+ 1 and (n2 /24 + 1/2) n 2
+ o(n2 ).

Probably the lover bound is sharp. These results form a

part of joint work with M. SDfONOVITS.

R.C. VAUGHAN: Some remarks on Weyl sums. ~

N q ~
Let f(e:) L e(ax

k
), v(e) = ~ e(ßyk)dV, S(q,a) = L e(~k),

x=l 0 r=1 q .

G(a,q,a) = q-1S(q,a)v(a~), E = f(a) - G(a,q,a). It is shown
q

that if (a,q) = 1 and if 1~I~N/(2kqJt), then E«ql/2 + E:

MOreover, if the condition on ß is relieved then ane still has

E« q€(q + qNk'ßJ )1/2. One consequence of this is that when

k~3 and eithe~ In - .!.1~q-1N-J/2 with q>N or In _ ~f>q-1N-J/2,
q .. q

then .E~ N3/ 4 + €. This gives a new and completely different

proof of Weyl's inequality when k = 3. Also the relationship

between f(a) = l: e(alx+ •••+~xk) and J(k) f If(a),25 da
x~X s Io,l1 k -

was discussed and an outline of the proof of the statement

If' ~ j,a, q, s. t. 2 ~ j; k t I a. - ~ ,~ q - 2 ,. (a, q ) = 1, q..= N
j

,
J q

~hen ~(a) <c (J(k-1) (2N) Nk(k-1)/2 (q-1 + N- 1 + ~N-j»1/2S log N
s

was given.

B. VOLKMANN: On Strassen's 1aw of the itera~ed logarithm.

(joint work wi~h P: SZÜSZ) Kolmogorov's celebrated law of

~he iterated logarithm (1929) has been generalized in a

number of directions, notably by Strassen (1964) who proved

the following theorem: Let ~1t~2'••• be a sequence of independent

•
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iden~ically distributed random variables with E(Si) = 0

and D2(~.) = 1 + 0(1); consider their partial sums 5
1 n

~1 + ••• + ~, let Tn(i) = Si(2nlogl0g n)-1/2 (i 1, ••• ,n)

and define, for each n, the fUnction ~ on [0,1] as linearn

interpola~ion of the va~ues cpn(i/n) = Tn(i). Then the set

of limit points of ~J'~4t••• tunder uniform convergence,

is aLmost certain1y equal to the space y of all absolutely...,

continuous fUnctions on [0,1] with x(O) = 0 and S x 2 (t) dt
o

~ 1. The authors have, instead of Strassen's methods

(Brownian k-dimensional motion and functional analysis),

used the classical approach of KoLmogorov in order to prove

a generalized version of Strassen's theorem. The condition

of identical distribution could be dispensed with, and

J I -1/2'Ko1mogorov's condition ~ = o(n(loglog n) ) could be

replaced by a much weaker ODe which is less stringen~ than

requiring the existence of some f'ractiona"l moment E( S~+E:) ,
1

€ >0, i=1,2, •••• Furhtermore, aStrassen - type theorem

for weakly dependent random variables was established which

is applicable to continued fractions, thus generalizing

the Kolmogorov t:ype law of the iterated logarithm due to

Szüsz (1971).

D. WOLKE: On the explici1: formula of' Riemann - von Mangoldt.

By means of mean value theorems for Dirichlet polynomials

and zero density results ~or the Riemann zeta - function

the following slightly improved version of the classical

Riemann - von Mangoldt formula is discussed: Let & > 0 t

xC < T ~ x 1- c • Let p = J3 + i Y denote non trivial zeros of'
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,( s). Then there exists a ,. ~ [T/2, 3T/2] such -tha-t +(x)

~ A(~) = x - ~ xP/p + O(xT-1(log x)1/2). It is
n:x p,\Y/~,..

highly probable that this formula holds without the factor

(1og x)1/2. A further improvement woul.d give a better upper

bound for the di~ference of consecutive primes (if RH assumed).

Because of shortage of time the fol1ow~g two lectures could

not be given.

M. HUXLEY: Two remarks on the A2 s ieve.

1. Sel.berg§ upper bound for a sievab1e sequence A ~th

~ 1 = x p(d)/d + R(d) (where p is mu1tipl.icative)
a~A

a= 0 mod d

states that the number of members of A with no pr~e factor

~ z is a1: most ~ x/G(z) + ~

d 1

where A(d), G(z) are constructed f'rom ",(d) (Halber.stam +

Richert. in ~1Sieve methods"). If pep) is k on average,

G(z) ~H 10g
k ze Under the one - side condition on pep)

2.- PCf) 10g P
p~u p - p(p)

k l.og u + E(u) where E(v)!: E(u) + K •
The errar term can also be estimated as

O(ek z 2 fmax< 1 t log K)}2 max }" R(d) 1/p (d) )
d

2. In the sieve of Jurkat and Richert the error term O(L/(log y)1/14

can be repl.aced by O(L/(1og y)e) , e = (log 3 - tl/Clog 9/2 - 1)

..t:. 1/5. (jointly wrought with GREAVES)
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w. SCHWARZ: Power - series with multiplicative coefficients.

The author reproves a result. of Lucht and Tuttas: If f is a

mu1tip1icative function with mean - val.ue M(f) f 0 and 11 f{'2

~ 00 , then the power - series E f(n)·zn either represents

a rational ~ction or it is non - continuable beyond Jzf = 1.

As an application, foll.o~ng Rubel and Stolarsky, al1 possible

~cti~ns F(z) = l: 1, :f(n)zn are determined, which aren.

bounded on the negative real. axis (the assumptions on f are

as above).

The fo11owing prob1ems were posed :

Ja-M. DESHOUILLERS: If' you shake an add:i:tive bä~is, wi1.1

it remain an additive basis?

Question: Let f: \N -7N .be such that for every additive

basis B, the sequence :r(B) is an additive basis; does there

exist a positive constant a such that fex) - ax is bounded?

To avoid trivial cases, assume f(O) = 0, :r(1) = 1,

lim 105 f(n) > 0, M ~ 0 (where tu:(n) = f(n+1) - :r(n».
-- 10g n

~ Comments. For some cases cf. Deshouillers - Erdös - Sarközy

(A.A. JO (1976), 121 - 132) and Deshouillers - Fouvry (J.L.

I know that the conjecture is true in the two extreme cases:

fex) = x + 0 (x) or 62
f "> O.

                                   
                                                                                                       ©



- 38 -

P. ERDÖS:

1. Denote by 1 = d 1 < d 2 <:.. ••• <: dT(n) = n the consecutive

,.,in)-l ( 2
divisors of 0. f(n) = 2.. ( d. 1 /d .) - 1) • Is it true

i=l 1+ 1

that for infinitely many n f(n) < C holds?

2. Let f(n) ~ ±1 be a numbertheoretie funetion. I5 it true

that for every C there exist d and ~ such that

m
(1) I L f"(dk) I > C.

k=l

(1) gehört offenbar zum van der Waerdenschen Ideenkreis.

I conjectured (1) nearly 50 years ago and I give 500 Mark

for a proof or a counterexample. Perhaps it is true that

m
(2) max' L f(dk) I > C la.g x. It is easy to see that

mti~x k=l

(2) is best possible if it is true.

A. IV!C:

Let a(n) denote the number of non-isomorphie abel:-ian·.groups

with n elements; le,t C
1

,C
2

, ••• denote positive, absol:ute

eonstants. Let N be a-highly composite if a(n) < a(N) :for'

n '< N, and let G(x) L 1
N~x

H(x) L a(N).
N~x •1. Is it true that log G(x) = (C

1
+ o(l»loglog x,

log H(x) (e (1» log x ?= 2 + 0 10glog x

2. Is it t.rue that for n.:? n
O

(e) log a(n) + log a(n+1) <

(~ + €) log n
loglog n

?
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J. Find the maximal order of magnitude of a(a(n»; it can

1/2be shown that it is at least exp(CJ(log n /loglog n) )

2and that it is not greater than exp(C4 (log n /(log1og n) ).

4. Let a(j)(n) a( ••• (a(n» ••• ). It can be shown that
j times

unif'ormly in j 1: a(j)(n) = K(j)x + O(x1/ 21og4x) with
n~x

a suitable constant K(j) >0. 1s it true that

M. MENDES FRANCE:

L. K(n)
n ~x

•

1. A set H CfN is cal1ed a Van der Corput set if' the following

implication holds: (un +h - Un) is equidistributed mod 1

for a11 h ~H =") (U
n

) is equidistributed mod 1.

Examples: IN, aN (a ~ N), P-1 (p set of primes), P + 1, the

set of squares, ••• (see Kamae - Mendes France, Israel J.

of' Math. 1978) Question t: Is it true that if H is a Van

der Corput set then aH = f ah , h E: H1 is a Van der Corput set

(ac N)? (RUZSA answered af'firmatively)

Question 2: Suppose h O ~H. Is it true that if' H is a Van

der Corput set, then H '~hO' is again a Van der Corput set.

(RUZSA an5We~ed af'f'irmatively)

2. Let n ~(N and let s (n) be the sumo of the digits of n in

basis g (g ~ 2 is a given integer). Given m2 2 and a c

{O,1, ••• ,m-1~ , (m,g-1) = 1. Consider the set S(a,m) =

fn (s{n
2

) =a mod m) . 1s it true that S(a,m) has density 1/m ?
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This problem was actually posed by Gelfond (Acta Arith. 1968)

Commentary: It is weIl known that the sequence s(n) mod m

can be generated by a finite automata and this implies a

"good tl behaviour of the sequence. Recently, J.P. Allouche

observed that the sequence s(n~) mod m cannot be generated

by a finite automata. This result measures to some extent

the depth 01" the question whether s(n2 ) mod m has a density.

H.L. MONTGOMERY:

1. Let fex) = inf sup
& -!J1

x+o
f ) L e(nx) 1

2 dx /- card !l1 ,
x-6 n~!Jl

where ~ is an arbitrary finite set of integers. Saffari

has shown that c in!' fex) > 0; he obtained the bound
x

c ~ TT-
1
max y-1si.n~y = 0.2306 •••• He also wrote that f(O) = 1

Y
F(1/2) = 1/2, f(1/3) = 1/3, ~ !'(x)~ 1/4. Thus c =1/4.

x~1/2

We would like to know the vaIue 01" c, and likewise the value

of fex) for all x.

Rel.ated to the above, let C(a) be the inf 01" those constants

jT IL aneiA"t 1 2 T
bneiA~t 1 2 dtC sucJ? that dt ~ C !r J

-aT n .

whenever the \t are real, and [a I< b for all n. Halasz, •n n

Wirsing and I have shown that 1!:-C(a)~ 2 for 0 <a: 1/2,

2 =C(a)= 3 for 1/2 <' a: 1, 3 {C(a)!: 4: for 1< a .!:3/2, ••• ,

and that 1im C(a) = 1.

a~ ot

2. We wish to show that log 3 / log 2 is not a badly

approximable number. That is, we wish to show that the

continued fraction coefficients 01" log 3/ log 2 are unbounded.
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I suggest this problem because o~ the fol10wing possible

approach: Let M =f2
a

Jb: a~Ot b~Ol t and write the members

of' M as 1.:. m
1

<: m
2
< m

3
< •••• By Feldman' s theorem it can

be shown thai: Mi (log m
i
)-6 ~ m

i
+

1
;.. m

i
< m

i
(10g mi)-Ö t where

o < () < 1 .( A. Ii: can a1.50 be shown that log J/ log 2 is badly

approximabl.e if and o~y if m
i

+
1

- Mi ~ Mi(log m
i
)-l. We seek

1:0 receive a contradictio~ from this by constructing a

-s
mgenerating function for M, say L

~i:M

Not.e, however, that the e1ements of the set M' = { eae llb

a ~O, b! 0 5, w =' (1 +{5 )/2 are well spaced. Thus it is

importan't to make use of the additive struc'ture of M, namely

that Mf~•

.J .L. NICOLAS:

p~ Erdös asked Cor the fol1o~ problem (Colloq. Math.

"t. 42, 1979, Prob1.em 1162, p. 399): Denote by l.(x) the

•
maximal. leI;lgth of a sequence 0.( a 1< a 2< ••• <al (x) ~ x such

thai: ~or a11 iti.) a. + a. is never a square. Choosing
J. J

a. )i - 2 proves l(x» x/3 because a. +a. =2 mod 3.
1 - 1 J

In the other way, considering the set {a.lv{Dx12 - a.J gives
1. J.

thai: l(x) ~~(1 + 0(1». J.P. Massias (Univ. o~ Limoges) has

found in .June 1980 that the two f0110wing sets o~ 11 numbers

f1,',9t 1 J,14,17,21,25t 29,30 } vf10 or 26 f verif'y 1:hat mod 32

, a i "+ a
j

is never a square. So this proveSt considering

the set of a's congruen~ mod )2 to one of these 11 numbers

( ) > 11that 1 x _ 32 x • Od1yzko and Lagarias have a proo:C of the
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f'ollowing:

Theorem 1. Let N and 0< a 1", •••-<.an < N such "that a
i

+ a
j

is

~ 11never a square mod. Nt then n - 32 Nt so the counterexample

of Massias is optimal.

Theorem 2. l(x)~ o.q6 x (1 + 0(1».

Problem Compute l~ l(x)/x ?

K. RAMACHANDRA:

1. Let a 1 ,a2 , ••• be a sequence of complex numbers with
00

l: an = x + 0(1). Put fes)
n~x

L-
n=1

a n- s , where s = a + it,
n

o ')01. Then fes) - (5_1)-1 is regular in a > O. Let N(o,T) denote

tbe number of zeros p of fes) counted with multiplicity

satisfYing Re p ~ 0, \ Im P I!:T, where T? 10. In arecent paper

published in ereile ,J. I proved that, for any constant 0

with 0 ~ 6 < 1/2, N( 1/2 - b,T) » T log T. Improve this result

to N(1/2,T) » T log T.

. az bz - 1 l+k
2. Let f1(~) = 2 , f 2 (z) = 2 where a = t , b = t ,t

being a f~ed transcendental ~umber, and land k being any

two natural numbers. It follows from a result of Siegel

and Schneider which was rediscovered by m~that one at least

of the six numbers f 1 (z), f'2(z) , with z = 1, t k
t t

2k

must be transcendental, i.e. one at least of the four numbers·

t l t l +k t 1 + 2k t 1+3k
2,2 ,2 ,2 must be transcendental. Let Adenote

t
n

. .the set o~ natural numbers n for which 2 15 algebra1c.

Then A cannot contain any arithmeti~ progression 1, l+k,

1+2k,1+3k of four terms and hence by Szemeredy's theorem

•
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o(x). Improve this to O(x1
-E:) for some €,>o.

I.Z. RUZSA:

To every ö;> 0 an E: '> 0 can be found with 'the following

proper~y: If f is a real-valued additive arithme'tical func~ion,

e satisf'ying f(n) ~ fä.,a+l] for all but €X numbers n!= x, then

there is a deco~position of f into two additive functions

f = f
1

+:C
2

~uch ~hat :C
1

(n) E: [b,b+l+o1 for all n': x and

If
2

(n) - .cl< 6 for all but OX n=.x with suitable band c.

Probab1y the existing methods enable us to solve this with

e öK for some 1arge constant K; it would be nice~to obtain

€ 0.0 with somefixed a > O.

G. TENENBAUM: Let f be ~ multiplicative function satis~ing

'f(n)I~1 for every positive integer n. Then Daboussi proved

that 2: f(n)e 2nian = o{x) for any real. non rational. a.
n4C.X

Under which conditions on the (positive) m~ltiplicative

function f can one prove that, for every n ~ \R'\. Q,

L f(n)e 2 TTi.o.n = 0 ( 1:. )f(n)') ?
n < x n.( x

R. TIJDE~1AN:

1. Let A and B deno~e monotonie ~creasing sequences of
Q()

positive integers. A = fa f is said to have bounded gaps
n "':,

if there exists a constant k such that ~i+1 ~ ai ~ k for

a1.1 i. A - A = fd: d = a. "- a. , a., a . E: A, a. '> a.' is cal.led
J. J 1. J J.. J{
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difference se~ of A. 15 it true that for every sequence A

with d(A} > 0 i:here exists a sequence B with bounded gaps

such that B - B ~ A - A ?

. m
2. Le~ b j = (bj1,bj2, ••• ,bjm)~~ for j = 1, •• ~,k denote

vec~ors with the proper"ty that i:he origin is in the convex

hul1 of "these vectors. Let t b .. I ~ 1 for a11 j and i. Iot is
J1 '.

"true that for eve~ positive integer n there exist non-

for i = 1, ••• ,m.

Is i"t true "that f'~r every € '> 0 the upper bound in (*) can

be replaced by ,m1/~ + € for m sufficiently large? It can

be shown that the right-hand side of (*) cannot be rep1aced

by m1 / 2/4.

E. Heppner (Frankfuri:)
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