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•

The 5th Oben.ulfach Conference on canplexity Theory was organized as before

by C.P. Schrx:>rr (Frankfurt), A. Schönhage (Tübingen), and v. Straßen (Zürich).

The 42 participants cart\9 fran 9 countries, 13 participants carre fran North

Anerica, USSR, and Israel.

37 lectures were given at the conference covering a large area of e:x:t11plexity

theory. They dealt with subjects of algebraical, numerical, number theoretical

and gearetrical nature such as a:mplexity of evaluation and multiplication of

IX'lynanials, a:mplexity of different bilinear problems, approximative and

exact tensorrank, tensorrank of finite di.rrensional algebras, fast matrix

Imlltiplication, a:mplexity of gcd-canputations in sequential and parallel

m::xiels, cx:rrplexity of algebraic decision problems in p:>lynanial rings and

group theory, fast algorithms constructing generators of pennutation groups,

primality testing, fast Fourier transformation, and quadratic reciprocity law,

decx::rtp::>sition of real n-space in sani.-algebraical sets, cx:rtplexity of sets

of l'rJrographies and affine linear transfonnations in the ennplex plane.

Other lectures were given on a:mplexity of Boolean functions, Turing a:mplexity

(fran the }.X>int of view of ti.rre and space) , general parallel canputing and

progranmi.ng, VLSI a:mputing and progranming, a:mplexi ty of graph theoretical

decision problens and . graph matchi.ng, cryptology, and skillful use of

rrerories and infonnation exchange.

c. P. Schnorr
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Vortragsauszüge

A. ALDER: Border Lank

•
The border rank ~(t) of a tensor tE k

n
.k

n
~kn is th~ minimum r

such that there exists a decomposition

. ~ u (E)0v (E)~W (E) = Eh·t·".~ O(E h + 1 ), where h~O , and
p=1 p P P

() +u E+ +U Eh,U Ekn,etc.u p e: = u pO p" • • • ph • pa .

If k is algebraically closed, there is another possible definition"

of border rank: The topological border rank Rtop( t) of a tensor t

is the minimum r such that t is in the closure of the set of

tenso~s of rank ~ r. The following theorem holds

Let k be algebraically closed. Then .!! = Rtop ·

M.p. ATKINSON Affine .and projective equivalence of sets of

complex numbers

•

Let Sand T be two sets of complex numbers each of size n.

An algorithm is given for finding, in time n logn , all the

mappings Z l--+ a z + b which map S onto T. The algori thm extends

to fin~ing, in time n 2 log n, all the mappings z.......,.. (az+b)/(cz+ d)

which map S onto T. The methods use geometrical properties of

the Argand diagram and reduce the problem to one of finding a

"pattern" of length n within a "textil of length 2n- 1. Finally

some preliminary work is described on a similar proble~ involving

rigid movements in real" 3-dimensional space .

L. AUSLANDER : Fourier transforms and Gauss sums

Using ideas motivated from fast algorithms for the finite Fourier

transforms in p points, p a prime, F (p) , we introduce a matrix A

such that A F(p) A~ has entries that ar~ linear Gauss sums. The

properties of A F(p) A-1 can be used to establish many results

centering about quadratic reciprocity.
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A note on commutativity and approximation

The action of comrnutativity and approximation is investigated for

certain problems in Computational Complexity. Some lower bound

criteria are formulated in terms of border rank (brk) and commu

tative border rank (cbrk) of a tensor. Some applications are

shown. We obtain in particular cbrk (nm1) ~ (nm+m)/2 , cbrk(222)~· 5 ,

brk(222) ~ 6, where (nrop) denotes the tensor associated to

(nxm)x(mxp) matrix multiplicati9n. For what concerns upper bounds

we have cbrk(222) ~ 6 I cbrk(nm1) ~{rm+m)/2 (even m) I that is

(nm+m)/2 non-scalar multiplications are needed and suffice to tIt
approximate the nxm matrix - vector product. As an inunediate conse

quence we obtain that n/2 + 2 non-scalar multiplications and

2n additions (ar alternatively n/2 + 3 multiplications and

2n + (n + 10n)k/8 additions, where the error is proportional to 2-k)

suffice to approximate any polynomial of degree n at a point.

The function fcb(nrnp) = 3 (log cbrk(nmp»/Iog nrnp , which allows ta

compare algorithms for different size matrix multiplications, is

considered. We have 0 = inf fcb(nmp) ~ lim fcb(nnn) = w and a~2.32••

Conditions under which 8 =ware exaroinated.

N. BLUM: On the power of chain rules· in context free grammars

It is weIl known that for each context free granunar G there

exists a context free grammar G' with

( 1 )

(2)

L(G) L(G')

G is chain rule free

This is done constructively by an algorithm. This algorithm works~

squaring the size of the grammar. But it is not clear whether ~

chain rules really help. We prove this. More exactly, we construct

for all n e:]N a context free language Ln with:

(1) there exists a context free grammar Gn (with chain rules)

with L(Gn ) = Ln and IGnl = 0 (n)

(2) for all chain rule free context free grammars G~ with

L(G~) = Ln holds: IG~l = n (n log log n)
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Merging, sorting, and routing on parallel models

of computation

We give an overview of several models of parallel computation,

distinguishing two major classes ~·fixed connection machines

(e.g. n-dim cube, cube connected cycles, shuffle exchange) and

shared memory models (e.g. PRAC, PRAM, WRAM). The paradigm problem

for fixed connection machines is the rooting problem which is

important in a variety of contexts including the complexity

relating the shared memory models with fixed connection machines.

For all known (small degree) fixed connection machines the best

known strategy (det.) is O(lo~n) based on Batcher's sort. Even

though simple strategies are asyrnptotically optimal (i.e. 0(10g2 n »

~hen we consider "average case" or Monte Carlo analysis, we show

that In! d 312 is a warst case lower bound for any· "oblivious 11

strategy (i.e. where the route is determined by the origin and

destination pairs). With regard to shared memory models, we show

that log log n - log log r is asymptotically optimal for merging

two sorted n -lists using rn processors, by implemen.ting Valiant' s

algorithm and deriving a corresponding lower bound.

(Work done jointly with J. Hopcroft.)

B. BUCHBERGER: An upper bound for constructing Groebner- bases

(bivariate case)

Groebner - bases are a special kind of bases for polynomial ideals.

Many constructive problems in polynomial ideal theory are easy

for Groebner - bases whereas they are extremely complex in general.

We present an algori thm for cornputing Groebner - bases and analyze

its complexity for the bivariate case. Roughly, the bound for the

time complexity is 2 ~ (L + 27 0 2 ) 1+ , where L is the number of

polynomials in the given basis and 0 is the maximum degree of

these polynomials. The maximum degree of polynomials in the result

ing Groebner - basis is M+ W , where M is the maximum .degree of

tcm of the leading monoms in the give~n polynomials, and W is

the "width" of the polynomials.
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Recent advances in cylindrical algebraic

decompositions

Cylindrical Algebraic Decomposition (CAD) is the essential ingre

dient of the quantif~er elimination method for real closed fields

presented in the 1975 paper of Collins. CADs also have other appli

cations, including solution of polynomial equation and inequality

systems. Arnon, Collins and McCallum (1981) have, at least for

r (the number of variables) ~ 3 , augmented CAD calculation with

adjacency calculations to "clusterll CADs and obtain geometric

descriptions of semi-algebraic sets. Such clustering furthermOre e
economizes CAD calculations by reducing the number of calls and

avoiding same difficult algebraic number calculations. Collins and

McCallum are currently investigating the possibilities to reduce

the CAD prajections by omitting some subresultants, and have

already obtained such a result for r = 3 .

P. VAN EMDE BOAS The weakness of two cryptosystems based upon

polynomial interpolation

Contemporary complexity based cryptosystems involve encryption

algorithms with the property that both encryption and decryption

are easy, provided the necessary keys are known. Knowledge of only

the algorithm involved, or even, in case of a public·key system,

the encryption key, does not prevent the decryption problem to be

intractable ..

Since we have very ~~ttle methods for proving so~e (non-artificial)

problem to be complex, it is no.wonder that systems proposed in thee

literature are only made plausible by incornplete arguments: IIThe

authors see no way to do it. 1I As a consequence these systems may be

shown to be breaka~le afterwards. In our talk we ~how that the

systems recently proposed by Luccio & Mazzone (IPL.!.Q (80) 180-183)

and Denning & Schneider (IPL~ (81) 23-25) can be broken. For the

first system this had been shown before by H. Meijer (IPL g(81) 179-181)

and M. Hellman (IPL.!l(81)182-183) , but the system is actually even

weaker than is indicated by these published at~acks.

(The report is based upon joint work with A.E. Brouwer and
P. Hogendoorn.)
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The tight deterministic time hierarchy

Let . k be a constant ~ 2, and let us consider only deterministic

k - tape Turing machines.

We assume t
2
{n) > n and tin) is computable in time 0 (t 2 (n». Then

there is a language which is accepted in time t
2
(n), but not accepted

in any ti~e t,{n) with t
1
(n) = o(t

2
(n». This improves Paul's result

( t
1

(n) log-t,(n) = 0 (t
2
(n» is sufficient).

Furthermore, a set of functions 0 , q E ~ (n hierarchy) is defined
q

with the properties :

(1) open) = o(oq(n» for p < q and

(2) there is a language accepted in space s(n) and time sen) 0q(n)

but not ·in space s (n) and time s (n) 0 (n) for any p < q .
p

z. GALIL An O(EV log V) algorithm for finding maximal weighted

matching in general graphs

The problem of max - weighted - matching is the following: Given a

(not necessarily bipartite) graph with weights on the edges, find

a matching (a subse~ of the edges no two of which share a vertex)

of maximal weight.

We show a way to implement Edmonds algorithm for solving the pro

blem in time O(EV log V) . Previous implementations yielded an

O(V i4
) algorithm (by Edmonds) and O(V3 ) algorithms (by Lawler and

by Gabow).

(The research ~eported was done together with S. Micali.)

J. v. z. GATHEN : .Fast parallel gcd algorithms

We give algorithms for compu~ing the determinant, characteristic

polynomial, and inverse (if existing) of an n x n-matrix in parallel

time O(log2 n ), using a polynomial number of processors (model p~

with usual arithmetic). These algorithms ~ork over any field, in

particular finite ones, in contrast to Csanky's previous res~lt

requiring characteristic zero. Ibarra - Moran - Ro~her have an algo

rithm for the rank of real matrices of the same cost as above. From

this one gets a fast parallel algorithm to cornpute the gcd of two

real polynomials.

(Work done jointly with A. Borodin and J. Hopcroft.)
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Aigebras of minimal rank

All algebras co~sidered here are finite-dimensional over a field k .

The rank of a k - algebra A , denoted by rk (A) , is the minimal R

such that there exist u
1

, •• ,u
R

,v
1

, •• ,V
R

E: A~ and w
1

, •• ,W
R

EA

such that for all x,y E A

R
x y L up(x) vp(Y) wp

p=l

holds. In the 1979 complexity meeting V. Strassen presented a

general lower bound for the rank of algebras (actually for the

complexity) :

Theorem (A. Alder and V. Strassen, TCS 1980) e
Let A be a k - algebra, then rk (A) ~ 2 dirn A - :off M (A) , where M (A)

denotes the set of maximal ideals of A.

Definition A is an algebra of minimal rank, if rk(A) = 2dim A - if M\(A) •

We determine the structure of algebras of minimal rank for two

classes of algebras

(1) Division a~gebras

Theorem 1 Every division algebra A over" k of minimal rank is a

simple) field extension of k.

Corollary If A is a non-commutative division algebra, then

rk CA) ~ 2 dirn A .

(2) Commutative algebras (joint work with J. Heintz Univ. Frankfur~

Theorem 2 Let Pt.. be a local k - algebra with maximal ideal m such

that Alm == k and ~ k ~ 2 dimA - 2 • Then A is of minimal rank if

and only if m is a sum of pairwise orthogonal principal ideals.

Corollary Let A be a conunutative algebra over an algebraically

closed field k. Then A is of minimal rank if and only if the

radical of A is a sum of pairwise orthogonal principal ideals. e
Remark If k is any perfect field, then the condition for m in

Theorem 2 is still necessary, but no langer suff ic ient :

Let N(w, ,w 2 ) the null- algebra of dimension 3 over O. Then the

maximal ideal of A = ~(i) ~ N(w 1 ,w 2 ) stillsatisfies the condition

of Theorem 2, but rk (A). > 2 dirn A - 1

Note (11. 11. 81) Meanwhile we could prove the following

Theorem Let k be aperfeet field and A a loeal k- algebra wi th

maximal ideal m and residue class field K: = Alm. If.jf k ~ 2dimk A- 2

and dimk K > 1 , then A is of minimal rank if and on~y if m is a

principal ideal.

The~efo~~· for- per"feet groundfields --the-classification problem-af" --- - - ~
commutative algebras of minimal rank is campletely solved.
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Upper bounds to decide absolute irreducibility of

polynomials

Let ko be a field,' k an algebraical closed extension of ko
Let X1 ' ... 'Xn be indeterminates over k. Absolute irreducibility

(i. e. irreducibility over k) of a polynomial F e: k [X
1

, ... , X ]o n
wi th. deg F' = d is decidable in time

C n d 2c d
S

randomly

2
c (d 6 + n2 d 3 )

and C deterministically , .'

where arithmetic operations in ko are counted (~,c>O suitable constants)~
s \

Consequences: ,Let· F1 , ... , Fs e: ko ' [X1 , · · · , xnJ ' d = L deg F.
i=1 1

(1). Irreducibility of C= {xe:kn ; F1(X)~O , ... ,Fs(X) =o}

d cn2
is decidable in ti~e ~ 2

(2) The prol?erty "(F1, .• rFs)Ck[X1'~·:.t,x~J. is prime and C is smooth U

2c n
2

c n 2

is decidable in time d
2

+ 2
d

These boun~s, ~lthough unsatisfactor~ for practical purposes, are

same exponentiations better than 'those obtained in a straight

forward manner by quantifier elimination.

(Work jointly done wi th M. Sieveking. )

G. HOTZ: Ein Darstellungssatz von Aigebren

Seien Xl und Xr nicht leere Mengen, X = XlU Xr , Xln Xr F ~. Eine

Multiplikationstafel 0:

x · y = E Cl z · z fü r x e: Xl ' y e: X , Cl z e: R , R Semir ing
zE:X x,y r x,y

definiert eine assoziative Algebra unendlicher Dimension über R.

Für diese Algebra AR(cS) wird eine nicht triviale Darstellung im

Semiring R({X
1

, x2fk». angegeben. Hierin ist {x1 ,x2 }c.) das M~noid,

das sich aus dem freien Monoid {x,±1,X2±'} .... durch Faktorisieren
-1 -, . -1 -1' .

nach den Relationen x, x, = ~ ~ = , , X, x2 = x 2 x, = 0 erg1bt.

Dieser Semiring ist auch in dem Sinne universell, daß er für jede

endlich dimensionale Algebra über R mit , - Element eine treue

Darstellung zuläßt.
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Nun kann man jeder kontext freien Granunatik G in einfacher Weise

eine solche Algebra ~G) zuordnen. D~r Darstellungssatz liefert

in sehr einfacher Weise die Sätze von Chomsky - Schützenberger,

Shamir und den Satz über die schwerste kontext freie Sprache von

Greibach. Weiter erlaubt ~G) eine eipfache Charakterisierung

der LR(k} Grammatiken und einen Zusammenhang mit unserer Darstel

lung der Konstruktion eines Akzeptors für die zugehörigen Sprachen.

Die Darstellung liefert unmittelbar eine Grammatik ~ in Greibach
"-'

Normalform mit L(G) = L (G) und •

1(;1 = 32 IPNI·IPTI·ly!

mit P
N

nonterminalen Produkten, ~ terminalen Produkten; Y Alpha

bet von G (nonterminal) .

D. KNUTH: Permutation groups with generators

An algorithm is presented for determining the group generated by

permutations IIl, ••• ,ilm of {l, ••• ,n}. By formulating this algorithm

properly the proof of correctness becomes quite simple, and it is

shown that the running time in the worst case is 0 (n5 log log n + mn2 ),

R. E. LADNER: Parallel algorithms for linear recurrences

The co~putation of {xii 1 ~ i ~ N} for the recurrence

x. = [ a .. x .. + b. can be done in parallel time Q{logm 10gN)
1. j =1 1.J 1.-J 1. d-1

using 0 (m2 N) operations in asemiring and 0 (m N) in a ring

(where matrix .multiplication of m x m- matrices can be done in time

O(ma ». The proof is an application of the parallel prefix proble~
together with seme valuable'suggestiens of Z. Galil and M. Paterson.

(joint work with A.G. Greenberg)

J. VAN LEEUWEN VLSI layouts for perfect binary trees

Use Thornpson' s model of a chip surface. Let Tk (k ~ 0) be the per

feet (complete) binary tree of depth k, with n = 2k leaves. It

is .wellknown that Tk (having 2n- 1 nodes) has an" embedding requir

ing only O(n) area. The H-pattern const.ruction due to Mead and

Rem_agtu~l1.y ~c~ieves a ~o~n_d __~f __ 4 n • Our presentation aims at

finding best possible embeddings.
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Let Aopt(k) be the smallest number of grid - cells required for

an ·-embedding of T
k

.

Theorem. Aopt(k) /2k converges for k -+ IX) •

Let the li.mit-be y. We prove that 2.03 < Y < 2.743055 •

The upper"bound·derives from . (i) an embedding of T
12

in a 105 x 106

rectangle that has a free cell in every corner and (ii) the use of

an ßeffici,'ent" induction pattern (less wasteful than the H- pattern)

to construct einbeddings ·for T
k

1 5 wi th k > 12 •

There exist area O(n) embeddings of T
k

with short side (of the'

boundi'ng -rectangle) as' small as O(log n). But the following can be

shown."Let the aspect ratio of an embedding' be defined as

length short side / length long 'side ·

Theorem. There exists a layo~t of the T
k

that is asymptotically

optimal and has aspect ratio converging to 1, for k -+ co •

(Work done jointly with ~l.H-. Overmars and O.·Wood.)

T. LENGAUER: On the complexity of VLSI
. .

computations

We present four results on the complexity of VLSI computations

(1) We justify the Boolean circuit model by showing that it is

able "ta model multi-directional VLSI devices (e.g. pass

trans~~tors, pre-charged bus-drivers) .

(2) We prove a general cut theorem for compact regions in ~d

(d ~ 2) that allows us' to drop the 'convexity assumption in

lower bound proofs'based on the crossing sequence argument.

We exhibit an n(n V3 ) asymptotically tight ~ower bound on

the area of st.rongly where - oblivious chips for transitive

functions.

(4) We prove a lower bound on the switching energy needed for

computing transitive functions.

H.W. LENSTRA, JR. : Recent advances in primality ~esting

We discuss the primality testing algorithm that was recently

'proposed by Adleman and RumelYi its relation to oider tests; and

its theoretical implications.
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On typical tensor rank

The typical rank R of tensors in a tensor product space U 8 V CD W

over algebraically closed fields is studied. R is equal to the

conunon rank of tensors in some nonernpty Zariski - open subset of

U ~ V 0 W or the maximum border rank respectively. In order to get

a deeper insight in the set V
r

of tensors with J;"ank ~ r, it is

necessary to know its dimension, determined in same important

cases of tensor product spaces. The presented results are the

follawing:

(1) A quite sharp

If dirn U = n ,

rn~~:~:il
(For k E :l :

upper bound on the typical rank R is obtained_

dirn V = m, and dirn W=! (2 ~ n f m f: R.), then

~ R ;,; fn ~ ~ : ~ -: il 1./2

rxlk = min {y E k:i : y ~ x} ).

(2) In the case dirn U dimV = dirn W = n ElN

For nF3 dirn V min { r(3n-2), n 3 } R= r3~~ilr

For n=3 dirn V 7r (r ~ 3) , codim V4 = 1 R=5r

R. 'LaOS: Subresultant chains

Based on theorems of Habicht we derive an 0(n2 M(L(nd») algorithm

for computing the subresultant chain of two polynomials of maximal

degree n and maximal seminorm d, where M(b) is the time to

compute two b-bit numbers and L(a) is the number of bits of a.

The algorithm can be specialized to the Brown - Collins subresultant

gcd algorithm (Knuth 4.6.1,2nd ). We suggest to replace in the

Lehmer - Knuth - Schönhage gcd algorithm the remainder operation ovexe

a field k by the exact division. operations over an integral domain

of Habicht' s Theorem. Both, modular and non - modular polynomial

remainder algorithms can. be irnproved in this way.

E.M. LUKS : The complexity of permutation group computations

The algebraic nature of recent breakthroughs in graph'isomorphism

testing motivates a study of the computational complexity of

various permutation group problems. In particular, the isomorphism

problem is polynomial - time reducible to the problem of~ finding

gene-rators for-the subgroup -af a given-perinutation-groüp-(it-se1f

specified only by generators) which stabilizes a specified subset.
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A~though apparently efficient algorithrns are known for the latter

problem, none has been shown to be subexponential in the worst case.

We observe that the subset stabilizer problem is actually polynomial

time equivalent to a large number of. other classical problems of

computational group theorYi among these are finding gener~tors for

the intersection of two given permutat~on groups, testing conjugacy

within a given group, and finding the centralizer of a subgraup.

We describe same specia~ cases where polynomial - time solutions are

known. Same •s light' variations of these problems are NP - complete ..

E. MAYR: WeIl structured parallel pragrams are not easier to

schedule

K. MEHLHORN

L_

e

The scheduling problem for unit time task systems with arbitrary

precedenee eonstraints is known to be NP - complete. We show that

the same is true even if the precedence'constraints are restricted

to certain subclasses which make the correSponding parallel programs

more structured. Amang these classes are those derived from hierar

chie eobegin - coend programming constructs, level graph forests,

and the parallel or serial composition of an out-tree and an in-tree.

In each case, the completeness proof depends heavily on the number

of proeessors being part of the problem instances.

On the complexity of distributive computing, with

an application to VLSI

Let X and Y be sets, and let f: X x Y -+ {O, 1} be a boolean function.

Let x E X and ye: Y be known to persons P, -and P2 respectively. For

P, and P
2

to deterrnine cooperatively the value f(x,y), they send

inform~tion to each other. We will prove the following lower bound

on the number of bits exchanged.in any determin~stic algorithm.

Cdet(f) ~ log rankk f , for all fields k , where rankk f is the

rank of the lxi by lyl 0-1 -matrix (f(x,y»xe:x,ye: Y over the field k.

The method is strong enough'to distinguish nondeterministic and

deterministic .algorithms, more precisely we exhibit an f such that

Cndet(f), endetet) « Cdet(f)

The method can be used to obtain lower bounds on the complexity of

deterministic VLSI computations.

(Joint work with E.M. Schmidt, Aarhus)                                   
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The arithmetic and logical complexity of some arithmetic

computational problems

The time - complexity of algorithms for arithmetic computational

problems such as DFT, convolution of vectors (CV), matrix multipli

.cation .(!vlM) can be measured by the numbers A and B of respectively

arithmeti~ operations and bit-operations involved in the algorithms.

B/A characterizes the stability of the algorithms. It is proved

that any algorithm for MM can be stabilized so that asymptotically

A and ~ have roughly the same orqer of their growth. The efficiency4lt

of algorithms can be also characterized by the simplicity (ar by

the complexity) of their structure., A new quantity, S, is intro-

duced in order to measure the synchronicity (asynchronicity) of

linear and bilinear computational schemes. S is defined' in terms of

·the properties of the digraph associated with the scheme. It is

proved that

S ~ n 1092 n - C(±) for any a1gorithm for OFT and CV ,

S ~ n 2 lo9z n C{±) for any algorithm for MM, where C(t:) is the

number of additions/subtractions used in the algorithm.

M. PATERSON Dealing and bidding for secret messages

In a formal analogue of IIbidding ll
, as in the game of Bridge, a set

of distinct cards is distributed randomly among several players.

Next, a sequence of bids, i.e. statements about their own heads,

is made by the players according to a given protocol or convention.

Circumstances are demonstrated in which any two of the players may .~

exchange information, provably secret from even a coalition of all ~

the other players, by means of a sequence of open bids according

to the fixed convention.

In formulating bids it is helpful for players to have access to a

randomizing dev~ce such as dice. Such a convention is a probabi

listic protocol. It is shown that at least one bit of secret infor-

mation can

of the two

either I)

or TI).

always be exchanged provided the numbers a,b,c of .cards

partners and their opposition respectively, satisfy

a + b ~ c + 2 , a ~ 1 , b ~ 1 (with an easy protocol)

a=b=n/p, c=(1-2/p)n, where n'~ pO{109P)'

(with a more involved recursive protocol).
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An OPEN PROBLEM is to show that Va,b 3 c such that no secret

information can be guaranteed to be exchanged. Even for a = b = 2 ,

this is open.

A deterrninistic protocol is one without probabilistic bids. It

seems much harder to exchange secrets in this case. We have one

successf:ul protocol for a = b = 3, c = 1 , but as yet nothing even

for the case c = 2 .

w. PAUL: On heads versus tapes

2-dimensional 2~tape Turing machines cannot simulate 2-dimensional

2-head machines in real time.

C.P. SCHNORR: Constructing the automorphism group Aute(X) for

trivalent graphs in time 0 (n 3 log n)

We consider the following group theoretic algorithmic problem

which lies at the bottom of the recent polynomial time algorithms

for .constructing the automorphism groupof graphs with bounded

valence. by Luks. Given a group Ge Sym(A) , A a colored set,

a E: Sym(A), construct CA (G) := {a E: G ; a color preserving } . We

introduce some efficiencies into the previous solution for this

problem which are particularly valuable in the case th.at only a

few elements of Aare colored. The new method is exemplified in

the Luks algorithm for constructing the group Aute(X) of auto

morphisms of a trivalent graph X which keep the edge e fixed.

The irnproved algorithm constructs Aute(X) for trivalent graphs

with n edges in time 0(n 3 log n) ~ The obvious way to apply this

to testing graph isomorphisms of trivalent graphs and to construct

ing the full automorphism group Aut(X) of trivalent graphs yield

0(n4 log n) - time algorithms.

(Joint work wi th A. Weber, Frankfurt)
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How to multiply polynomials numerically

In the algebraic model multiplication of polynomials of degree ~ n

is possible in O(n log n) arithmetic operations. For nurnbers of

length ~ - or with relative accuracy 2-~, respectively - each

arithmetic step is possible in- O(~) , at least for pointer machines

(= successor RAl1 SMM); otherwise an extra factor of log ~·log log ~

comes in. Here a new method is presented for rnultiplying n-th degree

polynornials wi th complex co~fficients of binary length ~ ~ log n

(and bounded by 1) which requires only linear time 0 (n~) , or

O(n~·log(n2)eloglog(n2», respectively. Sirnilarly, Fourier trans

form of size N· with aecuracy 2.- 2 is possible in O(N2) , ßivision

of polynomials in O(nR..+n2
), interpolation etc. in O(nQ~ elog(nR.» .

A. SHAMIR: E ff ieient codes for wri te - once memories

A.O. SLISENKO

Many storage media, such as video dises, PROMs, or paper tapes,

are "write - anee" in the sense that each of its memory positions is

initially fabricated in a .. au state that may be irreversibly trans

formed inta a "1"state"when writ:ten. Nonetheless, we shall demon

strate that such storage media are capable of being nup~ated" to

a surprising degree. For example, only 3 bits of memory are needed,

to represent any 2-bit value in such a way that we can later

"update" the memory to represent any other 2-bit value.

The cornplexity of the Hamiltonian circuit problem

tor context tree ~raphs 4It
We consider context free graph grammars (CFGG) with rules which

preserve boundaries, i.e. a rule permits to replace anode with

all the incident edges by a graph with the same amount of boundary

edges. Für any CFGG f there is a polynomial - time algori thm for

recognizing the language L(f) generated by fand for parsing

graphs in L ( r) •

Theorem. For any CFGG r the Hamiltonian circuit problem for graphs

in L (r) has polynomial - time complexity.
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Simulation of multihead Turing machines by multitape

rnachines

w. Paul showed that it is impossible for d ~ 2 to simulate a Turing

machine w~th k heads on one d-dimensional tape by a Turing machine

with several d-dimensional tapes one head each- in real-time

without increasing the number of heads. It's also known that all

Turing machines with k heads on 1-dirnensional tapes can be simulated

by each other' in linear time.

We have the followi~g results

Theorem 1 Turing rn~chines with a fixed number k of heads on

2-dirnensional ~ape~_can be simulated by each other in linear time.

Theorem 2 A Turing machine with k heads on one d-dimensional ·tape

with d ~ 3 can be simulated

by a .machine with k d-dimensional tapes one head each in time

O(d 19·k)

by a machine with k d-dimensional tapes one heaä each and one

additional 1-dimensional tape with heqd in linear time.

(Joint work with W. Schnitzlein)

v. STRASSEN Computing derivatives

Let k be an infinite field, fs k(x1 ,-... ,Xn ) . For the nonscalar

complexity L we prove

L{f,~f' ... '-aa f) < 3L(f).
aX1 xn

In combination with the degree method this yields nonlinear bounds

for single functions.

(Joint work with W. Baur,' Zürich)

L.G. VALIANT: Computing polynomials in parallel using few processors

Consider any homogeneous straight line program of complexity C with

operations from {+,-,-} that computes a polynomial of degree d in

i indeterminates. We show ~hat there is another program that cornputes

the same polynomial in parallel time 0 ({ log C)( log d» and performs only

O(C 3 ) operations in total. The result can be applied to monotone

arithmetic programs and hence monotone Boolean circuits. Ruzzo's

simultaneous resource bound for context free recognition follows as

a corollary.

(Work done jointly with S. Skynrn, S. Berkowitz, C. Rackoff.)
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The monotone complexity of"Boolean functions

For a monotone Boalean function f the monotone complexity is the

minimal number of gates in each network for f cansisting onlyof

A - and V- gates. We discuss the known methods for the proof of

lower bounds on this complexity measure: graph theoretical methods,

elimination method (together with the pigeon-hole - principle) ,

replacement method and the assumption that certain functions are

given for free. Then we introduce the method of defining value

functions to measure the value of ·each gate for each part of the

function we like to compute. This method yields an n2/1og n -lower

bound which is the largest known bound for explicitly defined

monotone Boolean functions. Afterwards we discuss how to use this

new method to obtain partial results on the problem of determining

the monotone complexity of the disjunction of fand 9 if:. fand· 9
have na variable in common.

•

S. WINOGRAD: On the asymptotic complexity of matrix multiplication

The main result reported in this talk is that for every algorithm

for computing (ar A - camputing) the product of matrices there exists

another algarithm which yields a better baund for the exPonent cf

matrix multiplication. In ather words, the exponent is a limit

point. Using the proof of this result, which is canstructive~ one

abtairts that the exponent is smaller than 2.4956 .

Berichterstatter: J. Heintz

•
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