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‘ MaBtheorie

26.6. bis 2.7.1983

Die Tagung, an der 51 Wissenschaftler aus 18 Lindem feilnahmen, stand
unter der Leitung von D. K&lzow (Erlangen) und D. Maharam-Stone
(Rochester). In ihrem Verlauf wurden insgesamt 41 Vortrige gehalten;

daneben gab es noch zwei "Problem Sessions"

Es ist geplént, -einen Tagungsbericht zu verdffentlichen, wenn méglich

wieder in den 'Lecture Notes in Mathematics' des Springer-Verlages.

Die Tagungsteilnehmer mochten sich an dieser Stelle beim Direktor des
. ' Mathematischen Forschungsinstituts, Herrn Professor Dr. Barxier. und
seinen Mitarbeitern fiir die grofe Unterstiitzung bedanken, die den

erfolgreichen Verlauf der Tagung moglich machte.
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Vortragsausziige

Allgemeine MaBtheorie

J.P.,R. CHRISTENSEN

Critical exponents in the classical theory of moments

Let P be the space of all polynomials.

The main result was: ' .
For each )‘eﬁ,Z] there exists a probability measure u on R, with moments
of all orders such that
for 12 pe X P is dense in LP(u), and
for py N P is not demse in LP(u) .
That 'is, each such A may occur as a critical exponent.
Several ralated problems were discussed, in particular whether A can be

strictly larger than 2.

P. ERDUS

|
\
|
\
\
Combinatorial and geometric problems in measure theory }

Let Xy >X; e >x be a s;quence of positive numbers tending to zero..

Is is true that there always is a set E of positive measure which does .

not contain a sequence similar to the given sequence? .
A reward of 100 Dollars was offered for a proof or a disproof.

Is it true that there is an absolute constant C such that every plane set

E of (finite) measure bigger than C contains the vértices of a triangle

which has area 1? If E has infinite measure the result is easy.

Let C be given and r)» rd(c). Let E be a subset of the circle of radius r

with measure bigger than c-rz. Is it then true that E contains the ver=-

tices of an equilateral triangle of sidelength bigger than 17°
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Perhaps Furstenberg pgoved this. Straus further gsked: Does the conclusion
remain true if we assume that the measure of E is largér than r.f(r), e.g.
for f(r)=c.r ?

Székely, a young Hungarian Mathematician conjectured that if E is a set
s;ch that the intersections of E with a circle of radius r has measure
bigger than c-r2 for all r 7ro then the set E realizes all sufficiently
large diameters (i.e. for each positive d there are point 24y Z, in E

with distance d) ?

W.F. PFEFFER

(reporting on joint work with R.J. GARDNER)

When Radon measures are saturated

" Let X be a Hausdorff space and [y be a Radon measure on X. A concassage

of B is a family D of compact subsets of X such that supp ND = D for

all D € P and such that p(B) = ZD B(Ba D) holds for all Borel sets B.

Theoreq: ~Let‘X be metacompact or let X be meta-Lindeldf and assume that
(MA)+NON(CH) holds. Then Y = U {D: De@} is Borel and paracompact when-
ever Y is regular; furthermore g is saturatgd.

An example was given to show that the result becomes false, in general,

for meta-Lindelsf spaces if (CH) is assumed.

Applications to the decomposability of Radon measures were given,

R.J. GARDNER

(reporting on joint work with W.F. PFEFFER)
Radon measures

The first part of the talk gave consequences of the results announced

in W.F. Pfeffer's talk. These are:

Theorem: Let X be (i) weakly ©-refinable or (ii) meta-Lindeldf and
assume (HA)+NON(CH). Then every complete Radon measure on X is decomposable

and every Radon measure on X is MAHARAM.
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(decomposable = strictly localizable; MAHARAM = localizable)

Example (CH): There is a meta-Lindeldf space X and a Radon measure on X

which is not MAHARAM.

The second part compared various approaches to find sufficient conditions

for a (sayAcpmpletely regular) space to be a Radon space. There were

(a) If every open subset of X is Souslin-K (this in fact implies that
every open subset is § -compact) then X is Radon

(b) If X is Souslin them X is Radon (see Schwartz's book)

(c) If X is hereditarily wgakly © -refinable, haé no discrete subsets of
measurable cardinality and is universally'Radon measurable then X is

Radon.

(a) and (b) are .not directly related, but are subsumed by (c), which is the

most general result presently known., In some situations (e.g. when dealing

with Eberlein compacts) its full generality is needed.

S. GRAF and R.D. MAULDIN

Random homeomorphisné E

(this is an abstract of two talks given by the two authors) -

Several methods of constructing random homeomorphisms of the unit interval

onto itself were discussed. Two of these were specifica ly investigated.
The first conatructién is as follows: First the value at 1/2 is chosen
according to uniform distribution over (0,1). Next, the value at 1/4

is chosen according to uniform distribution over the interval fro; o]

to the value already chosen for 1/2 and, idependently, the value at 3/4
is chosen according to uniform distribution over the interval from that
value to 1. Continue this process. This defines a probability P on the

set of monotonely increasing homeomorphisms of the unit interval.

The second method can be derived from the first by taking the average
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right translate of P with respext to P: Pa(E):= J;P(Eg)dP(g). It turns
out that the measure Pa is also derived from a "point" process. So, both P
and Pa have the important feature that one~can make computer experiments
to obtain information about their properties. P as well as Pa gfve non-
empty open sets positive measure. Besides this they have certain "natural"
invariance properties. They are beth invariant under '"time reversalﬁ; Pa
is invariant under inversion vhereas P is not. Most importantly, P is.
invariant under scalihg between 1/2n and i+1/2§.:This means that one

gets P back when one scales the cenditional distributioh of P giveﬁ_

the values at i/2n and i+1/2n onto the homeomorphiem of the intervei;-On
the other hand P; does ‘not have this property anywhere. ‘ -

It was shown that P-almostall homeomorphisms have derivative O et 0,
whereas P -almost all homeomorphisms have upper derivative ohat O and
lower derivative O at O. Finally, the structure of the fixed point set

of P and P homeomorphisms was discussed. Several computer print-outs

generated by P and Pa random homeomorphisms were exhibited.

D. MAHARAM

On the planar repsesentation of a measurable subfield

>
fhis talk sketched a simpler proof of a slightly'sharperﬂversion‘6f the
planar representation theorem of Rokhlin (1949) and Maharam (1950).-

Let (N1, &, m) be a Polish measure space, with a q‘-finite'cbﬁpleéed :
Borel measure m, and let Olbe a countably generated ¢ -subfield of the
Borel field SS Then there is a measure preserving isomorphism of almost
all of ) onto a certain Borel subset Z of the plane, taking fr to the
relative Borel subsets of Z and Ol to the relative vertical Borel

cylinders, on which the measure is relative planar Lebesgue measure

“ et

on an ordinate set together with a sequence of l;near sets, the

measure being absolutely continuous with respect to linear Lebesgue

o®
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measure, and countably many atomic points.

The proof uses t;lo devices (both known): (a) the use of two Marczewski
functions to embed fL suitably in the plane, (b) the fact that a
function f of two variables x and y that is Borel measurable in x for
fixed y and monotone, continuous from the right in y for fixed x is

Borel measurable.

G. MAGERL

(reporting on joint work with S. GRAF) ’ '

Isometries of measure algebras

Let (X.‘ﬂ:,e) be a measure space, 0 = ()"/P the associated measure algebra and
€ = 1&&01 : g(a)Lm‘i . For a,be € the Nikodym distance of a and b is
given by d(a,b) = p(aob). Question: What are the isometries of the metric
space (g ,d) and of certain subspaces of that space ?

Theorem 1: If p is ¢-finite, then T:E-ﬁé is an isometry iff there is a
measure preserving Boolgan automorphism.§ of 0 and aoes such that

T(a) = aaa'o. ‘Usins a theorem of von Neumann one gets Theorem 2: If X is
Polish and g a G-finite Borel measure on X then T:§->E is &n isometry
iff there is a bimeasurable measure preserving bijection F of X and a
Borel set A of finite measure such that T( [A]):[F(A)A A;\, for all A.
Now let X be Polish, g be a locally finite Borel measure (necessarily

a G -finite Radon measure), :K:’lKC_-X: K cpt.s , % ={F£_—X: F closed, E(F)< oo}

and ‘ﬁ:: J-(/LJ, ? = ?/g. Call a Borel isomorphism F of X an almost isometry
if there is an F-invariant Borel set Y with B(-X\Y) = 0, such that F re-
stricted to Y is a homeomorphism of Y. Then one has Theorem 3: Suppose
that p is diffuse. (ai) T:?-’f is an isometry - iff there is a measure
preserving almost homeomorphism F of X such that ( fA]):[F(AfJ .

(b) If, in addition, X is locally compact then T:&—%&: is an isometry iff

there is a measure preserving almost homeomorphism F of X such that

T([A)=[F(a)] .

o®




R.M. SHORTT

Complementation and conjugation for Borel structures

Let (X, Q) be a measurable space and let € and ¥ be sub- C-algebras of §.
X is a conjugate of € if € D =1g, x] i ¥ is a complement for € if
also B is the C -algebra generated by € and ? . A characterization of
minimal complements for structures generated by a finite partition was
given and also an example showing that this characterization fails for
e countable partitions. This characterization was reformulated for the case
of two-fold partitions involving Borel embeddings. It also was applied
to the problem of determining when the union of Blackwell sets is again
a Blackwell set. '
The analogous problem for maximal conjugates was also considered, and
some partial results involving O0-1 transition kernels and measureable

selections wefe presented.

M. TALAGRAND -

Separate and joint measurabilty

Let (.()_,'i,e) be a complete probability space and (Y, ,v) a Radon
probability space. Let f: fIxY —» R be a function,measurable in the first
variable and continuous in the second. Problem : When is f measurable with
respect to the product measure ? An example of D. Fremlin (under (CH)) shows
. that f may fail to satisfy Fubini's theorem; on the other hand, for small

£
which is a pointwise compact set of measurable functions on 0.

Y (e.g. Y metrizable), f is measurable. Consider the set Z_:= Zf(..y):ye Y}

Main result: f is jointly measurable if Z_ is stable, i.e. if for all u<$

£
. *

and AeZ with p(A)>0, there is ny0 such that (gzn) ({(s.,....sn.t1,...,tn)e

)Zn

2n
L {CRPYNE {CALT I VR IO P ‘
If one assumes the following Axiom (L):"The unit interval cannot be covered

by less than continuum many Lebesgue null sets" then stability can be checked

Deutsche .
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using Theorem: (Axiom L) Suppose that (N,Z ,E)_'is_ perfect and that. Y

is the support of v. Then Zf is stable if the map w+df(w,.) is measurable
from AL to L'(v). Not-e that the assumption is equivalent to the existence
of a measurable map g on2xY such that for all w>and V-almost all te€Y

we have g(‘u?,t) = f(w ,t). The point is that these neglegible sets depend

a priori wildly om (. As a consequence of the theorem and further proper-
ties of jointly measurable maps a result about maps and their images

under invariant liftings on compact groups were derived. . '

Grundlagen

R. FRANKIEWICZ

(reporting on joint work with R, ANI§CZYK)

Some remarks on G’ -fields and measurable functions

B.V. Rao proved that a countably generated Q’-field always has a minimal
generator and asked whether a G -field without a minimal genarator exists.
This question was answered by the following Theorem: The & -algebra gene-
rated by the non ‘statiqnary.subsets of W, has no minimal generator. Assume
(CH). Then the following T -algebras have no minimal generator: the power
set ot'u“, the Lebesgue measurable subsets of ® and the subsets of R having

the Baire property. Also the following results were proved: Theorem: Assume

that ZFC is consistent. Then ZFC + MAu'-linked + 0c=w1+

algebra of Lebesgue sets mod null sets is not embeddable in the power set

the Boolean

of w mod finite sets" is also consistent. The same is true if the ¢ -a‘1-
gebra of Lebsgue subsets mod null sets is replaced by the Borel subsets
of the Cantor set. Theorem: Under (MA) the power sets of w modulo

sets of density zero is isomorphic to the power set of u mod sets of
logarithmic density zero.

Remarks: It was shown by Silver (1974) that under (MA) + NON(CH) P (w 1)

DF Deutsche
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has a minimal generator. The last result was proved by Just and Krawczyk

under (CH). .

E. GRZEGOREK

Remarks on some Borel structures

Let I be the unit interval and let. I! be the group of z;'ll permu't':'at."ions

of I. B.V. Rao (Coll. Math. 1970) proved that (a) There are two‘ sepgrable

Q@ -fields 0(’. .,t? on I such that for all p,qe I theq -f1e1d p(o(: )nq(Jl )

is not countably generated. (b) There are tvo aeparable 'V -fleldsdt,l, A 5

on I such that \ﬂi1n (ﬁ does not contaln any nontriv:.al countably generated
W-field. Under (CH) -this result was strengthened to .

Theorem: (CH) There are separable G ~fields ﬂ-1 and xﬁfz on I such that
for all p,qel! the g-field p(ﬂ,]) aq(f é) does mot contain any non-

trivial countably generated Q’~field.

Further, a very short proof to the folloving recent theorem of R M Shortt

was given: If A is an analytic non Borel set :Ln lR such that IR\ A is

i

totally imperfect then A is not isomorphic vuth any product A11A2 of two

uncountable analytic spaces A1 and Aa.

A. JOVANOVIC

Some combinatorial properties of measures

For a measure g its norm |t\|| = min KIXI ‘E(X)7 01 wa's_defin_ed:_ épd:t;pm_pared
with its additivity add(g). (Obviously add(g) ¢ g ). Using methods-of
Solovay and axioms a little stronger than the existence of measuréble
cardinals it was shown to be consistent to have a real valued- measure g
with 2"“7, add(e‘)( “B"’ Starting . from that the transition from large
cardinals to real valued large cardinals was proposed, changing in the
definitions "binary measure' to 'real valued measure". The consistency
of real valued large cardinals relative to the existence of large cardi-

nals can be proved using essentially Solovay's forcing method. A number
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of filter combinatorial properties can be translated into the language
of measures, so that it makes sense to consider classifications of real-
valued measures analogous to the Rudin-Keisler classification of ultra-

filters.

Lifting und meBbare Selektionen

R.W. HANSELL

Selectors in nonseparable spaces

Let T be a set with a paving JL&}XT) closed to finite intersections. Let
(X,g ) be a metric space. Suppose F:T ~— X is a weakly ‘Mv-méasurable
multimap with values that are nonempty, separable, ¢ -compiete and totally
bounded with respect to some metric (not necessarily complete) on X. This
latter property holds, for example, when the values of F are compact or when
X is separable. Let S(F) = {f:‘l‘ ->X: f is point valued,(u“,- )G' -measurable
and f(t)e F(t) for all te'.l‘} . ( (M )¢ = countable unions of differences
of sets in Wl ). The following theorem was proved -
Theorem: Suppose T is metrizable and F:T — X is as above. Then S(F) is
nonempty whenever .

(i) "“’S’ is the family of all Borel sets of class &< W, (to be precise,.

F has a Borel selector of class ‘w-a),

(ii) \M.Q. is the family of Souslin subsets of T. .

(11i) ‘M'Q' is a countably generated Ci-algebra on T (any sets).

The proof uses a nonseparable analogue of the countable reduction property
(shown by Maitra and Rao to be equivalent to the basic selection theorem

of Kuratowski and Ryll-Nardzewski).
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J.E. JAYNE

Borel measurable selectors and the Radon-Nikodym property

Several applications of the following theorem were discussed:
Theorem: An upper semicontinuous set-valued map from a metric space to a
Banach space with its weak topology has a Borel measurable selection,

provided the range is everywhere dentable, or equivalently has the Radon-

‘ Nikodym property.
V. LOSERT

Some remarks on invariant liftings

The following results were discussed: If G is a non-discréte local;y compact
group, then there exists no left-invariant Borel lifting. G admits a bi-
invariant liftiﬁg iff for each x ¢ G the set CG(x):= 17 €G: xy:yxj is open
in G. A connected locally compact group admits a bi-invariant lifting iff

it is amgnable; For X = &n, G the group of affine transformations with
determinant 1,there is no G-invariant linear lifting on X (with respect

to Lebesgue measure).

Abstrakte Integration

. P. MARITZ

Bilinear integration of multifunctions

The purpose if this talk was to consider some extensions and also an

approximétion of,Lyapunov's_theo;em in terms of the bilinear m-integral
of N. Dinculeanu. The integration is performed successively with respect
to a non-atomic measure, a direct sum measure and a Darboux measure. The

necessary counterexamples were provided.

DF Deutsche
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S. OKADA

A tensor product integral

Let X and Y be Banach spaces. An integration theory of X-valued functions
with respect to a Y-valued measure M\ was presented. To achieve tﬁe com-
pleteness of_ the space of integrable fun;tions. a space of functions has

to be considered which take values in a locally convex Hausdorff space W
containing a copy of X. Let « be a cross-norm on X®@Y. A function f with
values in W is said to be )\.-integrable if there exists a sequence (ci) in X.
and a sequence of measurable sets (Ei)' such that .(ci® )\(Fi)) is un-
conditionally summable in the completed space XG‘Y for every sequence of
measurable "“sets Fig Ei and if w'e¢ W' implies that <w', f) can be expressed
as the sum of the absoluteiy summable sequence ( Lu'ye 1Ei>) .

This integral can be applied to obtain the Fubini theorem for scalar valued

functions with respect -to the product of two Banach space valued measures.

T.P. SRINIVASAN

Measure and integral - a new gambit

A procedure to construct the Dm-liell integral extension and the Baire

integral extension of a pre-integral with swiftly converging sequences

taking .the role traditionally played by Cauchy seuqences, was presented.

Unlike Cauch‘y'sequences, swiftly converging sequences converge almost
eve;‘yvhofe dominatedly and almost uniformly. If (I,L) is a pre-integral .
define (tn) in L to be swiftly convergent if Zn "fn+1- fnﬂ< oo , and

define N to be a null set if N g {x: anf (x)- fn(x)| =o°)for some

n+1
swiftly convergent sequence (fn)n. Let L' be the class of functions f
which are a.e. limits of swiftly convergent seqnencea(fn) in L and let
I'(f) = lim I(fn). Then I' is well defined on L1.

Theorem 1: I' is an integral extension of I and L1 is norm complete,

order complete (pointwise order a.e.) and null complete.

DF Deutsche
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Theorem 2: If L1 is the subfamily of L-Baire functions in L’| and 11 is
the restriction of I' to L, then (11,L1) is an integral extension of (I,L)
and it is the smallest integral extension. The space L1 is norm complete

and order complete.

E.G.F. THOMAS

Invariant Daniell integrals

Q Let X be a Hausdorff space and let L be a subla{;tiqg of the vector lattice
of real continuous functions on X. Consider a localizable Daniell integral
4 on L, i.e. g+ is defined by a Radon measure m on X by the formula
6-‘—(“7) = Sc{ dm. Theﬁ if G is a group of homeomorphisms of X lea.viné L
invariant it was shown that, under appropriaten hypotheses, the invariance
of I under the action of G implies the quasi~-invariance of a cer;ta-in—,‘class
of Radon measures on a quotient G-space Y of X. Conversely every quasi-
invariant measure class on Y can be.obtained in this way from some G-in-

variant triple (X,L, * ).

MaBe und Integrale mit abstraktem Wertebereich

P. MORALES

' Boundedness for uniform semigroup valued set functions - - . .- Cae

Let X =(X,%) be a uniform space. A subset""'{vn:néﬂf.. of U is called a”
uniform bounding system if (i) every Vn is symmetric;(ii) 'vng Vn'l £6£ n ¢ m;

(iii) VeV.e v

nen+ Let BeX. Then B is V-bounded it B¢ V [F] for some’

ne/N and some finite subset F of X, B is said to be bounded if for. every
symmetric entourage V, B is an: neN; -bounded.

Let X be a commutative Hausdorff uniform semigroup with neutral e‘le;levn; o,
and let ® be a ring of subse‘ts of a fixed set T. 'The féi];owi;né results

were presented:

DF Deutsche
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1) Let QL:Q' = X be s-bounded and additive and let VUV be a uniform
bounding system. Then I is U -bounded. (This generaiizes'Results of

Musiaf and Kats)

2) Let (G"n) be a sequence of X-xalued s-bounded additive set functions on .
If for every Eel® the sequence (Etn(E))‘converges to O then the {4, are
uniformly bounded.

3) A generalization of the Nikodym uniform boundedness theorem.

k) A generadization of the following result of Dieudonné: Let \Mo be

a family of regular Borel measures on a compact Hausdorff space T such that

sup } \GL(U)\ :&e:ﬁ(]koo. Then sup illcc"(T) : Vev‘(f <o .,

D. SENTILLES

Some measure theoretic applications to the Pettis integral

A boﬁn@ed weakly measurable function f on a probability space ({2 ,i ,(’Ju)
into a Banach space X naturally induces a "Stonian transforam" ?: S X"
which is continuous with respect to the x*-topology on X*¥ , where § |is
the Stone 'spalce of the measure algebra. Because f is strongly measurable
iff ?ex a.e., on S the measure ct‘f\-‘l may be used to prove a'deco;nposition
f = g + h, where g is Bochner integrable and/l\l'e X“\X a.e.. Consequently,
the Pettis integrability of f depends only on the extreme case: h. Such

a function h is Pettis integrable iff the intersection of X with-the
weak® -closed convex hull of 11;(0) is nonempty for each nonempty open-closed
subset O of S. This result leads to an integral free characterization

of Pettis integrability: f is Pettis integrable, iff whenever 1|x:|§1

* * N
and X, x in the X-topology, one has that :{f = 0 a.e. implies x*f = O a.e.

.

T. TRAYNOR

Frechet-Nikodym topologies on rings and lattices

Modular functions (w(awvb) + m(aab) = m(a) + m(b)) on an abstract lattice
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with values in a topological group were considered. The analogue of the
Frechet-Nikodym distance (d(A,B) = @.(AAB)) in this seil,ting is dm(a,b) =

= sup]lm(v)-m(u)l: aab & uévgaVb} ,{(in case the group has a quasinorm, which
was assumed). This defines a (generalized) pseudometric on L for which

the translations awaax and aws avx are contractions and d(aab,b)=d(a,avb).
If M is a family of such modular functions for whiph ma increases uni-
formly for m in M, then the M-topology (generated by de: me M}) coincides
with the equi-M-topology generated by the distance d= sup dm. A consequence.
is a local Rybakov-type theorem for Banach space valued modular functions
on a distributive lattice. Several related problems remain open, even in

the real case.

H. WEBER

Gruppen- und vektorwertige s-beschrdnkte Inhalte

Es wurde eine Methode zur Behandlung von gruppen- und vektorwertigen
Inhalten vprgéstellt, mit der sich zahlreiche Sdtze einheitlich und mit
einem Minimum an technischem Aufwand beweisen lassen. Eine wesentliche
Rolle spielen dabei die FN-Topologien.

Sei G eine topologische Gruppe, die vollstdndig und Hausdorffsch ist, »

R ein Boolescher Ring, ug die feinste s-beschrankte FN-Topologie.auf.R und -
(E, '\Ys) die vollsténdige Hiille von (R, us). Dann 1l&Bt sich jeder s-be-~ .
schrﬁnktev Inhalt po:R—> G in eindeutiger Weise stetig zu einem Inhalt EA':’I\?'—)G
fortsetzen. Zur Untersuchung von g betrachtet man zun#dchst die Fortsetzung
; und iibertrdgt dann die Ergebnisse auf QA:&'\R. Die Untersuchung von Ei
ist deshalb einfacher als die von ¢ , weil i eine (als Verband) vollstdndige:
Boolesche Algebra ist, auf derg v -stetig ‘ist (d.h. fir jedes nach unten

gericﬁtete'System (xx) in R mit x{l,o gilt E-(xa)-? 0).
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Geometrische MaBtheorie

P. MATTILA

Hausdorff dimension of intersections of sets in n-space

The following probiem was considered: Let A and B be Borel sets in R with
Hausdorff dimensions dim A = s and dim B = t. What can be said about the
Hausdorff dimensions of the intersections A NnfB, where f runs through the
isometry group of R® ? Some examples indicate that in gemeral there is
very little to say. But if t is assumed integral and‘B sufficiently nice, '
e.g. a 01 manifold or t-rectifiable, then dim An fB = s+t-n holds for

many isometries f .provic_ied s+t-ny 0. For general Borelsets A and B a
larger family of transformations has to be used; e.ge. dim An £fB ¥ s+t-n
hoids for many similarities , i.e. maps composed of translations, rotationms
and homotheties. Equality does not hold in general, but it does under

some extra conditionsion B. For example, it suffices to assume that B has

positive t-dimensional lower density at each of its poinfa.

A. voLéré

On_the reconstruction of convex bodies from a finite number of

Steiner symmetrals

The following problem was comsidered: Given a convex body K in the plane,

is it possible to find a finite number of directions such that K is de=-

termined by its Stein?r_symmetrala with respect to th-ese directions ? .
Giering (1962) showed that three directions are emough to distinguish

a given K from all other convex bodies; Gardner and McMullen (1980)

proved that a set of directions, D, distinguishes each convex body from

each other iff it is not the I;near image of the diagonals of a regular

n-gon. As a counterpart to this result it was shown that if there are

two convex bodies not distinguished by D then there are already continu-

ously many.

-From the result of Gardner and McMullen it follows in particular that there
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is a distinguishing set of four directions, hence the map J'sénding K to
its Steiner symmetrals with respect to these directions is injective
(defined on K, , the set of all convex bodies and takilng values in 3’(:*).
It was shown that J° as well as J"':J(}(‘l—)}(iare continuous (with respect
to the Hausdorff metric), hence the problem of reconstructing K from J’(K)
is well posed. For sets which are unions of inscribec paralleloérams v.lith
sides parallel to two given directiomns, a recunstruction procedure was

presented.

Extremalprobleme

H.G. KELLERER"

Duality theorems for marginal problems

Given Hausdorff spaces Xi, tight Borel probability measures 6‘1 on Xi i;im a

(bounded) function g: X= —> R, the following two problems were

T l X
feien T4
investigated:

(MP) maximize 6&'(3) over all tight Borel prosabuities on X with

marginals (G") S ) for 1¢icen,
(DP) minimize 1§Zn H’i(f ) over all (fi,...,f.) , f..xi--v R G;i-lnte-
grable and TN f,0T; 3 g.

Let S(g) be the supremunm corresponding to (MP) and I(g) be the inf1mum
corresponding to (DP). Then, using the theorems of Hahn-Banach and Riesz,

it is not hard to show the "duality theorem"‘ s(g) = I(s), provided that

the spaces Xi are assumed to be compact metrizable and the funct1on g “
continuous. A thorough examination of the functionals S and I then shows

that they have the properties of a ct capacity, where C is the latticc

of upper semicontinuous functions on X. Therefore, by first proving

8(g)=I(g) for all g in c" one obtains the duality theorem for all C u_
analytic functions. This result holds without special topologlcal assumptions

and can be carried over to all % G(X ) -measurable functions g
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V.N. SUDAKOV

Two problems connected with Kantorovic distance

1. Let lxt:te T} , Xt:(-ﬂ,m,P)-éE be a family of E-valued random variables
where (E,e ) is a complete separable metric space, and let u:,t:te T] be the
family of their distributions. Such a family is called a Kantorovic set

if for any t » t' in T the equality EPg().(t , Xt,) = L((th, .th,) holds,

where KK denotes the Kantorovic distance.

A class of spaces (E.g) was described, such that for every family Zslt:te '
of probability distributions on E there exists a corresponding Kantorovic

set‘7 of E-valued random variables. .

2. Let @ and v be Borel probability measures on [Rn. absolutely continuous
with respect to Lebesgue measure and such that jS" xfy" ddu QOL oo . Then
there is a one-to-ox_xe optimal pian to transport Gf- to v, i.e. a BorelA
meaéure m, on R™x an, concentrated on the graph of a 1-1 measur'e preser-

ving transformation of IRn, whose marginal distributions are 6* and v §uch

that gllx-y.u dm = (g, v).
H. von WEIZSACKER

Extremal families of probability measures

This talk gave a sux;vey on some questions about the extremal structure

of convex sets of probability measures. .

Let X be a Polish space, P(X) the space of Borel probability measures on X
and H be a convex subset of P(X).

Q1: Is H a Choquet set, i.e. (a) is H equal to {r(ﬂ’):ﬂ‘e P(exH)} where

r(nw)(B) = XI)(B)T(dD ). (b) in part (a) T is uniquely determined by

r(M iff IR*H is a lattice cone. A simple sufficient condition is that H
g

is of the form H = Q1“u ffndﬁa e an} where (f ) is a sequence of» _

Borel functions and (an) a sequence in R. (v. Weizsicker-Winkler, 1979)

Q2: Characterize exH. Here, following the ideas of P. Martin-Lof and
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Dynkin, the Martin boundary for Brownian motion was explained. It was
pointed out that for other (possibly infinite din;ensio'nal) diffusion
processes the analogous questions are open and interesting.
Q3: 1Is there a measurable map ¢ :X-> exH such that Dlx: cf(x): u_‘ =1
for all ‘v in exH ? The answer is "yes'" if H is a Choquet set, (R+H - IR+H
is a sublattice of the lattice of signed Borel measures on X and exH
is Q'-compact with respect to C(M(X),Cb(x)). An example by D. Preiss

. (contained in a paper by Mauldin, v. Weizsidcker and Preiss, Ann. of Prob.)
shows that the answer becomes 'mo, in géneral" if the last condition is
omitted.

-—

Q4: Find a computational algorithm for W based on stat_istical data

on r(T ). Here results of W. Kriiger were reported on.

MaBtheorie ug_xi_iv Funktionalanalysis

M.A. AKCOGLU

Sub-Banach lattices of L_ spaces
k4

Let 14 p< wo, (X,?,g») be a Lebesgue measure space and Lp:Lp(X,?.c&).
For f in valet £%* denote the unique vector in L; = Lq such that |lf[|§ =
llf’lg = (£,2%). Then it was observed that arguments of T. Ando (Pacific
'J. Math. 17(1966)) yield the following theorem.

. Theorem: Let p # 2 and let Mc._Lp. Then the following statements are equi-
valent: (i) M and M =‘f‘:feM] are closed linear manifolds. (ii) There is
an £ in M and a sub-q -algebra q of S such that M= {ef: g is % -measurable
and gfe Lp\. (iii) M is ispmetrically isomorphic to the Lp space of
another measure space. - The imflication (i) (ii) (which is the only
non-trivial part of the theorem) illustrates the fact that for p#2 somé
pointwise properties of the elements of Lp can be formulated in terms of
Banach space conditions on Lp. Nofe that if T:Lp——) Lp is a contraction
then M = {£: f:Tf} satisfies the conditions of the theorem ((i) for

example) This gives Ando's theorem.
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R. BECKER

Quelques aspects de la théorie des mesures coniques

Soit E un espace localement convexe séparée de dual E'; une mesure

conique positive sur E est une forme lineaire positive sur le treillis

de fonctiong sur E, engendré par E'. Il y a plusieurs types de problémes:

a) quand r,est elle donnée par une mesure--de Radon. ?:

b) si X ¢ E est une céne, qﬁand toute @.portée par X est elle donnée

par une mesure de Radon ? . .

c¢) que se passe-t-il si on affaibli la topologie de E ?

G.A. EDGAR

Realcompactness and measure-compactness of the unit Ball in a Banach space

The realcompactness and measure-compactness of a Banach space in its
weak toplogy have been of interest in connection with the theory of
integration in the Banach space. Similar properties can be investigated
for the unit ball of the Banach space. In the talk several examples were
worked out to illustrate these properties. It can be conjectured that
the ball is realcompact (or measure-compact) if and only if the whole
space is. The speaker expected that this is false, but did not know of

a counterexample.

W.A.J. LUXEMBURG

The Radon-Nikodym theorem for positive operators

The main purpose of the talk was to discuss the following Radon-Nikodym

type factorization theorem for positive operators defined on vector lattices.
Let L apd M be Dedekind complete vector lattices and let j{n(L,M) denote

the Dedekind vector lattice of order continuous and order bounded linear
tyansformations of L into M. A local operator on a vector lattice is a
ﬁositive linear transformation that leaves invariant all the bands of the

underlying space. The family of all such densely defined operators is
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denoted by orth™(L). By a Radon-Nikodym type factorization theorem we méan
a factorization of the form S=To1, where S,T are positive order continuous
and W is a local operator (In the case of measures the Radon-Nikodym
derivative plays the role of the local operator). For positive operators
we have the following result. Let S,T e &,n(L,M) be positive. If T has the
Maharam property, i.e. maps intervéls onto intervals, then the .following
conditions are equivalent: (i) S is contained in the band generated by T;
‘ (ii) S is absolutely continuous w.r.t. T, i.e. for all Ot uel, Su is con-
tained in the band generated by Tu;(iii) there exists a local opera£or
W & Orth(L) such that S = ToT.
A dual form of this result leads to a factorization theorem for linear
lattice homomorphisms generalizing a result of Kutateladze. For spaces of
measurable functions the result is related to earlier results of D. Maharam-
Stone. Since every order bounded operator from L to M may be uniquely’
extended to a larger space containing L, the extension having the Maharam
property agd the order continuity property, the above Radon-Nikodym type
faétorization theorem has a wide application range anaiogous to the

classical Radon.Nikodym theorem for measures.

G. PISIER

Tensor products of Banach spaces

’ The talk repbrted on some recent results concerning the injective and
projective temnsor products (denoted by XéY and XSY respectively) of two
Banach spaces X and Y. »
Recent examples show that X and Y can have the RNP (RadoanikOti.ym éroi)eri:y)
and bé weakly sequentially compiete whiie X@Y( contains o and hence fails
to have these properties. Further the folloving theorem was presented
(to appear in Acta Math.) which answers a conjecture of Grothendieck:
Bvery Banach space E of cotype 2 (every separable Banach space E) can be

isometrically embedded into a space X (into a separable space X) such that
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X®X = XOX and such that both X and X ¥ are of cotype 2, and X/E has the
RNP and the Schur property. Related results were discussed concerning the
possibility of embedding an arbitrary Banach space in a suitable way into

oo
an i -space (cf. a joint paper with J. Bourgain, in preparation).

C. STEGALL

Gateaux differentiability and a class of topological spaces

Let € be the category of topological spaces K defined by the following
propérty: K belongs to € if and only if for all topological spaces .
c, S, T, V where V is a Baire space and CS KX S, and for all perfect maps
@:C->T and all continuous maps A :V-T there exists a select:i_:on

(¢ (v), §(v)) and a dense G, set G so that ( is continuous at each point
of G ( } does not matter).

This category has nice permanence properties and contains, for example,
the duals of Asplund spaces (in the weak* topology), Eberlein compacts,
compact metric spaces and RNP sets. The important property of € is that
if x* (in the weak® topology) is in € then X is a weak Asplund space.
This is the first theérem that gives permanence properties of a large

class of weak Asplund spaces.

Ergodentheorie

S.J. EIGEN '

Ergodicity of Cartesian products via triangle sets

Let S,T be non-singular, invertible ergodic transformations of the unit

n(x)

interval I. When is SxT ergodic and when is TxS ergodic ? Here,

n(x) n(x)

TnS denotes the power-skew product (x,y)w»>(Tx,S y) wﬂere n is

a maé from I to the integers. Using the fact that T is ergodic iff for
all measurable sets A, B of positive measure there is n> O such that
TnAan has positive measure as a definition,one would like to study TxS
on rectangles AxC, BxD. However, this does not seem sufficient: But no

example of ergodic transformations S, T to show this insufficiency was
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known to the: speaker.

Definition: A ‘measurable set of positive measure F¢ IxI is a triangle set
if (1) 'F ¢'AxI for some measurable subset A of I; (2) for all O <€ <" one
has G’L(QE)7 O where Q¢ = ‘y: 6~(Fn (Axy{)) »(1-¢) ek(A)} .

Results such as the following theorems can then be obtained:

‘Theorem 1: Every measurable subset. of the unit square having positive

measure is a disjoint union of triangle sets.

Theorem 2: xS is ergodic if T and S have the following property :for all

~ €30 and all sets.A, B of positive measure the sets NS(A.B) ={n>0:

‘T"A AB:has positive measure} and N, = jn>0: ¢ TA A B) 2(1-¢) (A) &(B) }

have nonempty intersection.

V.S. PRASAD

Nonsingular ergodic transformations

Let (X;'9, 6.») be a Lebesgue probability space and G(X) be the of nonsingular
transfbrmgtiohs’ of X -onto itself. On G(X) put the coarse topology, i.e.
T,—>7T éoarsely if HUT £ - Upf 111-70 for all feL1(X)o where UT:L1—> 1)

is the L isometry assogiated to T, (UTf)(x) = £(Tx) (4 GT/d(’w)(x) for
feL1. With this topology G(X) is a complete metrizable space. .
Theorem: The transformations T in G(X) such that the skew product extension
T :XxR = XxR, (x,t) —> (Tx, t+log(d6wT/d6¢)(x)) is ergodic on Xx R with
the product measure d6u e'tdt. form a dense Gd-subset of G(X) with the

coarse topology.

L. SUCHESTON

(reporting on joint. work with M..AKCOGLU)

'Ergodic theory and truncated limits

Let E be a Banach lattice such that (A) There is a weak unit u, i.e. ueE,

.and ualf| =0 implies £=0, and (B) Every norm bounded increasing sequence

(cpk) converges (strongly). For a sequence (fn) in E, WILf = f (weak

truncated limit of fn is f) means that for all k 50, anku-) (fk(weakly) and

)
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) increases to f. WILE = WTLf; - WTLf;. TL (strong truncated limit) is
defined analogously. If fné E, then (WTLfn=O) = (TLfn=O)ﬁ,>(fn has a sub-
sequence fni=gi+hi, 8 h ¢ E, llgi”-ao and hiAhj=0 for i£j). The interest

of WIL stems from the fact that every norm bounded sequence has a sub-
sequence with a weak truncated limit. WIL is unique and 8; —) g weakly ,
HTLgi=0 imply g=0. In L.',(W)TLgi = 0 iff 31—70 in measure on sets of finite
measure. Let T be a positive linear operator on E; if WTLfu =¢and WIL Tfn =y

- -1,
N ‘ . 1
then T¢ ¢\ . Hence if |[f -T2 190 then Tqe¢. Let A =(1/n) Z T,

sup “Anu46°- Theorem 1: The following ‘statements are equivalent: (i) there
is a weak unit U such that Tu=U; (ii) for every band projection P£0, PAnu

bas no TL-null subsequence; (iii) for every O#HEE: one has limH(Anu)7 0.

If sup IITnII Loo » then A ;:an be replaced by Tn’ Theorem 2: If Oz $¢ Tg ,

PS is the band projection on e ng_'_ then TL PgAnf exists.

Assume also (C): For every heE. and oA >0 there exists= p(h,x) such that

04f¢h, |tlzo, BEE,, [gll£1 implies [[£+gl v ||g||+“ . Then one has

Theorem 3: If |T|&1 and f¢E, then A f =g

n * hn with gn,hne.E", TLhnzo

and g, converges strongly to some ({ with Tc(:;e.

Wahrscheinlichkeitstheorie

S.D. CHATTERJI

Measure theory and 'amarts" .

Let ‘An be an increasing sequence of algebras of subsets of a space -Q.
and A = U./tn. Let E be a Banach space and On:A,n—>E be a sequence

of additive set functions of bounded variation such that (i) lim On(A) =
©(A) exists for all Aedl; (i') © :A9E is of bounded variation; (ii) there
exists a sequence v u{n—a[b,aofof additive set functions with vn(.Q)—>0
and pn+1l‘ﬁ‘n & vy, for all n.

It \:t>P@l is countably additive then O (A) = S 29X+ OL(A) where

e’nl,\ and fneL; s provided that E has RNP. One can prove that f converges
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almost everywhere (A) to f where @Q(A) = JA 2dN+ 9'(A), O'LN.
The relationship of this theorem (proven in Manuscripta Math. 4(1971) and
Lect. Notes in Math. 541(1976)) to certain other convergence theorems

including those concerning "amarts'" was discussed.

M. TALAGRAND

Characterization of Glivenko classes\and Banach space valued maps

satisfying the Law of Large Numbers

. Let (Q,2Z, eg) be a complete probability space, E be a Banach space and
£f:Q <%E be a ‘map (no measurabllity assumed). For ne N let €, ﬂ.N—> E,

“1"’"’7 f(t )..The following results were proved.

itn

Theorem: The following statements are equivalent: (a) Q&m almost every-

where lim gn(t) exists in norm; (b) f is Pettis integrable and ‘w'f‘ 3
almost everywhere lim gn(t) = P=- de\“'; (c) £ is Pettis integrable and
Sttg,(t) - p-[raylag(t) converges to 0i (a) §Uetap o and the set
= Yo t: x*¢E¥} is stable. (For the defimition of stability see the
abstract of the speaker's first talk, p.7). . ; o
Corollary: A sequence (Cn) in 2 is not a Glivenko-Can}:_el],.i cZ.I.ass’. iff.
there is a measurable set A of positive measure and a natural number n such

that for almost all choices t1,....tn & A, each subset of {t1. ...,tn's is

the trace of a set cp on {t1""'tn‘

' W.A. WOYCZYNSKI

On multiple random measures and integrals

The aim of the talk was to study integrals of the form

In(f) = f°1 "'fo1 f(x1,...,xn)dM(x1)...dM(xn) s, where M(x) is’ thé hémo-
geneous process with independent increments determined by Lévy measure.

The basic questions are (1) For what class of functions f does In(f) exist ?
(2) What is the distribution of In(f) ? For n=1 there is an answer of
Urbanik and Woyczynski to (1), for n=2 Ito's formula can be used to answer

(2) and for general n a result of Cameron and Martin, Applications are, e.g.
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in quantum field theory and statistics.

For the seqond order case the following result of Rosinski-Szulga and Engel
was mentioned: let the product measure MZ(A)=M(A1)-M(A2). A:A,‘xA2 be in L,
and F(A)= EM,(A). then g defined by p(B)= F(W (BaD) + FF(B\D) where

< is the projection and D the diagonal is a control measure for MZ' Thus
M2 extends to a countably additive measure. Furthermore a condition for

a funétion f to be M2 integrable can be given.

The stable case was treated by Szulga and Woyczynski: Let (Qk) be the Haar.

system normalized in Lp/(1<p‘2) and f(s,t) = Z ck,j qk(s) §j(t).

s p/2 _
Thén if 2,1‘,3 ley, 17/ %¢ oo then T(£) = 7 o, 5 P am(s). §de(t)
converges almost surely.
Finally the following result on iterated integrals (Cambanis and Woyczynski)

. : s _9gn j=1 5
was presented: Let (discrete version) Qn'425=1 2 Ko f(k,3) M Mj
where (Mi) is indepéndent identically distributed and stable. Then Qn
converges in probability iff :
S 77 126, IR+ 10g(1/ T £k, 3)) < o .
k Ti=1 J=

The proof uses a lemma characterizing p-stable-radonifying operators

T= £(k,j)): 1?—’1?. The necessity of the above condition was noticed by

Pisier., For multiple integrals one gets higher powers of the logarithm,

Berichterstatter: G. Migerl (Erlangen)
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