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Tag u n g s b 'e r ich t 28/1983

Maßtheorie

26.6. bis 2.7.1983

Die Tagung, 'an der 51 Wissenschaftler aus 18 Lälden 'teilnahmen, stand

unter der Leitung von D. Kölzow (Erlangen) und D. Maharam-Stone

(Rochester). In ihrem Verlauf wurden insgesamt 41 Vorträge gehalten;

daneben gab es noch zwei "Problem Sessions"

Es ist geplant, 'einen Tagungsbericht zu veröffentlichen, wenn möglich

wieder in den 'Lecture Notes in Mathematics' des Springer-Verlages.

Die Tagungsteilnehmer möchten sich an dieser Stelle beim Direktor des

Mathematiachan Forschungsinstituts, Herrn Professor Dr. Barner, und

seinen Mitarbeitern für die große Unterstützung bedanken, die den

erf~lgreichen Verlauf der Tagung möglich machte.
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Vortragsauszüge

Allgemeine Maßtheorie

J.P.R. CHRISTENSEN
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Critiea1 exponents in the e1assica1 theory of moments

Let P be the spaee of all polynomials.

The main result was:

For each ~68,21 there exi~ts a probability measure u on ~, with moments

~f all orders such that

for 1 ~ p"" A

for p'" ~

P is dense in LP(u)t

P is not dense in LP(u)

and

That iSt each such A may oceur aa a critical exponent.

Severa1 ralated problems were discussed, in.particular whether ~ canbe

strictly larger ~han 2.

P. ERDOS

Combinatorial and geometrie problems in measure theory

Let %1 >x
2

'1 ••• >xn be a sequenee of positive numbers tending to zero •.

Is is true that there always is a set E of positive meaaure which does

not contain a sequenee similar to the give~ sequenee?

Areward of 100 Dollars was offered for a proof or a disproof.

Is it true that there is an absolute eonstant C such that every plane set

E of (finite) meaBure bigger t~an C eontains the vertices of a triangle

which has area 1? If E has infinite measure th~ result 1s easy.

Let C be ·given and r> ro(c). Let E be a subset of the eircle of radius r

vith measure bigger than e.r2 • 16 it then true that E eontains the ver-

tiees of an equilateral triangle of sidelength bigger than 1?"

•
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Perhaps Furstenberg proved this. Straus further asked: Does the conclusion

remain .true if ve assume that the measure of E is larger than ref(r), e.g.

for f(r)=c,r ?

Szekely, a young Hungarian Mathematician conjectured that if E ia a set

such that the intersections of E with a circle of radius r has measure

bigger than c er2 for all r '7 r then the set E realizes all sufficiently
o

large diameters (i.e. for each positive d there are point z1' z2 in E

with distance d) ?

W.F. PFEFFER

(reporting on joint work with R.J. GARDNER)

When Radon measures are saturated

Let x be a Hausdorff space and f be aRadon measure on X. A concassage

of e ia a family ~ of compact subsets of X such that supp rlD = D for

all D E; ~ and such that e(B) = L D e(B (\ D) holds tor all Borel sets B.

Theorem: ·Let X be metacompact or let X be meta-Lindelöf and assume that

(MA)+NON(CH) holde. Then Y = U {,n: D E:.~} i8 Borel and paracompact when-

ever Y is regular; furthermore e i8 saturat~d.

~D example was given to show that the result becomes false, in general,

for meta-Lindelöf spaces if (CH) 1e assumed.

Applications to the decomposability of Radon measures were given.

R.J. GARDNER

(reporting on joint work with W.F. PFEFFER)

Radon measures

The first part of the talk gave consequences of the results announced

in ~.F. Pfeffer.' B talk. These are:

Theorem: Let X be (i) weakly G>-refinable or (ii) meta-Lindelöf and

assume (MA)+NON(CH). Then every complete Radon measure on X is decomposable

and every Radon measure on Xis. MAHARAM.
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(deeomposable = strictly loealizable; MAHARAM = loealizable)

Example (CH): Thera is a meta-Lindelöf space X and aRadon measure on X

which is not MAHARAM.

The second part compared varioua approachea to find sufficient cond1tions

for a (aay completely regular) space to be aRadon spaee. There vere

Ca) If every open aubaet of X 1s Soualin-K (this in fact implies' that

every open Bubaet i8 G' -compaet) then X is Radon

(b) If X is Souslin then X 1s Radon (see Schwartz's book)

(c) If X i8 hereditarily weakly €> -refinable, has no discrete subsets of

measurable cardinality and 1a univers.ally Radon measurable then X 18

Radon.

(a) and (b) ar8~not directly related, but are subsumed by (e), which 18 the

most general reeult presently known. In some situations (e.g. when dealing

vith Eberlein compacte) its full generality is needed.

s. GRAF and' R.D. MAULDIN

Random homeomorphisms

(this is an abstract of tvo talks given by the two anthore)

Severa~ methode. of constructing randem homeomorphisms of the unit interval

onto itself were diacussed. Two of these were specifica -ly investigated.

The first construction i8 as follows: First the value at 1/2 i8 chosen

aeeording to uniform distribution over (0,1). Hext, the value at 1/4 4It.
~s chosen according to uniform distribution over the interval from 0

to the value already chosen for. 1/2 and, idependently, the value at 3/4

is chosen according ~o uniform distribution over the interval from that

value to 1~ Continue this process. This defines a probability P on the

set of monotonely increasing homeomorphisms of the unit 1nterval.

The second method can be derived from the first by taking the average
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right translate of P with respext to P: Pa(E):= JlHP(Eg)dP(g). It turns'

out that the measure Pa 1s also derived from a "point" process. So, both P

and P have the important feature that one can make computer experiments
a

to obtain information about their properties. P as weIl as Pa give non-

e mpty open sets positive measure. Besides this they have certain ,inatural"

invariance properties. They are both invariant under "time reversal,i.' P
a

is invariant under inversion vhereas P is not. Most importantly, P i6.

invariant under scali"ng betveen 1/2n and i+1/2
n.•.. This means that one

gets P back vhen one scales the conditional distribution of P given

the values at i/2n and i+1/2D onto the homeomorphi~m of the interval. On

the other hand Pa does "not have this property anywhere.

It was ahown that P~almostall homeomorphisms have derivative 0 at 0;

whereas Pa-almost all homeomorphisms have upper derivative ~at 0 and

lover derivativ~ 0 at O. FiAally, the structure of the fixed point set

of P and Pa homeomorphisms was discussed. Several com~ut~r prin~-outs.

generated by P and Pa random homeomorphisms were exhibited.

D. MAHARAM

On the planar repseaentation cf a measurable aubfield

This talk sketched a simpler proof of a slightly sharper ~version 'of the

planar representation theorem of Rokhlin (1949) aild Maharam ,( 1950) .,'

Let <n,~, m) be a Polish measure space, witha ~ -finite 'c·ompleted

Borel measure m, and let ot.be a countably generated· ~-subfield of the

Borel field t .. Then ~here is a measure preserving isomorphfsm of '~i~ost

all of ..!L. onto a certain Borel subset Z o'f the- plane, taking ~ to' "the

relative Borel subsets of Z and Ot to the relative vertical Boret

cylinders, on which the measure is relative planar LebesgUe measure
- ..... .,.'i.

on an ordinate set together wlth a sequence of linear set~, the

measure being absolutely continuous with respect to linear Lebesgue
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meaBur~, and countably many atomic points.

The proof use8 two devices (both known): Ca) the use of two Marczewski

functions to embed Sl suitably in the plane, (b) the fact that a

function f cf two variables x and y that i5 Borel measurable in x for

fixed y and monotone, continuous from the right in y for fixed x i8

Borel measurable.

G. MÄGERL

(reporting on joint work with S. GRAF)

Isometries cf measure algebras •
Let (X,Jt'e) be a measure space, 0( =~/f the associated measure algebra and

f = \at:ot: e{a)LOQ~. For B,be:tthe Nikodym distance of a and b i6

given by d(a,b) = ~(a4b). Question: What are the isometries of the metric

space (~,d) and of certain subspaces of that space ?

Theorem 1: If ~ i8 ~ -finite, then T: 'E -"') f i6 an isometry iff there i8 a

measure preserving Boolean automorphiam.t of ~ and ao~~ such that

T(.a) = aAao. Uaing a theorem of von Neumann one gets Theor~m 2: Ir x i8

Poliah and p a t7 -finite Borel measure on X then T: E-) t 16 an isometry

ift thera is a bimeasurable mea6ure preserving'bijection F of X and a

Borel set Ao of finite meaaure such that T( [A1 )=[F( A) 4 AJ, for all A.

Now let X be Po1iah, e be a 10ca11y finite Borel measure (necessarily

a ~-finite Radon measure), ]( =\KC::X: K cpt.) , ? =tF~X: F c1oaed, e(F)< oo}

and dl. = ~e. Cf = 1=/e. CaU a Bord isomorphism F of X an almost isometry •

if there is an F-invariant Borel set Y with e(X" y) = 0, such that F re­

stricted to Y 16 a homeomorphism of Y. Then one has Theorem 3: Suppose

that ~ 1s diffuse. (~) T: f -"').f is an isometry' iff there is ameasure

p;'eserving almost homeomorphism F of X such that T~ rA])= [F(A~ .

(b) If, in addition, X ia locally compact then T:d:~&: is an iaometry iff

there 1a a measure preserving almost homeomorphism F of X such that
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R.M. SHORTT

Complementation and conjugation for Borel structures

Let (x,~) be a measurable space and let C and ~ be sub- C" -algebras of ~.

~ is a conjugate of e. if e" Cb = 1~, X] ; ~ is a complement for "C if

also ~ i6 the, -algebra generated by e. and ~ • A characterization cf

minimal complements for structures generated by a finite partition was

given and also an example shoving that this characterization fails for

4It countable partitions. This characterization was reformulated for the case

of two-fold partitions involving Borel embeddings. It also was applied

to the problem of determining when the union of Blackwell sets i5 again

a Blackwell set.

The analogous problem for maximal conjugates was also considered, and

some partial results involving 0-1 transition kerneis and measureable

selections were presented.

M. TALAGRAND·

Separate and joint measurabilty

•
Let (..Q..,2. ,e) be a compiete probability space and (Y, ~,v) aRadon

probability space. Let f: 1t~y-.~ be a function,measurable in the first

variable and continuOuB in the second. Problem : When 1s f measurable with

respec~ to the product measure ? An example of D. Fremlin (under (CH) shows

that r may fail to aatisfy Fubini's theorem; on the other hand, for small

Y (e.g. Y metrizable), r ia meaaurable. Consider the Bet Zr:= lf(.,y):y~ yl
which is a pointvise compact set of measurable functions on·~.

Main result: f is jointly measurable if Zr is stable, i. e. if for all IX '" ~

. 2n")
and A-c2.with e(A»O, there is n)O Buch that (~ ) (\(s1' •••Sn,t" ••• ,tn )E-

2n ( I 2nA : f Bi) ~~, f (ti) ')/~ 1) ~ (e (A) )

If one a~sumes the following Axiom (L):"The unit interval cannot be covered

by less than continuum many Lebesgue null sets" then stability can be checked
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using Theorem: (Axiom L) Suppose that (Jl,~ 'f)~is~perfect and that. Y

i8 the support of v. Then Zr is stab1e it the map U,) ..... f( w,.) 1s measurable

fram ~ to L1(~). Note that the assumption 1s equivalent to the existence

of a measurable map g on.1by such t~at for all w snd v-almost all t E:- Y

va have g{ ~,t) = f( W ,t). The point 1a. that these neg1egible sets dependo

apriori vildly on lW. As a consequence of the theorem and further proper-

ties of jointly measurable maps a result about maps and their images

under invariant liftings on compact groups were derived.

Grundlagen

R. FRANKIEWICZ

(repercing on joint work with R. ANI~CZYK)

Some remarks on ~ -tfelds and measurable functions

·e

B.V. Rao proved that a countably generated ~-field alvays haa a minimal

generator .and asked whether a ~-field without a minimal genarator exists.

This question was ansvered by the following Theorem: The ~ -algebra gene-

rated by the non stationary subsets of ~1 has no minimal generator. Assume

(CH). Then the· follov1ng ~ -algebraa .have DO minimal generator: ~he power

set of w1 , the Lebesgue measurable subsets of ~ and the subsets of R having

the Baire propert7. Also the tollowing results vere proved: Theorem: Assume

that ZFC 1s cons1stent. Then ZFC + MA~-l1nked + Q c=w'L + 11 the Boolesn •

algebra of Lebesgue sets mod null sets 1s not embeddable in the power Bet

of w mod finite sets" is also consistent. The same is true if the ~ -al-

gebra of Lebsgue aubsets mod null sets 1s replaced by the Borel subsets

of the Cantor set. Theorem: Under (HA) the power sets of OJ modulo

sets of density zero 1s ·isom~rphic to the power set of ~ mOQ sets of

logarithmic density zero.

Remarks: It was shovn by Si1ver (1974 ~ that under (HA) + NON.( CH) -p (w 1)
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has a minimal generator. The last result was proved by'Just and Krawczyk

under (eH)" .

E. GRZEGOREK

Remarks on same Borel structures

Let I be the unit interval and let 11 be the group of all permut~~ions

of I. B.V. Ra~ (Co11. Math. 1970) proved that (a) There are two sep~rable

~-fields '*1'~ on i such that for all p,q~I! the~-fie.ld P(vt1)~q(Jt2)

18 not countably generated. (b) There are tw~ B~p~rabi~·~(:.::fi~id·6~'~-. JL 2

on I such that Jt 1 n di. 2 does not ~ontain an~" nont~ivia'i' countably 'generated

~-fie1d. Under (CH) ·this result was strengthened to

Theorem: (CH) Thera are separable (; -fieIds Jt1 and Jt 2 on I such 'that
:.. . .~ .. ~

for all p,q'!;.I! the ~-field p(Jt 1 ) I\q(J!2) .~oes not contain any non-
..

trivial countably generated ~-field.

Further, a very ahort proof to the following recent theorem of R.M. Shortt

was given: If A is an analytie non Borel set in lR such t,hat (R" A i6
_+: ;a'- I

totally imperfect then A i8 not isomorphie with any product A1~A2 of two
.. 1:'. .' ~; •

uncountable analytic spaces A
1

and A
2

•

A. JOVANOVIC

Same combinatorial properties of meaaures

For a measure e its norm Ie-" = min llXl :~(X).) ?l wa~.defi~ed:. ~~d: ~~!D~ared

with its additivityadd(e). (Obviously add(tt) f.: e·· .>. Usin:g :met~od!?~of .

Solovay and axioms a little stronger than the exi~tenceof mea~uraq~e

cardinals it was shovn to be consistent to have areal valued-measure ~

vith 2 ~"" add(e') <. \\e~. Starting : from that the transition from large

cardinals to real valued large cardinals was proposed, changing in the

definitions "binary measure" to "real valued measura". The consistency

of real valued large eardinals relative to the existence of large cardi-

nals can be proved using essentially Solovay's forcing methode A number
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cf filter cembinatorial properties can be translated.into the language

cf measures, so that it makes sense te consider classifications of real-

valued measures analogons to the Rudin-Keisler classification of ultra-

filters.

Lifting und meßbare Selektionen

R.W. HANSELL

Selectors in nonseparable spaces

Let T be a set with a paving Jic;~T) elosed to finite intersections. L"et

(X,~ ) be ametrie space. Suppose F:T ~ X is a weakly JW~-m~asurable

multimap with values that are nonempty, separable, ~ -compiete and totally

bounded with respect to same metric (not neeessarily complete) on X. This

latter property holds, for example, when the values of F are compact or when

X is separable. Let S(F) = \ f:T ->X: f is point valued, lJt-)~ -measurable

and f (t) 6 F( tJ f~r all t E: T1 . ( t v4<,-)~ = countable unions of differences

of sets in ~ ). The folloving theorem was proved

Theorem: Suppose T is metrizable and F: T~ X is as above. Then S(F) is

nonempty whenever

(i) vU.G" is the family of all Borel sets of elass C(.l W
1

(to be precise,.

F haa a Borel selector of elass "W.~).

(ii) ~~ is the family of Sou61in Bubsets of T•

.e1ii} vtt, i6 a ·countably generated ~ -algebra on T (any sets).

The proof uses a nonseparable analogue of the countable reduetion property

(shovn by Maitra and Rao to be equivalent to the basic seleetion theorem

of Kuratowski and Ryl~Nardzewski).

•

•
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J.E. JAYNE

Borel measurable selectors and the Radon-Nikodym property

Several applications of the following theorem were discussed:

Theorem: An upper semicontinuous set-valued map from ametrie space to a

Banach space with its weak topology has a Borel measurable seleetion,

provided the range is everywhere dentable, or equivalently ~as the Radon­

4It Nikodym property.

v. LOSERT

Same remarks on invariant liftings

~e following results were discussed: If G is a non-discrete locally compact

group, then there exists DO left-invariant Borel lifting. G admits a bi­

invariant lifting iff for each x ~ G the set CG(X):= {y t-G: xy=yxJ is open

in G. A connected locally compact group admits a bi-invariant lifting iff

it i8 amenable. For X = ~n, G the group of' affine transformations with

determinant 1,there is DO G-invaria~t linear lifting on X (wit~resp~ct

to Lebeague meaaure).

Abstrakte Integration

4It P. MARITZ

Bilinear integration of multifunctions

The purpose if this t~lk was t~ cons,ider some extensions and als,o an

approximation of, Lyapunov's theorem in terms of the bilinear rn-integral

of N. Dinculeanu. The integration i8 performed successively with respect

to a non-atomic measure, a direct sum measure and a Darboux measure. The

necessary counterexamples were provided.
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s. OKADA

A tensor product integral

Let X and Y be Banach spaces. An integration theory of X-va1ued funetiona

vith respect to a Y-valued measure ~ was presented. To achieve the com-

p1eteness of the space of integrab1e functions, aspace of functions has

to be considered whieh take values in a 10ea11y convex Hausdorff space W

containing a copY of x. Let ~ be a cross-norm on X(gt Y. A lunction f vi th

values in W is said to be ~ -integrable if there eKists a sequence (ci) in~

and a sequence of measurable sets (Ei>' slach ~hat (ci~ A(Fi}) is un­

conditional1y summab1e in the completed space XGP~y for every sequence of

measurable ~sets Fi ~ Ei and If" v' • W' implies that <,v', f / csn be expressed

aa the sum of the absolutel,. summable sequence .( <v",c i • 1E » .
i

This integral can be applied to obtain the Fubini theorem tor Bcalar valued

functions with respect·to the product of two Banach space valued measares.

T.P. SRINIVASAN

Measure and integral - a new gambit

A prooedure to construot the Deniell integral extension and the Baire

integral extension of a pre-integra1 vith sviftly eonverging sequences

taking the role traditiona11y played by Cauchy seuqences, was presented.

Unlike Cauchy eequences, sviftly converging sequences converge a1m~st

eve~yvhere dominatedly and almost uniformly. If (I,L) i8 apre-integral 4It.
derine (f ) in L to be sw1ftly oonvergent 1t '2 Ur 1- f U< OQ , and

n n n+ n

detine N to be a null set if N Sr Ix: 2. If 1(x)- f (x)\ = oo'ror some
1 n n+ n 'J

sviftly convergent sequenee (f ) • Let L1 be the elaes of funct10ns fn n

"hieh are a .• e. 1imits of sviftIy convergent sequences (fn) inL and let

I'(f} 1im l(in ). Then I' 1s vel1 defined on L1•

Theorem 1: I' is an integral extension of I and L1 i8 norm comp1ete,

order comp1ete (pointvise order a.e.) and null complete.
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1Theorem 2: If L1 is the subfamily of L-Baire functions in Land 11, is

the restriction cf L1 to L1 then (I1 ,L1) is an integral extension of (I,L)

and it i6 the smallest integral extension. The space L 1 i5 norm complete

and order complete.

E.G.F. THOMAS

Invariant Daniell integrals

Let X be a Hauadorff space &nd let L be a sublattice of ~he vector lattice

of real continuous functions on X. Conaider a localizable Daniell int~gral

tI- on L, i.e. ft- 18 defined by aRadon measure m on X by the formula,

tt-< 'f) = S~ dm. Then if G i8 a group of homeomorphisms of X leaving L'

invariant it was shown that, under appropriate hypotheses" the invariance

of ft' under the action of G implies the quasi-invar~ance of a, cer~a,in-. elass

of Radon measures on a quotient G-space Y of X. Conversely ever~quaai~

invariant measure elass on J ean be: obtained in this way':from some G-in-

variant triple (X,L, r ).

Maße und Integrale mit abstraktem Wertebereich

P. MORALES

Boundedness for uniform semigroup valued set functions'

Let X =(X t 1t) be a uniform space. A subaet" =1Vn : ri~',vVf of U is called' a

uniform ,bounding system if (i) every V ia symmetrie;"(ii)'y c- y" f~~ n"'i m;
n n'7 m .

(iii) V 0 Y' -= V • Let B Co X. Then B 1a 'l1'-bounded il B c. V "[F' for "some
n m n+m - - n J

DeiN and same finite subset F of X. B i6 said to be bounded if for. eyery

symmetrie entourage V, B is lvD
: n&~~-bounded.

Let X be a commutative Hausdorff uniform semigroup with neutral element 0,

and let ~ be a ring of subsets of a fixed set T. The following reaults

were presented:
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1) Let (-A,,: liL -., X be a-bounded and additive and let '\) be a uniform

bounding system. Then ~ i6 ~ -bounded. (This generalizes'Resu1ts of

Musiat and Kats)

2} Let (~n) be a sequence of X-xa1ued s-bounded additive set funct~ons on ~

If for every E E: &. the sequence (r-n (E) ) . converges to 0 then the ~n are

uniformly bounded.

3) A genera1ization of the Nikodym uniform boundedness theorem.

4) A generaäization of the fo110ving resu1t of Dieudonne: Let ~ be

a fami1y of regular Borel measures on a compact Hausdorff space T Buch that

°D. SENTILLES

Some meaaure theoretic applications to the Pettis integral

A boun~ed veakly meaaurable function f on a probability space (.fl, 2. ,~)
into a Banach apace X naturally induces a "Stonian transform" f: S -") XJfJl'

which ia continuous with respect to the ~-topo1ogy on X~~ , where S 1s

the Stone space of the measure algebra. Because f is strongly measurable

1- ff " . ""'-1 .fE: X a.e., on S the measure rf may be used to prove a deeomposition

f = g + h, where g i8 Bochner integrable and hE. x-te,X a.e •• Consequently,

the Pettis integrability of f .depends on1y on the extreme ease: h. Such

a function h i8 Pettis integrable iff the intersection cf X vith the

veak»-closed convex hull of b(O) is nonempty for each nonempty open-closed

subset 0 of S. This result leads to an integral free characterization

of Pettis integrability: f is Pettis integrable, iff whenever '"x:'~1

* .. ~and x~ --) x in the X-topology, one has that ~f = 0 a.e. implies ~f

T. TRAYNOR

Frechet-Nikodym topologies on rings and lattices

o a.e.

•

Modular functioDs (m(av b) + m(aAb) = m(a) + m(b)} on an abstract lattice
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with values in a topological group were considere~. The analogue of the

Frechet-Nikodym distance (d(A,B) = ~(A AB» in this setting is d
m
(a, b)

= SUPt I m(v)-m(u>l: altb ~ u ~ v ~ a"b) ,(in case the group has a quasinorm, which

was assumed). This defines a (generalized) pseudometric on L for which

the translations a~a"x and a""",, a"x are contractions and d(al\b,b)=d(a,avb).

If M i8 a family of such modular functions for which man increases uni­

formly for m in M. then the M-topology (generated by (dm: ME M}) coineides

4It with the equi-M-topology generated by the distance d= sup dm" A consequence.

is a 10eal Rybakov-type theorem for Banach spaee valued modular functions

on a distributive lattice. Several related problems remain open, even in

the real case.

H. WEBER

Gruppen- und vektorwertiges-beschränkte Inhalte

Es wurde eine Methode zur Behandlung von gruppen- und vektorwertigen

Inhalten v~rgestellt, mit der sich zahlreiche Sätze einheitlich und mit

einem Minimum an technischem Aufwand beweisen lassen. Eine wesentliche

Rolle spielen dabei die FN-Topologien.

•
Sei G eine topologische Gruppe, die vollständig und Hausdorffsch ist,

R ei~ Boolescher Ring, Us die feinste s-beschränkte FN-Topologie auf,R und
I'Y N

(R, us ) die vollständige Hülle von (R, us ). Dann läßt sich jeder s-be-

schränkte. Inhalt lt':R~ G in eindeutiger Weise s~etig zu einem Inhal t ~:R~ G

fortsetzen. Zur Untersuchung von ~ betrachtet man zunächst die Fortsetzung

tA- und überträgt dann die Ergebnisse auf Ci'"' =r' R. Die Untersuchung von ~
,..,

ist deshalb einfacher als die von ~ , weil R eine (als Verband) vollständige'

Boolesche Algebra ist, auf der ~ ~-stetig ist (d.h. für jedes nach unten

gerichtete' System (x~) in Rmit x r ~O gilt r.(Xa)-)' 0).
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G~ometrische Maßtheorie

P. MATTILA

Hausdorff dimension of interaections of sets in D-space

The following problem was eonsidered: Let A and B be Borel sets in Rn with

Hausdorff d'imensions dim A = sand dim B = t. What can be said about the

Hausdorff dimensions of the intersections AntB, where t runs through the

isometry group of Rn ? Some examplee indicate that 'in general there is

very little to 6ay. But lf t i6 assumed. integral and B sufficiently nice~

e.g. a c1 manifold or t-rectifiable, then dim AnfB = s+t-n holds ror

many isometries f provi~ed B+t-n~O. FOT general Borelaets A and B a

larger family of transformations has to be used; e.g. dim A~fB ~ s+t-n

holds for many similarities , i.e. maps composed of translations, rotations

and homotheties. Equality does not hold in general, but it does under

same extra conditions on B. For example, it suffices to assume that B has

positive t-dimensional lover density at each of its points.

On the reconstruction of convex bodies from a finite number· of

Steiner symmetrals

The folloving probl~m was considered: Given a convex body K in the plane,

is it possible to find a finite number of directions such that K 1s de­

termined by ita Steiner symmetrals with respect to these directions ?

Giering (1962) showed that three directions are enough to distinguish

a given K from all other convex bodies; Gardner and McMullen (1980)

proved that a set of directions, D, distinguishes each convex body fram

each other iff it i8 not the linear image of the diagonale of a regular

n-gon. As a counterpart to this result it was ahovn that if there are

two eonvex bodies not'distinguished by D then there are already continu-

ously many•

. From the result of Gardner and HcMullen it follows in particular that there

•
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18 a distinguishing set of four direetions, henee the map cf sending K to'

its Steiner symmetrals vith respect to these directioDs is injeetive

(defined on X, the set of all convex bodies and taki'ng values in :l<~4).

It was shovn that rr as well as J-1: J(~)-):K.are eontinuous (w1th respect

to th~ Hausdorff metrie), henee the problem of reconstrueting K from diCK)

i6 vell posad. For sets whieh are unions of inscribed parallelograms with

eides parallel to two given directiona, a recunstruetion procedure w~s

presented.

Extremalprobleme

H'.G., KELLERER .

Duality theorems for marginal problems

Given Hauadorff spaces Xi' tight Borel probability meaaures ~i on Xi and a

(bounded) function g: x= 1TTi Xi --> R, the following two problems were
~ ~n

inv.estigated:

k
(MP) maximize r (g) over all tight Borel probabilities on X vith

marginale ii' i ( tt) :: tLi' "for 1 ~ i !: n,
'~

(DP) minimize 1~i!,n t-Ai(fi ) over all (f1 , ••• ,fn ) ,. f'i:Xi-) R . ~i-~:nte-

~grable aud 1~i!'n f i
0 'iT 1 ">, g.

Let S(g) be the aupremunm corresponding to (MP) and I(g) be the infimum

4It correaponding to (DP). Then, neing the theorems of Hahn-Banach and Riesz,

i t 18 not hard to show the' "duality theo~emll: S (g) = I (g), provided that

the 8paces Xi are aasumed to be compact metrizable and the function g

continuoUB~ A thorough examination of the functionale Sand I then shows
lt ••

that they have the properties of a CU capacity, where CU 18 the lattice

of upper semicontinuous functions on X. Therefore,- by first proving

S(~)=I(g) for all g in CU one obtains the duality theorem for all CU_"

analytie functions. Thia result holde without special topological assumptions

and can be carried over to a11 1~n i)(X
i

) -measur~b{e func·ti~ns g.
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V.N. SUDAKOV

Two problems connected with Kantorovic distanee

1. Let Ixt : tE- Tl , Xt : (11, ot ,P).......;.. E be a family of E-valued random variables

where (E, ~ ) i5 a complete separable metric spaee, snd let \ ~t:t ~ Tl be the

family of their distributions. Such a family is cal1ed a Kantorovic set

if for any t t t' in T the equality Ep ~ (~t ' Xt ,) :: I.{ (rt' .nt l ) hold's,

",here b'o. denotes the Kantorovic distance.

A class of spaces (E, ~ ) was described, such that for every family ~rt:t 40: e
of probability distributions on E thera exists a eorresponding Kantorovic

set of E-valued random variables.

2. Let lf and l.1 be Borel probability measures on IRn , absolutely continuous

with respect to Lebesgue measure and such that 5SUX~YII dr~l>LOO. Then

there i8 a one-ta-one optimal plan to transport ~ to v, i.e. a Borel

measure m on mn~mn, concentrated on the graph cf a 1-1 measure preser-
o

ving transformatio~ of IR
n , whose marginal distributions are r ~nd V such

that SUX-Y·II dmo = \;( 0.' v ).

H. von-WEIZSÄCKER

Extremal families of probability measures

This talk gave a survey on some questions about the extremal structure

of convex sets of probability measures. 4It
Let X be a Polish space, p(x) the space of Borel probability meaaures on X

and H be a eonvex sub8et of p(x).

Q1: 18 H a Choquet set, i.e. (a) i8 H equal to tr(lT)': 1T E: P(eXH)} where

r( 11 ) (B) ~ l>(B) lI(d&> ). (b) in part (a) Ti is ~niquely determined by

rem iff IR+H is a lattice eone. A simple sufficient eondition is that H

is of the form H = ~\ 1t: ffndü ~ an} where (fn ) i6 a sequence of

Borel functions and (an) a sequenee.in R. (v. Weizsäcker-Winkle~, 1979)

Q2: Characterize exH. Rere, following the ideas of P. Martin-Löf and
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Dynkin. the Martin boundary for Brownian motion was explained. It was

pointed out that for other (possibly infinite dimensional) diffusion

•

processes the analogous questions are open and interesting.

Q3: 1s there a measurable map «f :X-) exH such that u1 x : ~(x)= ~1 = 1

for all "I) in exH ? The anewer is flyes ll if H is a Choquet set, IR+H - IR+H

i8 a sublattice of the lattice of signed Borel measures on X and exH

ia ~-compaet with r~spect to ~(M(X),Cb(X». An example by D. Preiss

(contained in a paper by Mauldin, v. Weizsäcker and Preiss t Ann. of Prob.)

shows that the ansver becomes "nOt in general" if the last conditioD i8

omitted.

Q4: Find a computational algorithm ror n based on statistical data

on r(lT). Bere results of W. Krüger were reported on.

Maßtheorie qn~ Funktionalanalysis

M.A. AKCOGLU

Sub-Banach lattices of L spaces
p

Let 1~ PL(Qt (Xt'S,t") be a Lebesgue mea~ure space and L =L (X, '5" ,M).
PP\)

For f in L -let f)f: denote the unique vector- in L* = L such that "fOP =
P . P q p

ll!1q = (f,f~). Then it was -observed that arguments of T. Ando (Pacific
q

J. Math. 17(1966»yield the folloving theorem.

• Theorem: Let p I 2 and let MC; Lp ' Then the following statements are equi­

valent: (i) M and ~ =lf·:f6MI are cloaed li~ear manifolds. (ii) There is

an f in M and a 6ub- ~ -algebra <t of '5 such that M= 19f: g i8 ~ -measurable

and gfE L 1. (iii) M is isometrically isomorphie to the L space of
p\ -. p

another measure space. - The implieation (i) (ii) (which i8 the only

non-trivial part of the theorem) illustrates the fact that for p!2 some

pointwise properties·of the elements of L can be formulated in terms of
p

Banach sp~ce conditions on L • Note that if T:L ~L i6 a eontraetion
p p p

then M '= l f : f=Tf] satisfies the conditioDs of the theorem «i) for

example~ This gives Ando's theorem.
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R. BECKER

Quelgues aspects de 1a theorie des mesures conigues

Soit E un espace localement convexe separee da dual E'; une mesure

conique positive sur E est une forme lineaire positive Bur 1e trei11is

a) quand ~ est elle donnee par une mesure'·de Badon. ?~

b) si X ~ E est une cone, quand toute ~ portee par X est elle donnee

par,une mesure de Radon?

c) que se passe-t-i~ si on affaibli la t~pologie de E ?

G.A. EDGAR

•
Realcompactness aud measure-ccmpactness cf the unit Ball in a Bauach space

The realcompactness and measure-compactnes~ cf a Banach space in ita

veak toplogy have been of interest in connection with the theory of

integration in the Banach space. Similar properties can be investigated

for the unit ball of the Banach space. In the talk eeveral examples ware

worked out to i1lustrate these properties. It can be conjectured that

the ball ia realcompact (or measure-compact) if and on1y if the ~hole

space is. The speaker expected that this is false, but did not know of

a counterexample.

W.A.J. LUXEMBURG

The Radon-Nikodym theorem tor positive operators

The main purpose of the talk was to diseuse the following Radon-Nikodym

•
type facto~ization theorem for positive operators defined on vector lattices.

Let Land M be Dedekind complete vector lattices and let ~ (L,M) denote
n

the Dedekind vector lattic~. of order continuous and order bounded linear

transformations of L into M. A loeal operator on a vector la~tice is a,

positive linear transformation that leaves invariant .all the bands of the

underlying spaee. The family of all such densely define~ operators ie
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denoted by Orth~(L). By a Radon-Nikodym type faetorization theorem va mean

a faetorization of the form S=TO~t where S,T are positive order eontinuous

and T is a 10ea1 operator (In the ease of measures the Radon-Nikodym

derivative playa the role of the loeal operator). For positive operators

ve have the folloving result. Let 8 f T E Jl (L.M) be positive. If T has the
n

Haharam property, i.e. maps intervals onto intervals, then the following

conditions are equivalent: (i) S is eontained in the band generated by T;

(ii) S is absolutely continuous w.r.t. T, i.e. for all O~ UE L, Su is eon-

tained in the band generated by Tu";(iii) there exists a loeal operator

'i'( E:. Ortr(L) such that S = Toll'.

A dual form of this·reault leads to a faetorization theorem for linear

lattice homomorphisms generalizing a result of Kutateladze. For spaees of

measurable functiona the reault i6 related to earlier results of D. Maharam-

Stone. Since every order bounded operator from L to M may be uniquely·

extended to a larger space eontaining L, the extension having the Maharam

property and the order continuity property, the above Radon-Nikodym type

factorization theorem has a wide application range analogouB to the

classical Radon.Nikodym theorem for measures.

G'. PISIER

Tensor products of Banaeh spaces

~ The talk reported on some reeent results concerning the injective and

projective tensor products (denoted by Xiy a.nd XSY. respectively) of two

Banach spacea X and Y.

Reeent examples shovthat X and Y can have the RNP (Radon-Nikodym p~operty)

and be weakly sequentially complete while X~Y. contains e and henee fails
o

to have these properties. Further the folloving theorem was presented

(to appear in Acta Math.) which answers a conjecture of Grothendieck:

lYery Banach space E of eotype 2 (every separable Banach space E) can be

iaometrically embedded into aspace X (into a separable apace X) such that
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x~x = x6lX and such that both X and X lr are of cotype 2, and X/E has the

RNP and the Schur property. Related results were discussed ~oncerning the

possibility of embedding an arbitrary Banach space in a suitable way into

an i oo
-space (cf. a joint paper with J. Bourgain, in preparation).

c. STEGALL

Gateaux differentiability and a elaes of topological spaces

Let e be the category of topological spaees K defined by the following

property: K belongs to f if and only if for all topologic~l spaces 4It
c, S, T, V where V i8 a Baire space and C f K)( S, and for all perfeet maps

CP-:C -')T and all continuous maps ).. :V-')T there exists a selection

( 4' (v), ~ (v» and a dense Gd set G 80 that ty is continuous at each point

of G ( J does not matter).

This category has niee permanence properties and contains, for examp1e,

the duals of Asplund spaces (in the weak# topology), Eberlein compacts,

compact metric spaces and RN~ sets. The important property of ~ is that

if X· (in the veak K topology) i6 in ~ then X i8 a veak Asplund space.

This 1s the first theorem that gives permanence properties of a 1arge

c1ass of weak Asplund spaces.

Ergodentheorie

8.J. EIGEN

Ergodicity of Cartesian products via triangle sets

Let 8,T be non-singular, invertible ergodie transformations of the unit

interval I. When is S.T ergodie and when i8 T.S~(x) ergodie ? Here,

n(x) ( ) ( n(x) . .T.S denotes the power-skew product x,y r) Tx,S y) where n 18

a map from I to the integers. Using the fact that T is ergodie iff for

all measurable sets A, B of positive measure there is n > 0 suc,h that

T
D

A"B has pos i t i ve measure ae a definition. one lIould 1 ike to study TcS

on rectangles Ave, B~. However, this does not seem sufficient: But DO

example of ergodie transformations S, T to show this insufficiency was                                   
                                                                                                       ©



- 23 -

known to the·speaker.

Definition: A'measu~abie set of positive measure F~ IKI is a triangle set

~f' (1) ··F ~"A1CI for some· measurable subset A of I; (2) for all 0 I.. E l... "'. one

has G"(QE)" 0 where Qe. = 1y: ö (F Il (A~~l» ),(1-t) b(A) j
Results such as the following theorems can then be obtained:

o ;Theorem 1: Every measurable subset. of the unit square aaving positi.ve

measure i6 a disjoint union of triangle sets.

Theorem 2: T~'is ergodie if T and S have the following property :for all

., (,)0 and all "sets. A,"B of positive measure the sets Ns(A,B) = 1n '> 0:

:T~A ~ B~ has positive measure1 and NT = 1n ~ 0: 6LCTn
A t'" B) ~(1-E) ~(A) tt-(B) t

ha~e'nonempty intersection~

v.s. PRASAD

Nonsingular ergodic transformations

Let (X~<~, 6"') be a Lebe·sgue probability space and G(X) be the of nonsingular

transform~tions of X-onto itself. On G(X) put the coarse topology. i.e.

1 1 1
Tn"";'T coarsely if nUT f - UTf 1, 1-,0 for all f~L (X), where UT:L -)L

n
is the L1 isometry aS60ciated to T, (UTf)(x) = f(Tx) (d rT/dO)(x) for

f ~ L1. With this topology G(X) i6 a complete metrizable space.

Theorem: The transformations T in G(X) Buch that the skew product extension

T? :X"JC.IR ~ X)( IR, (x, t) ~ (Tx, t+log(drrT/d r) (x» i8 ergodie on Xx ffi with

-tthe product mea8ure dtt'" e dt, form a dense ~cfsubset of G(X) with the

c'oarse .topology.

L. SUCHESTON

(reporting on joint.work with M•. AKCOGLU)

.Ergodi~ ~heory and truncated limits

Let E be a Bana~h lattice such that (A) There is a weak unit u, i.e. u~E+

. and u~lf(:::O implies. f=O,and. (B) Every norm bounded increa.'sing sequence

(fk) ~onverges (strongly). For a aequence (fn ) in E+, WTLfn = f (~eak

truncated limit of f n is f) means that for all k ",>0, fnAku-' 'fk(veakly) and
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fk increases to f. WTLfn = WTLf~ - WTLf;. TL (strong truncated limit) is

defined analogously. If f n ~ E+ then (WTLfn=O) =) (TLfn=O) -==> (f
n

has a sub­

sequence fn.=gi+hi' gi,hi ,: E+, IIgill,O and hiAhj=O for i;ij). The interest
1

of WTL sterns from the fact that every norm bounded sequence has a sub-

sequence with a weak truncated limit. WTL 1s unique and gi--)g weakly ,

WTLgi=O imply g=O. In L1 ,(W)TLgi = 0 iffgi-)O in measure on sets of finite

measure. Let T be a positive linear operator on Ej if WTLfn =Cf and WTL Tfn = Y'
n-1 .

then Tf ~'l'. Hence if "fn-Tf~ll-iO then TCf'"f· Let An=(1/n)';; T
1

, . e
sup llAnll L,ßQ. Theorem 1: The folloving 'statements are equivalent: (i) there

i8 a veak unit ü such that Tü=ü; (ii) tor. every band projection P#O, PAnu

has Da TL-null Bubsequence; (iii) tor every O#H f E: one has limH(Anu)-,. o.

If sup IlTn 11 L... 00, then An can be replaeed by Tn • Theorem 2: If O!:!' ~ TS '

PJ i8 the band projection on f ' f6 E+ then TL P~Anf exiats.

Assume also' (C): For every" h~E~ and QJ.. >. 0 th~re exists (3 = ~(h ,~) such that

o ~f fh, ßtll,O, g eE+, Ilgn~1 implies II f +gll ,,/ ngll+~. Then one has

Theorem 3: If ftT"~1 and fE:E+ then Anf = gn + hn with gn,hn~.E+t TLhn=O

and gn c onverges strongly to same 'f vith T Cf =Cf •

Wahrscheinlichkeitstheorie

S.D. CHATTERJI

Measure theory and "amarta"

Let ut be an increasing sequence of algebras of aubsets of aspace -CL
n

and Ji = UJtn• Let E be a Banach space and en:A.n->E be a sequence

of additive set functiona cf bounded variation such that (i) lim0
n

(A)

9(A) exists tor all AE.Jl:; (i') e :.,t-)E i8 of bounded variation; (ii) there

exista a sequence L1 : dt -l[ö,QO[ of additive set functions with V CQ )~O
n n n

and V n+1' tlt n ~ I)n for all D.

If A:tJt-"l[ö."'[ 1s countably additive then EJn(A) = JA fndA+ e~(A) where"

ein J-A and f n ~ L~ , provided that E has RNP. One can prove that f n converges
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almost everywhere (,,) to f "here (9(A) = JA f dA + S' (A),. 9'!}... •

The relationship of this theorem (proven in Manuscripta Math. ~(1971) and

Lect. Notes in Math. 541(1976» to certain other convergence theore~~

including these concerning "amarts" was discussed.

M. TALAGRAND

Characterization cf Glivenko clasees and Banach space valued maps

satisfying the La" cf. Large Numbers

Let (..Q., Z. ,r-) be a complete probability space, E be a Banach sp~ce.. and

f:~"E be a map (no measurability assumed). For nE.tN let g :slN~) .E,n. .;.,

(ti)~ ~i~n f(ti)··The following reaults were proveg.

Theorem: The folloving statements are equivalent: (a) ~'N almost eyery­

IN
vhare lim gn(t) exists in norm; (b) f i8 Pettis integrable and ,..r-- -:~.',

almost everywher~ 1im gn (t) = P- Jfd r-; (c) f ~~. P~tt.i~ ~~tegrab~~, ~~d

SlIgn(t)- p-ff<1t1dQ"aN(t) converges to 0; (d) S".ddrl.D'>and.the s~~

z =\~o f: X·f;E:.l i6 stable. (For the definiti~n'of·stabtl:Lty see 'the

abstract of the speaker t B fi,rat talk, p. 7). . , . ~

Corollary: A Be~uenee (Cn ) in ~ i8 not a Glivenko-Can,t~l:J.i elaas. ~f~,:,

there is a measurable set A of positive meaaureand a natural nu~ber n; such

that for almost all choiees t 1 , ••• ,tn ~ At eaeh subset of tt1 , ••• ,tn\ i8

the traee of a set Cp on tt1, ..• ,tn~ •

W.A. WOYCZYNSKI

On multiple random measurea and integrals

The aim of the talk was to study integrals of the form

In(f) = fo
1 ••• ~1 f(x

1
, ••• ,xn )dM(x1 ) ••• dM(xn ) ,where M(x) is·th~ homo-

geneous proceas with independent increments determined by Levy measure.

The basic questiona are (1) For what elBss of functions f does In(f) exist ?

(2) What i6 the distribution of I (f) ? For n=1 there i8 an answer of
n ,

Urbanik and Woyczynski to (1), for n=2 Ita'a formula can be used to answer

(2) and for general n a result of Cameron and Martin. Applications are, e.g.
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in quantum field theory and statistics.

For the second order case the following result of Rosinski-Szulga and Engel

was mentioned: let the product measure M2 (A)=M(A1 )·M(A2 ), A=A1~A2 be in L1

and F(A)= EM2 (A) •. then r defined by ~(B)= F(-U (B"D) + F@)F(B,n) wher'e

~ is the projection and D the diagonal is a control measure for M2 • Thus

M
2

extends to a countably additive measure. Furthermore a condition for

alunation f to be M2 integrable can be given.

The stable case was treated by Szulga and Woyczynski; Let (~k) be the Haar4lt

system normalized in Lp (1 <. P L 2) and f (s, t) = L ck , j tk (s) ~ j (t ) •

Then if L k, j ICk, jl p/2 L 00 then 12 ( f) ..=L. ck , j IkdM(s). JjdM( t)

converges almost 6urely.

Finally the following result on iterated integrals (Cambanis· and Woyczynski)

~ n .... j-1 .
was presented: Let (discrete version) Qn= L j =1 L k=1 f(k,j) ~ Mj

where (Mi) i6 indep~ndent identically distributed and stable. Then Qn

converges in probability iff

2:~L~:~ lr(k, j)1 p( 1+ log( 1/ 2: ~:~ f(k, j» L CO •

The proof uses a lemma characterizing p-stable-radonifying operators

T= f(k,j»: l~~lP. The necessity of the above condition was noticed by

Pieier. For multiple integrals one gets higher powers of the logarithm.

Berichterstatter: G. Mägerl (Erlangen)
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