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The organizers of this meeting were Klaus Bghmer (Marburg), Victor Pereyra (Ca-
racas, Venezuela),and Hans Stetter (Vienna).

The defect (or residual) of a given approximation may be used for the construction

of corrections to this approximation. This basic principle - for which the term
ndefect correction” is now widely used - underlies many iterative processes in
Numerical Mathematics; often asymptotic expansions play a role in this context.

It was the aim of this.conference to bring together specialists from different
fields in Numerical Mathematics applying defect corrctions to a variety of
problems, e.g., stiff initial problems, ordinary boundary value problems, partial
differential equations, integral equations, eigenvalue problems and high-accuracy
calculations. Many interesting talks and numerous discussions established a strong
interaction.

As always in Oberwolfach, the personnel staff coddled the guests, and the atmos-
phere in the institute was the optimal prerequisite for private and scientific
contacts.
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F. CHATELIN:

Newton methods for iterative refinement of eigenelements of linear operators

Let A be an nxn matrix in C". To deal with close or multiple eigenvalues of total
algebraic multiplicity m, we consider the nonlinear equation

() F(U) = au-u(yavy = o,

where the unknowns are the m columns of the nxm matrix U normalized by YHU =1,
where Y is a given nxn matrix. The columns of U .span the invariant subspace M
for A associated with the m eigenvalues of the mxm matrix B = YP'AU. B represents
AIM in the adjoint bases (U,Y).

’ Starting from an approximate invariant subspace X for A such that YHX= 1, and

applying Newton and modified Newton methods on (*) yield several iterative schemes
to refine on X. This is used in two ways:

(i) as a computational scheme,
(ii) as a means to derive a posteriori error bounds in terms of the nxm residual
R = AX - X(Y" AX).

The same method applies to a closed linear operator in a Banach space (integral
or differential).

R. FRANK:

Defect correction and stiff ordinary differential equations

The B-convergence properties of certain Defect-Correction methods, based on the
implicit Euler scheme and on the implicit midpoint rule are discussed. It turned
out, that full B-convergence results do not hold in this case; nevertheless it
was possible to prove " Restricted B-convergence" for these methods i.e. satis-

. factory global error bounds could be derived under the following assumption:

UFG

The eigenvalues of the Jacobian fy(O,yb) at the starting point. are either
"moderately sized" or satisfy the relation h oRe(Ai) << 0.

W. GROSS:

Hartree-Fock methods

This talk is thought as an introductory one to givé the framework for the talks
of B. Schmitt and R. Schwarz. It describes the way how one comes -from the Schro-
dinger equation in wavemechanics via the variational principle to the socalled
Hartree-Fock equations (HFE) for the radial parts of the electron wavefunctions.
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Abstracts - -

K. BUHMER:

Discrete.Newton methods for the Bader-Deuflhard method in stiff initial value
problems »

Discrete Newton methods are defined as follows: compute a discrete approximation g

to the original (non]ihear) problem with exact solution z. Linearize.the discr
problem at-the solution ° :=z and compute the iterations c1 from (Fh)'(to)(c1e.-l)
= -(modified defect: for c]'l). Under certain, easily verifiable conditions, one

finds the asymptotic expansion c1(t)Aéz(t) = hd ejp (t)+ 0(h9*®) in grid

j=($+1)p
points t and for p, the order of the basic method. This approach is.applied to the
Bader-Deuflhard method .for stiff.initial value problems. The relationsto other
known results are discussed and experiments are reported.

M. BRAKHAGE:

A duadrature formula method for integral equations with a logarithmic singularity

. N ‘ l
The integral equations treated are of the form { k(x,x")u(x")dx' = f(x), x& 0,11

. with k(x,x') = % In(2 sin|m(x-x")|) + k(x,x"'), with k, f, u being 1-periodic and
smooth (Cm) or some variants. A “primitive approximation" is given by solving
system of linear equations

N-1 .
1 1
vzoh k(Ah,(v~3)h) uj = FAh), A = 0, .., N=1, h =5, N =2M+1

and defining u, by trigonometrical interpolation. For this rough approximation
method an "nonstandard" asymptotic error expansion can be derived, which - for

each given order O(h]) - gives rise to a refined discretization method of this
order. The properties of numerical stability are discussed and the theoretical
results are tested by numerical experiments. It is indicated, that this method

is a special case of a more general concept, which allows a unified treatment of
discretization for differential operators gnd a certain class of integral operators.
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The (HFE) are a coupled system of second order differential equations on a semi-
infinite interval with a singularity in the coefficients at r = 0, boundary
conditions and orthogonality constraints. It is an eigenvalue problem as well.

A short outline is given of methods recently used to solve this problem and some
points are mentioned where improvements can be gained especially using defect
corrections.

W. HACKBUSCH:

e Domain decomposition techniques

The usual defect correction methods for elliptic problems work with discretizations
in the whole domain. We describe a “local defect correction", where a second
discretization is defined only locally. One multi-grid version of this method

is a well-known local mesh-refinement. If there are several separated refined
regions, they are coupled by coarse grids. On the other hand we can formulate

the elliptic problem as a set of two equations in two overlapping subdomains

with additional boundary conditions for the new interior boundaries.

We discuss the solution of the corresponding discrete system of equationé by a
multi-grid process, in which the major part of the computations can be performed
simultaneously in every subdomain.

G. HEDSTRUM:

Extrapolation in a convection-diffusion equation with a boundary layert

‘ The equation
(%) = )

provides a linear model of the equations of fluid flow with the direction
parallel to the x-axis. If the viscosity v is small and positive and if the
boundary conditions for (+) are that u(x,0) = 0, x > 0, and u(0,y) = 1,

y > 0, then the solution to (*) has a boundary layer near the x-axis. We are
frequently interested in gomputing only the drag uy at y = 0. Suppose that

(*) is approximated using central differences with Ax > Ay. We show that in
the'boundéry layer (x/(2v) large), the error in the drag may be written as a
power series in the square of the half cell Reynolds number ey'= Ay/(2v). This
finding is consistent with the empirical observation that one may use grids in
the boundary layer with a large aspect ratio. We also find, however, that errors

x>0, y>0,
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are introduced in the outer flow if Ax/Ay is too large in the region near the -
- origin, the birth of the boundary layer. )

1t This work was performed under the auspices of the U.S. Department of Energy
by the Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.

P.W. HEMKER:

Mixed defect correction iteration for the solution of a singular perturbation

problem

We describe a numerical (mixed defect correction) method for the solution of .
a two-dimensional elliptic singular perturbation problem. The method is an
iterative process in which two discretizations are used: one with and one with-

out additional artificial diffusion. The method works well for problems with
interior- or boundary layers. The résu]ting discretization is stable and yields

a 2nd order accurate approximation in the smooth parts of the solution, without
using any special directional bias in the discretization method.

E. KAUCHER:

Residueniteration zur E-Verifikation der Lésung von Gleichungen mit beliebig
gewiinschter und .garantierter Genauigkeit

Eine Losung eines Problems heiBt E-verifizierbar, wenn ein Algorithmus ange-
geben werden kann, der bei moglichst geringem Speicher-Zeitaufwand

+ die Existenz,
« eine EinschlieBung auf gewiinschte Genauigkeit und gegebenenfalls
« die lokale Eindeutigkeit ‘

verifiziert.

Z.B. die Gewaltmethode numerisch mit hoheren Genauigkeiten (doppelter, viel-
facher, etc. Mantissenldnge) zu rechnen, erfordert zuviel Speicher- und Zeit-
aufwand gegeniiber Methoden, die nur Residuen mit der erforderlichen Genauig-
keit berechnen.

Neuere Ergebnisse, die mit E-Algorithmen erzielt wurden, zeigen, daB robuste
Algorithmen dahin tendieren, Mehraufwand in Richtung mehr Zeit (durch echte

Residueniteration) und weniger in Richtung Speicherplatz erfordern (Schein-

Residueniteration).

Es werden einige charakteristische E-Algorithmen mit Residueniteration skiz-
ziert und ein Ausblick gegeben auf algorithmische Residueniteration in Funk-
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- tionenrdumen zur Losung von Differential- und Integralgleichungen.

B. LINDBERG:

Error estimation by defect calculation in finite element discretization

Some ideas on computable pointwise estimates of the errors in finite element
discretizations are presented. For the equation a(u,v) = (f,v) where a(,) is
a bilinear form and (, ) an inner-product a finite element d1scret1zat1on can
be written

‘ B(ZC,-Q,-,QJ-) =v(fqu') j=12,...N

with Qi i =1,2,... N the basis of a finite element subspace in which we seek
the solution (approximate). The defect for equation j is defined as

Rj = a(w,qj) (f, qJ) where w is properly defined from the solution data
€15Cose . C, € 9. W= Zc Q with Q s J=1,2,... N the basis of another f1n1te-
element subspace The ta]k concerns pract1ca1 ways of computing R for some
one- and two-dimensional problems.

J. MANDEL:

On multilevel iterative methods for integral equations of the second kind
and related problems

We discribe a unifying framework for multigrid methods and projection-iterative
methods for the solution of integral equations of the second kind, and for the
iterative aggregation method for solving input-output relations. The methods
are formulated as iterations combined with a defect correction in a>subspace.

. Convergence proofs use contraction arguments and thus involve.the nonlinear
case automatically.

First a general two-level iterative scheme is defined and its convergence proper-
ties are fofmulated via local Lipschitz constants. The use of secondary ijterations
is analysed as well. Particular-cases displayed in further sections inc1ude the
methods of Brakhage, Atkinson, and Hackbusch for the solution of systenis of
equations arising from integral equations.

S. McCORMICK:

The role of defect correction in adaptive discretization

DFG Defect correction ideas can be used in adaptive methods as a basis fqr a proce@s@
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that has the attributes of both uniform and nonuniform grid discretization.
Basically, defect correction can be used to correct the uniform coarser grids
in the regions where the (nonextensive) finer grids are placed. This gives
the adaptive grid accuracy to the coarser grids in regions outside higher
resolution as well as those corresponding to the finer grids. This talk will
present the results of such adaptive methods as they apply to oil reservoir
simulation.

W. MIRANKER:

Iterative refinement as an ultra-arithmetic process

We describe iterative residue correction for model problems set infunction
space from an ultra-arithmetic viewpoint. That is, as a flow of information
between basis elements of the function space analogous to the propogation

of arithmetic information (in either direction) between the digits of floating
point numbers during the execution of operations of floating point arithmetic.
Such processes are ‘shown to be isomorphic to block relaxation with steering.
Numerical examples will be given. '

H. MUNZ:

Asymptotic expansions for semilinear elliptic systems

A class of finite difference scheme, due to H.-0. Kreiss, for weakly coupled
mildly nonlinear elliptic systems of the type

Au.(x)= f.(x,ul(x),...,u (x)), 1<sjsm xegQ
J J . m
uj(x) = g5(x), lsjsm xedq, .

where @ is a bound region in R" is considered.

The schemes use the standard (2n +1)-point-approximation of the Laplacian
combined with polynomical extrapolation of degreee k near the boundary. The
FD-scheme thus obtained is neither of monotone typé nor symmetric. No conditions
regarding the definitness or the sign-pattern of au(fl,...,fm)T are imposed.

The convergence of the FD-solutions to isolated solutions of the original
problem and the existence of asymptotic error expansions are stated for k =4.
Finally we report on numerical tests in which the asymptotic expanéions are
exploited by a modified deferred correction method.

Deutsche
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V. PEREYRA:

Implementation of deferred corrections

We shall discuss the implementation of deferred corrections and related global
error estimation on various areas, like, two-point boundary value problems,
elliptic partial differential equations, and so on. We will survey available
software and mention selected applications.

‘ H.-J. REINHARDT:

On a combination of defect corrections with adaptive finite element methods
applied to singularly perturbed differential equations

First, a simple idea will be presented having the aim to improve numerical
solutions of linear problems. This approach is based on a-posteriori error
- estimates which, in a certain sense, monitor the error improvement. On the
other hand, realistic a-posteriori error estimates allow.an adaptive com-~
putation of the numerical approximations, so that a combination of both
aspects leads to.adaptive defect correction methods. For an example of a
linear, singularly perturbed o.d.e., the a-posteriori error estimates
associated with a finite element method will be given and numerical results
will be presented. This approach can be extended to nonlinear problems,
provided that initial approximations (numerical or asymptotic ones) are
available. For a rather general class of nonlinear singularly perturbed .
o.d.e.'s, the (linear) equations of the defect corrections and the corres-
ponding a-posteriori error estimates will be given. Again, the latter allow
' an adaptive computation of the defect correction terms.

S. RUMP:

Inclusion of the solution of linear and nonlinear equations

A synopsis have been given of new methods for solving algebraic problems with
high accuracy. Examples of such problems are solving of linear systems, eigen-
value/eigenvector determination, computing zeros of polynomials, sparse matrix
problems, computation of the value of an arbitrary arithmetic expression (in
particular the value of a polynomial at a point), nonlinear systems, linear,
quadratic and convex programming, over- and underdetermined linear systems etc.
over the field of real or complex numbers as well as over the corresponding
interval spaces.

Deutsche
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The fundamentalsof our new methods are developed. The appropriate computer
arithmetic (developed by Kulisch and Miranker) is shortly described. The
new methods are given by means of a set of mathematical theorems and the
corresponding algorithms which do verify the assumptions of the theorems
on a computer. A1l these algorithms based on our new methods have some key
properties in common:

- every result is verified to be correct by the new algorithms

- the results are of high accuracy; the error of every component of the
result is of the magnitude of the relative rounding error

- the solution of the given problem is verified to exist and to be unique . .
within the computed error bounds

- the computing time of one of the new algorithms is of the same order of
magnitude as a comparable (pure) floating-point algorithm (the latter,
of course, with none of the above features).

‘The key property of the new algorithms*is that error control is performed
automatically by the computer without any effort required on the part of

the user. The efficiency of the algorithms has been, for instance, de-
monstrated by inverting a Hilbert 21 x 21 matrix on a 14 hex. (= 17 decimal)
computer. This is, after multiplying by a proper factor, the largest Hilbert
matrix exactly storable on this computer. After automatically verifying,

that this matrix is not singular, the inverse is included with least signifi-
cant bit accuracy. That means, that the left and right bound of all components
of the inclusion are consecutive in the floating-point screen. Our experience
shows, that our algorithms very often have the "least significant bit accuracy"
property.

B. SCHMITT: .

Defect corrections on infinite intervals

If the infinite interval is truncated to a finite one for the solution of a
boundary value problem on R, new boundary conditions are needed. The boundary
conditions given in the literature for general problems make the use of very
large intervals necessary.

For the simple differential equation -u" + kzu = g we give the exact discrete
boundary conditions for the discrete Newton method with equidistant grid. Also
an algorithm is presented which computes these boundary conditions along with
the discrete Newton iteration from some basic "data". If these data are known
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the algorithm computes the discrete Newton iterates on the infinite grid
exactly.

W. SCHUNAUER:

~ Numerical Engineering: Experiences in designiﬁg PDE software with selfadaptive

Deutsche

variable step size/variable order difference methods

We want to develop robust and efficient general purpose software for the solution
of arbitrary nonlinear systems of elliptic and parabo]ic‘PDE's in a rectangﬁ]ar
domain. The relative accuracy is prescribed and the method must choose itself the
optimal grid and order 1ndependent1y in all coordinates t,x,y,z. There must be
selected also the optimal solution method, within a given scale of methods, for the
solution of the resulting linear system for the computation of the Newton;Raphson
correction. The key to the solution method is the use of families of difference
formulae. The discretization error is determinediby the difference of difference
formulae of these families. The error equation tells us how to choose the grids
and orders and how to stop the Newton-Raphson.iteratidn. The Newton-Raphson cor-
rection and the discretization error def1ne the stopping criterion for the itera-
tive solution of the linear equat1ons A polyalgorithm selects the solution method
for the linear equations by the comparison of normalized convergence factors. An
essential condition is that the resulting program must be fully vectorizable for
Vectorcomputers (Supercomputers). The whole solution process is a continuous com-
promise between robustneSs and efficiency which quite naturally. contradict each
other. There w1ll be discussed the sequence “method, algorithm, program" from the
point of view of numerical engineering.

R. SCHWARZ:

On the numerical solution of boundary value problemé on infinite intervaiér

The error by truncating the infinite interval and the construction of asymptotic
boundary conditions is discussed exemplary for the problem -y" + k“y = g, where
the inhomogenity has special properties as occuring in Hartree-Fock theory. The
construction of asymptotic boundary conditions is generalized to the problem
-y" + f(x)y = g, where f has an asymptotic expansion at infinity and f(e).# 0.

Forschungsgemeinschaft . © @
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R.D. SKEEL:

Deferred/defect correction for stiff ordinary differential equations

A simple example is given illustrating that defect correction is a nontrivial’
generalization of deferred correction. The role of global error asymptotics

and the meaning of stiffness are discussed, and then the existence of asymptotic
expansions for stiff equations is considered. For purposes of deferred/defect
correction it is necessary to consider variable stepsize. Error per step and
error per unit step are compared. In particular, it is shown that local extra-

polation, which is a generalized error per unit step, does not quite increase
the order by one.

H.J. STETTER:

Sequential defect correction for high accuracy algorithms

As was shown in the presentation of S. Rump, there exist algorithms in floating
point arithmetic which compute the solution of algebraic problems to full

floating point‘accuracy, almost irrespective of the condition of the problem.
However; if the result intervals of such algorithms are fed into another such
algorithm, a loss of accuracy occurs. It is shown that the principles under-

lying these algorithms, viz. the representation of the approximations in

staggered correction format and the exact computation of defects, may also be

used for the coupling.of such algorithms into one global high-accuracy algorithm..
The strategy by which the required accuracy in the individual algorithms is

achieved dynamically and automatically, comprises 3 passes: In a first pass, the A
individual results are corrected to a preset accuracy, at the same time estimates

of the relative.condition numbers are determined. With the aid of these, the .
necessary accuracy is obtained in the second pass. The third pass generates the
required interval inclusions. These ideas apply equally to the analytic defect
correction algorithms described in the contributions of R. Kaucher and W.L. Miranker.

M. VAN VELDHUIZEN:

Asymptotic expansions of the global error for the implicit midpoint rule (stiff
case) . :

In this contribution a new stability result for the implicit midpoint rule is
given. This new result gives estimates independent of the stiffness of the

Deutsche
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(scalar) differential equation. By means of this stability result one is able
to obtain an asymptotic expansion in powers of the average step size for a

stiff scalar linear problem. In discretizing this problem by the implicit mid-
point rule we use a fine mesh in the boundary-layer region, a coarse mesh far
away from the boundary-layer region, and a gradual increase of the steﬁ size in
between. In this way an asymptotic expansion for the global error can be proved,
under the condition that the number of gridpoints multiplied by the logarithm
of the "stiffness" is small. This expansion is valid uni%ormly on the domain

of integration.

J.G. VERWER:

Step-by-step stability in the numerical solution of sha]]bw‘watef équatiéns

';Shallow water equations - a nonlinear system of hyperboiié bartia] differential

Deutsche
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equations - describe flow problems in fluid dynamics. Applications are found in
e.g. oceanography (water elevations due to storms) and meteorology (weather
prediction). Numerical computations with these equations are often hambered

by nonlinear instabilities, the so-called exponential blow ups. We will provide
insight in the. origin of these instabilities. Next we will show how to overcome
the difficulties by an energy method stability analysis. Finally we will present
some approximation schemes, derived along the lines of these energy method, for
which stability is warranted, despite the nonlinearities. Among others, an LOD-
scheme which can be implemented such that only linear tridiagonal systems of
algebraic equations need to be solved.

Report by: B. Schmitt, W. Gross
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