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Error Asymptotic and Defect"C6rrettiOns

July 3 to July 9, 1983

The organizers of thi~ meeting were Klaus Böhmer (Marburg), Victor Pereyra (Ca­
racas. Venezuela),and Hans Stetter (Vienna).

The defect (or residual) of a given approximation may be used for the construction
of corrections to tn;s approximation. This basic principle - for which the term
lIdefect correction" ;s now widely used - underlies many iterative processes in
Numerical Mathematics; often a~ymptotic expansions playa role in this context.

It was the aim of this.conference to bring together specialists from different
fields in Numerical Mathematics applying defect corrctions to a,variety of
problems. e.g .• stiff initial problems, ordinary boundary value problems, partial
differential equations, integral equations, eigenvalue problems and high-accuracy
calculations. Many interesting talks and numerous discussions established astrang
interaction.

As always in Oberrwolfach. the personnel staff coddled the guests, and ~he atmos­
phere in the institute was the optimal prerequisite far private and scientific
contacts.
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F: CHATElIN:

Newton metho~for iterative refinement of eigenelements ·of linear operators

let A be an n x n matrix in a:n. Ta deal with close or multiple eigenvalues of total
algebraic multiplicity m, we consider the nonlinear equation
(*) F{U) = AU - U(yH AU} = 0,

where the unknowns are the m co1umns of the n x m matri x Unanna1i zed by yHU = I,

where Y is a given n x n matrix. The columns of U.span the invariant subspace M

for A associ ated wi th the m ei genva1ues of the mx mmatrix B = yH AU. B represents
AlM in the adjoint bases (U,V).

Starti ng from an approximate i nvari ant subspace X for A such that yH X= I , and
applying Newton and modified Newton methods on (*) yield several iterative schemes
to refine on X. This is used in two ways:

(i) as a computational scheme,
(i i) as a means to deri ve a posteri ori error bounds in tenns of ·the n x m res i dua1

R = AX - X(yH AX) •

The same method applies to a closed linear operator in a Banach space (integral
or differential).

R. FRANK:

Defect correction and stiff ordinary differential eguations

The B-convergence properties of certain Defect-Correction methods, based on the
implicit Euler sch~me and on the implicit midpoint rule are discussed. It tu~ned

out, that full B-convergence results do not hold in this case; nevertheless it
was possible to .prove 11 Restricted B-convergence" for these methods i.e. satis­
factory global error bounds could be derived under the following assumption:
The eigenvalues of the Jacobian fy{O,yo) at the starting point. are either
IImoderately sized ll or satisfy the relation h· Re(Ai) « O.

w. GROSS:

Hartree-Fock methods

This talk is thought as an introductory one to give the framework for the talks
of B. Schmi t.t and R. Schwa rz. It descri bes the way how one comes ·fram the Schrö­
dinger equation in wavemechanics via the variational principle to the socalled
Hartree-Fock equations (HFE) for the radial parts of the electron wavefunctions.
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Abstracts

K. BOHMER:

Discrete.Newton methods for the Bader-Deuflhard'methöd'in stiff initial value
problems

Discrete Newton methods are defined as fellows: compute a discrete approxi~ation s
to the original (nonlinear) problem with exact solution z. Linearize.the discr~

problem at·the solution sO :=s and compute the iterations sl from (Fh)'('O)(r;l.-l)
= -(modified defect· for ~1-1). Under certain, 'easily verifiable conditions, one

finds the asymptoticexpansion ,1 (t)": z(t) =. ~ hj e 'J (t) + O(hq+a). in grid
. J=(l+l).p J

points t and for p, the order of the basic method. This approach iso applied to the
Bader-Deuflhard method .for stiff. initial value problems. The relationsta other
known results are discussed and expe~iments are reported.

M. BRAKHAGE:

A quadrature fannula rnethod for integral eguations witha lagarithmic singularity

. 1
The integral equations treated are of the fonn I k(x,x' )u(x l )dx ' = f(x), X& [0,1]

.' . 0

with k(x,x·) = ~ ln(2 sinl1T(x - Xl) I) + k(X,X')~ with k, f, u being 1-periodic and
smooth (C"') or :ome variants. A "primitive approximation" is given by solving •
system cf linear equations

N-1 1 1L h k()'h,.(\)~)h) Uv = f()'h), ). = 0, .. , N-1, h = 'N' N = 2M + 1
v=o

and defining uh by trigonometrical interpolation. For this rough approximation
method an f1nonstandardll asymptotic error expansion can be derived, which - for
each given order O{h l ) - giVes rise to a refined discretization method of this
order. The properties of numerical stability are discussed and the theoretical
results are tested by numerical' experiments. It is indicated, that this method
is a special caSe of a.more general concept, which allows ~ unified treatment of
discretization for differential operators and a certain class of integral operators.
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The (HFE) are a coupled system of second order differentiaJ equations on a semi­
infinite interval with a singularity in the coefficients at r = 0, boundary
conditions and orthogonality constraints. It is an eigenvalue problem as welle

A short outline is given of methods recently used to salve this problem and some
points are mentianed where improvements can be gained especially using defect
correctians.

w. HACKBUSCH:

~ Domain decomposition techniques

The usual defect correction methods for elliptic prbblems work with discretizattons
'i n the who1e doma in. We descri be a 111 oca1 defect correcti on ll

, .where a second
discretization is defined only locally. One multi-grid version of this ·method.
is a well-known local mesh-refinement. If there are several separated refined
regions, they are coupled by coarse grids. On the other hand we can formulate
the elliptic p~oblem as a set of two equations in two overlapping subdomains
with additional boundary conditions for the new interior boundaries.

We discuss the solution of the corresponding discrete system of equations by a
multi-grid. process, in which the major part of the computations can be.performed
simultaneously in every subdomain.

G. HEDSTRt1M:

Extrapolation in a convection-diffusion equation with a boundary layert

The equation

u = v( u + u ),x xx yy

provides a linear model of the equations of fluid flow with the direct;on
parallel to the x-axis. If the viscosity v is small and positive and if the
boundary conditions for (*) are that u(x,O) = 0, x > 0, and u(O,y) = 1,

y > 0, then the solution to (*) has a boundary'layer near the x-axis. We are
frequently interested in computing only the drag u at y = O. Suppose that. y
(*) is approximated using central differences wjth ßX ~ ßy. We show that in
the'boundary layer (x/(2v) large), the error in the drag may be written as a
power series in the square of the half cell Reynolds number ßy '= Ayi(2v): This
finding is consistent with the empirical observation that one may use grids in
the boundary layer with a large aspect ratio. We also find, however, that errors
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are introduced in the outer flow if ßX/ßy is toD large in the region near the
origin, the birth of the boundary layer.

t This work was performed under the auspices of the U.S. Department of Energy
by the Lawrence Livermore Natlonal Laboratory under contract No. W-7405-ENG-48.

P.W. HEMKER:

Mixed defect correction iteration for the solution of a singular perturbation

probl~m

We describe a numerical (mixed defect correction) method for the solution of
a two-dimensional elliptic singular perturbation problem. The method is an
iterative process in which two discretizations are used: one with and one with­
out additional artificial diffusion. The method works .well for problems with
;nter;or- or boundary layers. The resulting discretization is stable and yields
a 2nd order accurate approximation in the smooth parts of the solution, without
using any special directional bias in the discretization methode

E. KAUCHER:

Residueniteration zur (-Verifikation der Lösung von Gleichungen mit beliebig
gewünschter und .garantierter Genauigkeit

Eine Lösung eines Problems heißt E-verifizierbar, wenn ein Algorithmus ange­
geben werden kann, der bei möglichst geringem Speicher-Zeitaufwand

• die Existenz,
• eine Einschließung auf gewünschte Genauigkeit und gegebenenfalls
• die lokale Eindeutigkeit

verifiziert.

Z.B. die Gewaltmethode numerisch mit höheren Genauigkeiten (doppelter, viel­
facher, etc. Mantissenlänge) zu rechnen, erfordert zuviel Speicher- und Zeit­
aufwand gegenüber Methoden, die nur Residuen mit der erforderlic~en Genauig­
keit berechnen.

Neuere Ergebnisse. die mit E-Algorithmen erzielt wurden, zeigen, daß robuste
Algorithmen dahin tendieren,. Mehraufwand in Richtung mehr Zeit (durch echte
Residueniteration) und weniger in Richtung Speicherplatz erfordern (Schein­
Residueniteration).

Es werden einige charakteristische E-Algorithmen mit Residueniteration skiz­
ziert und ein Ausblick gegeben auf algorithmische Residueniteration in Funk-

•
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tionenräumen zur Lösung von Differential- und Integralgleichungen.

B. LINDBERG:

Error estimation by defect caleulation in finite element diseretization

Some ideas on eomputable pointwise estimates of the errors in finite element
discretizations are presented. For the equation a(u,v) = (f,v) where a(,) i5
abilinear form and (,) an inner-product a finite element diseretization can
be written

j =,1,2, •.• · N

•

with qi' i = 1,2, ... N the basis of a ~inite element subspaee in whieh we seek
the solution (approximate).. The defect for equation j is def.ined as
Rj = a(w,qj) - (f ,qj) where w is proper1y defined f~om the sol ution data
e1,e2, •.. cn e.g. W =·LCjQj with Qj' j =1,2, .•. N the basis of another finite­
element·subspace. The talk eoncerns praetieal ways of eomputing Rj for some
one-and two-d-; mens iona1 problems.

J. MANDEL:

On multilevel iterative methods.for integral equations of the second kind
and related problems

We discribe a unifying frameworkfor multigrid methods and projeetion-iterative
methods for the solution of integral equations of the second kind, and-for the
iterative aggrega~ion method for solving input-output relations. The methods
are formulated as iterations combined with adefeet eorrection in a subspaee.
Convergence ~roofs use contraetion arguments and thus involve.the nonlinear
ease ~utomat;eally.

First a general two-level iterative scheme is defined and its convergence proper­
ties are fonmulated via local Lipschitz constants. The use of secondary iterations
is analysed as well~ Particular'cases displayed in further sections include the
methods of Brakhage, Atkinson, and Hackbusch for the solution of systems of
equations arising from integral equations.

S. McCORMICK:

The role of defect correction in adaptive discretization

Defect eorreetion ideas can be used in adaptive methods as a basis for a process                                   
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that has the attributes of both uniform and nonuniform grid di~eretization.

Basieally, defect eorreetion can be used to eorreet the uniform eoarser grids
in the regions where the (nonextensive) finer grids are plaeed. This gives
the adaptive grid aeeuraey to the eoarser grids in regions outside higher
resolution as well as those eorresponding to the finer grids. This talk will
present the results of such adaptive methods as they apply to oi1 reservoir
simulation.

w. MIRANKER:

Iterative refinement as an ultra-arithmetie process

We describe iterative residue eorrection for model problems set infunetion
spaee from an ultra-arithmetie viewpoint. That is, as a flow of information
between basis elements of the funetion spaee analogous .to the propogation
of arithmetic information (in either direction) between the di~its of floating
point numbers during the exeeution of operations of floating point arithmetic.
Sueh proeesses are 'shown to be isomorphie to block relaxation with steering.
Numerieal examples will be given.

H. MUNZ:

Asymptotic expansions for semilinear elliptie systems

A class of finite differenee scheme, due to H.-O. Kreiss, for weakly eoupled
mildly nonlinear elliptie systems of the type

11 u.(x) = f.(x,u1(x), ... ,um(x»,
J J.

uj(x) = gj(x),

~ j ~ m, x E. n

~ j ~ m x E an , •
where n is abound region in mn is considered.

The schemes use the standard (2n +l)-point-approximation of the laplacian
combined with polynomical extrapolation of degreee k near the boundary. The
FD-scheme thus obtained is neither of monotone type nor symmetrie. No conditions
regarding the definitness or t~e sign-pattern of au(f1, ..• ,fm)T are imposed.
The convergence of the FD-solutions to isolated solutions of the original
problem and the exis·tence of asymptotic error expansions are stated for k = 4.
Fina11y we report on numerical tests in which the asymptotic expansions are
exploited by a modified deferred correction methode
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v. PEREVRA:

Implementation of deferred corrections

We shall discuss the implementation of deferred corrections and related,global
error estimation on various areas, like, two-point boundary value problems,
elliptic partial differential equations, and so on. We will survey available
software and mention selected applications.

e H.-J. REINHARDT:

On a combination of defect corrections with adaptive finite element methods
applied to singularly perturbed differential equations

First, a simple idea will be presented having the aim to improve numerical
solutions of linear problems. This approach is based on a-posteriori error
estimates which, in a certain sense, monitor the error improvement. On the
other hand, real~stic a-posteriori error'estimates a~low.an adaptive com­
putation of the numerical approximations, so that a combination of both
aspects leads to.adaptive defect correction methods. For an example of a
linear, singularly perturbed o.d.e., the a-posteriori error estimates
associated with a finite element method will be given and numerical results
will be presented. This approach can be extended to nonlinear problems,
provided that initial approximations (numericalor asymptotic ones) are
available. For ~ rather general class of nonlinear singularly perturbed .
o.d.e. 's, the (linear) equatio.ns of the defect corrections and the corres­
ponding a-posterlori error estimates will be given. Again, the latter allow
an adaptive computation of the defect correction terms.

s. RUMP:

Inclusion of the solution of linear and nonlinear equations

A synopsis have been given of new methods for solving algebraic problems with
high accuracy. Examples of such problems are solving of linear systems, eigen­
value/eigenvector determination, computing zeros of polynomials, sparse matrix
problems, computation of the value of an arbitrary arithmetic expression (in
particular the value of a polynomial at a point), nonlinear systems, linear,
quadratic and convex programming, over- and underdetermined linear systems etc.
over the field of real or complex numbers as well .as over the corresponding
interval spaces.                                    
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The fundamentalsof our new methods are developed. The appropriate computer
arithmetic (developed by Kulisch and Miranker) is shortly described. The
new"methods are given "by means cf a set of mathematical theorems and the
correspanding algorithms which da verify the assumptions cf the theorems
on a computer. All these algorithms based on our new methods have same key
properties in cammon:

- every result is verified to be correct by the new algorithms
the results are of high accuracy; the error of every component of the
result is of the magnitude of the relative rounding error
the solution of the given problem is verified to exist and to be unique ~
within the computed error bounds
the computing time of one of the new algorithms is of the same order of
magnitude as a comparable (pure). floating-pointalgorithm (the latter,
of course, with none of the above features).

The key property of the new algorithms" is that errar.control is perfarmed
automatically by the computer without any effort required on the part of
the user. The efficiency of the algorithms has been, for instance, de­
monstrated by ·inverting a Hilbert 21 x 21 matrix on a 14 hex. (= 17 decimal)
computer. This is, after multiplying by a proper factar, the largest Hilbert
matrix exactly stor~ble on this computer. After autamatically verifying,
that this matrix is not singular, the inverse is included with least signifi­
cant bit accuracy. That means, that the left and right baund of all components
of the inclusion are consecutive in the floating-point screen. Dur experience
show~, that our algorithms very.often have the "l eas.t significant bit accuracy"
property.

B. SCHMITT:

Defect corrections on infinite intervals

If the infinite interval is truncated to a finite one for the solution of a
boundary value problem on m, new boundary conditions are needed. The boundary
conditions given in the literature for general prob~ems make the use of very
large intervals necessary.

For the simple differential equation -u" + k2u = 9 we give the exact discrete
boundary canditions for the discrete Newton method with equidistant grid. Also
an algor.ithm is presented which computes these boundary conditions along with
the discrete Newton iteration fram some basic "data". If these data are known

•
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the algorithm computes the diserete Newton iterates on the infinite.grid
exactly.

W. SCHöNAUER:

Numerical Engineering: Experiences in designing POE software with selfadaptive
variable step size/variable order difference methods

We want to develop robu~t and efficient general purpose ~oftware for. the solution
of arbitrary nonlinear systems of elliptic and parabolic POE's in.a rectangülar

, .'
domain. The relative aecuracy is prescribed and the method must choose itself the

~ . '

optimal grid and order independently in all coordinates t,x,y,z. There must be
selected also the optimal solution method, within a' given scale of methods, for the
solution of the resulting' linear system for the computation of the Newton-Raphson
correction. The key ta' the solution method is the ,use of families of difference
formulae. The discretization error is determined by the difference of difference
formulae of th~se families. The er~or equation tells us how to choos~ the grids
and orders and how to stop the Newton-Raphson. ; tera t ion. The Newton-Raphson" cor­
rection and the discretization error define the stopping criterion for the itera­
tive solution of. the linear equatio~.A polyalgot.ithm select~ thesolution ~ethod
for the linear equations by ~he comparison. of normalized convergence fa~tors. An
essenttal condition is that the resulting program must be fully vectorizable ,for
Vectorcomputers (Supercomputers). The whole sol'ution proces.s is a continuous, com­
pforni se 'between .robustne'ss and effi ci ency whi eh quite natural1y. eont~ad'ict e,ach
other. There wi 11 be d; scuss~d the sequence II method, al gori thm~ -program" from the
point ofview of numerical engineering.

R. SCHWARZ:

On the numerical solution of boundary value problems on infinite intervals.

The error by truncating the infinite interval and the construction of asymptotic
boundary conditions is' diseussed exemplary for the problem _y" + k2y = g, where
the inhomogenity has special properties as occuring in Hartnee-Fock theory. The
construction of asymptotic boundary conditions is generalized to th,e problem
_y" + f(x) Y = g, where f has an asymptotic expansion at infinity and f(~) +o.
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R. D. SKEEL:

Deferred/defect correction for stiff ordinary differential equations

A simple example is given illustrating that defect correction is a nontrivial .
generalization of deferred correction. The role cf global error asymptotics
and the meaning of stiffness are discussed, and then the existence of asymptotic
expansions for stiff equations is considered. For purposes of deferred/defect
correction it is necessary to consider variable stepsize. Error per step and
error per unit step are compared. In particular, it is shown that lecal extra-
polation, which is a generalized error per unit step, does not quite increase ~
the order by one.

H.J. STETTER:

Sequentia1 defect correction for high accuracy algorithms

As was shown in the presentation of S. Rump, there exist algorithms in floating
point arithmetic which compute the solution of algebraic problems to fu1l
floating point accuracy, almost irrespective of the condition of the problem.
However, if the resu1t intervals of such algorithms are fed into. an<?ther su.ch
algorithm, a 1055 of accuracy occurs. It is shown that the princip1es under-
lying these a1gerithms, viz. the representation.of the approximations in
staggered correction format and the exact computation of defects, may also be

used for the coup1ing.of such'algorithms into one global high-accura~y alg~rithm ..
The strategy by which the required accuracy in the individual a1gorithms is
achieved dynamically and automatica11y, comprises 3 passes: In a first pass, the
individual results are corrected to apreset accuracy, at the same time estimates~

of the re1ative.condition numbers are determined. With the aid of these, the ~

necessary accuracy is obtained in the second pass. The third pass generates the
required interval inc1usions. These ideas apply equally to the ana1ytic def~ct

correction algorithms described in the contributions of R. Kaueher and W.L. Miranker.

M. VAN VELDHUIZEN:

Asymptotic expansions of the global error for the implicit midpoint rule (stiff
case)

In this contribution a new stability result for the implicit midpoint rule is
given. This new result gives estimates independent of the stiffness of the
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(scalar) differential equation. By means of this stability !esult one is able
to' obtain an asymptotic expansion in powers of the average step size for a
stiff scalar linear problem. In discretizing this problem by the implicit mid­
point rule we use a fine mesh in the boundary-layer region, a coarse mesh far
away from the baundary-layer region, and a gradual increase of the step size in
between. In this way an asymptotic expansion for the global error can be proved,
under the condition that the number of gridpoints multiplied by the logarithm
of the "s tiffness ll ;s small~ This expansion is valid uniformlyon the dbmaih
of integration.

J. G. VERWER:

Step-by-step stability. in the numerical solution of shallow·water equations

Shallow water equations - a nonlinear system of hyperbolic partial differential
equations - describe flow problems in fluid dynamics. Appli~ations are found in
e~g. oceanography (water elevations due to storms) and meteorology (weather
prediction). Numerical camputations with these equations a~e often ha~pered

by nonlinear ;nstabilities, the so-called exponential blow ups. We will provide
insight in the. origin of these insta~ilities. Next we will show how to overcome
the difficolties by an energy method stability analysis. Finally we will present
some approximation schemes, derived along the lines of these energy·method, for
which stability is warranted, despite the nonlinearities. Among others,. an LOD­
scheme which can be implemented such tha~ only linear tridiagonal .systems af
algebraic equations need to be solved.

Report by: B. Schmitt, W. Grass
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