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T a q u n g s b e r ich t 38/1983

Special Complex~Varieties

28.8. bis 3.9.1983

Die Tagung fand unter der Leitung der Herren W. Barth (Erlangen)

und A. Van de Ven (L~iden) statt. In zusammen 25 Vorträgen 'wur'den

neue Ergebnisse aus der Algebraischen und Komplex-analytischen­

Geometrie dargestellt und diskutiert. Ein besonderer Schwerpunkt

war die Klassifikationstheorie komplexer Varietäten, wobei wiederum

besonderer Wert auf die Theorie der Flächen und dreidimensionalen

Varietäten gelegt wurde. Eine Reihe von Beiträgen beschäftigte

sich auch mit algebraischen Kurven, Vektorbündeln und'Singulari­

tä~en. Darüber hinaus wurden Vorträge über holomorphe Zerl'egiIngen,

Lefschetzsätze und Deformationstheorle gehalten.

Insgesamt nahmen 40 Mathematiker aus 10 Ländern teil. Ins­

besondere die Anwesenheit auch vieler ausländischer Gäste be~

reicherte die Diskussion innerhalb und auBerhalb des offiziellen

Programms. Durch Freihalten der frühen Nachmittagsstund~nund,des

Mittwoch Nachmittags von Vorträgen blieb t~otz eines reichhaltigen

Vortragsangebots genügend Zeit für diesen Gedankenaustatlsch.' .

vortragsauszüge

A. BEAUVILLE:

Kähler symplectic manifolds

A compact Kähler manifold X is symplectic if ·1 t admi ts a holo­

morphic 2-form ~ which is everywhere non-degenerate. Moreover X is
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surfaces of general type.

called irreducible if it is simply conneeted and h 2 ,0(X) = 1.

These manifolds give a nice generalization of K3 surfaces. In

particular the period map (for 2-forms) looks very much like the

one for K3 surfaces: it gives a local isomorphism of the modul!

space into a smooth quadric in lP'(H
2

(X,«::) ) •

We present 2 series of examples of such manifolds, called S[r]

and K :

1) Le~ S be a K3 surfaee. Then S[r] is the Douady spaee of O-dimen-

. sional subspaees zcs with:lg(~z) =r. •
-1 (

2) Let A be a 2-dimensional eornplex torus. Then Kr = S (0), where
S:A(r+1]~A"iS the morphism Itsumn.

The loeal moduli space m for s[r] (resp. K ) is smooth of dirnen-
~ r

slon 21· (resp. 5). The deformations coming from deformations of S

(resp. A) form only a smooth hypersurface in m. I don't know how

to describe a generic deformation of S[r] or Kr",except in one

example:

Let X be a smooth cubic hypersurface in F4 . Then' the Fano variety

of lines contained in X is a (projective) symplectic irreducible

fourfold~ When X varies, one'gets the complete family of projeetive

deformations of 5[2], where S is a K3 surface in Pa." .

F. CATANESE:

Involutions on rational double points and moduli spaees of

e
Let S be a minimal surface of general type with given invariants

K2 ,X and let m be the coarse modul! space for surfaces homeo­

morphic to S.

I proved recently that the number of !rreducible components of m
can be.arbitrarily large, as weIl as the number of different values.

for the dimensions of the irreducible components of m.
Here I reported ort the conjecture that also the nurnber of connected

components can be arbitrarily large, and gave a proof of one of the

two main steps towards the affirmative answer to the problem.

The irreducible components of munder consideration are given as

                                   
                                                                                                       ©



-3-

follows: consider a (71/ 2) 2 Galois cover of lP 1 x lP 1 of simple

type z2 = f (x,y), w2 = 9 (x,y) with f of bidegr'ee (a,b) and 9 ·of

bidegree (n,m) One gets thus a subvariety 7l (a,b) (n,m)' and the

more precise conjecture is that its closure is a connected com­

ponent of 7ll if n> 2a, b> 2m.

Theorem: If n> 2a, b> 2m 7l(a,b) (n/m) 'is an irreducible component

of m, smooth at the points corresponding to srnooth covers of

lP
1

x ]I?
1

, and the points in 12 (a ,b) (n ,m) consist of (rzlJ/2 ) 2 simplee
l

covers of ]F2rn of type (a,b) (n,rn) •

The proof relies on the classification of ~he singularities (~)

wh1ch occur as quotients of rational double points by 7l/2 or

(7l/ 2 )2, and the following:

Theorem: Let f:Z ... f:1rbe a 1-parameter family, s.t.

1) f- 1 (t) = lP 1 x JP
1 for t *O.

2) Z 1s normal, f- 1 (0) 1s redueed with singularities only of type <*).
-1

Then f (O~ 1s .~ither JF2m " or lF2 , lF4 .with the n~gative sect10n

contracted to a point.

To prove the eonjecture' it suffices to analyse the loeal defor­

mation when K 1s not ample.

G. ELENCWAJG

Brauer group of fibrat10ns and symmetrie products of curves.

Let n:P ... X be a'fibre bundle with fibre-]ps_l • From the exact

sequenee 1 ... (9*"'GL(s,'9)'" PGL(s,'9)'" 1 we get a map Ös :H1 (X,PGL(s,'9)'"

... ~! H2 (X, '9*) •

Define Brs(X) = Imö s ' Br(X)=U(Imö s ) and Br'(X) :=H
2

(X,<9*)tors.

Theorem:

1) If p:E ... Y is a fibre bundle with fihre ]Pr' then Br(Y) = Br' (Y)

impl1es Br (E) = Br ' (E) •

11) B~ (C (n» .:;: Br" (e (n» for the n-th symmetrie product of the

compact Riemann surface C.

PB. ELLIA

The normal bundle of space eurves.

In this talk we consider the stability of normal bundles of smooth
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connected curves in p3 • The results are:

Theorem ,: Denote by z* the open set of Hilb'p3consisting of

smooth curves of genus 3 and degree 6 not lying on a quadric sur­

face. Then: (a) every curve in Z* has semi-stable normal bundle.

(b) If C is general in z~ then Ne' is stable. (c) There exist

curves in Z* with Ne not stable, indecomposable. (d) If Ne splits

then ~C=;2TC(3). There are curves in Z* with decomposed normal

bundle.

Theorem 2: (jolllnt work with E. Ballico) Let E'be a stable (resp'.
, " 3

semi-stable) rank 2 vector bundle on P • There exists an integer

b(E} such that for t.~b(E) a gene~al section of "E(t) has as zero

set a smooth connected curve with stahle (resp. semi-stable)

normal bundle.

J'"'.'
G. ELLINGSRUD

Irreducibility of the modul! space of stable vector bundles on ]p2 .

It is/well known that the moduli space ~(r,c"c2) of stahle vector

bundles on,]p2 of rank rand ehern classes c 1 and 02 i5 irreducible

if r = 2 (Maruyama, Barth, Hulek) or if c, .. 0 mod r (Hulek). We

prove, using the standard-construction that M(r,c"c2) i5 irredu­

cible in the resting cases. An essential ingredient in the proof

15 the following result obtained by Brun and H1rschowi~z:

Every stable vector bundle on ]p2 of rank ~ 3 and c, ~ 0 mod r may

be deformed into a uniform bundle with rigid decomposition type

if c1'i±1 mod r, a~d into a bundle with rigid generic decompo-

sition type and only a finite number of jumping lines if cl =±l mo~.

I. ENOKI

Complex structures on s3 x 53 {after Ha:jime Tsuji}

Consider pver an elliptic,curve C a flat vector bundle E of the form

E =([;n x ([;* I(A-i:a) where A E GL (n,«:) is a contraction and 0< Ial < 1 •

Then there are complex analytic modif1cations (not bimeromorphic)

whlch replace the zero-section of E by a Hopf manifold D of codi-
. n -,' Imension 1, e.g. the result of this modification 1s ([; - (OJ xa::/(A,a·:·.··) '.
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and o=a::n _{O}X{O}/fA,a- 1). Now we apply this modification to

a diagonal HQpf 3-fold H=o;3 - [O)/(a.1 ,Cl 2 ,a3 ) around the elliptic

curve de"fine'd by 2'1
1

= z2 = 0 to obtain a family of compact 3-folds

which are homeomorphic to S3-bundles over lens spaces. These

'manifolds can be characterized under certain generic c~nditions;

Tsuji reduces the proof to the characterization of'Hopfmanifolds

by showing that by means of the inverse of the above modification

we can obtain a -Ropf 3-fold from the manifold'in question •.

G. VAN DER GEER

Projective geometry of moduli spaces of Abelian varieties.

This i9 areport on joint work with van Geemen. If X is a prin-·

cipally polarized Abelian variety of dimension 9 then the theta

functions of second order define a basis of -r(X~.e.02) 'where .e
gives the polarizat~on. They give rise to two maps: .

1) Th: A (2,4) ~]p2 -1 ,with A (2,4) the moduli space of, (certain)q . g,
Abelian varieties

29 -1
2) Thx ~ X ~ lP th~ Kumm~r map.

We look at the intersection of the tangent sp~ce to Th ~A9: (2".4) )

at 'l'h ([X]) with the image Thx (X) of. X. I formu~ated ..preci~e ',con­

ject~res on these intersections. This gives a conjectu~al,~~~wer

to the Schottky problem. Also conjectures about the intersection

of Thx(X) and ThCAg(2,4») were given. Their relation with other

approaches (irreducibility of the Schottky locus, Novikov con­

jecture •• Swere discussed.

H. GRAUERT

Complex decompositions.

Assume always that X,Y etc. are reduced complex spaces. An'e4ui­

valence. relation E ~ X x X i8 a compie~ d~compositio~, , if' E 15 an

analytic set. The quotient space Q =~/E 19 equipped with natüral

topology and ~-ringed structure. Then the quotient'map is a mor-'
. .

phism. If F:X~Y 18 a holomorphic map, E=EF : = XXFX as a set is

a comple~ decomposition. If E ~s give~, by t~e. B~~K~up~qo~struction

the "simple decomposition" E t:o E is obtained. E,1s the finest

complex decomposition whose fibe~s are locally the same as those
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of E. A· holomorphic map F: X-. Y i5 called analytically dependent.

on E if F 15 locally constant on the fibers. These are just these·

maps which C9me from Q -. Y. So Q 1s a complex base, in the sense

of Stein.

Assume now that X 1s normal. The question 1s: -when i5 Q a complex

space? By B. Kaup th~s is true if locally the dimensions of all

fibers are the same. If this 1s not· the case there are two

necessary and sufficient conditions CE = holomorphic' + sem:lproper).

These should be the weakest cend1tions which can be obtained.

Finally it was shown that m-bases in the sense of Stein always I~;
exist.

L. GRUSON

Complexes of" singular jump1ng lines.

Let E be a reflexive C9]p -module of rank two, let {9 -. E be a section
3 .

of E whose set of zeroes i5 a curve. Let i be an integer such that
. 0

2i ~ c 1 =: Cl (E~ and H (E (i-c 1'.-1» = O. Let G be the gra.ssmannian of

lines in 'lP j ' and -F c G x lP3 be the incidence correspon~e~ce~ ~hen

one defines a 5ubvariety Si of pure codimension one in F. A pair

CL,P) of F lies' in 51 if and only if the following condition holds:

form the cartesian square $L ) E
L

of (9L-modulesi

J 1
(9L ( (c l -2i) P)---4Ei

. 2
then the expected decomposition Ei ~ (9L (c1-~) does not hold. There_

i8 a natural scheme structure on this set·of points, this 1s Si. ~

One proves that each non-reduced irreducible component of Si is

(set-theorically) the inverse image in F of -some "special" conplex

in G, i.e. consists of points CL,P) in F such that L meets some
mfixed irreducible curve r. Moreover there' is a mai? E-.J r (n),

wi th n~m s: i-1, where J r denotes the idealdefining r.

K. HULEK

Complete intersection curves and the splitting of the normal bundle.

This talk was areport on recent joint'work with J. Harris. An out~
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line of a proof of the following result was given.

Theorem: Let S~]Pn be a smooth complete intersection surface,

and let es S be a smooth curve. Then the normal bundle seq":lence

0'" NC/ S - NC / lP ... NS/lP JC"'. 0
n n

splits if and only if C is a complete intersection with S,

1.eC=SnF.

By means of a counterexample (an elliptic curve C of.degree.6 on

the Veronese surface S~P5) it was shown that the above statement

_, does not hold for arbitrary smooth surfaces Ss lP
n

•

s. IIT:AKA

Smal1 size birational geometry •

.Let (D ,'X) be a pair of a non-singular curve D and· a complete

non-singular.rational surface X defined over the field of comp1ex

numbers such that D lies on X. Two such pairs (D,X) and (D';X·)

are called birational if there exists abirational map ~:X'- X

such that ~[D'] = D.

Defin~tion. (D,X) is said to be relatively minimal, if D 1s not

an exceptiona1 cur~e of the 1-st kind and any except1onal' curve E

satisfies D··E;:: 2.

Let K[D] = K (K + D,X), that is the Kodaira dimension for (D,·X).

Theorem-1. Let (D,X) be.a relat1vely minimal pair such that

K[D]~O. The~ it 1s minimal or birationally equivalent to a

hyperelliptic pair.

Note. This is an analog of a fundamental theorem in the'mi~imal

model theory by Enriques.

H. KNöRRER

Torsion free sheaves and simple eurve singularities.

The purpose of the talk 1s to deseribe and eomment the following

resu1t, which was obtained in col1aboration with G.-M. Greuel:

Theorem: Let R be the loeal ring of a redueed plane eurve' singu­

larity. 'Then the following statements are equivalent:

1) Up to isomorphism there are only finite1y.many torsion free

modules of rank one over R
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1i) Up to isomorphism there are' only·finitelymany indecomposable

torsion free modules over R

1ii) (D,p) 1s isomorphie to a simple curve singularity.

H. MAEDA

Classiflcat1on· of logar1thmic Fano 3-folds.

Let V be a non-sinqule:tr projective variety and 0 = 0 1 +- •• + Os be

a divisor with simple normal crossings on V. A logarithmic Fano ~.

variety is defined to be a pair (V,D) such that ~Kv-O 15 an ample

divisor on.V. This 15 an. extension" of the classical Fano variety.•

The purpose of this talk 18 to state the str~cture' of logarithmic

Fano variet1es of dimension 3. The proof 1s based on the idea of

the 'theory of open algebra1c varieties due to s. Iitaka and on

the theory of extremal rational .curves due to S. Mori.
. . . 3

Roughly speaking, the logarithmic Fano 3-folds are (1) lP " Q2'
I 1V1 ' v2 ' V3 , V4 , Vs in the notations of I~kovskih, (2) P -bundles

over non-singular surfaces which are del Pezzo surfaces or ~

Hlrzebruch surfaces, (3) lP2-bundl~s over lP.', (4) quadric fiberings

over p ~, or (5) some points blowing up of p3, Q2 orp2-bundles

over lP •

H.,B. MARTENS

Mappings of closed Riemann surfaces.

Holom<?rphic mapp1ngs of closed Riemann surfaces induce homomor­

ph1sms between the1r homology groups. Conditions. for a given

homomorphism to be induced by a holomorphic map are discussed.

The problem of characterizing such homomorphisms is, in general

·open and lnter~st1ng.

Y. MIYAOKA

Max~al number of rational double points on surfaces.

Let X be anormal project1ve .surface with only rational double

points (R.D.P.'s) and put

v (P) =-* (irreducible components of the minimal resolutio~) +;1/
2 '                                   
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for each rational double point P.

. 4 2
Theorem: L 'V (P) s; j (9X (C9x) -w:x) if the . (invertible)

P:R.D.P.

dualizing sheaf is nef. In particular,

*(rationa~ doub~e points)' s: ~ (9X ( C9.x) -wi) .,
This is an easy application of the following

Theorem: Let d be a rank 2 vector bundle on··a smooth prQj~ctive

surface S such th~t (i) & c n~ (logD) (ii) Cl (&). is nef.

2Then 3c2 (eS) - c 1 (<I) ~ o.

Y. NAMlKAWA

Automorphisms of Enriques surfaces.

For an Enriques'surface S let G be a subgroup of the group of
2 . . ....

isometries 0 (H (S, 1l) free) consisting of isometries which·'have .

extensions of isometries of the coveringK3 surface preserving'­

periods. Also let W be the group generated by syffimetries 'asso~

ciated with irreduc1ble curves C on S with c 2 = "';',2. Set 'A = Im (Altt (s) ...
2o (H (S, 1l) free) and D = ±1. Then the fundamental resul t 1s'

Theorem:' 1) W 1s anormal subgroup of Gi iil'ä=,-(Dx'W) )OA,'(semi­

direct product), 1ii} G::>O(2)={919=1 mod'2} (hence [O·(H21:G]<CX).

As corollaries we get: 1) (Dolgachev) 'Aut (S)' 15 finite if and"only

if [O:WJ<~,,2) (Barth-'Peters) for generic Sone has Aut(S) =0(2).

The kernel of Aut(S) ... O(H2
f ) 1s non-trivial in exactly three
ree . ,

cases which can be exhibited concretely. One can propose a 'problem

to classify all' S with finite Aut (S), which is now. not so ,f~r" "~'.

from the complete answer , though only o~e ex:amp,le 18 kn0"'r- so f.ar.

c. PESKINE

Complete series for space curves.
3Theorem (Castelnuovo):" If C 1s a smooth connected curve of lP(C ,

then surfaces of degree n cut out· a c9mplete' linear system on C

for n ~ d O{Cl -2, and for n ~ dO (C) -3 if C is not rational. The proof

suggested by Castelnuovo for the second assertion 1s not complete

If C lies on a surface of 4-secants.

Let e = e (C) = rna~ { n: h 1
(Oe (n»:fO) be the index of special!ty of the

embedding of C. We prove the following result:                                   
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Theorem: Surfaces of degree n cut out a complete linear system on C

for n ~ da (Cl --e~3.
-J

$~etch of th~ proof: A non zero section" of ~C(-e) induces an

extension 0 -t.0]p3 (-e-4) -t 7Jl (-e-4) -t 0]p3 -t Oe -t 0, where 7l1. is a

reflexive rank-2 sheaf on ~3

The result is first proved when the variety of [(e*2)/2]-jumping

lines for m ·does not contain any non-reduced complex of lines ..

If th~re is such a complex, one proves that C lies on "a rational

ruled surface S-of (e+4)-secants to C having for singular locus .
-th . •the (do{S)~2) infinitesim~l neighbourhood of a line and concludes

by using the c~assification of curves on such a surface.

M. PETERNELL

A Lefschetz theorem on s~ctions in projective manifolds.

Th~ followi~g· theorem is proved: Let X b~ a submanifold of ]Pn

and Y be an a1:gebraic set 'with .not toö large codimension·;Ln lPn •.

Then certain hOIt:lot"öpy groups of 'X an~ X n y" are isomo'rphic·. ~his

. theorem ~s ~'~e~er~lizatib~of the ~~fschetz theorem on hyperplan~\

sections.

"The proof 1s based on Morse theory. One considers the'behaviour

'of the hornotopy 'type. The us~d Morse functi~~ 1s not differen­

tiable but the"minimurn of differentiable functions.

C.· PETERS

~(3) and a family of K3-surfaces.
n -

In Apery's irrationality proof for ~(3) the numbers a =L(n)2 1n+k)2
n 0 k k'

pl~y a central·role. The ,generating function A(t) =L antn satis~ies
n ~o

the differential ~quation

LA(t) = 0, 'L'= (t4 '_ 34t3 + t 2 ) (d 3/:'dt3 ) + (6t3 :..,·153t 2 +3t) (d2/dt2) +

+ (7 t
2

- 1.2t + 1) ~/dt + t - 5

There has .been a strong suspicion that ~ comes from algeb~aic geo­

.metry. The main r_esul~', obtained in collaboration with F .. Beukers 1s:
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Theorem: If tf{O,1,(J2,±1)4,=l then A(t) =Jwt , where wt 15 a
y

holomorphic 2-form on a .K3-surface Xt • For t generic the 'Picard

number of Xt 1s 19, so that' the transcendental lattice' T
t

1s of.

rank 3. Since Tt is horizontal with respect to the Gauß-Manin

connection one obtains a system of three differential equations

of order 1, whose associated third'order differential equation

(the "Picard-Fuchs equation U
) is LA (t) = 0 (in a suitable basis

for Tt ) •

M. REID

Classification of threefolds.

Assume k = ce and let X be a projective 3-fold with canonical sin­

gularities. It is hoped to' classify X by the nurnerical properties

of the canonical class:

eonjecture ! 1: There exists a model :XI biration'al to X for which

either ~XI 15 nef (that is, KXI.C~ 0 for all ecX)

or. there, exists a fibre spa'ce <1>: XI ~ Z with dirn Z = 0,1 or 2

s.t. -KXI 15 relatively ~ple.

About 1/2 of this conj'ecture has been proved thanks to ~ork of

S. Mori and Y. Kawamata.

Conjecture 2: Assume KX is nef; then for m »o,lrnKxl is free,

defining 4>: X~ Z which contracts precisely the curves C c X

with KX.C = O.

Substantial cases of this conjecture are also known.

E. SERNESI

Counting modul! in families of projective curves.

Theorem: For all g,r,n satisfying the following inequalities
, --r (n--r' - ,1; .

n- r ~ 9 s: r-l) " n 2: r + 1 ~ 4, there. exists a smooth irreducible

curv'e' C· C ]pr of genus 9 and degree n such that hO (0) = r + 1 t.
l' . .

h (Ne)' =0 and the natural rnap lJo:HoCD) ~HO(K-D) ~Ho(K) has maximal

rank (0 19 a hyperplane section of C, Ne i5 the normal bundle of

C in ]pr , :K is a canonical divisor) •
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This' theorem 1s proved. inductively studying certain reducible

eur~es in pr an4 then using deformation theory to 'smooth them.

As a corol1ary we obtain for all. g,r,n as:above, gene~ically

smooth eomponents of the Hilbert scheme' of' lPr generie~lly

parametrizing smooth curyes of degre~ n and genus gwhich corre­

spond to a locus in the moduli space m having dimension equal to. . 9
~in (3g-3, 3g-3+p (g, r ,n) ), when p (g ,r ,n) =. g - (r+1) (g-n+r) is

,the Brill-Noet~er number.

J. SHAH

Stability'of surfaee singularities.

The nation of stability of a,local ring is defined in such ~ way .

tha~ ~f'the loeal ring of a point on a projective scheme X is

unstable, then X itself i5 unstable in the sense o~ the geometrie

invariant·theory. The results obtained in· dimension 2 are as

follows: Let R be a two-dimensional, semistable, Cohen-Macaulay,

local ring'ofmultiplieity e .and em~~dding dimension p. Then

e ~ 6 and e = p or:.p-l. Ife ~ p, ;th~~·Gr~R must be co~n-M~caUlay
and proj Gr R must be either -an-::'eiliptic curve or a cycle of

"""" ' " : .•,.. r

rational eurves. If e = 2 and p = 3, . 't.hen R musi:: be a· ~-ational,

simpleelliptie or eusp singularity or a non-normal l~it of

such sing1.!larities.- .Pa~tial results for the case e ~ 3 and p = e -I-: 1

suggest, in this case, R must be 'a quotient singularity, a non-
o •

normal l~it of such singularities or a quotient of a simple

elliptic singularity.

K. VENO

On compact analytic threefolds with non~trivial Albanese tori.

~et c:M ~ A (M), be. the. Albanese mapping of a compaet complex mani-

. ,fold of d~mension 3. The structure of the Albanese mapping is

well-known, 1f M i~ bimerornorphie ~o a Kä?~er manifold. The main.

purpose of the talk is to show that i~ M is not bimeromorphic to

a Kähler manifold, the structure of the Albanese mapping may be

quite diffe~ent frcm that cf' a Kähler threefold. Sueh examples ­

are cbnstrueted by mean~ of strange non-Kähler degenerations of

surfaces.
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J. WEHLER

Deformation of global complete intersections.

In 1958 Kodaira and Spencer proved in their fundament~l·.work.· pD

deformations of complex analytic structures that every smoo~h

hypersurface X 'of the projective space remains a s~6oth hyp~j~

surface under arbitrary 5mall deformations if X is not aRiemann

surface or a K3-surface. In this talk we scetch the proof of the

following generalisation:

If X 1s a .compl~te intersection, not necessarily ...s~ooth" i~. a·

compact homogeneous Kähler manifold ~ 'with b 2 (Z) =,',., ·then every

sma!l deformation of X is again a complete intersection 'i~ ·z· 1f
dlmX ~ 2 and X i5 not a K3-surface.

For X .smooth this result has been obtained first by C. Borcea in

1983. The assumptions made on Z are fulfilled by all Grassmann

rnan1folds, for example. The proof of the ~he~rem uses tpe Kopaira­

Spencer completeness criterium and the vanishirig·theorem O~.Bott

for homogeneaus vector bundles on Z. i

S.-T. YAU

Equivalence relations among holomorphic ~unctioris 'and exotic ~

differentiahle structures on singular varieties. .. "

There are three well-known equivalence relations among ,ho~9morphic

functions. They are right equivalence, right-left equivalence and

contact equivalence. Among these three equivalence relations,

perhaps the contact equivalence is the most interesting one t?

complex geometers. We introduce two more-equivalence r-et~ti.Qn~:

Milnor equivalence and moduli equivalenc~" ,'Thes'e" ia"~t ~'t~o':"e~Üi­

valence relations are easy to understand • ~e' sttidy th~. '-r_~'lat'~on­

ship between these equivalence relations. As a result of"otir study,

we find that a general singular variety has more than one embedding

differ.entiable structure (with underlying embedding topolo.gicq,l
structure be:ing fixed). . . :. '.:.:

Berichterstatter: K. Hulek
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