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Die Modelltheorie-Tagung 1984 in Oberwolfach wurde von den Herren
L. van den Dries (Stanford), U. Felgner (Tdblngen) und A. Prestel
(Konstanz) geleitet.

Die beiden Schwerpunkte dieser Arbeitstagung waren "Die elementare
Theorie der reellen Exponentiation" und “Quantoren -Elimination (QE)
fir Gruppen und Ringe". In ausfiihrlichen Vortragen wurden diese
Gebiete systematlsch behandelt und aktuelle Forschungsergebnisse:
dargestellt. )

Wie es bereits auf .friiheren Modelltheorie-Tagungen ibkich war,
wurde dariiberhinaus durch .mehrere Vortrdge der thématische Rahmen
in verschiedene Richtungen erweitert, ohne jedoch den Bezug zu
den Hauptthemen  zu verlieren. So wurde Quantoren-Ellmlnatlon ‘auch
fiir andere mathematische Strukturen gezeigt ("QE in Discriminator
Varieties", "Linear Elimination") und ein Anwendungsbeispiel fiir
QE itheweis der "Rationality of Poincaré Series" gegeben. Eine
Reihe von Vortrégen béfaﬁte sich mit den Problemen des "Reellen”

-von unterschledllchen Standpunkten aus: abgesehen vom Schwerpunkt
'"Reelle Exponentiation" reichten die Themen von den "Rigid

Relations on R" iiber die Theorie der reellen algebraischen
Varietdten bis zu dén PRC-Kbrpern, den reell abgeschlossenen

und den verallgemelnerten reell abgeschlossenen Kérpern, wodurch .
auch Themen der Modelltheorle-Tagung 1982 fortgefiihrt wurden.
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Vortragsausziige

I. Exponential Algebra. N

A.J. Wilkie:
Foundations of Exponential Algebra.

Let L be the language {0,1,+,+,-,exp}. An exponential ring is an
L-structure which is a commutative ring with 1 satisfying the laws
exp(0) = 1 and exp(x+y) = exp(x)-exp(y). If k is an exponential

field we denote by k[x1,,. .,xn]e the free exponential ring with .
generators xq,...,x, satisfying the positive diagram of k, that

is the elements of k[x1,...,xn]e are terms of L with variables

amongst Xq,...,X, allowing constants from k. Notice that terms of

Ly (= L with constants from k) have natural formal partial deri-

vatives (which are also terms of Li) which induce natural partiél
derivatives on k[x1,~...,xn]e where the set of constants turns out

to be just k. We show further that if P € kM and

my = {f € k[x1,...,xn]e : k F £(P) = 0} then no sub-ideal of mP’
is closed under partial differentiation. This implies completeness
theorems for sﬁitable k. For example, if k = R or .€ and

k F V§f(§) = O, then £ is identically zero in.all exponential
rings. The method of proof relies heavily on results from diffe-
rential algebra.

Let L be the language {1,+,-,+} where the intended.iﬂterpretation

is RT (the positive reals) and x+y = xY. Let HSA be the usual

"High School Algebra" axioms formulated in L. We produce an

example of a law which is true in RY but not provable from HSA.

However, by increasing the language L suitably (by adding function .
symbols for certain polynomials not having positive coefficients

but nevertheless taking only positive values on R+) and the axiom
system HSA naturally, we show that all laws true in r (in the

language L) become provable. ’
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A. Macintyre:_
Exponential Fields.

We develop the elements of exponential algebra, via the study of
partial E-rings with derivations. The principal object of study
is the universal extension of an E-ring R. A notion of E-place is
developed, leading to a Completeness Theorem for exponential
rational functions over E- -fields. The cruc;al fact is the non-
existence (under mlld hypotheses) of E- places closed under deri-

‘ . vatlons.'In ‘the Completeness Theorem we relate three entities,

oF

. Answer: There are real numbers a; < ... < ag such that on each -
X

“Kx)E, a field of functions defined sheaf-theoretically, and an
algebra of terms. ‘Finally we discussed Dahn's Completeness Theorem

"~ and 1ts ‘application to sharpening of Van den Drles' theorem on
limits’ of exponentlal functlons. o

ft :

:Lflﬁan den Dries:
Oon SOme Exponentlally Deflnable Functions.

Deflne EﬂR ) - the algebra of, n-varlable exponent1a1 functlons_— .
to be the least R-algebra of real analytlc functlons on R? whlch
contains the coordinate fct's X1,...,Xn is closed under o

f » exp(f) (= ef), and such that each analytic f : R" + R with
fg = h .for certaln g, h (g # 0) in the algebra belongs also to
the algebra. = e
zLet f € E(R ) be glven and deflne g:R->RU {-m(e}_by g(x) =:lim

(The limit ex1sts for each X.) y>e

. Question (Macintyre): How 'wild' can y be?

_1nterval (al,a (with ag = -=, a = «) the function gAis

i+?. K+1.
either’ +w
or -
or analytic (with finitely many zeros if not
. identically. zero on the interval).

The proof uses nonstandard analysis and actually gives a more
'general result: if f € E(Rn+1) ‘then each sequence ‘of* p01nts (pk)

in R'has a ‘subsequence (qk) such that the sequence of functions
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" closed commutative fields. . .

(f(x,qk))kEN converges pointwise to a function g : R + R U {-=,»}
satisfying the statement above, and such that moreover on each
interval (ai,ai+1) the convergence is uniform on compacta. '

II. QF for Groups and Rings.

U. Feléner:

Quantifier Eliminable Groups.

Call a group G = <G,-,-1,1> a QE-group (for ‘'quantifier eliminable')
if for each formula ¢ there is a quantifier-free formula ¥ such that
® > ¥ holds in G. We presented the classification of all solvable
'QE-grbups (modulo the nilpotent QE-groups of exponent 4) and of all
finite QE-groups. In particular there are 2 nonabelian»finite

QE 2-groups (the quaternion group and the Sylow 2-subgroup of U3(4)),
four families of finite solvable non-nilpotent QE-groups, the groups
PSL,(5) , PSL,(7), SL,(5) and direct sums of those. The list of
infinite solvable QE-groups is too long to be stated here. This

work was done jointly with G: Cherlir. ‘

J. saffe:

QE-Rings.

The aim .of the talk is to give a survey on the classification of
rings having quantifier elimination in the lanuage L = {%,-,-,0,1}.
It is easy to see that we can restrict attention to rings of charac-

teristic O or a prime power. The results are as follows:

‘Theorem 1: QE-rings of characteristic zero are exactly algebraically

‘Theorem 2: QE-rings of characteristic p without nilpotent elements
are a) algebraically closed or finite fields, b) F

* Fons ¢) atom-
less p™-rings.

pn

Theorem 3: The only semisimple QE-rings beside those of theorem 2
in characteristic p are MzﬂFp).

Theorem 4: Suppose that R is QE-ring of characteristic p such that
the Jacobson-radical J(R) # O. Then a) J3 = O; b) either R = FP[J]

Deutsche .
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- or R/J = F4, and there are only two possibilities in the second case.
But somehow a complete classification is impossible, as is
shown by

4 R . . . .
Theorem 5: There are 2 © pairwise elementarily inequivalent QE-rings

.of characteristic p.

Finally, we mention the result correspondlng to theorem 4 in the
case of characterlstlc pn

Theorem 6: Suppose that R is a QE-ring of characteristic pn, n > 1.

"1 in R and RT be the subring gene-

Let Rq be the annihilator of p
‘ rated by the central idempotents of R;. Then:

a) Ry = R} ® J (in particular J < R;) _ , v

b) J is nilpotent of order at most 2n+1 and J is a QE-nilring in
the language {+,-,:,0,p} having a constant for the element P

¢) R/R; is either Fp, Fy, or Fy x F, ' _

d) R: is either (0), Fpk or the subring of continuous functions from
a Boolean space without isolated points into Fpk vanishing at a

certain point.

C. Wood: ) L sl
Finite QE-Rings.

. We indicate the current state of joint research with Dan Saracino
on the classification of finite QE-rings. The work is complete for
characteristic p (Berline and Cherlin, Mons 1978) and for charac-
teristic p2 when p is an odd prime (Saracino and Wood, preprint).
We also sketch the program for handling p® (the general case) by
an analy51$ of the Jacobson radical as in Berllne —-Cherlin. (J.s. L.

‘ 1983).

V. Weispfenning:
QE for Ordered Abelian Groups and Modules.

1. Ordered abelian groups.

A theorem of W.Szmielew (1949) says that any abelian group admits
quantifier elimination (q.e.) in the language L = {o, += ’{n}n<m
We study q.e. ordered abelian groups in the language L<(C) = L= v {<,cC},

where C is an arbitrary set of constant-symbols.

Theorem 1. Let G be an ordered abelian group such that (C) is of

Deutsche @
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finite order rank n. Then G admits g.e. in Li(d) iff : -
(1) G is dense regular or
(2) Ex. a chain Hy € Hy € ... € H = G of convex subgroups of G

(m < n) such that

(1) Hi/Hi_1 is a Z-group w. smallest positive element 1 and for
some kj < w, ki1i is represented by a constant term

(ii) Hy is trivial or a dense reqular group s.t. for all k < o
Ho/kHo is finite and represented by constant terms.

2. Modules.

All modules are left, unitary over a fixed ring R. We apply the .
Baur-Monk theorem on g.e. for modules relative to pos. primitive
formulas and a reduction of pos. prim. formulas using specific
generators for left ideals of R to prove:

Theorem 2. Let R be a Dedekind domain and M an R-module. Then M
admits q.e. iff M is divisible or a torsion module with finitely
many homocyclic primary components.

Theorem 3. The following are equivalent:
(i) Every R-module admits g.e.

(ii) Every 2-generated R-module admits g.e.
(iii) R is von Neumann regular.

Theorem 4. Let M be the class of nontrivial R—modules. Then t.f.a.e.
(1) admits g.e.

(ii) MR is model-complete

(iii) R is an 1nf1n1te, simple, v.Neumann regular rlng.

Theorem 2 - 4 generalize results of Cherlin-Felgner, Belegradek,
Sabbagh, Hodges and Tyukavkin.

Deutsche
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- III. Other Topics.

C.N. Delzell:
Application of Hilbertian Function Fields to Exponential Diophantine

Eguatlons.
“Let' K be a field & let w, x, y be variables. Let f € K[w,x,y] be

1rreduc1b1e in x,y over K(w), & assume y occurs in f. Let
{n | f(w wn,y) is 1rreduc1b1e in y over K(w)}.

s

EX. | If f(w,x,y) 2—x, then S = {odd integers}. If £
. S = {even J.ntegers}

yz—xw, then

Ex.:-If f ="y, then S =N. If f = ym—xwl, then s = {n | (n+l,m) = 1}.

Ex.. If f é’yz-x -1, then s = - {o}.

Questlon (J Ohm, 1983): Must S be infinite?

Answer (L. van den Drles) No. (Ex. for char K.# 2:
f = y - 2(w+x)y + (w—x) . Then S = @.)

Main Thm.: If char K = O, then S is .a union of residue classes for
some modules, minus a set of density O. (Cor.: S # @ = S has positive

density = S infinite.)

%

w1 % Pf.Sketch: Factor £ =-(y-y1(W,X))...(y-Yp(w,x)), "
’ -1/d

¥; € Lx™ /7))y = U n(x™9), where 1 = E((w'1/”)$.'§i will be

"convergent" relative to the w- adic . valuatlon on L (by Hensel). Some

factors are in L[x1/d

,¥] - they contribute the residue classes to S;
other factors .are not, and they subtract the exceptlonal set .of

density O from S. "Q.E.D.".

' Agglication: Let P = {all exponential Dioph. equations of form
P(n w,y) =.0, where P is a sum of monomials of form.hwan+by¢ (th € 2z,

uva,b c € N)}

Thm.: :3-an algorlthm which; given P.€ P, decides. whether

~vnvw3dy P(n,w,y) = O (Pf. uses main thm. )
(n,w,y€eN) X

Deutsche
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L. Lipshitz: . -
Identity Problems.

" We say that a formal power series f(x) € K[[x]] is defined by an

UFG

algebraic differential equation (ADE) if there is a polynomial P

in x,y,y',...,y(n)'and initial conditions y(0) = a ,...,y(m)(o) =a

(n) 3P ° m
such that P(x,f,f',...,f ) =0, §;mr—(x,f,_,,,f(n)) # 0 and f(x)

is the unique solution to P = O, satisfying these initial condi-
tions, in Kl[[x]]. (Every power series in K[[x]] which satisfies an
ADE can be defined in this way).Let f,,...,f  be elements of K[[x]]
defined by ADE's, and let J be the set of terms built up from
variables, elements of K, +, °*, -, f1,...,fn by composition (where

fi(g)'is only allowed when g(O) = 0O). Assume that the diagram of
K in the language (+,-) is decidable, or that we have an oracle
for this diagram.

Theorem. There is an algorithm to decide for terms T € J whether
T is identically zero.

J. Denef:
Rationality of Poincaré Series.

Let p be a prime number, Zp the p-adic integers, fq(x),...,f.(x) € Zp[x],
where x = (x1,...,xm). Let £ = (f1,...,fr). Let

N, = card{x mod " x € zg , £(x) = 0 mod p"}
N, = card{x mod " | x € 22 , £(x) = 0}~
B = ¥ N 7"
n=0
3 n
P(T) = )} N T .
n=0

Igusa (1974) proved that §(T) is a rational function. His proof uses
Hironaka's embedded resolution of singularities. We gave a different
proof which does not use resolution, but uses instead elimination

of quantifiers for Qp. Our approach also answers in the affirmative
a question of Serre, whether P(T) is rational.

Deutsche B
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- H. L&uchli:

Rigid Relations on R.

The relation R ¢ R™ is said to be rigid on R, if there is no proper
permuation m : R>» R such that m(R) = R. Besides the well known
rigid 4-place relation R1(x,y,u,v)”‘£9 u = x+y and v = x-y, and any
well-ordering of the reals, there are many "natural" examples of
rigid relations: Rz(x,y,z) te (z-x-y).(2z-x-y) = O is rigid (proof:
+ and - are definable from R,). R3(x,y) 1o (y—x-1)-(y-x2) =0 i;
rigid (proof: the set {a € R | "x > a" is definable from R} is

. dense in R). There is even a C® function f of one variable whose
graph is rigid. Theorem: The graph of a polynomial of one variable
is not rigid; the automorphism group has the power of the continuum.

F. Point:
QE in Discriminator Varieties.

We classify those classes of elements of a discriminator variety V,
which admit quantifier elimination (g.e.) in terms of classes of
simple elements of V. .

From.now on, we suppose that the.language L of V contains at least
one “‘constant denoted by O. Let A be a non trivial element of V. Our
starting point is a representation theorem due to -Werner. Namely
that A is isomorphic to the structure T (X, xgx Ay) of all_secti@ns
with clopen compact supports of a locally boolean sheaf of simple
élements of V.

We show that quantifiéf elimination in such structures implies certain
properties both of'the_base space and of the class of the stalks. For
. proving that the conditions that we derive are indeed sufficient we
use the Feferman-Vaught theorem on finite direct products, the con-
struction, due to Boffa and Cherlin, of quantifier eliminable boolean
valued structures starting with .certain q@antifier eliminable classes
of structures, and a generalization of this later result to a non-
compact situation. Then we analyze the effectiveness of the transfer
of g.e. from the class of stalks to the structure of sections and
vice versa.

DF Deutsche
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M. Boffa:
Linear Elimination.

This is some kind of Quantifier Elimination (QE) related to solva-
bility of systems of linear equations. The context is that of rings

(with a unity; commutativity is not assumed). Let Smn denote the
n .

linear system j£1 a; 4%y = b; (1= 17...,m) and let wmn‘aij’bi) be

the existential formula expressing that smn has a solution.

By definition: '

Linear Elimination (LE) means QE (in the language L = {+,-,+,0,1}) .
1

for all the wmn s.

Weaker notions can be introduced, for example:

1-LE = QE for the formula 3x (ax = b) .,
2-LE = QE for the formula 3Ix (ax b&cx=4) .

The 1-LE rings without nilpotent elements and the 1-LE semi-simple
rings are (cf. F.Point, Thesis, Mons, 1983): the division rings,
the rings of characteristic p (prime) satisfying an identity

xq = x (g = p"), the matrix rings Mz(Fq) (g = p®), and the finite
direct products of these rings provided the factors have distinct
prime characteristics.

Among them, all the commutative one have LE. Among the matrix rings,
only those of the form MZOFP) (and. perhaps also M, (F4)) have 2-LE.
MZOFP) has in fact QE.

Moreover, it can be shown that a 2-LE division ring satisfies a'poly—A
nomial identity and so is finitedimensional over the centre. The
division rings have LE for L U {-1}, but for L the following questic.
remain open:

- are there non commutative division rihgs having 2-LE?
- are there non commutative division rings having LE?
- what about H (tﬁe quaternions)?

Deutsche
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M. Droste:
On the Lattlce of Normal Subgroups of Transitive Automorphism . .,

Gro;ps of Llnearly Ordered Sets.

An 1nf1n1te linearly ordered set ("chaln") (2,<) is called doubly-ho-
mdéeneous 1f its automorphlsm group A(Q) = Aut ((Q, <)) acts 2-transi-
tlvely on it. It is known that A(Q) has prec;sely 3 non- triv1a1
proper normal subgroups, if. both the coflnallty (cof(2)) and the
001n1t1a11ty of @ are countable. Using model-theoretic means, 1n
particular reduced products of partially ordered sets, we show that
A(Q) ‘has At least 22 normal (or even maximal normal) supgroups if

LK”ﬁ‘COf1ﬂ) # Ro.‘We establish several other properties of the lattice

N(A(Q)) of all normal subgroups of A(Q), and we obtain (this in joint
work with-S. Shelah) a complete classification and construction .of
the; class of all such lattices N(A(R)) (2 a doubly homogeneous
chain). - . . .

G.L. Cherlln.x'

F1n1te Homogeneous Structures.

i

~ ai.

We consider finite structures which are homogeneous for a finite

_ relatlonal language L. Lachlan has systematically. investigated

-yl

e M| >n ’

Deutsche
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the classxflcatlon of such structures, and in joint work.we completed
the proof of his conjecture-

leen L (flnlte, relatlonal), the finite, homogeneous L-structures
fall 1nto flnltely many famllles in such a way that within a given
famlly the 1somorphlsm types of the structures are determined by
simple numerical invariants, called dlmen51ons, the notion of
dimension arises from an explicit classification of the large,
primitive L-structures.

A necessary technlcal lemma of 1ndependent 1nterest says- E

Lemma. .Given r, s one can find n so-that in all flnlte'structuresb
M: satisfying . A . . - "

IMS/Aut M| < s

there 1s a subset I on which Aut M 1nduces Sym(I), with |I| .
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L. Brdcker: )
Hovanskii's Theorem and Betti Numbers of Real Algebraic Varieties.

For x = Xqr+..0X, the functlons u (x),...,uk(x) : R® + R form a

Pfaffian chain (by def. ), if — uj = ij(x,u1,...,uj) for a poly-
nomial Py i=1,...,n; j = 1,...,k. Consider equations
Q; (x,u(x)) = O where Q, (x,u) is a polynomial, i = 1,...,s. The

complexity of such a system is the collection of the numbers n, k,
deg (pij) ’ deg (Qi) .

Hovanskii's Theorem. The number of the non singular solutions of a .
system Q1 = 0,...,Qn = 0 is bounded by a function of the complexity
of that system.

. Corollary. The number of non singular solutions of a system

P1(x) = 0,...,Pn(x) = O of polynomials is bounded by a function
which depends only on n and the number k of monomials occuring in
the P;.

Theorem. For V = real solutions of Py(x) = Os...,Pp(x) = O the sum
of the Betti numbers of V is bounded by a function, which depends
only on n, k.

Hovahskii's theorem was proved following the original paper and the

second theorem with Morse- theory and the Hovanskll—estlmation follo-
wing 1deas of Milnor.

The expllclt bound seems to be bad. For 1nstance, easy calculation
shows, that for a curve defined by a threenomlal the sum of the
Betti numbers is < 9 whereas the general bounds give 216.

Y. Ershov: ) .

Involutory Groups and RRC~-(PRC)-Fields.

An involutory group € is a triple (G,GO,IG): G is a profinite group,
G, is an open normal subgroup of G, [G : Gyl =2, 15 ¢ GNG, is a

- non empty set of involutions closed in G-topology and under conju-

gations in G. If € = {G,G,,Ig) and H = (H, Hy,Iy) are the involutory
groups then a morphism ¢ : & * H is a homomorphism (continuous)
from G to H such that ©(Gy) < Hy and (Ig) € I;. Morphism ¢ is an
epimorphism if ¢(G) = H and w(IG) =Igi @ is a monomorphism if ¢ is
a monomorphism on G. :

Deutsche @
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Preordered field (F,P) is reqularly real closed (RRC or PRC) if for
every regular totally real extension F, 3 {F,P) (the last means:
every linear order L o P of F has an extention on Fy) then for

every @4,...,a, € F there is a ?—homomorphism 9 : Flal + F.

n .
CDM-presentation ¢(G) is defined in Cherlin-van den Dries-Macintyre
paper on RC fields for every profinite group G.

The following extends one principal result of CDM:

Theorem. If Fo < F1 are RRC-fields (Pi = P(Fi) the minimal cone on
Fi)' embedding is regular then

F 4F1~ QVQG(FO) RS ®G(Fq) .

1f {F,P) is a preordered field, F, 2 F an i-extension of F (= F_ is
Galois-extension of F and i € Fo» i2 = -1), then - o
G(FO,F,P) = (GVGO,IG) is the involutory group defined -as follows:

G = Autp(Fy), G, < G and P © = F(i); I, = {6 | o # e, 0? = &, there

is a linear order Ly on FJ such that L; o P }-'G(F)a='G(§ F,P(F)).

Theorem. An involutory group € is 1somorph1c to an i- group G(F) for
some RRC- fleld F iff € is flnltely projective.

There is a reasonable definition of the admissible classes of
invo}utory groups such that the known theory of admissible classes
for RC-fields works for RRC-fields as well.

A. Prestel: . B - .

On the Polynomials x4 + nx2'+ 1.

We gave a ﬁalk on Becker's problem which asks for a characéerizatlon

‘of polynomials f € RIXq,...,X ] = R{X] belonglng to the set Z IR(X)2m

of sums of 2m-th powers of rational functions in X. It is no restric-
tion to consider only homogeneous polynomials.

Theorem. Let f € R[x1,..;,xn] be pos. semidefinite, homogeneous of
degree 2m. Then f € § R(X)2M iff 2m | ord £ (py (t),...,p,(t)) for all
P1:---1Pn € R[t].

This theorem suggests that the property of being a sum of 2m-th powers
should be elementary over the theory T of real closed fields. But the
following theorem shows that there is no formula m(yo,...,yd) such

0®
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that aj + ... + a;x? € [ R(x)®™ iff o(a,,...,ay) holds in R,for all
real closed fields R.
Theorem 2. X“" + nXx° + 1 = ) @) —2m 2nd n > = implies

i=1 g (X)

(n)

deg g + o for m > 2.

s (m) '
(By a theorem of Becker, ] R(X)™ = § R(X)™ for all real closed
fields R.)

E. Becker:
Rational Points on Varieties over Generalized Real Closed Fields.

This is a report on a joint work with B. Jacob which is based on
his modeltheoretic investigation of these fields. Let (K,P) be a
real closed field of level n, i.e. P is an ordering of level n
(P+PcpP, -1 £P, Kzn c P, KX/Px cyclic of order 2n ) and (X,P)
does not admit any proper algebraic extension. Let A be an affine
K-algebra, a an ideal of A, then X = Homg(A,K) is the set of
K~-rational points of the affine varieties attached to A, moreover
set V(a) = {x € X | x(f) = 0 for all £ € a} and

w(a) = {f € A | x(£) = 0 for all x € V(a)}. It is proved

nk

IV(a) + g € a for some k €N, g €

radg(a) := {f € A | £2

where S is a certain semiring in A. This result mainly depends on
precise description of the relation "K is existentiallybc1osed in
an extension field". Moreover, using this explicit description it
is possible to solve the 17th problem of Hilbert, adapted to this
situation. The definite functions, i.e. £(x) € P whenever f(x) is

s}

defined, are "explicitly" described. . - .

Berichterstatter: F.-V. Kuhlmann
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