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This conference was organized by prof., G.-C ... Rota (MIT) and~

Prof. A. Kerber (Bayreuth). The lectur~s presented me~h?d$

and results coneerning combinatorics, invariant theory and

representation theory. They showed the brc:'ad range of ~~p~'~,c~­

tions of the representation theory of synunetrie group~ in.mathe­

maties, physies and chemistry together with related structures

as there are syrrunetr ic funetions, tableaux, diagrarns, domi'nance

order, cores, hooks, q-quotients, Spec~t modules, plethysms

and so on.

The conference was attende~ by 45 ?articipa~~s coming fro~

Austria, Bulgar.ia, Canad~~ Brit.ain, France, Ne:t~erl~ds, I:t'a}-y"

Jugoslavia, Poland, Swi~z~rl~nd, U.S.A., West-~~rmany~ ~h~

evenings' were filled with fruitful·and intensive discuss~ons.
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G. ANDREWS: The decorated hard hexagon model

This talk concerns joint work with R.J. Baxter (A.N.U., Canberra).

We have solved exactly an infinite family of models in statistical

mechanics. These are called the decorated hard hexagon models.

The solution entails the study of several generalizations of

the Rogers-Rarnanujan identities. The original hard hexagon model ~

solved by Baxter in 1980 [see R.J. Baxter, Exactly Solved Models

in Statistical Mechanics"Acadernic Press, New York, 1982, Chapter

14]) led to ~eries-product identities originally found by L.J.

Rogers and others. All of these results related certain q-series

to sums of quotients of the classical elliptic theta functions.

In our more general setting we find that multi-dimensional theta

series arise. We describe not only the solution but 'also ernphasize

related questions (some open) that arise in additive number

theory and combinatorics.·

R.W. CARTER: The left ahd right cells in- affine Weyl groups

of type An

Kazhdan and Lusztig' have given a decomposltion of any Coxeter

group into equivalence' classes called left cells, right cells

and two-slded cells. This cell decomposition i5 irnportant in a

number of problems in representation theory.

The lecture will discuss recent work of J.Y. Shi, who has deter-

mined the cell decornposition explicitly when the Coxeter group

is an affine Weyl group of type An·
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9n r<eg~~sentations of general linear 'groups

and !~cke _a1gebr~s

•
Let G = GLn (q) an9:p ~e .~·'~pr~m~- not divid-ing .g-':1 .• 'Let (Fj.011U<;~

be a split- p-moduj.eF .system fqF G. T-he.repre:sentation theorN .

_of G is closely c~~.necte~ 1w~:!:h the representati·ons 'of. the IHecke

algebra R[W]q' wh~~teR E{F.'"O,,:~}" and W denotes '.the.:Wey'i '9IiO~P

of G,. which is iS;Qm9l='phj.:c ,tg ~$:n. In .generall<['W]lq .E!! KW'='!K[(~WJ;1$'

hut F[WJ
q

~ FW. Tl~~~'~ 1s a.:~pe;.cial case, wher.e "FJW]iq ::: FW itOO I ,

namely if p divi~§ q,~~. In ,th~is case we may use ~tbe :rep~e;se.n~t·a-

tion theory of s~~t-r~c .9r~o\1ps to show that theIP~decoIl1Pos'i~t:ion

matrix of. G is lO~~F -u~j.~t~r-iangular. If p f q-1 tl ~par,tial results

on representations fQf :ol.W] ~J1d F[W] indicäte;Itt;ha·t this }holds
~ .. ~. ,q'- q

in general.•

v. DRE~SKY: ReB5esentat-iQns of the synunetric gr_oup and

E-0l)j-~ornial ~~eJ:l~.ities of simple algebras

Let K<x> be the fl~~e aS.~Rc-iJit~~ve algeb~a over a .fi-el:d of

characteristic 0 ~nd ~et ~~n !p~ the set of all multilinea,r lpoly­

nomials' in xl' ......'~xn. 'F:9r ;~ny "algebra R we den.ote .:by TlRi) ,the

T-ideal cf all p~~y~~mial ~~~n~ities of R.

There,.is a.natura,l1 (.~ction (o~ '~.~ on Pli and Pr) n T(R)is a ,s~b­

module. The sequ~·n..c;e Xn (R)= ·X n (Pn/ (Pn n T (R) ) )., n.-= 1,2" ,. ,. ,.'

i5 called t~e coqh~racter .sequence of R ..

We compute X"n (M2 ~X),) for. th,e algebra M
2

(K) of 2x2 ·matrices.•.

Some ether quanti~tative resul ts are ebtained. Analogous' re5u.lt:s

are established fqr Lie and Jordan algebras.
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The arithmetic structure of Burnside-rings,

revisited

1
I

Der Burnside-Ring Q(G) einer endlichen Gruppe G kann als Teil-

ring seines zu einem direkten Produkt endlich vieler Kopien

von ~ isomorphen ganzen Abschlusses in ~ 0 n(G) durch verschie­

dene, einfache, gruppentheoretisch formulierte Kongruenzen be- ...

schrieben werden. Aus diesen folgen fast alle bis heute bekann-

ten arithmetischen Eigenschaften'von O(G)·.

D. FOATA: . Statistics on the symmetrie group and q-series

Extensions of the classical identities on q-series (such as

the q-binomial formula) are derived by means of the Schur

function calculus. For each rand s ~ 0 let (u;Q,.,Q2)r+1,s+1

i-1 j-1
TI (l-uQ1 q2 ) (with 'i ,running from 1 te r+1. and j fram 1 to

5+1). Then the formula

~ Cn (z,t 1,t2 ,q"Q2)
n

nu .

1:
r,s

is proved with Cn be~n9 a polynornial with positive integral'

coefficients cf sum 2nn!. Moreover, this derivation yields

a natural cornbinatorial interpretation for those polynomials.

The results discussed here·are taken from a joint werk with

Jacques Desarmenien.
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Formal"group law invariants

Let k be field of characteristic p > o. Let P be a polynomial

ring P = k[xo'···'xn ) with

such that e-l < n+1' ~ pe.p

i > 0 and DX O. Then P,
0

the usual grading. Let e E ~ be

Define D:P,.+ P, by DXi~= Xi_l.~or

becomes a k[[~JJ/(Tql-m9dule by

. T t+ D·. Extend· D 'to CZl) 'a derivation on p; or 2) ,an au~omo~phis~

. via 1+0 (since 0 is nilpotent)~ In each case the homogene9us,

polynomi'als of de'gree r, denoted Pr' become k [ [T] 11 CTq) ~modu;Les.

I discussed the decomposi tion of the Pr into' indec~ompos~ble.;-

kl [Tl l/(Tq)-modules for 'both the derivation a.nd: autornorph~~m,

·action, as 'weil as other formal group. law. acti.:ons.. ,'. '. ":'

c. GREENE: Standard tableaux and balanced tableaux

We define and,discuss'a new class of c9mbina~qr~al .objects ~~alled

balanced tableaux. For a given shape ~, ~hese .ar~ ~q~~nurne~ous

with standard tableaux of shape ~, and we , show .this ~Y p~~~~Y

cornbin~torial, arguments. In the special ~ase >w~en. A nas;, s:ta.~r­

case shape, balanced ·tableaux can be viewed a~~en9~?~~9s of~,

maximal chains· (reduced decompositl.onsJ in 1;he weak:B;ruh~t order

of Sn. Our theorem can be used in this special case to gi.~.e.~. a

cornbinatorial proof of a theorem of R. Stanley, originally proved

by algebraic methods. The arguments make ~eavy use of Schützen-

berger • 5 promot.i;on and evacuation operators" as weIl as a. new

variant of the Robinson-Schensted correspondance. Several new

contributions to these two areas are also mentioned.
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Representations of the symmetrie group,

the specialization order, systems and

Grassrnann manifolds'

A eertain p~rtial 6rder bn the set of all partitions pf a given

natural number n des'cribes rnany containment, speciali.zation ar

d~generation relations in the seemingly, rather dispar~te parts

of mathematics dea-ling with. permutation represen.tations .af.S ,. " n

the existence of (O,1)-matrices ,with prescribed row .and·.column

sums, symmetrie mean inequalities, ;orbits of nilpotent matrices

under similar i ty, Krone'cker indices of control systems, doubly

stochastic matrices and vectorbundles over the Riemann sphere.

In this paper we discuss relations between all thesesubjects

which show'why the same ordering roust appear all the time. Cen-

tral to the discussion is the Schu~ert-cell decomposition of a

Grassmann manifold and the assoeiated (closure) ordering which

is a quotient of the Bruhat ordering on the Weyl group Sn.

The ordering in question.is'defined as follows. Let p,q be n-vec-

tors, ~Pi = ·~qi' .Pi ,qf' ~ 0 then

p)-q c=:=;l< P, <; Ci, ,P1+P2 E;; Q,+Q2'··· ,P,+ ... +Pk ~ q1+·· ·+qk' .-..

where (P1 , ..• ,Pn ) is (Pl" .. ,Pn ) rearranged so that e
P1 ~ P2 ~ ... ~ Pn • The pattern 'of rel'ations' takes the following

form

'SQl"'" C9'ft.o«tUft'

. '
Wlr.•~""'Tlof'r'tffr.

t'k>u~.h SICIl"t. w.,fUZ'

.=~=-~ ..
"r...dr-.~rt4".~ •

"H~O(~.. tIotod... ·

~~-r
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Relation B associates the socalled Hermann-Martin.vectorbundle

to a system (A,B), A an nxn matrix, B an nxm rna~rix. Relation

C i5 based on the classifying map of this bundle, a~d relation

A takes the shape of ~ completely dual proof of the two theorems

involved, the one dealing with the closure of nilpotent orbits

(under similarity) and the Qtherdealing with the closur~s of

feed-back qroup orbits of systems.

Perhaps. the most beautifull relation in this diagram is E. This

,one 1s discussed by H.-P~ Kraft at this meeting and involves

the socalled Springer representation (Spri~ger, Springer-Hotta)

and work of Procesi, deConcini, Kraft,.Borho, MacPherson,

5.1. Gelfand. The diagr~ also extends to involye such :t~in9s

as Verma modules.

For the relations indicated in. box I the re~der is referred .to

a paper of Harper& Rota (Progress in Probability Val. 1) and

for matters much related to it and. further occur~nces of the

order introduced above and its role in chemistry cf. ~. Ruch's

contribution to this meeting.

Ref.: M. Hazewinkel, C.F. Martin, Eins. Math. 24 (1983) ,53-87

J.F. HUMPHREYS: Projective representations cf wreath

Areport was given on joint work with Peter Hoffman. Construc-

tions for groups and representations were given which are im-

portant for our investigations cf the complex p~ojective re­

presentations of G1S a~d G1A (G a finite group). Let G ben n

the set of finit~ groups r wjth a central involution z and a
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homorphism s:r .... rzll2 ~ith s(z)=O.· Given two such objects

r"T 2 , ~e define another element of G, r,~F2 by taking the

car~esian product of T, and .r 2 with twisted multiplication
5, (g2)s2(n2 )

(g, ,g2) (h, ,-h 2 ) = (z, 9 1h, 192h2) and factoring out

by the centra 1- 5ubroup {( 1 , , ) I (z 1 ' z 2) } .,

'Givenan element r of G, any ~/2 -graded representation of r I

i5 a pair {Vo'V,} of {inite dimensional vector spaces such that

Vo GI V, is a representation of r with gVi = Vi if s E ker sand e
gV i =, Vi+l if 9 Ef ker -s,' (i E 72/2,). The Grothendieck group ·gene­

rated by -"negative" ~/2-grade6 represent~tion of r (ones o~ wh1ch

z acts as -1) 1s d~noted GR-r and that gen~rated by "n~gative"

representations of r 1s den0t:-ed R- r. Let Wr be the 72/2 -gr~ded

abelian group with wr(o) = GR-r and ~r(') = R-r. This can be

made i·nto a module over the ring L :=. 1l [pJ/ (p
3
=2p). Our main

theorem iso that we can define:~ produqt w~ &L W~~W(~1~r2) ·which

is an isomorphism of L-modules.

P. HOFFMAN: Induction algebras for Sn. and An _graded over ~/2 x lN

[

(dOUblecover of S ). } e
If G1 Sn :=, pullback of _... n ; Sn. ' then GLSn

:: _ . G1 Sn

is an object in G defined in ~he previous abstract of J. Humphreys.
. ...-... --"'"" ..",--

A monornorphism 41:G1Si~G1Sj ~ Glsi+j can be defined by analogy with

Young subgroups. The theorem of Hurnphreys' abstract then gives
ClO

us a product Cind a coproquct on H : = . e w(GlS ):.
n=O n

(.
)

Here t. (resp. ~*) is inducing (resp. restricting). Our structure
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theorem (with John Humphrey's) is that H is a Hopf algebra over L

with elements hlA
) E w(i+1) <GtS i ), coming from Clifford modules,

such that, as an algebra,

H'~Alg {h~A)":i ~ 1, A E Conj. Class G}/«CONN), (SQ», whereL ~

(SQ)
i-1 .

(-1)i+1 p [h
2
(A1.') + P 1: (-1)J h~A) h2<~)'].

j=1 J.1-J ,

Here r := p2_ 1 in L. We find:

(i) for n ~ 4, monomial bases for groups of project~ve r~pre­

sentations· of G1An (i.e. for w{o» and o~ G\Sn ~i.e ... for

w(1»;

(ii) the action of p gives inducing and restricting between these;
i-1 -. . "

(ii1) the coalgebra map 1s hl.~A) ~ h~A) e 1+1 e h~A)+p I h~A)eh~A~
1 1. j:;;' J 1.-)

"branching rules".

(iv) the irreducibles are obtained by applyin~ Grarn-Schmid't. to

bases as in i), suitably ordere~. Schur (in.1911) prov~d

essentially i), ii) and iv) for the case G = {l} by·

diff~rent methods.

G.D. JAMES: Representations of general linear groups

We discussed a result in the representation theory of Gn=GLn{q),

similar to one from the theory for ~he synunetr.ic gro~~~ Sn. Let

TA be the A-tableau in which numbers increase "from left to right'

                                   
                                                                                                       ©



- 10 -

in each row and fram one row to the next, and suppose.that

TAn A(nA E Sn) i5 the A-tableau having entries increa~ing from

top to bottom in each column and from one column to the next.

Fer the representatien theory of Sn over a field K one rnay be­

gin with the right ideal MA cf K Sn generated by PA' ~he.surn of

the elements in the row stabilizer of TA. If K A denotes the 5i9-

ned suro of the elements in the column stabilizer of T
A

·1l
A

, we e
have MlJ K A = 0 unless A ~ ll, and MAK A .is the_ one-dimensional space

spanned by PAnAK A•

Now suppose that K i5 a field of characteristic not eq~al to p,

where q is a power cf P, and assum~ that K contains a primitive

p-th root of unity. Now let MA be the right ideal cf KGn gene­

rated by PA' the suro cf the matrices in a parabolic subgroup

correspondi~g to A. We define a certain idempotent E
A

in KU-,

where U is the group of lower unitriangular matrices, and for

this element we get MllE
A o unless A ~ lJ, and MAE A is the one-

-dimensional space spanned by PAnAE A• It turns out that the

KGn-module PAnAEA(K~n) enjo~s many properties analogous to

those of the Specht module PAnAK A(KSn ) for the symmetrie group.

T. JOZEFIAJ<: Symmetrie functions and Koszul complexes

R. Stanley has reeently asked' for a representation-theoretic

interpretation of the following formula of D.E. Littlewood

n. (1-x
1
" ) TI

1 i<j
( l-x "x")

1 .J.

~ ( t I I+r (I") / 2
};'(-1) s
I . I
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where 11) is the weight of a_partition I, r(I) is the rank

of I, sI iso the Sehur funetion eorresponding to land the sum

ranges over all self-eonjugate partitions.

We derive and interpret the formula using the Koszul complex

of a symmetrie algebra s. (U+A2U) where U is a veetor space

over a field K of characteristic zero.

Using a free resolution of the residue field K over an exterior

algebra A· (U+8 2U) we obtain a new identity

-1' -1
TI (1 +x . ) TI (1 +x . x . )
i 1. i<j . 1. J

( II I+p ( I) ) / 2
l: (-1) SI

lEB

where p(I) is the number of odd.part~ of I and. B is the set of

all partitions I satisfying

or 2 (mod 4) for i R odd.

i K-iK+ 1 ­

i K-iK +1 -

o or (mod 4) for i
K

even,

These res~lts were_obtain~d in ~ollaboration with J. ~eyman.

M. KLEMM: On the square root bound for the minimum dis~ance

9f codes

Let.C be an (n,kJ code, invariant urider"an abelian group (A,+),

a.cting_ transitivelyon the basis ~f the ambient space over a

field F with char F f n = lAI-
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(J. Cornb. Theory A, to appear).

Assume that C contains the repetition code and that

dirn (Cncl.) = k-1. Denote by d'" the minimum distance·of

c* = C\(cncl.). Then

with equality if and only if the supports of vectors of weight

d* in C'" form a projective plane of order d* -1 .

The case d*2_d *+1 = n can often- be excluded with Hall's multiplier

theorem on projective planes, a theorem which follows from part

a) of the following statement.

Theorem 2

~) Let F = GF(p). Then the minimum weight. structure of C is in­

variant under the automorphism a ~ pa of the basis group (A,+).

~) Let F = m. Then the minimum weight structure of C is invariant

under the automorphisms a -~ ma (a E A), (rn,jAI) = 1.

H. KRAFT:' 'Conj ugacy classes and" representations of

Weyl groups

This talk was a'survey on results of Springer, Hotta-Springer,

DeConcini-Procesi, Borho-Macpherson. We only considered the

case of matrices Mn(C) and the symmetrie group Sn. First con­

struction: Let Cp be the nilpotent conjugacy class i~ Mn(~)
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associated to the partition p ~ n. Denote by RC.-the coordinate
p

ring of the schernatic intersection cp n D, D the subspace of

diagonal matrices CMn(C). By construction RC is a graded,
p

finite dimensional, Sn-algebra.

Theorem 1 (DeConcini-Procesii Invent. ~, 1981):
S

a) R
Cp

~ Inds; " p dual partition, Sp=- sp," ... "sP
K

CSn.

b) rnax. degree of RC is dA = ~(Pi) and (R) ~'MP the
.. P P 2' Cp max -

irred. rep. associated to p.

Springerls correspondence: Let F be the flag variety of complete

~lags in ~n~ One has ~ natu~al Sn-action 6n Fand an i50m.

H*CF) ~ Rreg the regular repre5entation of Sn. For a nilpotent

x E Mn(~) define Fx := {F'Ef / xF"= o}. Let xE Cp.

Theorem 2 (Springer, Hotta-Springeri Invent. 36, il, ii)
a) There 1s a repres. of S on H*(r ) compatible with then x

rest~ictionH* (f) .. H* ( fx) •

b) The ~ax.·cohomolog~ 1s H
2d

X(Fx ) ~~, d x = d p = ~ 1Pi+l.

DeConcini and Procesi show in addi tion, that RC.... ~ H (fx) in
p

a natural way.

Borho-MacPherson's approach: Via intersection hornology

(C.R. 292, 1981) they reprove Springer's results and give more

precise informations about the other cohomology groups:

Theorem 3: Let x E Cp' q ~ n dimE 2i-2~CC,).
>.t q
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A class cf polynqmials characterizing

SV(3) tensor operators

A class of polynomials G~(6;X) (q E ~+ , t = 1, ..• ,q), which

depend on three parameters 6 = (6,,6 2 ,6 3 ) with 6 1 E ~+ and

ö
i
~ q and on three coordinates x ~ (x 1 ,x2 ,x 3 ) belonging to

the Möbius plane ~ (barycentri~ coordinates), occur in the tIt
calculation of the canonical Clebsch-Gordon-Wigner coeffi-

eients of the unitary group SU(3). The symmetries and zer~s of

these polynomials are discussed in same detail. In particular,

it is shown that, for each prescribed 6, the polynomial

G~.(6;X) has a zero at each (lattic~) point cf the weight space

cf a U(3) irreducible representation (q-t,o,-t+l), where the

correspondence between points x E ~ and weights w E (q-t,o,-t+l)

~s xl = 6 3-t+l-w l , x 3 = 6 2-t+l-w3 , x 2 = -x,-x3 . Mo~eover, the

proof that the multiplicity cf a zero 1s at least the multiplicity

ef a weight (Kostka nurnber) i.5 given. The role of the generalized

Gauss hypergeometric function and the associated generalized

Saalschütz identity [J. Math. Analysis and Appl. 59 (1977),423-43']

in establishing this result is sketched.

G. MURPHY: On generalized Young tab1eaux

We consider the analogue of the Specht module ever the field m
for an array of nodes which cannot be reduced to a proper er .

skew diagrarn by any ~earrangement of rows or columns. The smal­

lest such diagrarn has six nodes.
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By looking at some. small examples we list various methods

for finding composition factors. The James-Peel method (J. Alg.

56.2! Feb. 1979) seems ~~st likely to succeed. G~rnir ~elations

for related tableaux of skew sh~pe, t?gether w~th interchanges

of elements in the same column generate part of the annihilats

ideal, but additional relations involving row interchanges are

needed. The standard tableaux only form part of the basis found .
- -

G.E. MURPHY: On the calculation of the p-modular deeomposition

matrices of the symmetrie grouRs

Let T be the Gram matrix for a,Speeht module SlJ for a partition

lJ ~~ ..~ and p an ..~~bitrary p~ime.• For each p-modular e?mpositi?n

factor DA of SI" of mUlt~PliCity.d
uA

there is a set of integers

{k~'A i.":,,,2 ••. d
uA

} .such that the exponent of p in the prime de-

c~.mpos~tio.n of det r is

Using the results of [James, Murphy, J. Algebra 59(1), 1979] we

derive an expression similar to (.), which we conjecture to be

identical with it; in the case that all decomposition numbers
d

d
y

"\ are known for v t> A we can" calculate the sum k I + ••.• +k \J A•
1\ .• \JA \JA

If it is known that d
UA

i5 0 or 1, we can determine which is the

case. By "duality, we show that
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k i ~ vp (product of the hooks cf l~]).
~A

For same special cases the coefficients k~A can be calculated;

in particular, when ~ has 2 parts.

J.B. OLSSON: Symbols, hooks and degrees of unipotent

characters

According to Lusztig the unipotent characters of the finite

classical groups (symplectic or orthogonal) are indexed by

so-called symbols. In order to be able to establish certain

character eorrespondences for the modular r-blocks of eharac-

ters of these groups (joint work with G. Miehler) it 15 neee5sary

to know the exact power cf r dividing the degree of a unipotent

character. The study of these character degrees indicates that

it is reasonable to generalize the wellknown concept of e-hooks,

e-cores and e-quotients for partitions to symbols. For symbols

there is also a theory of cohooks, cocores and coquotients which

has to be conside~ed. These concepts and their relation to the

characters was the topie of· the talk ..

p~ PAULE: Twa q-transformations .

Three applications af the two q-identities (ö=Q or 1):
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-j2+ 6j
~ (Q)a+6+C+6-j ~'

)'--0 (q) . (q)b ,(q) . (q) 2-:+ za-J -J c-J J u

were given: 1.) In the field of Rogers-Ramanujan type identities

2.) A generalization" of Andrews' q-Dyson: conj"e'cture:

u' 3

3.) Two conjectures of Radele -for the case u ;3" .

w. PLESK~N: . Sublattices of Specht m6dul~~ over ~

The investigations of submodules of Specht modules: over 2Zip zir

by James, Murphy, and Peel can ·be extended to th~ correspondirig

question for Specht "modules over 2Z. For partitions of the form

(n-k,k) the lattice of submodules i5 shown to be distributive

and can be' partially described by.using schaper's'exteris1on'of'

the description for the Gram determinaht o'!" a ·Specht. module given

by James and Murphy. For k smaller than 4 a full description

i5 given and- explicite 2Z .;..bases for the' suhmodule's can r be given.

(Joint work with D. Stockhofe).

E. RUCH: The direction 'distance

The direction distanc~ d[x/y] i5 intio~uc~d to:obtairi ~ quahtity

." that accounts for a "normspecific similarly" of directions in

vectorspaces with any given norm "
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~OR~)( lR~) { ~ ~
d. {lE x lE -+ D c: lR ", d [x/y ] : :IR x~

· (x,y) ~ d[x/y] (Q,ß)

with the order relation d[x/y] -< d[x'/y'] ~ lIoxo -ßYo ll ~ IIQ"x~-ßy~1I

(D ,./,) becomes a set, that. is not totally ordered in general. It

can be shown that this ordering is total if and only if the norm

satisfies.the parallelogram equation. Theref~re in cases of

Prehilbertspaces there 1s a norrnspecific angle, while in all

other cases the except represents the similarily cf directions

in a quanti tative sense. In case of L'. and 11-n~rrns and in the

•
caSe of density operators the" interpretation is "mixing distance cf"

and n information distance" and can be shown to be of physical.

relevanc~ in the context with statistics.

B •. SAGAN: Shifted tableaux, Schur's Q-functions, and a

conjecture cf R. Stanley

We provide a new version of the shifted Sehensted algcrithrn

(diff~ring from Sagan, J.C.T.A, 1979) which e~joys rnany of the

properties of the original Robinson-Schensted correspondence,

generalize"s to a Knuth-type algori thm for tableaux wi th repeated

entries, and provides a proof of a conjecture of Stanley.

If P is a shifted partial Young tableau (dist~nct entries) and

x is a"pos~tiv~ integer, x ~ P, we define a new tableau p' = Ix(P)

by inserting x in P as follows. Elements are bumped from ~cw to
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row in the usual way until one of two·things happen. Either

an element comes to rest at the right end of some row' (a Sehen­

sted move) or a diagonal entry Pii 'E Dp is displaced (a 'non-Schen­

sted rnove). In the latter case the algorithm continues by inser-

ting Pii in column i+l and continuing column insertion unt~l an

element comes to rest at the .end of a colwnn. Using this process

we can prove

Theorem 1 There is a bijection n ~ (P(n)iQ(n» between Sn and

pairs of shifted standard tableaux or ·SST (entries 1 ••• n) of the

same shape with Q having a subset of its off-d.iagonal elements

circled (an element i"E Q is circled if the i th insertion is

non-Schensted). o

LetT be a.co~~~Lp (colurnn strict. reverse plane partition) and write

T ~ P, P an ~s~, if T = ~ • Let Rx(T) (respectively Cx(T»

denote the usual row (resp. column) insertion where x displaces

the ·least element ~ x (~esp. > x), then to "lJft". properties of

the origina~ Sehensted map, use

Lenuna If P ~ T ~ I (P) ~ R 0 Cx(T). x x o

The set cf" special elements in S
T*

then a modi~ication of Ix yields

Corollary P(n,) = P(TI 2 ) ~ n, can be obtained from n2 by /,"

Knuth transposition ·5· and/or ~~~ interchanging the first two

el.ements.

Let T* be a shifted generalized tableau (SGT), i.e., weakly in-

creasing along rows and columns and strictly along diagonals.

* *... ..
{Tl.' )' T.., < T. . < T . ,.},

1)-· 1J. l.+)

o
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Theorem 2 There is.a bijection M ~ (T*,U*) between matrices

M = (M .. ) IM • • ElN I wi th a subset of posi tive M.. circled and
1) 1)· 1)

pairs of SGT of the same shape with subsets of S *UD and
T T*

Corollary 2

s
u*

circled. o

o

o

Theorem 3' (Stanley's Conjecture) If e A(x) is the usual Schur

-function and PA(x) = !"K A e (x) then iA~ E ~.
lJ~n lJ lJ

L. SOLOMON: A character formula for Coxeter groups

(joint work with Peter Orlik and Hiroaki Terao)

Let V be a vector space of dimension -lover lR and let G C GL (V)

be a finite irieducible reflection group. If 9 E G let k(g)

be the dimension of the fixed point set of g. Let d l, ••• , d
l

be the degrees of the b~sic polynomial invariants of G and let

m
i

= d i -l. Shepard and Todd proved that·

(t+m l ) · · · (t+m1 _ l )'

We prove

1: tr (g) t k
(g) = I (t":' ) (t+m,)". · · (t+m

1
_

l
)

gEG

where tr means trace. The argument uses Terao's theory of tree

arrangements of hyperplanes.
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Deeompositions of the graded tensor representations

of symmetrie groups via symmetrie functions

We eonsider h~re an i~finite family (P~,k T c 2Z +,k E 2Z +) cf

representations of the symmetrie groups Sn' n ~ 0, whieh are de­

fined as follows. Let T be the tensor algebra of a free, over

the set 1l +' complex vector space and for given subset T cf' 2Z +

let TT be the sub algebra of T generated by T. Now, n 1sPT,k

defined to be the natural representation of Sn on a subspace

of TT spanried by all simple tensors of l~ngth n and weight k.

The main result describes explieitly all deeompositions of

n n -k-l 1 T
PT,k : mult C

Q
(PT,k) is equal to Res(q characteristic (Ca) (q ».

Particular ehoices cf T give (old and new) decompositions cf the

natural representations of Sn on the, for exarnple, 1) k-subsets

of [n] (T = {O,l}) :2) weighted tensor powers wn , dirn W = rn

(T = [ro) ;3) polynornial rings (T = 1l +) Jineluding a result

of He(1982) and a general formula for the inner plethysrn

x(k) 0 x(n-l,l), generalizing same eornputations cf Littlewood

(k < 4):4) truncated polynornial algebras (T = {O,l, ••. ,ml) etc.

G. VIENNOT: A loeal definition of the Robin~9~~~~h~~~ted

correspondance and an invariant of the plactic

monoid

We give an interpretation of the value loeated at the (i,j)-cell

of the P and Q-symbol of the Robinson-Sehensted correspondance.

This loeal definition is symmetrie in rows and columns and follows

from work of c. Greene and Frank.
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We introduce the new concepts of "(i,j}-grid" and "extendable

(i,j)-grid". These concepts can be 'also defined for skew-Young

tableaux, and we show their invariance under the "jeu de taquin"

of A. Lascoux and M.P. Schützenberger. From that, we can rederive

the plactic rnonoid theory.

Also, generalization for arbitrary posets can be done, in rela­

tion with recent work of Fomin and Gansner.

Berichterst~tter: Friedrich Stötzer

                                   
                                                                                                       ©



-- - - - - ---------------------

- 23 -

Liste der Tagungsteilnehmer

Beth, Th.

IMMD 1

Universität Erlangen/Nbg.

Martensstr. 3

8520 Erlangen

Carter, R.W.

Mathematics Institute

University of Warwiek

Coventry

England

Clausen, M.

Institut für angewandte

Mathematik

Universität Zürich

Rämistr. 74

eH-BOOl Zürich

Schweiz

Dipper, R.

Math. Inst. der Universität

Universitätsstr. 3

4300· Essen

Drens·ky, v".
Institute of Mathematics

Bulgarian Academy of Sci.

1090 Sofia, P.O. Box 373·

"Bulgaria·

Dress, A.

Fak. f. Mathematik

Universität Bielefeld

4800 Bielefeld

Postfach 8640

FOSSUm, R.

University of 1llinois

Department of Mathematics

1409 W. Green St.

Urbana, 1llinois·~1801·

U.S.A.

Foata, D.

D~partement de Math~matique

Universite de Strasbourg

7, rue Rene-Descartes

F-67084 Strasbourg

France·

Geisler, G./e/o Clausen

Institut für angewandte

l~athematik

Universität Zürich

Rämistr. 74

eH-S001 Z·ürich

Schweiz

Grabrneier, J.

Lehrstuhl 11 f. Mathematik

Universität Bayreuth

Postfach 3008

8580 Bayreuth

                                   
                                                                                                       ©



Greene, C.

Dept. of Mathematics

Haverford College

Haverford PA 1.9041

U.S.A.

.Hässelbarth, w.
Freie Universität Berlin

Institut für Quantenchemie

Holbeinstr. 48·

1000 Berlin 45

Hazewinkel, M.

CIW

P.Box 4079

1009 AB Arnsterdam

Holland

Hoffman, P.

Pure Math. Dept.

University of Waterloo

Waterloo, Ontario N2L 3GI

Canada

Hwnphreys, J.

Dept. of Mathematics

University of Notre Dame

Notre Dame, Indiana 46556

U.S.A.

Jozefiak, T.

Institute of Mathematics

Polish Academy of Sciences

Chopina 12

87-100 Torun

Poland

- 24 -

James, G.D.

Sidney Sussex College

Cambridge

England

Rerber, A.

Lehrstuhl 11 f. Mathematik

Universität Bayreuth

Postfach 3008

8580 Bayreuth

Kouwenhoven,-F.

State univer~~ty of Utrecht

Math •. Insti tu te

Budapestlaan 6

Utrecht

Holland

Lam, S.P.

D.P.M.M.S

16 Mill Lane

Cambridge

England

Lascoux, A

L.I.T.P., UER Math. Paris 7

2 Place Jussieu

F-75221 Paris Cedex 05

France

Louck, J.D., MS-B 284

Los Alamos National Laboratory

University of California

Los Alamos, New Mexico 87545

U.S.A.

                                   
                                                                                                       ©



- 25 -

Macdenald, I.G.
Dept. of Pure Mathernatics

Queen Mary College

Mile End Road

Lendon El 4NS

England

Morris, A.O.
Dept. of Pure Mathernatics

The University'College of Wales

Aberystwyth
Dyfed, SY2J 3BZ, Wales

U.K.

Morris, I.

Olsson, J.B.

Abteilung Mathematik.

Universität Dortmund

4600 Dortmund

Paule, P.

Math. Institut Wien

A-Wien

österreich

Plesken, w.
Lehrstuhl D für Mathematik

RWTH Aachen

Temptergraben 64

5100'Aachen
Dept. of Pure Mathematics

University College of North Wales Robinson, G•.

Bangor, Gwynedd Dept. cf Mathematics

U.K. University of Toronto

Toronto, Ontario

Murphy, G.E.

Dept. of Mathematics

NE London polytechnic

Romford Road

Stratford E15 4LZ

London

England

Murphy, G.M.-

Dept. of Science of Mathematics

Southend College of Technology

Carnarvon Road

Southend

Essex

England

Canada

Rota, G.-C.

Mathematics Department

M.I.T.

Cambridge, Massachusetts 02134

U.S.A.

Ruch, E.
Inst. 'für Quantenchemie

Freie Universität Berlin

1000 Berlin 45

Holbeinstr. 48

                                   
                                                                                                       ©



Sagan, B.

Dept. of Pure Mathematics

~niversity College of Wales

Aberystwyth, Dyfed

Wales, SY23 3BZ

U.K.

Solomon, L.

Math. Department

University of Wisconsin

Madison 53706, Wis.

U.S.A •.

Stötzer, F.·

Lehrstuhl 11 für Mathematik

Universität Bayreuth

Postfach 3008

8580 ~ayreuth

- 26 -

Wensley, C.D.

Dept. of Pure Mathematics

University College of Nprth Wales

~angor, Gwyned~

U.K.

Svrtan,· D.

Departrnent of Mathematics

.University of Zagreb, p.b. 187

41000 Zagreb

.Jugoslavia

Thoma, E ..

Math. Institut der Techn. Univ.

Aneisstr. 21

8000 München 2

Viennot, G.

UER Mathematiques et Informatique

Universite Bordeaux I

351 Cours de la Liberation

33405 Talence Cedex

France

                                   
                                                                                                       ©


