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This conference was organized by Prof._G.-C.:Rota (MIT) and:
Pfof. A. Kerber (Bayreuth). The lectures presented metths_

and results concerning combinatorics, invariant theory and
representation theory. They showed the broad range of applica-
tions of the representation theory of symmetric groups ip‘mathe-
matics, physics and chemistry together with related structures
as there are symmetric functions, tableaux, diagrams, dominance
order, cores, hooks, g-quotients, Specht modules, plethysms

and so on.

The conference was attended by 45 participants coming from
Austria, Bulgaria, Canada, Britain, France, Netherlands, Italy,
Jugoslavia, Poland, Switzerland, U.S.A., West-Germany. The

evenings were filled with fruitful -and intensive discussions.




G. ANDREWS: The decorated hard hexagon model

This talk concerns joint work with R.J. Baxter (A.N.U., Canberra).
We have solved exactly an infinite family of models in statistical
mechanics. These are called the decorated hard hexagon models.

The solution entails the study of several generalizations of

. M} .
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the Rogers-Ramanujan identities. The original hard hexagon model

solved by Baxter in 1980 [see R.J. Baxter, Exactly Solved Models
in Statistical Mechanics,  Academic Press, New York, 1982,.Chapter
14]) led to series-product identities originally found by L.J.
Rogers and othérs. All of these results related certain g-series
to sums of quotients of fhe classical ellipfic theta fuhctions.

In our more geheral setting we find that multi-dimensional fheta
series arise. We describe not only the solution but also emphasize
related guestions (some oOpen) that arise in additive number

theory and combinatorics.

R.W. CARTER: The left and right cells in affine Weyl groups

of type A

Kazhdan and Lusztig have given a decomposition of any Coxeter

group into equivalence classes called left cells,'right cells
and two-sided cells. This éell decomposition is important in a
number of problems in representation theory.

The lecture will discuss recent work of J.Y. Shi, who has deter-
mined the cell decomposition explicitly when the Coxeter group

is an affine Weyl group of type A .
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R. DIPPER: On representations of general linear groups

and Hecke algebras

Let G = GL_ (q) and p be a-prime-not dividing g-1. Let (F,0,K)

be a split p-modular system for G. The. representation theory

~of G is closely connected with the representations of. the Hecke

Deutsche

algebra R[W]q, where R € {F,0,K}, and W denotes the Weyl .group
of G, which is isgmorphic to §P. In general x[wlq.a KW‘=-$%WQ“”
but P[qu ¥ FW. There is a. special case, where'Fleq = FW too,
namely if p divides g-1. In this case we may use the representa-
tion theory of symmetric groups to show that the jp-decomposition
matrix of.G‘is 1qgg;-unj¢;iangu1ar. If p # q-1; partial results
on representation§‘qf;9twlq and F[w]q indicate, that this tholds

in general.

V. DRENSKY: Representations of the symmetric group and

polynomial identities of simple algebras

Let K<X> be the fxee assggiatgve algebra over a field of
characteristic O .and get-?n;pg the set of all multilinear poly-
nomials in x1,...wxn.>ﬁor3§ny .algebra R we denpﬁezby T{(R) the
T-ideal of all polynomial identities of R.

There is a_naturagiaction(ofxgn on P, and Pyon T(R) is a .sub-
module. The sequence x (R} = x (P /(P n T(R))), n.= 1,2,...

is called the cocharacter sequence of R.

We compute xn(Mz(K)o for. the algebra MZ(K) of 2x2 matrices. .
Some other quantitative results are obtained.lAnalogous‘xesults

are established for Lie and Jordan algebras.
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A. DRESS: The arithmetic structure of Burnside-rings,

revisited

Der Burnside-Ring 2(G) einer endlichen Gruppe G kann als Teil-

ring seines zu einem direkten Produkt endlich vieler Kopien

von Z isomorphen ganzen Abschlusses in @ ® 2(G) durch verschie-
dene, einfache, gruppentheoretisch formulierte Kongruenzen be- ‘
schrieben werden. Aus diesen folgen fast alle bis heute bekann-

ten arithmetischen Eigenschaften von 2(G)-.

D. FOATA: ' Statistics on the symmetric group and g-series

Extensions of the classical identities on g-series (such as
the g-binomial formula) are derived by means of the Schur

function calculus. For each r and s 2 O let (u;ql,qz)r+1's+1
= n(1—uq;-1q%-1) (with i running from 1 to r+1 and j from 1 to

s+1). Then the formula
n

T Cp(20t0,t5:91:9y) T '
n POTVTRIRIT MR g (85900 g B o

5 trtsb(-zu7q1’q2)r+1,s+1
r,s 172 (u;q1'q2)r+],s+1

is proved with Cn being a polynomial with positive integral-
coefficients of sum 2%n!. Moreover, this derivation yields
a’natural combinatorial interpretation for those polynomials.
The results discussed hére'ére taken from a joint work with

Jacques Désarménien.
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"such that pe-1 < n+1° < pe. Define D:P,. -+ P, by DX; = X

R. FOSSUM: Formal group law invariants . S e

Let k be field of characteristic p > o. Let P be a polynomial
ring P = k[xo,...,xn] with the usual grading. Let e € N be

i_1_for
i > o and DX, = O. Then P, becomes a k[[TJ]/(qu-deule by

‘T » D, Extend D to =) ‘a derivation on P: or 2) an automorphism

.via 1+D (since D is nilpotent). In each case the homogeneous.

polynomials of degree r, denoted P,., become k[ [T]1/(T9) modules.
I discussed the decomposition of the Pr into- indecomposable ..

k[ [{T11/(T9) -modules for both the derivation and, automorphism

-action, as well as other formal group.law. actions.

C. GREENE: Standard tableaux and balanced tableaux R

We define and:discuss a new class of combinatorial .objects ,called
balahCed tableaux. For a given shape ), these'are equinumerous
with standard tableaux of shape ), and we,shoy‘this yy purely
combinatorial arguments. In the special ;aseiwhen,x.has,s;agr-
case shape, balanced tableaux can be viewed as -encodings of.
maximal chains- (reduced decompositions) in thé weak :Bruhat 9rder
of Sn. Our theorem can be used in this special case t§ give-a
combinatorial proof of a theorem of R._Stanley, originally proved
by algebraic methods. The arguments make heavy use of Schiitzen-
berger's promotion and evacuation operétors, as well as a new
variant of the Robinssn-Schensted éofrespoﬁdance. Several new

contributions to these two areas are also mentioned.
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M. HAZEWINKEL: Representations of the symmetric group,

the specialization order, systems and

<

Grassmann manifolds:

A certain partial order on the set of_all partitions of a given
natural number n describes many contaiﬁment,‘specialization or
degeneration relations in the seemingly, rather disparate parts
of mathematics dealing with permutation representat;oqs.ofﬂs
the existence of (0,1)-matrices with prescribed row and column
sums, symmetric mean inequalities, ‘orbits of nilpotent matrices
under similarity, Kronecker indices of control systems, doubly
stochastic matrices and vectorbundles over the Riemann sphere.
In this paper we discuss relations between all these subjects
which show why the same ordering must appear all the time. Cen-
tral to the discussion is ;he Schubert-cell decomposition of a
Grassmann manifold and the associated (closure) orderlng which

is a quotlent of the Bruhat ordering on the Weyl group S

The ordering in question.is'defined as follows. Let p,g be n-vec-

tors, Epi =-Eqi,'pi,qi,> O then

pPra = p, < q,,P4+py < R PR N A K TRARRL R

where (131 yeoe ,f:n) is (p,,...,p,) rearranged so that .

P, = 52 > ... 2> En' The pattern of relations' takes the following

" form

“Snapet craectury
1
Galr-Rywe: Theoren: l N
Douhh Siach. Matnee -

Nrnmecher adiers of syseme

Musrhead s snegualny Helomorrhu verier bomtie:

o - = B (4
Schuhen.crl) order
(Bruhar erdens
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_Relation B associates the socalled Hermann-Martin.vectorbundle
to a system (A,B), A an nxn matrix, B an nxm matrix. Relation
C is based on the classifying map of this bundle, and relation
A takes the shape of a completely dual proof of the two theorems
involved, the one dealing with the closure of nilpotent orbits

1 (under similarity) and the other dealing with the closures of

| feed-back group orbits of systems.

®

Perhaps the most beautifull relation in this diagram is E. This

.one is discussed by H.-P. Kraft at this meeting and involves
the socalled Springer representation (Springer, Springer-Hotta)
and work of Procesi, deConcini, Kraft, Borho, MacPherson,

S.I. Gélfand. The diagram a;so extends to inﬁolve such :things
as Verma modules.

For thée relations indicated in box I the reader is referred to
a paper of Hgfper& Rota (Progress in Probability Vol. 1) and
for matters much related to it and. further occurences of the
order introduced above and its role in chemistry cf. E. Ruch's
‘ contribution to this meeting.

|

\

Ref.: M.-Hazewinkel, C.F. Martin, Eins. Math. 24 (1983),53-87

J.F. HUMPHREYS: Projective representations of wreath

products GlS,  and GIAn

A report was given on joint work with Peter Hoffman. Construc-
tions for groups‘and representations were given which are im-
| portant for our investigations of the complex projective re-
presentations of GISn and GIAn (G a finite group). Let G be

the set of finite groups I with a central involution z and a

\
Deutsche
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homorphism s:T + Z/2 with s(z)$0.~Given two such objects

Ti:Ty, we define another element of G, r1§F2 by taking the

cartesian product of I, and I', with twisted multiplication
s,(g5)s,(n3) .

(g1,g2)(h1,h2) = (z1 ; g1h1,gzh2) and factoring out

by the central subroup {(1,1),(21,22)}L

‘Given an element ' of G, any Z/2 -graded representation of T,

is a pair {Vo,v1} of finite dimensional vector spaces such that

Vo @ V1 is a representation of T with gVi = Viv if s € ker s and .

Vi = Vi if g ¢ ker.s (i € Z/2). The Grothendieck group -gene-

rated by "negative" Z/2~graded representation of r (ones on which

z acts as -1) is denoted GR I and that geﬁerated by "negative"

representations of T is denoted R I'. Let Wr be the Z/2 -graded

r(O) (M) _ R°r. This can be

abelian group with W = GR T and Wr
made into a module over the ring L := 2 [pj/(p3=2p). Our main
theorem is. that we can define a product wg e W£»W(L1Qr2)~which

is an isomorphism of L-modules.

P. HOFFMAN: Induction algebras for Sh and An graded over Z/2x N

(doublecover of S ), ~ .
If G|S, := pullback of S , then G|S
- 6ls, . r 7 o.n

is an object in G defined in the previous abstract of J. Humphreys.

o~ N o~
A monomorphism ¢:GISiQGISj + G\S can be defined by analogy with

i+j
Young subgroups. The theorem of Humphreys' abstract then gives
«©

us a product and a coproduct on H := . & w(éTEn):
: n=0
P ‘o~ = ~ o~ et AL
W(G1S;) ® W(GlS;) E2W(GS;*G\S;) == W(GlS,,.) -
J : J o J
Here ¢ (resp. ¢') is inducing (resp. restricting). Our structure

DFG Deutsche .
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theorem (with John Humphreys) is that H is a Hopf algebra over L

(»)

. ~ } .
with elements hi € w“*”(clsi), coming from Clifford modules,

such that, as an algebra,

B2 Alg (h{?:1 > 1, A € conj. Class GI/<(CONN), (SQ)>, where

ed+ij

- () % (8) ;
(CONN): xy = r yx for all x € W (GlS;),y €W (Glsj)

(2),2 _ i+1

-1
p(ni® + pz (-1 A niA 1.

(sQ) : (h i 3 2i- J

(=1)

Here r := p2-1 in L. We find:

(i) for n ? 4, monomial bases for groups of project;ve repre-
sentations of GlA  (i.e. for w(oi) and of Gls, (i.e. for

(ii) the actlon of p glves 1nducing and restrlctlng between these;

(iii) the coalgebra map is h{ ) h(A’ ] 1+1 9 h(A)+p 2 h;A{ h(A)
"branching rules". _ o ? 1”

(iv) the irreducibles aie obtained by applying Gram-Schmidt to
bases as in 1), sultably ordered. Schur (in 1911) proved

essentially i), ii) and iv) for the case G = {1} by

‘ different methods.

G.D. JAMES: Representations of general linear groups
We discussed a result in the representation theory of Gn=GLn(q),

similar to one from the theory for the symmetric group Sn. Let

T, be the A-tableau in which numbers increase from left to right

Deutsche
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in each row and from one row to the next, and suppose that
TA"A("A € Sn) is the X-tableau having entries increasing from
top to bottom in eaeh column and from one column to the next.
For the representation theory of Sn over a field K one may be-
gin with the right ideal MA of K sn generated by Py the sum of
tee elements in the row stabilizer of T.. If < denotes the sig-

A
ned sum of the elements in the column stabilizer of T 7., we .

A
have Mu‘x = O unless ) By, and M,x, is the one—dimensiopal space
spanned by pyT
Now suppose that K is a field of characteristic not equal to p,
where q is a power of p, and assume that K contains a primitive
pP-th root of unlty Now let M be the right ideal of KG gene-~
rated by PA, the sum of the matrices in a parabollc subgroup
corresponding to A. We define a certain idempotent E in KU,
where U~ is the group of lower unltrlangular matrlces, and for
this element we get M E = O unless ) B y, and MAEA is the one-

-dlmenSJOnal space spanned by §A" It furns out that the

, AEA. -
KGn-module §A“AEA(KG ) enjoys many properties analogous to

those of the 5pecht module N xA(xs ) for the symmetrlc group.

' .

T. JOZEFIAK: Symmetric functions and Koszul complexes

R. Stanley has recently asked for a representation-thecretic

interpretation of the following formula of D.E. Littlewood

. L UTferany,
H(1-xi) n (I-Xixj) = Z'(-1)

s.
i i< 301 1

Deutsche ) © @
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where |]1| is the weight of a partition I, r(I) is the rank
of I, Sy is the Schur function corresponding to I and the sum
ranges over all self-conjugate partitions.

We derive and interpret the formula using the Koszul complex

of a symmetric algebra S. (U+A2U) where U is a vector space
over a field K of characteristic zero.

Using a free resolution of the residue field K over an exterior
algebra A’ (U+S,U) we obtain a new identity

] " (xl+p(m)/,

p(1+xi)-1‘ ) (1+g.xj)" = I (-1)

i iy : IeB 1

where p(I) is the number of odd parts of I and B is the set of

all partitions I satisfying

iK-iK+1 = 0Oor 1 (mod 4) for iK gvep,

iK'1R+1 = 1 or 2 (mod 4) for iK odd.

These results were. obtained in collaboration with J. Weyman.

M. KLEMM: On the square root bound for the minimum distance
of codes i

Let. C be an (h,k) code, invariant uhde;‘an abeliap group (A,+),

acting transitively 6n the basis of the ambient space over a

field F with char F # n = |A].

o®
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Theorem 1 (J. Comb. Theory A, to appear).
"Assume that C contains the repetition code and that
*
dim(CﬂCl) = k-1. Denote by 4 the minimum distance. of

*

c* = o\ (cnct). Then

a*2 - g* +12n

with equality if and only if the supports of vectors of weight

a* in c* form a projective plane of order a%¥-1.

The case d*z-d*+1 = n can often be excluded with Hall's multiplier

theorem on projective planes, a theorem which follows from part

a) of the following statement.

Theorem 2

a) Let F = GF(p). Then the minimum weight structure of C is in-
variant under the automorphism a + pa of the basis group (A,+).
b) Let F = @. Then the minimum weight structure of C is invariant

under the automorphisms a > ma (a € A), (m, [A}) = 1.

H. KRAFT: ‘Conjugacy classes and representations of

Weyl groups

This talk was a survey on results of Springer, Hotta-Springer,
DeConcini-Procesi, Borho-Macpherson. We only considered the
case of matrices Mn(C) and the symmetric group sn. First con-

struction: Let CP be the nilpotent conjugacy class in Mn(¢)

Deutsche
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‘ . SR 2dy _
. b) The max. cohomology is H (Fx) = MP' dx =d

- 13 -

associated to the partition p + n. Denote by Rc;the coordinate
P
ring of the schematic intersection C, n D, D the subspace of

diagonal matrices C:Mn(C). By construction RC is a graded,
. P
finite dimensional, sn-algebra.

Theorem 1 (DeConcini-Procesi; Invent. 64, 1981):

S
~ n A Al - - ,
a) R, = Indg 1, p dual partition, Sp= Sy x...xS; €8..
~P - °p b 1
< : A i : N
b) max. degree ofNRCp is dp = Z( 2), and (RCP)max MP thé
" irred. rep. associated to P.

" =

Springer's correspondence: Let F be the flag variety of éomélete

flags in c”. One has a natural S,-action on F and an isom.
H (F) = Rieg the regular representation of S,- For a nilpoﬁent
x E'Mn(¢) define F

x {FEF [/ XF = 9]. Let x € CP'

Theorem 2 (Springer, Hotta-Springer; Inveni. 36, 41, 44)

a) There is a repres. of S, on H'(F&) compatible with the
restrictionH" (F) » H*(Fx)-

' = I ip,
i

P i+1°

DeConcini and Procesi show in addition, that R..=H (Fx) in

P
a natural way.

Borho-MacPherson's approach: Via intersection homolo
gy

(C.R. 292, 1981) they reprove Springer's results and give more

precise.informations about the other cohomology'groups:

L ' . 2i S 2i-2dq,=
Theorem 3: Let x € Cps G F 1 : mult (Mg, H2H(F L)) = @imH 2 QQ(cq),

Forschungsgemeinschaft
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J.D. LOUCK: A class of polynqmial§ characterizing -

SU(3) tensor operators

A class of polynomials G;(A;x) (g € z* , t=1,...,9), which

depend on three parameters 4 = (A1,A2,A3) with 4, € z* ana

4. 2 g and on three coordinates x = (x1,x2,x3) belonging to

i
the MObius plane M (barycentric coordinates), occur in the .

calculation of the canonical Clebsch-Gordon-Wigner coeffi-
cients of the unitary group SU(3). The symmetries aﬁd zeros of
these polynomials are discussed in some detail. In particular,
it_is shown that, for each prescribed 4, the polynbmial

G;(A;x) has a zero gt eagh (;atticg) point of the weight spage
of a U(3) irreducible representation (q-t,o,ft+1), where the
correspondence between points x € M and weights w € (q—t{O,-t+1)
is x, = By=t+1-w,, X3 = 8,=t+1-wy, X, = -x,-x;. Moreover, the

proof that the multiplicity of a zero is at least the multiplicity

of a weight (Kostka number) is given. The role of the generalized
Gauss hypergeometric function and the associated generalized
Saalschiitz identity [(J. Math. Analysis and Appl. 59 (1977), 423-431)

in eStablishing this result i; sketched.

G. MURPHY: On generalized Young tableaux

We consider the analogue of the Specht module over the field @
for an array of nodes which cannot be reduced to a proper or -
skew diagram by.any rearrangement of rows or columns. The smal-

lest such diagram has six nodes.

o®




By looking at some small examples we list various methods

for finding composition factors. The James-Peel method (J. Alg.
56 2, Feb. 1979) seems most likely to succeed. Garnir relations
for related tableaux of skew shape, together w1th 1nterchanges

of elements in the same column generate part of the annlhllats

ideal, but additional relations involving row interchanges are

‘ needed. The standard tableaux only form part of the basis found.

G.E. MURPHY: On the calculation of the p-modula: decomposition

matrices of the symmetric groups

Let r be the Gram matrix for a, Specht module s* for a partltion
v of n and P an arbltrary prlme. For each p-modular comp051t10n
uA there 1s a set of 1ntegers

ikui : 1 2...d } such thae the exponept<of P in the prime de-

factor p* of s" of multip11c1ty d

cqmpos;tlon of det T is

vpldet T) = Z ki aim(*) ()
. A Dy HA R

i<a

.. ) ) . M

Using the results of [James, Mu;phy, J. Algebra 59(1), 1979] we
derive an expression similar to (#), which we conjecture to be
identical with it; in the case that all decomposition numbers
dyA are known for y b A we can‘calcﬁlate the sum k;k+..;+kixx.

If it is known that duA is O or 1, we can determine which is the

case. By duality, we show that

DFG Deutsche
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kil < o (product of the hooks of ).

Fof some special cases the coefficients kil can be célculated;

in particular, when p has 2 parts.

J.B. OLSSON: Symbols, hooks and 'degrees of unipotent ‘ ‘

characters

According.to ﬁusétig the unipotent charécters of the finite
classical groups (syﬁplectic or orthogonal) are indexed by
so-called symbols. In order to be able to establish certain
character correspondences for the modular r-blocks of charac-
.ters of these groups (joinﬁ work with G. Michler) it is necessary
to know the exact power'of r dividing the degree of a unipétent
éharacter. The study of these character degrees indicates that

it is reasonable to generalize the wellknown concept of e-hooks,
e-cores and e-quotients for partitions to symbols. For symbols
there is also a theory of cohooks, cocores and cogquotients which
has to be considered. These concepts and their relation to the '

characters was the topic of the talk.

P. PAULE: Two g-transformations .

Three applications of the two g-identities (6=0 or 1):

DF Deutsche
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" heea h ath b+h, c+h j=o (q)a-j(q)b-j(q)c-j(q)25+6
3 (2348, ~hPeek
(53n 23 k

==

were given: 1.) In the field of Rogers-Ramanujan type identities

2.) A generalization of Andrews' g-Dyson’ conj‘e'ctu;re:

3.) Two conjectures of Kadele for the case u = ‘3"

W. PLESKEN: ~ Sublattices of Specht modulés over Z

The investigations of submodules of Specht modules’ over z’/p'z'z'“
by James, Murphy, and Peel can be extended to the corresponding
question for Specht modules over Z . For partitions of the form
(n-k,k) the lattice of submodules is shown to be distributive
and can be partially described by.using Schaper's extension of
the description for the Gram determinant of a Specht module given
by James and Murphy. For k smaller than 4 a full description

is given and explicite Z ~bases for the submodules can be giveén.

‘ (Joint work with D. Stockhofe). - Cees B

E. RUCH: The direction distance
The direction distance d[x/y] is introducéed to:obtain a gquantity

" that accounts for a "normspecific similarly” of directions in

vectorspaces with any given norm

Deutsche
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>0 >0
w xR >0 _ >0 >0
>0 , d[x/yh{m xR + R - :i

a: ExXxE » D cR
(x,y) » dlx/y)

: .z
(a,B) - Hoxo-ByJI

with the order relation d[x/y] < d[x'/y'] e Huxo-ByOH < Huxé-Byéu

(D ,4) becomes a set, that is not totally ordered in general. It

can be shown that this ordering is total if and only if the norm .

satisfies the parallelogram equation. Therefore in cases of
Prehilbertspaces there is a normspecific angle, while in all

other cases the except represents the similarily of directions

in a gquantitative sense. In case of L! and 11-n6rms and in the

case of density operatérs the interpretation is "mixing distance of"

and "informationdistance" and can be shown to be of physical.

relevance in the context with statistics.

B. SAGAN: Shifted tableaux, Schur's Q-functions, and a

conjecture of R. Stanley

We provide a new version of the shifted Schensted algorithm

(differing from Sagan, J.C.T.A, 1979) which enjoys many of the
properties of the original Robinson-Schensted correspondence,
generalizes to a Knuth-type algorithm for tableaux with repeated

entries, and provides a proof of a conjecture of Stanley.

If P is a shifted partial Young tableau (distinct entries) and
x is a,positive.integer, x ¢ P, we define a new tableau P'= Ix(P)

by inserting x in P as follows. Elements are bumped from row to

Deutsche
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row in the usual way until one of two things happen. Either

an element comes to rest at the right end of some row (a SChen—‘
sted move) or a diagonal entry Pii'e DP is displaced (a non-Schen-
sted move). In the latter case the algorithm continues by inser-
ting Py in column i+1 and continuing column insertion until an

element comes torest at the.end of a column. Using this process

' we can prove

Theorem 1 There is a bijection 7 <« (P(7);Q(x)) between sﬂ and
pairs of shifted standard tableaux or .SST (entries 1...n) of the
same shape with Q having a subset of its off-diagonal elgments
circled (an elemeht i € Q is circled if the ith insertion is
non-Schensted) . - - o
Let T be a cosindip (column strict reverse plane partition) and write
T =P, P an SST, if T = EEFZ} . Let Rx(T) (respectively Cx(T))
dgnote the usual row (resp. column) insertion where x displaces

the -least element = x (resp. > x), then to "lift" properties of

the original Schensted map, use

Lemma If PAé T Ix(P) =R, 0 Cx(T) = Cx o Rx(T)

-]
‘ Corollary 1 P(n;) = P(n,) = 7, can be obtained from 7, by 7T
Knuth transposition s and/or Qg; interchanging the first two
elements. ’ o

Let T" be a shifted generalized tableau (SGT), i.e., weakly in-
creasing along rows and columns and strictly along diagonals.

o L. . _ * * : * *
The set of special elements in § = {Tij | Tij-1A<Tﬁjf<Ti+1j)'

T
then a modification of Ix yields

Deutsche .
DFG 20 i o
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Theorem 2 There is a bijection M «» (T*,U*) between matrices

.

M= (Mij), M..€N , with a subset of positive Mij circled and

1)
pairs of SGT of the same shape with subsets of § _uD _ and
. T T
SU* circled.' : o
i s |
Corollary 2 Let Px(x) = ; 2 T m(T*), where m(T") is the
T €A
monomial of T* and let 0 (x) = 22™p (), then T o ()P (y)
1+x,.y. AFn ’
= 1 T___l.y.l
i3 'TY5 o

Theorem 3 ° (Stanley's Conjecture) If ex(x) is the usual Schur

-function and PA(X) = Z'xx e (x) then klu € W .

urn v ) o

L. SOLOMON: A character formula for Coxeter groups

(joint work with Peter Orlik and Hiroaki Terao)

Let V be a vector space of dimension 1 over R and let G €GL(V)
be a finite irreducible reflection group; If g € G let k{g)

be the dimension of the fixed point set of g. Let d1""'dl
be the degrees of the basic polynomial invariants of G and let
m, = di—1. Shepard and Todd proved that -

z thg) = (t4my) ... (t4my_ o)
geG
We prove

T tr(g)td(9) - 1(t=1) (t+m ) ... (t+m

_1)
geG 1-1

where tr means trace. The argument uses Terao's theory of tree

arrangements of hyperplanes.
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D. SVRTAN: Decompositions of the graded tensor representations

of symmetric groups via symmetric functions

We consider here an infinite family (pg'k : T c Z‘+,k € Z +) of
representations of the symmetric groups Sn' n 2 o, which are de-
fined as follqws. Let T pe the tensor a}gebra of a free, ovgf
the set Z _, cémplex vector space and for given subéet T of'm_+
let TT be the sub algebra of T generated by T. Now; pg'k is
defined to be the natural representation of sn on a subspace

of TT spanhed by all simple tensors of length n and weight k.
The main result describes explicitly all decompositions of

n . n . -k-1
Pp,x ° mult Eu(pT,k) is equal to Res(g

characteristic (Ei)(qT)).
Particular choices of T give (old and new) decompositions of the
natural representations of Sn on the, for example, 1) k-subsets

of [n] (T = {0,1});2) weighted tensor powers w“, dim W = m

(T = [m]);3) polynomial rings (T = Z +)_(including a result

of He(1982) and a general formula forvthe inner plethysm

X(k) X(n-l,l)

© , generalizing some computations of Littlewood

(k < 4);4) truncated polynomial algebras (T = {0,1,...,m}) etc.

G. VIENNOT: A local definition of the Robinsbg:ﬁghens;ed

correspondance and an invariant of the plactic

monoid

We give an interpretation of the value located at the (i,j)-cell
of the P and Q-symbol of the Robinson-Schensted correspondance.

This local definition is symmetric in rows and columns and follows

from work of C. Greene and Frank.
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We introduce the new concepts of "(i,j)-grid" and "extendable
(i,j)-grié". These cbncépts can be also defined for skew-Young
tableaux, and we show their invariance under the "jeu de taquin”
of A. Lascoux gnd M.P. Schiitzenberger. From thai, we can rederive
the placiic monoid theofy.

Also, generalization for arbitrafy posets'can be done, in rela-

tion with recent work of Fomin and Gansner.

Berichterstatter: Friedrich Stétzer
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