
MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g, s b e r ich t 9/1984

Mathematische Stochastik

19.2. bis 25.2.1984

Die Tagung fand, .<unter Lei tung von Herrn W. ~azod (D~.rtmund)· ~nd

Herrn G.'·Neuhaus (Hamburg) statt. Von 47 Teilnehmern aus 9. L~I)dern

wurden insgesamt 38 Vorträge gehalten, die ein.umfassendes Bild

über den Forschungsstand in der Mathematischen Stochastik wi~der­

qabe~.

Die Hauptqewichte der Tagung lagen auf den ,Gebieten der empirischen

Prozesse, der adaptiven- und Rangverfahren, der nicht-kommutativen

Wahrscheinlichkeitstheorie, der speziellen Grenzv~rteilungen sowie

der asymptotischen Statistik.

In den Vorträgen, .den anschließenden Oiskussionen sowi~ per~ön~,

lichen Gesprächen konnten wissenschaftliche Konta~te an~ek~üpft.und

vertieft werden.

. .. -- --.;.. •..~~ ...

Vortragsauszüge

w. ALBERS:

A scale rank test uS'ing Helmert "s transformation '

In the problem of testing equality of scale of two distributions

a rank test should be preferred over the F-te,st if i't' is' not sure

that the distributions involved are normal. However, if -in addition
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the distributions rnay also differ in loeation, it becornes necessary

to first adjust the observations, and the rank test will then at

best be asymptotically distributionfree, even if norrnality holds

after all. In this paper it is demonstrated how usi~g Helmert's

transformation for the adjustment of the observations leads to a

rank test which is exact under norrnality and asyrnptotically distri­

butionfree ot~erwise.

E. BERGER:

The Komlos-Major-Tusnady approximation theorem in JRd

A large deviation theorem for conditional moment generating functions

is presented, from which the following theorem follows via a modified

Komlos-Major-Tusnady type contruction:

Theorem: Let (Xn ) be a sequence of i.i.d. lR~-valued random variables

with EX l = Oand Cov (Xl) = I (= identi ty matrix), arid let (Yn ) be a

sequence of independent normally distributed random variables with

mean 0 and covariance re.atrix I. Write Sn =Xl +.· .+Xn and Tn =Y l +·· .+Yn •

Suppose that E(exp«t,Xl » <ClO for all t with IItll < e: and some e: >0.

Then it i5 possible to redefine the sequences (Sn) and (Tn ) on a new

probability space such that for all nE lN, x> 0 and suitable constants

C, K, A € JR+

The method also works for non-i.i.d. random variables (without

smoothness conditions).

I. BERKES:

Exchangeability and limit theorems for subsequences of random

variables

The following heuristic principle was forrnulated by Chatterji:

SUBSEQUENCE PRINCIPLE: Let T be a limit theorem valid for all i.i.d.

sequences belonging to an integrability class L defined by the

finiteness of a norm 11 II L • Let {X
n

} be an arbitrary (dependent)

~equence of r.v.'s satisfying sUPnllXnll
L

< +ClO. Then there exists a

subsequence ~nk satisfying T in a mixed form.
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Although special cases of this principle were known as 10ng as

46 ~ears ago,-no qenera1 resuit existed in the field until 1977

when D. Aldous proved that the principle is valid for all a.s.

and distributional type limit theorems T. This proof exploits

exchangeability properties of subsequences of general r.v. sequences.

In our paper we give a detailed study of the structure of sub­

sequences of dependent r.v. sequences, obtaining best possibie ex­

changeability properties of such systems. We then use these results

to extend Aldous' theorem for a larger class of limit theorems and

to qive partial converses. We give necessary and sufficient con­

ditions for a sequence {Xn } to have a subsequence satisfying the

'central limit theorem and the analogous limit theorem with a limiting

stable distributioh iri a mixed form. We then intr6duce the class of

"I-type" limit theorems containing a.s. as weIl as distributional

limit theorems and several further limit theorems cf different type

and prove the subsequence principle for this class.

H. CREMERS:

Weak conver~ence in Suslin path spaces

Under the·assumption that a sequence of stochastic processes has

paths in a S~slin functionspace we can prove the fol"lowing~ If con­

vergence in the path space "implies stochastic convergence, then

tightness and convergence of the finite dimensional distributions of

the stochastic processes are sufficient for weak.convergence. The

result in many cases implies a unification cf the 'weak convergence

proof: Such cases are eiD, LiP
a

, Lp and V, the space of "distribution

functions of finite measure. Further it is shown, that in L -spacesp
the tightness condition can be replaced by an apparently weaker one,

involving uniform integrability instead of co~pactness. Thus, in

L, (v) with finite" v, under the condition of weak convergence of the

"f.d.d., tightness in the weak topology implies tightness in the

strong topology.

s. CSÖRGö:

A unified aSymPtotic theory for empirical reliability and

concentration processes

An outline of a recently submitted research monograph, completed'
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jointly'with Miklbs Csörgb~ Lajos Horv~th and David M. ~ason, will

be given. The processes covered on the reliability side are the

empirical mean residual life and the empirical total time on test

processes with various (scaled, "from the first failure", two-sided)

versions, while those on the economic concentratien er diversity

side are the empirical Lerenz and the Goldie concentratien processes

and their modifications such as the empirical Shannon and redundancy

processes. For all these precesses we prove almest sure·uniform con­

sistency, weak convergence and strong approximation results under

appropriate, often necessary moment conditions. The unification is ~

achieved by the observation that certain integral processes based on

the uniform empirical and quantile processes are the main ingredients

of all the processes in question. These integral processes are treated

by a combination ofweak and strang approximation and martingale

techniques in conjunction with the Chibisev-O'R~illy theorem.

M. DENKER:

An Invariance principle for two-sample linear rank statistics
~ N ~

Let Tn,m(h) = f h(N+1 HN(t»dFn(t) ~ f h(HN(t»dF(t) be a 2-sample
-~ -~

linear rank statistic with score function h EH, where H, denotes the

class of all right continuous .functions on (0,1) of beunded variation

on compact sets with lthll =J(lh1(t)I+lh2(t)I)(t(1-t)')-1/2dt<~
(h = h 1-h2 according to the Jordan decemposi tion). For a certai~ sub­

-space HcH (including absolutely cont. h) one can define a gaussian

process Zeh) and show the following invariance .principles:

Theorem 1: If h€H 15 of class C2 with Ih"(t)1 ~K(t(1-t»-1+11 then

o r < 1/N ,
SN(h) ~Z(h) weakly in 0([0,1]2) where SN(h,r,s) ~{ -1/2

N [rN]T[r~],[sN](

Theorem 2: If h € H then SN(h) -+ Zeh) weakly in (O(E) ,d), where O(E)

denotes the set of all r. c. functions on E = { (r , 5) : r 1: ,0 or s 1= O} U {O, O}

with no discontinuit!es of the 2nd kind and where d metrizes the

topology of uniform convergence on compact 'sets.

Extensions and applications are briefly mentioned. The results were

obtained jointly with M.L. Puri.

l
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Y. DERRIENNIC:

On "subadditive" processes arising in first p~ssage pei6oi~fi6n

In the usual setting of first passage percolation on a2 let a '- n,m·
be the point-ta-point travel time betwe~n C<;"n) and (O,m) and .l.et

a' be the cylinder restrict~d point-to-point travel time. Cpn­n,m
sider

4>n Cu) E(e-u aO,n)

4>~(u) E(e-u ao n)e . ' .
Then we have the relations

: ;~ ,

<P~+m(u) < 4>~(u) 4>~<'u) u<O-
~~+m(u) >. 4>~(u) <P~(u) u>O

4>n+m(u) > <Pn(u) 4>m(u) u '> o.-

(the last relation is a consequence of the fact. that an.,m-~m,k" ~n<m<k)

Although not independent are .. associated"). T,.o obtain l~mi t th~<?rems

for a' or a it is essential to know the behaviourof the limito , n 0 , n . i • - "i I" -

function of ~ log 4>~ (resp. *log 4>n) in the. vicinity...of. o..,~I.f,·the

limit has a derivative in 0 then it is not hard ·to obta"i.n- that··

P (ao,n < na) or P (a~,n < na) , go to 0 exponentially fast-' for;' '.':.' . 0'

. E(a
o

n) '..
a < \J = 11m n' and the exact rate of convergence i.s g.iv~n: ~y the

Cramer transform of the limit function as it is for sums of i.i.d. r.v.

But there are examples of subadditive proces~es with indep~~~~ri~
- ~ ~-,. .. . .

increments for which the limiting function has no deii~ati~e~in o.
Therefore delicate estimations are requ!red to ob~ain 'the' pr~ceding
estimations'for a or a' • ·The preceding lin~'oi re~~o~i~~~ i~adso,n e,n '. ,+.':. ,- ,
to the following proposition: . .., - '

Let (Xn)n be a weakly stationary sequence ~f "mutua'lty'assec'iated"

identically distributed positive t.v •• If .l2COV(X1'XJ'~ ~~ ~~~n ~or
n J= ' L

every e: > 0 P ( l Xi < n (E (X 1) -e:» --+- 0 at e~po~ential ra~e. ~:.~. ,.'
i = 1 " n 100 ' , " ' ~ ~ -- .-.r .. ~ •

(The condition on covar-iances was introduced 'by Newrnan, and :Wright

(Annals of Prob. Vol. 9 (1981) 671-675) to obtaih a central 'limit

theorem in this context).
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E. DETTWEILER:

Transformation of martingales on Banach spaces

Let E,F denote t~o separable, real Banach spaces. An operator

TE L(E,F) is called smooth, if there exists a constant C > 0 such_

that for every E-valued, square-integrable martingale (Mn) the

following inequali ty holds: sup IE 11 TM 11 2 ~ C2 • l E 11~ +-1-~ 11 2
n n k~O

(JE := expectation operator). The space 8
2

(E,F) of all 5mooth operators

is a Banach space under a natural norm and always larger than the

space ll2(E,F) of all 2- absolutely summing operators. With the aid ~

of these classes of operators it is poss1ble to abtain a "good"

stochastic integration theory on arbitrary Banach spaces.

T. DRISCH:

Quantum integration and quantum Fourier transforrn.

The problem of Quantum Integration is the following: Given a

von Neumann algebra Wand a "probability" P on the set A of projectors

of W (e.g. a positive normed function P: A ~ lR, er-additive on sequences

of pairwise orthogonal projectors), exist then an extension'of P to

a line~r functional E :W~C ? The answer is "yes" if the 2x2-matrices
p

do not constitute a direct summand of Wand if the cardinality is not

so great that it can not be incorporated in any model of Zermelo­

Fraenkel's set theory (included the axiom of choicei it is unknown

if we can pos~ulate (as existence axiom) such "very big" cardinals) •.

The definition of Fourier Transforrn of a quantum probability is the

following: Let T be a projective representation of the covariance

group. G of the physical system; let W be the von Neumann algebra

generated by {T(g)}; let P be a probability on the set of projectors ~'
of w. Then P:g~E (T(g» i5 the Fourier Transform of P. Finally indi-

P i

cations of Bochner and Levy (continuity-) like theorems are given.

P. GÄNSSLER:

On parameter estimation in Pareto-type distributions

A preliminary report is given to a problem posed by Professor

J. Teuge~5 at the Oberwolfach-Meeting in November 1982. It 1s con-
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cerned with asymptotic properties of a certain estirnator for the

tail behaviour of Pareto-type distributions. In eoritrast to a

sirnilar estirnator introdueed by HilI (1975) and further studied

by Mason .(1982) our estirnator will be based on the empirieal

distribution funetion and so some of the main toels for proving

its strong consistency, asymptotic unbiasedness and asymptotic norma­

lity are results frem the theory of (weighted) 'empirieal proeesses.

The solution in_its present form 1s mainly due to my eo-worker

Dr. Erieh Haeusler (Univ. of Munieh) •

W. GAWRONSKI:

On the bell-shape of stable densities

The central result of this talk deals with a proof that all- stahle

-densities are bell-shaped (i.e. its k-th derivative has exactly k

zeros on its support- and they are simple) thereby generalizing a

well-known property of the normal distribution and' the associated

Hermite polynomials.

H. HEYER: .

Convolution semigroups on Sturm-Liouville structures

The topie of this talk refers to a hypergroup generalization of the

well-known transience eriter10n for contihuous convolution semi­

groups (~t)t>O on an Abelian weakly eompact group G in ~erms of weak

integrability of ~ for the negati~e definite funeti~n $" corres~onding

to CI..I t ) t>O. The work presen'te~ and the 'analytie preparations

(Sehreiberg eorrespondenee, resolvent correspondenee, support corres­

pondence) ~tems from joint efforts'of the speeker with W.R. Bloorn

from the Murdoch University, Perth, Western Australia. Instead of

giving a detailed derivation of the mentioned result the talk was

denoted for motivation and examples of hypergroups as special Sturm­

Liouville structures (in the sense of S. Boehner, C. Genge and others) •

We just recall the main motivation due to M. Kennedy (1961). Let X

be "the birt~ and de~th process on ~+ defined by the transition matrix

(PA(i,j»i "Ea with parameter A~O,J + .
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Then there exists a convolution *a (with Cl = A -!) in M1 (;f+) such

that X = X
a
.:= randorn walk defined by the transition kernel

v := l L w(n,v(n»
m nlJ • Cl

(e)

(h)

(a)

(X,A) ... N (X,A) = EX *a E1 (A)

on (~+'P(~+». The definition *a 1s carried out via Gegenbauer

polynomials (Oa) E~ of order a, in three steps:
n n 6:1+

QCl(X)QCl(X) =
n m

[Rere gCl(m,n,r) ~O are the coefficients defining the Gegenbauer

polynomialsl

After this motivation the axiomatic set up of Sturm-Liouville system

has been given, then a list of examples followed; the rest of the

talk was denoted to the transience criterion for convolution semi­

groups of hypergroups.

M. HU~KOVA:

Adaptive procedures based on ranks for testing independence

Let (X1'Yl)' ••• '(~'YN) be independent identically distributed

bivariate random variables with eontinuous distribution function

. H(x,y) and marginal distribution function F(x) and G(y). Consider the

testing problem Ho:H = F.G versus K:H ~F·G, H #: F-G '(positive depen­

dence). Optimal rank statistic (with re~pect to Bahadur efficiency)

can be written in the following form: L logi(R./N,S./N) where R.
1=1 ~ ~ ~ _

and Si 15 the rank of Xi and Yi , resp~ctively, among X's, and Y's, ~

respectively, h 1s the Lebesgue density of rv 1 s F(Xi),G(Yi ) _ An

effective estimator h (kernel estimator) of h was proposed, some
, n

asymptotic properties were stated. The assertion on the asymptotic
N

distribution of L ~(Ri/N,S./N), under hypothesis and alternative
i=1 ~

were presented. An interesting feature of the asymptotic behaviour

1s that (under some regularity conditions) the variance of the
- -2

proposed test sta~istic is of order N and ~ under an alternative

and hypothesis, respectively.

The presented results were obtained jointly with K. Behnen and

G. Neuhaus_

J
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A. JANSSEN:

Scale invariant exponential families and one~sided test problems

The main purpose of the talk i5 to investigate scale invariant·:<

exponential famili~s.It is proved th'at E = ('(P ß) ~E0) 15' s'cale in~

variant if and only if P~ is st~ble where f i~ the' suffici~nt . '

statistic appeaiing in the densities of the expönential fatl\i~·Y·.

It i5 pointed out that these experiment aie limit point~ if a'§t~le

transform'ation ö , eS .... 0', is applied to the n:"'th prod~ct e~pe~itilent.
n n.. _ ' .. '_. _.. ..... .

The results can directly be applied to asymptotic test problems for

a simple hypothesis which belongs to the boundary of the ~ar~et~r

space.

J.-P. KREISS

On the existence and construction of adaptive' estimates in ARMA-models

We consider the problem of constructing adaptive estima~es ,for. ~e

parameter! = (a, , ••• ,ap,b" ••• ,bq) T for the fol~owi~g., ~ID:1~.(!?,q~-~odei

Xt = a,xt _,+ ••• +apxt_p+et +h,e t _,+ ••• +bqet~q' t E ~, ..., -..

where the whi te noise process {et ; tE i-} ~C~~~Si5t~. ~f_ i ~',+ .d.. randb~'.
variables. .-. ' ..' ~ ,- . ,

In a first part we p~oof the LAN-condi tion for _ou~ .mod~l. T~~.~~.~,?re

we need an explicit representation of. the li~elihood ratio. Then we

derive a necessary condition for the LAM-property of estimates in our

model and construct such. estim,ates ,when .the error-di~,~rib\l~.io~~.~~

known. Therefore we use an In-consistent initial estimator.

-Finally we prove by construction the existence of a.4.~pt.iv.e .. ~s.:ti~ates

for the parameter ~, which posses the LAM-property and which are

independent ofthe-distrib~tion of the wh!'te -n~i-s~- 'an'a: 'd'~nto'~st~kte
the practical relevance of such estimators iri a-small- simulation:­

study.

K. LOHSE

On bootstrap-procedures

Let 'Tn (2n) be an estimator for 0, where ~ i5 a vector of n i.i.d.

r.~. with values in JRk. Wanted i5 the distribution of ~(T (X )-8).n -n
If Xn 1s a sample, then the Boot5trap-Procedure leads to a distri-
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bution of ~ (T (X )-T (X*», where x* is a vector of n i.i.d. r.v.
n n n-n -n

with" empirical distribution, and takes this for an estimator of

L (/i1(Tn (2n) -0» •

Let Tn(Xn ) have the representation: Tn(Xn ) =T(nn(Xn }) where nn:lRkn~V
not necessary measurable, T: V ~ mP , e = T (n) and where V is" a normed

vectorspace. Then under eertain reqularity cenditions it can be

shown that the Bootstrap estimator is consistent if T is differen­

tiable (compact, Frechet) only at the point n, and if some bounded­

ness or tightness conditions of In(nn(~~)-n} are fulfilled. As

examples for the workinq of this· theory were given M,L,R-estimates.

A. LUCZAK:

Martingale convergence in the state space of a C*-a1gebra

Let A be a separable C*-algebra of operators with unit 1, ultra­

weakly dense ~n a von Neumann algebra M and let 0 be the state space

of A.

Let {Mn~ be an ~ncreasing sequence of von Neumann subalgebras of M

such that M = ( UM) 11 and let E : M ~ M be a condi tional expectatien
n=1 n n n

of M ento' Mn- The sequence {En } 1s called a martingale on M 1f,

whenever m ;:.n, EmEn = EnEm = En •

We show that, for a given martingale {En } on M, there "exists a

sequence {En } of transformations defined "almost everywhere n on 0,

canonieally indueed by {Enl. Moreover, for "almest all" lJJ in 0

1im En tJJ = 1JJ

n-tCO

with the limit in the weak*-topology of o.

U. MULLER-FUNK:

On the centering of L-statistics and Bernstein-type operators

Seme methods. commonly employed in deriving the normal approximati.en

to L-statis~ics Ln =L(Fn ) require exaet centering at their expecta­

tiens (Fn denoting the empirical d.f.). From a statistical point of

view,' however, Ln should beeentered at the limiting functional L(F)

(F denoting the true d.f.). If L is based on the weights g(-l-,} andn n+
on the score fete hone realizes that
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1
< f IBn _

1
(g) (t) -9 (t) I

o

where Bn stands for the (slightly modified) n th Bernstein 'operator.

Accordingly, we ask for.conditions ensuring that the approximation

error on the LHS i5 of the order n- 1/ 2 • We state a theorem 'that .'

allows for a broad class of functions g,h (pos5ibly having jump

discontinuities and/or being unbounded). A generalization tb proba­

bilistic operators based on steep exponential families' i8 briefly

indicated. The 'result extends works started by Hoeffd{ng (1971, 1973).

G~ PFLUG:

Log-Likelihood process and nuisance parameters

Let a family of densities f(~,$) be given, where ~ is the parameter

of interest and $ is a nuisance parameter. We call the model

{f(.e,$~ ~.e.E 8
0

,$ E 'Pol. adaptive with resp~ct to the ·first parameter,

if there is an estimator sequence for ~, which is-asymptotically

efficient for every model {f(~,tPo);~ E 8
0

} lP o E 'Po' if (~o,lPo) isthe

underly~ng t~ue parameter. The proble~ i5 to fi~d .necessary an~

sufficient conditions for a. model to be adaptive.

If the experiment 1s smoot~ enough, then a nece~sary cpnd~t~on !or

allo~ing adapti~ity i5 _t~e orthogona~ity of the respective ~angent

Cones (see Pfanzagl (1982». Foro~her experi~ents,.?eCe5Sar~ ~qn­

ditions can be formulated in terms of the limiting Gaussian. or

Poisson-experime~t. For an infinite.d~mensionalnuisance parame~er

these conditions are far fro~ being sufficient.,

A global conditio~ of orthogonal~ty, i~ however sufficie~t to g~arantee

adaptivity. This is shown by proving that' t~e .log-likel~hood process

wi~h estima~ed .nui.~ance parameter converge to the s~e limiting

process as if the nuisance parameter is exactly known. If this global

~rthogonality 1s fulfilled then consistent estimation of the nuisance

parameter is sufficient, if the orthogonality is only of loeal nature

then quick consistent estimates (in the.sense of Strasser) are re­

quir~d.
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w. PHILIPP:

Invariance principles for partial SUffi processes and empirical

processes indexed by sets

Let {x j ' j E lNq } be independent identically .formed random elements

with values in a Banachspace B, indexed by q-tuples of positive

integers. We obtain the almost sure approximation as weIl ,as the

approximation in probability of the partial sum process {Lj€nAXj,A € A}

by a partial sum {LjEnAYj,A € A} as n'" co uniformly over all sets A in

a certain class A of subsets of the q-dimensional unit cube. Here

{Yj' j € lN
q } are independent identically distributed Gaussian random e

variables. These results are then applied to obtain the approximation

of empirical processes over sets and indexed by sets by Gaussian

partial SUffi processes indexed by sets.

D. PLACHKY:

A characterization of product-measurability of Radon-Nikodym

derivatives by separability

Let A be a a-algebra of subsets of a set n, P the set of all proba­

bility measures on A, and A* the smallest a-algebra on P such that

all mappings P -+ P (A), A € A, are measurable. The following result is

proved: There exlsts an A 0 A* @ A*-measurable version of
dPO

(w,P,Q) ... ~(w), where Po denotes the Q-continuous part of the

Lebesgue decomposition for P with respect to Q, if and only if the.·

followinq condition holds:

(*) There exists a separable (i.e. -countably generated) sub-a-algebra

, Ao of A such that Ao = A[p] for all PEP holds.

Remark: (*) does not imply separability of A (ex. ': n =m, Ao ~ 18, A = 18na
Sn a-algebra of universal measurable subsets of m) and (*) does not ~

imply A= nA (pIA), where A (PIA) de'notes the completion af"AoPEP 0 a 0 0

with respect to plAo •

D. POLLARD:

Central limit theorems for functionals of the empirical measure

It was shown that maximal inequalities develaped throuqh recent work
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in empirical processes have applications to other areas· of asymptotics.

In particular,'consistency'and 'central limit theorems for 'estirnators

defined through rninimizations of P f (. ,t) -where P . ='empfr:i'cal measure
n n

and {f (. , t) : t E T} i5 a family of real-valued functionais- d'epend:

upon bounds forlP{suplp f(·,t)-PfC·,t)1 >e:} and
t n . _

p{suplp R(·,t)-PR(·,t)1 >e:}, where R(·,t) is a formal'remainder-'term
t n , , . ..-

in a Taylor expansions of f(·,t). The talk made propaganda for empiri-

cal process methods.

R. PYKE:

Set-indexed partial-suro process and empirical process"

Consider data of' the form (x,m ) ·in which x rep~esent's location a~d
x , , .' _ :, '.' _

mx represents a measurement taken at Iocation x. Such data de~~rmines

a signed measure lJ (B) := lxEBmX for BEB. If the Iocati<?ns ar~ '~~ndom

and the masses constant (=1), 'lJ becomes the empirical measür~.~ ,r~ say,

while if the locations are fixed lJ i5 called the p~rtial~sum'measure.
. d' , . . .' d ,:.'

In particular, consider location~ i E JN wi th masse~ . {,X j :.1 ,E:~ ~ _.and

set S (B) = L1EBxl. Abrief historical overview of th~ 'asYmPt()t~.c ..

theories for both was given emphasizing the. SLLN~ LIL ~nd:CLT,with

special emphasis upon the progress of the past 10 years·~or.:s~t~indexed

cases. Recent results for partial-suro processes were presented in­

cluding i) SLLN. A cBd n '[0,1]d satisfies IAe: ......A-e: i ... 0 ~~iformi~ 'in~:

AEA, and EX
1

=lJ, {Xo} iid, imp'lies S(nA)'/nd~lJIAI 'uniform'ly in~~AEA.
_ J, "

{Examples of A and statements of the assumptions used in remaining

results were given.}. 11) ~ (Normal case) Let Zn (A).= ~-dl.~LjlnAncjIXj •

where C 0 = (j -1 , j ], be the smoothed partial-surn process'~ Under-n:.t9,tal
J -,...;-

bounded~ess with inclusion" andElxjlS <00 with s >.2(·1-r)--1 whe.~e.,

r e: (0,1) i5 the :coefficient of metrrc entropy, Z ·.!.,z .the" appropriaten
Gaussian process. Extensions ~o non-iid, Poisson' arid em'piri.cals:were

discussed. iii) !f1 (Functional) A Skorokhod...;type ertmedding for '"

partial-sums results in 'this LIL under similar-conditions: to;,,ii·l:.
\ dIa'iv) ~ (Stahle case). Set Yn (A) = L]oX

J
o1 [U .EnA]/n . wh~n '{X '}-;'-i:id

- - J . 1,"
in d. of a. of a Stable-a distribution, and-where {U j } are indepen-

L -dent Unif(C j } r.v.'s. Then to show Yn ~Y the existence of regular

Levy processes Y is studied and the rneaning of ~ defined. Here the
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space V(A) is discussed. For convex sets cd, "a stable process on.

D(A) exists if a < ~~~. v) Levy's Brownian Motion as a set function

was briefly described. vi) Future directions were suggested to in­

clude statistical ~pplications of set-indexed theories including

interactive work station approaches to data analysis. Most of the

results reviewed represent joint work with R.F. Bass, Mina Ossiander

and K. Alexander: the result with the latter being the establishment

of the CLT (Normal case) assuming only EX~ < co.
J

J.P. RAOULT:

Some generalization of James Stein estimation

Let y be an-dimensional gaussian observation, with rnean S in a

known k-dimensional subspace of mn,e, and regular variance a2l
( Lknown, and a 2 known or unknown): let <p (y) denote 'the maximumo
likelihood (i.e. generalized least square) estimation of Si we

define a generalized James-Stein (g. J.-S.) estimator as an estimator

of e of the form l.l + [1-( (y-'P o (y) , q>o (y) -l.l) ] (-CPo (Y) -l.l): lJ (E 8) is

called the pole, and ~' is called the shrinkage function.

We first present a critical review of classical and Bayesian justi­

fications of g. J.-S. estimators, with respect to the quadratic 1055

function C(8,8) = ~ (0~0)'r-1 (0-0).
a

A class of g. J.-S. estimators uniformly better than CPo is obtained

for k ~ 3 and a shrinkage function of the form
. 1

Tl (Y-'o (y» p «q>o (Y) -lJ) 'r- ('0 (Y) -lJ» ,

with function u p(u) non decreasing and lower than 2(k-2)B, where

the constant B depends on function Tl.

We present numerical studies (due to Ben Mansour and Martin (1983»,
of Bayes risk functions for g. J.-S. estimators with 0 2 known and

shrinkage function of the form -5- + [4] a, with a > 1, and
2 t- 1 5 s

5 = ('o(Y)~lJ)'L (cpo(Y)-l.l): these estimators greatly improve those

presen~ed by Tze Fen Li (1982), with shrinkage functions of the

form" L C
i

(S2)-1.

i=1
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P. REvESZ:

Some new invariance principles for local time

Let X1 ,X2 , ••• be a sequence of i.i.d. r.V.'s with P(X,=O) =0, EX, =0,

EX~ = 1 and let So = 0, Sn = X, +X2+ ••• +Xn (n=1, 2, ••• ), S (t) = Sn if t:=n

pieeewise linear otherwi·se. Define the loeal time of Sn by f; (x, n) =

=4f{t:t ~n, St=xl. Several theorems say that f;(x,n) ean be weIl

approximated by the loeal time n(x,n) of a Wiener process w~t). Beside

some moment conditions mo~t of these theorems assume that X1 is

either lattice or continuously distributed. We are interested to

prcve such a theore~ what does not assurne anything about the distri­

bution of X
1

except same moment conditions. This goal i5 not achieved

yet, our sufficient condi tion is: P { Isi< xl < Cx
Q

(x > 0, n=1,2, ••• )
n -

for some C > 0, a > o. Having this eondition and some moment restrietions

we ean prove the required closeness of (x,n) and n(x,n). Note that

the distribution P(X1 = 12) =~ P(X1=-1) = 1~ does,while the

distribution P (X, = 13') = P (X 1 = -13') = P (X 1 = -1) = P (X 1 = +1) = 1! 4 does

not satisfy our eondition.

H. RIEDER:

Robust estimation and testing of functionals

We modify the nonparametric.loeal asymptotic minimax bound of

Koshevnik, Levit (1976) a) to allow for various kinds ~f infinitesimal

neighborhoods (E-contamination, total variation, Hellinger, Kolrnogorov,

L2(~», b) to suit the estimation of functionals T given by expansions

T(Q) =f$dQ, where $ has the"properties of an influence c~rve. We

suggest to estimate that funetional whieh ean be estimated at lowest

4It risk and satisfies certain robustness side conditions.

If a eonvex class of distribution funetions on the real line is given,

whieh has an element of smallest Fisher information, and if maximum

risk of estimating T is to be minimized with respect to all points

(eaeh defining a Ioeation "family) at whi?h estimation of T makes sense,

we arrive at an abstract version of Huber's (1964)' saddle point re­

sult that counters all previous criticisms raised by Beran (1981,1982),

MilIar (1981,1982) sinee

i) the corresponding estimator is optimum among· all estimators,

ii) infinitesimal contamination of all kinds i5 allowed (in
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particular, no restrietion to symmetrie eontamination

is required)

1ii) it is elear what to estimate outside the parametrie model.

If the robustness condition is bounds on the oscillation of T, we

obtain an extension of Hampel's (1968, 1974, 1978) theory whose

advantages may again be described by i), ii), iii).

For testing multiparameter functionals an analogous optimum selection

subject to robustness side conditions still seems to be beyond

scope. In the one-dimensional case, however, the corresponding opti-~

mality results are available. Moreover, if the one-dimensional testidll'

problem is of one-sided form, and if we use the maximal infinitesimal

total variation balls possible, the Koshevnik-Levit least favorable

direction catches the Huber-Strassen least favourable pairs, up to

negligible remainders.

u. RÖSLER:

ASymptotic behaviour of stopping time of diffusions

Consider a diffusion on lR+ with 0 an reflecting boundary. If Xt is

transient, then under same conditions on a,b, dXt = a(Xt)dWt +b(Xt)dt,

see Keller, Kersting, Rösler, the possible asymptotic behaviour of
Xt-~t Xt

X t iR either Xt-~t converges a.e., ----- ~ N(O,1) or ytln -- ~ N(O,1).
Yt ~

lJ t is the deterministic solution of d~t =b(llt)dt, Y t same expl. ki10wn

function. A similar result is true for the stopping times T
4

,

correctly normalized to T4= ('t4-EoL4)/lvaroT4.

Theorem: Let Xt be any diffusion on lR+ or BAD on ~,O reflecting.

Then T: ~ a.e. ~ 11m Varo T4 < w. tIt
Otherwise T: ~N(O,1) e:t Eo(T)/lvaroTd ~ 00

L: + 1 ~ exp (~ar • 1) ~ E 0 ( T) / IVar0 Td
There remains a ~mall gap, the diffusions of the form

dXt = const ~ dW + dt, which are not covered by the above theorem.
VThese are exaetly the processes with Xt =r Xtr2 , r E IR.

H. ROST:

A limit dxnamics for a system of many interacting diffusions

We report here on arecent result of K. Oelschläger.
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Let X1 (t), ••• ,~(t) be defined by .the ~tochastic diff. equ.

dX. = dWi -~ l 'V~(X:-X.)dt, i=1, ••• ,·N
1 j*i J 1

(values in ]Rd, J!l a given "potential" such that

~(x) =NB<\r(NBx), where 6 >O'and

•
v ~O, I Vdx <00, V(x) =V(-x), plus some~h?-ng.)

Then, in the limit N·~oo, the process of empirical measüres

~ l eS X. (t) converges weakly in prob. towards a solution ·of. the - .: .
1-

nonlinear parabolic equatian

af 1ät = V«2"+cf.)'Vf)

where c = Iv (x) dx, provided 6 -< d12 .

L. RUSCHENDORF :

Wasserstein metric and strang approximation
!' ...: .. : ,..:.

.. - .-: .

constructions of good approximations of two' rar1.d6~ .vari'imles with

given marginals. We illustrate this methoa'by ~t~~ng~~PP~~~~~~~;9n
. .- ... .. ..'. ~ " .......-. . -. / .

results f~r. ep-mixing, weak and ver~ weak "Bern~ull~ rv ~ s. and .. ,~_ls:pj by

approximations w.r.t. dependent sequences. Finally we solye.~h~.
.' .... .". .' •• _ ~ .. ~ : 'l. ~. I

problem to find the optimal martingCl:le app~.ox~ma~i~~j.~?: a,)g;v~~.',~,

sequence of random variables.

We introduce the notion of markov construction as a'practical modi­

fication of the Wasserstein distance." This riotion-~ii~ws i~~~~~i~e
..... . "" : .

W. SENDLER:
~ '/f"_~ :-, ..

A path property of the Brownian motion

..~~....=-: ..:

We ask how the fluctuation of the Browni~n pat~s. _neaJ;",9.. cat:l"1?_~"'-i"~

measured. ~esides the well-known resul~s like log log -la~s'Jq;-.:. _:~

Hölper-continuity the following idea is d.i,s~ussed: Let g: <'O,l] .~:]R,

g. ~C, 9 ist!>tot?ic; how bad may 9 pehave .near Osucl1 .that nevertheless

1im f, W dg exists? ' .' ;. _'.;<~.'
t~O (t, 1 ]

Th. 1: 11m I Wdg 3
t~O l(t,1]

~ J g2 dA < 00

(0,1]
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This result is~ a special case' of the following (we use the usual

notation of martingale theory as proposed in, e.g., Metevier's

book on Semimartingales):

!h..:...2.:. For an L2 -Semimartingale M wi th Mo =0, an increasing cadla.g

process V, V ~O, M and V adapted to a filtration F ={Ft:t ~O}, the

following statements are equivalent:

(i) E( f V~d[M]) <00.
(0,1]

'l

(ii) f M dV converges a. s. and L 2 for every sequence of stopping •
(T n,1 ]

times T n' with 0 < T n ~ 1 and T n ~ 0 a. s •

R. SERFLING:

On the Glivenko-Cantelli and Oscillation theory of empirical

processes of non-classical structue, and some problems in maximal

inequalities

A large class of statistics can be represented effectively as

functionals of empirical d. f. •s of non-classical structure, .in

particular U-statistic structure for example. For applications such

as the SLLN, LIL, CLT, Berry-Esseen thm, etc, various ferms of

Glivenko-Cantelli theorem are fundamental. For applications su~h as

sequential fixed-width confidence intervals, the oscillation theory

is r~levant. These new empirical processes and the relevand Glivenko­

Cantelli theory and oscillation theory will be discussed, along with'

same new problems in general maximal inequalities, which·are stimu­

lated by their application to the oscillation theory.

E. SIEBERT:

Operator-semistable laws' on' EU'cli"dean spaces

Operator-stahle and operator-semistable laws on v=md are defined

as limiting distributions of properly n6rmed sums cf i.i.d. random

vectors (M. Shrowpe respectively R. Jajte). In the one-dimensional

case both concepts are due to P. Levy (Semi-)stability also can be

characterized algebraically by a decomposability condition. Non­

infinitely divisible probability law ~ on V is operator-semistable
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iff ~B = BlJ * E b , where 0 < ß < 1, Ba-linear -transformation of V and

b E V. It turns out that semistabili ty is a more elementary concept

than stability: nevertheless both classes have similar properties.

This was illustrated by considering some basic properties cf a

semistable law: Levy measure, Lebesgue density, moment~, zero-one­

laws and holomorphy. In this context some results of A. Luczak have

been extended.

K. URBANIK:

4It Joint distributions in the non-commutative probability theory

Given a system A= (A"A2 , ••• ,Ak ) of observables a~d astate T, we

say that a probability measure P~ on IRk is the joint probability

distribution of ~he system A at the state T if for every

-a= (a1 ,a2 , ••• ,a
k

)EIR
k the projection of"P~ onto the real line defined

by x ~ (a,x) (x ElR
k ) coincides. with the probability distrib~tion.of

.k
the observable I a.A. at'the state T. Let seAl be the set'of' aIl

j=l J J , " _
states T for which the joint distribution P~ exists. We say .tl:l.a,~. A

fulfills the probabilistic commutation condition if there exists a
. ' -"B .

system B consisting of commuti~g observables such that_p~=PT for all

T E S (A). We prove that, every system consisting of one-sided bounqed

observables with purely point spectrum fulfills the probabilistic

commutation condition. This resul't can not be extended to all systems

of observables. Namely, the pair of canonical observables does not

fulfill the c~ndition in-question.

W.R. VAN ZWET:

Estimating a parameter and its score function

We consider the problem of estimating a real-valued parameter e in

the presence of an abstract nuisance parameter n, such as an unknown

distributional'~hape.Attention is restricted to the case where the

.. score functions" -for ,,0, and·n are orthogonal, . so that fully asympto­

tica~ly efficient estimation i5 not apriori impossible. For fixed

sampIe size we provide abound of Cramer-Rao type. The bound differs

from the classical one for known n by a term involving the integrated

mean square error of an estimator of ä multiple of the score function
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for e for the casewhereS is known. This implies 'that an estimator

of e can only perform weIl over a class of shapes n if it is possible

·ta estimate the score function for e accurately over this class.

This work i5 joint with e.A.J. Klaassen and will be published in the

proceedings of the Neyman-Kiefer symposium.

W. VON WALDENFELS:

The central limit theorem in quantum stochastics

The object of the talk was to present the most elementary. non-.t,riViale

exarnple of the central limit theorem. We use moment methods in the

frame of algebraic quantum stochastics. The analogue of a probability

measure on a probability space is astate on a *-algebra A, i.e. a

linear functional p:A~r such that pe') =1 and p{f*f) ~o for fEA.

The (infinitesimal) Weyl algebra W{p,q,~) is the *-algebra generated

by p,q, p* =p,q* =q with the relation pq-qp = ~. Let Q be a 2x2-matrix
1

then a gaussion state on W{p,q,n) is given by the familiar condition

that all moments can be reduced to the second order moments and these

are given by Q.

Now let' A = C2x2 the algebra of all 2x2-rnatrices. Define the spin
1 0 1 .' 1 0 -1 , -1 0 •

matrices by S, =! {, 0),52 =! (i 0)' 53 = ~ ( 0 ,) and the state

p on A given by the density matrix

which we denote by p again. Consider A@N and p~ on A@N. Define

seN)
i

Then
seN)

i
-N-

converges in distribution (i.e. for the moments) to the

The convergence is weakly, i.e. for all moments.
S{N)-NP{S )

i i
ß

following gaussian state YQ on W(p,q,a) sC[t]: With
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1 .0' 0"4 -.1.!

0
. 0 1

01.- "42

,.
a 0 4' - 0

2

Y = Y ~ YQQ 0 1 2

YQ : W(p I q ,a) ~ f I

1

1 . a
'4 - 1.'2"

Q1 = ( . 0' '1 )
+12' 4'

Yo : ~[t] ~ C, f[t] set of polynomials .in t
2

Yo (f)
2

t 2

f
1 -2;'r 2

12naZ' e f(t)dt , a 1·- 0'2
4 •

This result m~y be generalized to the general 'c~~,e' ~f" ~'~' :~l:-'g~biC3:~:'and
may be pro~e~ not '~nly by moment- methods b~ t- 'by Fouri~r·'~~~~s~~~

t ~ ~ ... ~ • • •••"' .~ ~,' ~•• ~ ..... ~ .... i·· f .. ~ .. ~ 2

methods too.'
~ • ...... .. ..... r

H. WALl<:

On a. s. convergence of Kiefer-Wol'f'ow'i't'z' type processes

A pathwise consideration of the stochastic approximation pt6cedure

X.n~1 =: Xn -' an vf (,Xn ) + an Wn in a Hilbert space' J{ w-i th '.0 ~'~n:~'Q:I:~I:~:n= ClO

and f: H ~ lR boun9-ed ~ro~ below: shows tha~. a., ~,~' .c9n.~e.rgen~~ ... ~\~O!?:~_;tjties

.of weiqhted ,means of the - !?ystematic and ~andom-, ~r.J;C?r~.:·~n<t9~ether

wi th certain conditions on vf are suffiqien~ for ·a.• s •.<~ol!verg~nce of

Vf(Xn ) to a and of f(Xn ). There are furthe~ iny~stigated.90~v§rg~nce

of a sequence in a Banach space which appea:r:.s in ,f.i_lt~r:il1g" t.h~9~Y and

is recursively defined by X +1 = X - n -1 (A X -b ) with conv~rqentn n nn n .'
arithmetic means of A resp. b , and convergence 'of"~eq~ential esti-n n " ...
mates of saddle-points in a convex constrained optimization problem

concerning regression functions on m~ The.theorems general~ze; and

sharpen results of Ljung (1978)., . Györti (1980) ·and. Hi·riart~urru·~y:·

(1977) •
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S. WEINRYB:

Hornogenization problems ·for stochastic processes with penetrable

boundaries

We have tried to extend the results on equations with a 5mall para- .

meter to proces5e5 with penetrable boundaries. The alm of this study

is~to model the behaviour of a partical in an.inhomogeneous medium

which can be constitued by some drops of liquid in a gazeous phase.

First we consider the microscopic point of view through a law Q which

is associated to circles in the plane, wlth a fixed ~adius and a

fixed distance between each of them; then by a change of scale, we 4It
can study a sequence of laws (On) which are associated with a great

n
density of smaller and smaller circles. It seems natural to consider

the weak limit of this sequence as an approximation of the physical

phenomenon.

We have proved two types of resu!ts that depend.on the behaviours of

the operator on the boundaries. First we have supposed that there was

a reduction with n of the surface effecti then we have supposed that

this effect was independent of n and in this case ~e need a cent~ring

condition •. Under these assurnptions we have proved the weak convergence

of the sequence to a Markov process which is associated with a gene­

rator with drifts in the first case and with a second order generator

in the second case.

J.E. YUCKICH:

Almost sure" uniform rates of exact· ·c"onvergen"ce· for classes of functions

Let (x,A,P) be a probability space. Let Xi' i~ 1, ~e i.1.d. random

variables with values in X and with distribution P. Let

P =n-1(öx1+ ••• +ÖX) be the empirical measures for P and let G , n>l,·
n n n - ~

be a se~uence of classes of real-valu~d functions on x. Using ametrie

entropy condition I find sufficient conditions on the Gn such that

o<u<rrm sup IR(n}fg(dP-dP)1 ~L<oo,
-n~ gEG n

n

where U and L are finite, strictly pos~tive constants, and where the

rate of convergence R(n} depends upon the metric entropy of the Gn •

The result provides exact a.s. rates of uniform cortvergence for the
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empirical characteristic functions over expanding intervals. It

also establishes exact rates of convergence for density estimators
. A -1 n

of the general form 9 n (x) := n I g(x,X.) •
i=1 ~

Berichterstatter: A. Janssen

." J-. -P. Kreiß

(Dortmund)

(Hamburg)
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