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Tag u n g s b e r ich t
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15.4. bis 21.4.1984

17/1984

Die Tagung fand unter der Leitung der Herren Prof. Dr. H.-D. Ebbinghaus (Frei­

burg), Prof. Dr. Gert Müller (Heidelberg) and Professor Gerald E. Sacks (Har­

vard Universität) statt. Im Mittelpunkt des Interesses standen Fragen aus ,.

allen Bereichen der Berechenbarkeitstheorie. An der Tagung haben 43 Wissen­

schaftler aus 11 Ländern teilgenommen. In 28 Vorträgen wuräen"neue Ergebnisse'

aus fast allen Teilbereichen der Rekursionstheorie vorgestelli, ~in~eschloss~rt

Beiträge zur deskriptiven Mengenlehre und zu rekursionstheoretischen Aspekten'

der Beweistheorie • Schwerpunkte bildeten die Theorie der Unlösbar"keitsgrade'~:; .

die Komplexitätstheorie und die verallgemeinerte Rekursionstheorie. Abgerundet

wurde das Programm durch einen Abendvortrag von' Prof. Sacks über' 'z"ent"rale . '"

offene Fragen in der Rekursionstheorie und eirie von Prof. Jockusch geleitete'

iproblem session'. ~ f

Die Veröffentlichung eines Tagungsbandes in der Reihe "Springer L~'cture:Nbtes'

in Mathematics" ist vorgesehen.
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Vortragsauszüge

K.AMBOS-SPIES: Polynomial-time degrees.

We present some new results on the algebraic structure of the polynomial

time (many-one and Turing) degrees of recursive sets. Besides fairly general

results about distributive sublattices of intervals of polynomial-time degrees,

we distinguish the strueture of the p-Turing degrees from that of the p-many­

one degrees and exhibit nonisomorphie interva~s in the latter structure.

Moreover, we present some results on embeddings of nondistributive lattices

and on infima and suprema of pairs of degrees. Finally we show that the elemen­

tary theory of the p-many-one degrees is not N -eategorical.
o

ANDREAS BLASS: The Kleene ordering of ultrafilters.

We eonsider non-principal ultrafilters over the set ~ of natural numbers

as type-two objects and ask when one of them is Kleene reducible to (i.e.,

reeursive in a ·real and) another. This reducibility, U ~K V, clearly holds

when U is the image of V under ~ome fune tion f: W 4 c..J (i. e. U E V

in the Rudin-Keisler ordering) and also when U is the limit with respeet

to V of a sequence of ultrafilters that are ~K V. I know of no instanee

of ~K between ultrafi~ters that eannot be obtained by.repeated application

of these two facts and the transitivity of' :!K. The conjecture that all in-.

stances of 4
K

between ultrafilters are trivial in this sense takes a parti­

cularly simple form when V is selective, for then the only ultrafilters that

are trivially ~K V are those that are, up to isomorphism, obtainable from

V by iterated summation, and they form a chain in the Rudin-Keisler ordering.

The only ease of the conjecture that has been proved is that in which hoth

U and V are seleetive: Between selective ultrafilters, Kleene redueibility

is equivalent to isomorphism. The proof depends on the following extension

of a partition theorem of Mathias. If U and V are non-isomorphie seleetive

ultrafilters, and if X is a !~ family of infinite subsets of ~ t4en there

exist A E U and B &V ~ueh that X contains all or none of the infinite

subsets of CA) of the form {ao < bo C a
l

< b
l

<. ••• \ with all a i €. A and

all b
i

6 B.

                                   
                                                                                                       ©



- 3 -

W.BUCHHOLZ: An independence result for (1r~-CA)+BI.

It is shown that a certain combinatorial statement on finite trees (with

labelsf~) is independent of the subsystem ~-CA)+BI of classical analysis.

This result is an extension of an earlier independence result for Peano arith­

metic by Kirby and Paris [Bull. London Math. Soc. 14 (1982), 285-2931.

e J · DILLER: ~A;.;;.;;n---.;..em_be_d_d_l_·n...........__......... ~~..L_.

We embed the theory of ~-times iterated inductive definitions ID~ by Fefermants

1970 1r~-translation in a second order system ~ not ·closed under arithmetic

comprehension and containing" bar-induction principles instead. T~ can.be

direc"tly interpreted in the theory IDO(W) of the hyper jump hierarchy W .

= WW(y for y <'~ ~ by relativization to RecW. Similar to Feferman 1982:"

this proves that ID~ is an extension by definitions of I~{W). This is work

in co-operation with H.D.Wunderlich from Münster.

W.FELSCHER: A lemma on the extension of strategies.

Let So' SI be two'~isjoint sets the"elements of which ~re c~lled (even and

odd) statements." Assume that every v in So determines a natural number tlvU.·

Assume "that every v in Si' i=O,I, determines a fi~ite" subset A(v) of"51~i

and thai every w in A(v) determines a finite subset A(v,w) of Si; th~ elements

of A(v) are called attacks ~ v and the elements of A(v,w) are called answers

~ to the attack w. Consirler a sequence 5
0

,51 , ••• of statements, s2i ~ So'

s2i~1 ~ SI' " each of which, except so' is specified as being either· an attack

upon a previous one or an answer to a previou~11 specified attack. Such a

sequence is a"liberal game provided the following holds: (1) If si is speci­

fied as answer to an attack s. and if i, k , j, k"- j even, and sk is
. J

also specified as an attack, then there exists "h such that i > h? k

and sh is specified as an answer to s~.· (2) There must be 00 two specified

answers referring to the sa~e attack. (3) A statement v in 5 may be speci-
, 0

fied as being attacked at most, v \I times. - The sequence is an illiberal

game if, in addition to "(1) - (3), ~he followin~ hold5:" (4) 52i+1 must

refer to s2i. - A (liberal or illiberal) game is won if it is finite, ends

i

j
                                   

                                                                                                       ©



- 4 -

at an even position, and cannot be continued without ceasing to be a liberal

or illiberal game respectively.

Lemma: Every winning strategy for illiberal games can be extended to a winning

strategy for liberal games.

S.D.FRIEDMAN: Forcing in recursion theory.

In this talk we indicate how to show that the ~-degrees form an undecidable ~

partial ordering for all admissible~. This result was established for any

I 3 admissible ~ by Dorer, using the minimal degree construction of Shore.

Thus his approach was based on the possibility of !ealizing finite distributive

lattices as initial segments. Our approach is based on a coding met~od due

to Slaman-Woodin which is a finite initial segment· construction, rather .than

one which requires perfeet trees. Conjecture Thy(~-Degrees) is recursiv~ly

isomorphie to 2nd- Order Thy (Lee, E.) (if V=L). We can verify this conjeeture

when ~ is an L-cardinal of uncountable eofinality.

R.O.GANDY: Partial recursive funetional of finite type.

Let ~ be the collection of all hereditarily consistent (= hereditarily monotone)

p~rtial functions of finite type, with ~u'~\as the only ground type. Platek

[66] and Kleene [78] have given schemes intended to characterize the notion

of deterministic comp':!tability for1J; non-deterministic schemes such as "strong

or" are excluded. Kleene has also outlined a semantics for the eyaluation

of terms built up by application of these schemes. Computation of the term

proceeds by "call by name"; if the result is defined then all numerical ex- •pressions occuring in the computation get adefinite va1ue. Kleene characterized

t~e functions defined by such computations as "unimonotone", hut there are

difficulties at types greater than two.

For the case where l' is replaced by the collection e of hereditari1y continuous

monotone partial functions we suggest an alternative approach; it uses the

notion of an interrogation to determine the values of numerical expressions

(in place of Kleene's oracles). Details have been worked out by N. Garcia

(1983) for a different set of schemes. It is hoped that our approach will

provide a.useful analysis of "call by name" procedures at higher types, and
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a clear characterization of t.he subclass 'f,' of -e which is ·ciosed under

the Kleene-Platek schemes. ~' is the class of all functions which can be

computed by finite deterministic, sequential, means.

N.Garcia, New fou~dations for recursion theory, D.Phil.Thesis, Oxford 1983.

S.C.Kleene, Recursive functionals and quantifiers of finite type revisited I,
in Generalized Recursion Theory 11 (Ed. J.E.Fenstad, R.O.Gandy &G.Sacks)
North Holland 1978.

, Recursive functionals and quantifiers of finite type revisited 11,
in The Kleene Symposium (Ed. J.Barwise, H.J.Keisler & K.Kunen) North-Holland
1980.

R.Platek, Foundations of recursion theory, Ph.D.Thesis, Stanford 1966.

J.Y.GIRARD and D.NORMAN: Embeddability of ptykes.

Ptykes are hereditary funetors over ordinals preserving direct limits and

pull-backs. The paper investigates various aspects of the relation "there

is an embedding from A to B": I(A,B) 1= 0.
1°) Weak morphisms: when. I(A,B) I 0, then I(A,B) has a smallest element,

but this does. not yield a simple construction of this morphism. The theory

ofweak morphisms gives a simple inductive way of constructing this morphism

(if it exists) or to recognize that I(A,B) = 0. The use of this theory is

tormuce non denumerable embeddability problems' to denumerable ones.

20
) Amalgamations: when (A.,T .. ) is an i~ductive system, indexed by the opposite

1 1)

·of a tree, then we show the e~istence of a point at infinity (the amalgamation)

for the system. The process is sufficiently effective and funetorial for

our applications.

30
) Functorial boundedness: when f is a "sufficiently" definable function

from \~1 to '~l, we show that f can be bounded (pointwise w.r.t. embeddability)

by a recursive ptyx 'e. \6"' ~-c.1 • Two versions are given, .according to

the aceeption of "suffieiently": 1 f is obtained from a!~ graph 1.. f is

set recursive; in this ease weak morphisms are used to reduce the general ease

to the denumerable one. -
o

4 ) lA-technology: TA is the tree of deseending sequenees of A. We show the

existence of a recursive I such that for all A, I(TA,B)10 ~ I(A,I(B)10.

This enables us to generalize Keehris &Woodin's theorem on I 1 sets of ptykes

to 1: i sets.
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E.R.GRIFFOR: lr~-logiC and definable uniformization.(w/·J.Y.Girard).

We give proofs of the following results using the tools oflf~-logiC:

(A) (Martin-Solovay) If all sharps exist, then every non-empty L~(X)
1set has a ~4(x) element.

and

(B) (Martin) If all sharps exist and 0+ does not exist, let x ~ ~LS
. 1

then every !3(x) set of reals can be written as an (.)l-union of Borel

sets. e
Both proofs generalize to I 1(x) for n ~ 3 modulo the existence, respectively

n
nonexistence of 'certain universal ptykes.

L.HARRINGTON: Infinite injury.

We present a format for construing infinite injury 'priority arguments as

aseries of constructions: one recursive in 0; one recursive in 0'; and one

recursive in O".(For certain extensions of the infinite injury method, there

will also be a construction recursive in 0"', and sometimes beyond). So,

we have.the constructions on three levels: level. 0: 01; level 1:~; level

3:A~.
Level 0 will be a finite injury construction where, via a limiting process,

the requirements and their priority listing are built at level l~ Similarly

the constructioo'on level 1 (which includes the requirements for level 0)

is built by a finite injury priority argument,. and the requirements for this

level 1 construction are built on level 2.

All known examples of priority'arguments can apparently be developed using

this format, 'and it is suggested that there are c~rtain mathematical and

pedagogical advantages for doing so.

P.G.HINMAN: Random computations and araeies.

We consider the complexity classes NP, R, BPP, and related classes obtained

by relativization and dualization. Proofs of inclusions a..s.:B among such

classes are usually relativizable and yield also VA. QlA S ~A, which
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we write (l~J3. It is, of course, much easier to prove negative results

4... -I-9l> than to. show 0- t/=;B. We survey known positive and negative ~­

relationships including. several new ones. ,For example, if li.: = NP n co-NP,

we have R ~ A and NP, ~ t:fPP ,BPpA • Proofs are based on characterizations

of classes using polynomial relations and the quantifiers 3 , ~, and 3+,

where 3+ \ u \~ n • A(x, u), means that for same €., 0 < e < 1, independent

of x, 1), A(x, u) holds for. at least t..' 2n+1 many af the strings U.E. \ 0,1\-

of length at most n.

S.HOMER: Minimal degrees for polynomial reducibilities.

A new polynomial time redu:cib~lity is defined. This reducibil;i.ty, "honest"

polynomial-time Turing reducibility, is a strengthening of reducibilities

which are usually considered. It is shown that 00 recursive'set is minimal

with respect to this.r~ducibility. On the other hand, if no set recursive

in 0" is minimal then P I NP. The methods used here are recursiontheoretic

and ar~ extensions of thase used to construct minimal Turing degrees.

G.JÄGER: r;, revisi ted.

Several theories for iterated admissible sets af strength r were presented
~. 0

which share the ~eature.?f having fairly strang set existence axioms on the

price.of being weak with respect to induction principles available.

One typical example: Let KPU be Kripke-Platek set theory above the natural

numbers. as' urelements. KPUo is obtained from KPU by restricting campiete

induction on~ to ~o farmulas and omitting ~-induction completely. Then

KPUo + JJx3y(x ~ y & y is admissible) is the"strangest'; theory of strength ro •

1A.S.KECHRIS: Examples oflrr sets and norms.

1We present some new exampies oflT1 non-~~rel sets, such as (1) The set of

continuous functions with everywhere convergent Fourier series and (2) (Solovay)

The .set of closed sets of ~niqueness. We also discuss natural lf~-norms on
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L

on these and other exampies (such as ~n'the set of everywhere differentiable

functions, due to H.Woodin and the author). In addition we explain some new

methods for proving non-Borelness results. These also give simplified proofs

for some older examples such as the class of nowhere differentiable functions

or the Besicoritch functions (The orig~nal proofs of these'were due to Mauldin).

Other classifications of sets in the projective hierarchy are given, including

Woodin's result that the set of continuous functions satisfying the Mean

Value Theorem isT~ but not Z~, and those satisfying Rolle's Theorem is

I~ but not Borei. Finally we discuss an example of a natural Borel inseparable ~

pair of 1r~ sets due to H.Becker.

A.KUCERA: Degrees of complete extensions of Peano arithmetic.

In many constructions in recursion< theory the concept of l-genericity plays

the key role. E.g. constructions showing that degree 2' has the cupping property,

that any degree below 2' is complemented etc. Studying structural properties

of 'initial segments of the form ~(* !), where ~ is a degree of a complete

extension of PA,the situation is quite different. In fact, there is a degree

of a complete extension of PA which does not bound any l-generic degree.

Thus constructions using, a complete extension of PA as an oracle must, in

general, use other techniques. One of the convenient tools is the use of

~-classes (of sets). As an example, the fol~owing theorem holds.

Theorem., Any degree of a complete 'extension of PA has the cupping property.

Same other results and open questions are mentioned too. One of them is of

special interest.

Theorem. There is a degree ~ of a complete extension of PA and a degree ~ ~

such that 1) ~ ~ ~ &~~ ~ and 2) for every degree Z containing a complete

extension of PA and satisfying Z~~, ~ <'z holds.

Question. Given ~ and ~ with the just mentioned properties, can ~ be (nontri-

vially) cupped to ~?

A.H.LACHLAN: Codes for countablet~-stable!~-categoricalstructures.

On the basis of recent progress in the study of the class' ~ of countable

~stable, Q-categorical structures, a notion of code for structures ~ f
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is proposed. To have a code a structure MS~ ~ust have i finite ianguage.

In this ease a code for M consists of a finite L-structure ~ Ehorn M ~~d ..

a fifnite sequence <li 1 ~ i 6 n> of pairs of L-formulas which characterize

the isomorphism type of M over N.

Conjec ture 1. Every M€. ~ has a f ini te language.

Conjecture 2. Every M~e has a ~ode.

Conjecture 3. The class ~ is strongly recursively enumerable, i.e. there

exists an r.e. set C of codes such that every ME~. has a c~de ~n, c..

W.MAASS: Computational complexity.

Development of techniques for proving. quadratic lower b9~nds for deterministic

and nondeterministic Turing machines. Use of ~amsey's Theo~em for lower bound

arguments.

G:ODIFREDDI: The structure of m-degrees.

We give an recursion theoretical proof of an algebrai~ char~cterizati~n of
~ .. .. . .

the m-degre.es (obtainedby Ershov) and deduce. answers for ,all the kin~s of
, ~ .. . ~ ~ . . .:

glo~al questions that are usually asked for degree-theoret~cal stru~ture~~.

W.POHLERS: Inaccessible cardinals and recursive ordinals.

Let Ko denote the class of principal ordinals and,let- ;0 _?~. it~~o~d~ri~g:

fUDetion. Define Ks+1 : = "closure· of the regular, ~ixed. PO~Ilts of+ S: fn: ~~~

order topology of the ordinals" and K~ = {:\ Kl for limit ~ and let C\>S

be the ordering function of Ks • Denote by ~ the least ordinal in Ks and

put A:= least ordinal ~ such that K'~ = X•. We define an ordiQ.al notation

system which internalizes the ordinals below ~ and gives notations to a

large segment. of the recursive ordinals. .. ~.

-'
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J.SHINODA: Admissible ordinals relative to absolute type two objects.

G.E.Sacks showed that every countable admissible ordinal )~ can be represented

as the first admissible ordinal >~ relative to some real X. We shall give

an extension of this theorem. We say that a normal type 2 object 'F on ~is

absolute with parameters Y= (11 ' ••• ' '0) if there exist a I I-formula i (x ,1')
and a lfI-formula '1(x ,1) such that for every admissible set H with YE. M, M

is F-admissible iff
~ ~

(\l f e. Mn ~~) M F ( !. (f ,~) ~ Ti(f ,1) )
and F nM = \ f ~ Mn ~~: MF i(f.1i)~ . If F is absolute,then a theorem ~
similar to that of Saeks holds for F-admissible ordinals with some restrietions.

As a eoro1lary we ean show:

Suppose ~< the first recursively Mahlo ordinal. Then every countable

~-recursively inaeeessible ordinal can be represented as the first ~-reeursive­

ly inaceessible ordinal relative to same real X.

S.G.SIMPSON: Reeursion-theoretie aspects of the dual Ramsey theorem.

We begin by reviewing the contents of "A dual form of Ramsey's theorem",

by T.J.Carlson and S.G.Simpson (to appear in Advances in Mathematics). Ramsey's

theorem is eoneerned with subsets of the natural numbers; the dual form is

concerned with partitions of the natural numbers. We also consider the generali­

zation to A-partitions, where A is a finite alphabet. If we foree with infinite

reeursive A-partitions, we obtain an initial segment of the Turing degrees

whieh is isomorphie to the"(nondistributive) lattice of partitions'of A.

This initial segment will be biimmune-free provided Carlson-Simpson Lemma

2.4 is true recursively. 1s every finite lattice isomorphie to-a biimmune-

free initial segment of the Turing degrees?

T.A.SLAMAN and J.R.STEEL: Degree invariant constructions on the real numbers.

Definition. i) A property P holds a.e. in D, the Turing degrees, if

3 a V. b ~ a P(b).

(ii) F: t.)t.J"':'L,)W is degree invariant (resp. order. preserving)

~ ,
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if x =T y .;;, F{x) =T F{y) (resp. x ~T y ~ F{x) ~T F(y) ).

(iii) f: D7 D is representable if ~ F: l.,)\.)~ tJ'3 so .that

f{deg(x» = deg{F(x» 8.e.

Ma'rtin .has conjectured: (ZF+AD) Suppose

( I). If f(d) ~ d a.e. then f i5

(11) Say f t? g if f.(d) ~ g(d)

functions f so that f(d} ~ d a.e.

f: D~ D is representable then

constant a.e.

a. e. &ie M wellorders the representable

On the other hand, Sacks has conjectured that there is a degree invariant

solution to Post's Problem (which contradicts (11».

Theorem 1. (ZF+AD) Tf f: D'7 D and f(d) < d a.e. then f is constant a.e.

Theorem 2. (ZF+AD) Tf f: D~ D, a E b ~ f(a) ~ f(b) a.e. and f(d)~ d

a.e. then either f(d) is greater than any degree hyperarithmetic in d a.e.

or there is a countable ordinal ~ so that f(d) = d~ a.e.

Remark. In the above AD may be rep1aced by "f is Borei".

Theorem 3. There is a degree invariant solution to Post's problem for those

rea1s of degree recursive1y enumerab1e in 0' .

R.I.SOARE: Finite automata snd parallel computation in recursion theory.

The purpose of this work is to useconceptsof computer science to explain

and' simplify constructions in r~cursion theor.y, especially the 0.', 0"., and

0!"-priority arguments. One first designs a strategy to meet a. single require­

ment in isolation. One designs a finite automaton (chtp) to implement this

strategy. Secondly one analyzes all possible outcomes A = ~ a 1 ' • · · '~n~ of

this chip inc1uding possible infinite cyc1es. An appropriate ordering ~J\

is put on1\. The second step is to construct the ~ull machine by placing.

a copy. of the .basic chip at each node in the tree , T = AC:: ~ of possib1e

outcomes. This ~orresponds to the computer architecture. Finally~ one sp~cifies

the ope~ating sys~em which specifies exact1y how and. when each chip acts

and interacts wi th the o.thers. . .

J . STERN :. Measurability of (lightface) l~ ·sets.

The measure problem is the following: how can one build non-measurable subsets

of~ and how complicated are these sets?
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From the point of view of set theory the problem has been solved by the work

of SOLOVAY and SHELAH._ If our base th~ory iso ZF+DC then the measurability

of all sets of reals and the existence of an inaccessible cardinal are equicon­

sistent statements.

Although no inaccessible cardinal is in'volved, the measur"ability of !~ sets

is itself a strong statement; itimplies 'that all!~ sets have the property

of Baire. This result has no converse: given a model of ZFC, one can build

a generic extension in which

i) ~ ~ sets have the property of Baire

1·1·) .. 1 R'2 sets are amsey

iii) ~ome l ~ set· is not measurable.

S.S.WAINER: Subrecursive hierarchies.

The aim is to find an ~xacr way of assigning ordinals to computations - as

a measure of their complexity.

The "slow-growing" hierarchy G collapses countable tree-ordinals 0( onto

number-theoretic functions G (ocJ such that nicely structured tA.' s are the

direct limits of their corresponding G(k)'s.

G collapses Kleene-style computations over tree-ordinals onto identical compu­

tations over integers, and this provides a method of assigning ordinals in

a natural way. For example the ordinals assigned to "fast-growing" functions

at levels " IIDn ', n< L) are I IDn+11, n < t..;) respectively.

G.WECHSUNG: Sparse compiete sets.

The following known resuits show ta what extent it is unlikely that NP or

coNP have ~P-complete sparse sets:
m

(1) P NP ... there exists a E P-campiete sparse set in coNP (Fortune).
m P

( 2) P NP ~ there exists a ~m-complete sparse set in NP (Mahaney).

Nondeterministic and random versions of polynamial time reducibility (denoted

by :(~ and ~R' resp.) have been studied by L.M.Adleman and K.Manders in

1979. Since &E: s. :!R S: ~~ it could be possible that there are tiR-
Pcompiete ( :S ~ -compiete) sets which are not ~m-complete (C R-complete) •

L
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We give evidence for sparse ~R-complete (~~-complete) sets not to exist

in NP and coNP:

(3) NP u coNP R "coR H' there exists a 6 R-comple~e sparse set in NP.

(4) NP::;:: coNP ~ there exists a ~X-complete sparse set in NP.

We get also true statements by replacing NP with coNP on the 'fight hand sides

of statements (3) and (4).

e .H.WOODIN: Aspects of complementation.

Suppose x S c.). Let aX
denote the hyper jump cif x, i. e. es?' is the compiete

I~ (x) subset of (,.). Let HYP denote the set of hyper'arithmetic subsets. of w.
Theorem 1. Suppose x S:""'" and x e. HYP. Then there exists y Sr c..) such' .;

that OX, (IY are each recursive in the pair < x, t>. In fact y can be chosen

so that t1 Y is recursive in < (J, y).

'The.maintheorem behind theorem 1 is a compiementation 'result, about Turing

degrees where the join is taken as the usual Turing join; how~ver ~the.m~e~

is str61gthened to the hyperarithmetic meet.

There is aversion of theorem 1 for constructible degrees.

Theorem 2. Suppose x 9 (,,) and x" L. Assurne xt' exists. Then there exists

y So (,,) such that x., y" are each recursive in ~x,y>. As before' y can

be chosen so that y. is recursive in < y ,O.~.

Berichterstatter: Dr. Klaus Ambos-Spies.
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