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Rekursionstheorie.

15.4. bis 21,4,1984

Die Tagung fand unter der Leitung der Herren Prof. Dr. H.-D. Ebbinghaus (Frei-
burg), Prof. Dr. Gert Miller (Heidelberg) and Professor Gerald E. Sacks (Har-
vard Universitdt) statt. Im Mittelpunkt des Interesses standen Fragen dus

. allen Bereichen der Berechenbarkeitstheorie. An der Tagung haben 43 Wissen-

Deutsche

schaftler aus 11 Lindern teilgenommen. In 28 Vortridgen wurden neue Ergebnisse’
aus fast allen Teilbereichen der Rekursionstheorie vorgestellt, eingeschlosseén
Beitrdge zur deskriptiven Mengenlehre und zu rekursionstheoretischen Aspekten’
der Beweistheorie. Schwerpunkte bildeten die Theorie der Unlssbarkeitsgrade; -
die Komplexititstheorie und die verallgemeinerte Rekursionstheorie. Abgerundet
wurde das Programm durch einen Abendvortrag von Prof. Sacks iibér zentrale =
offene Fragen in der Rekursionstheorie und eirne von Prof. Jockusch geleltete
"Problem session' . )

Die Veroffentllchung eines Tagungsbandes in der Reihe "Sprlnger Lecture’ Notes

in Mathematics" ist vorgesehen.
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Vortragsausziige

K.AMBOS-SPIES: Polynomial-time degrees.

We present some new results on the algebraic structure of the polynomial

time (many-one and Turing) degrees of recursive sets. Besides fairly general
results about distributive sublattices of intervals of polynomial-time degrees,
we distinguish the structure of the p-Turing degrees from that of the p-many-
one degrees and exhibit nonisomorphic intervals in the latter structure.
Moreover, we present some results on embeddings of nondistributive lattices

and on infima and suprema of pairs of degrees. Finally we show that the elemen-

tary theory of the p-many-one degrees is not Ro—categorical.

ANDREAS BLASS: The Kleene ordering of ultrafilters.

We consider non-principal ultrafilters over the set 3 of natural numbers

as type-two objects and ask when one of them is Kleene reducible to (i.e.,
recursive in a real and) another. This reducibility, U sK V, clearly holds
when U is the image of V under some function f: w —Pw> , (i.e. ULV

in the Rudin-Keisler ordering) and also when U is the limit with respeét

to V of a sequence of ultrafilters that are sy V. I know of no instance

of ‘K between ultrafilters that cannot be obtained by repeated application
of these two facts and the transitivity Of'ékf The conjecture that all in-
stances of 45K between ultrafilters are trivial in this sense takes a parti-
cularly simple form when V is selective, for then the only ultrafilters that
are trivially =§K V are those that are, up to isomorphism, obtainable from
V by iterated summation, and they form a chain in the Rudin-Keisler ordering.
The only case of the conjecture that has been proved is that in which both

U and V are selective: Between selective ultrafilters, Kleene reducibility

is equivalent to isomorphism. The proof depends on the following extension

of a partition theorem of Mathias. If U and V are non-isomorphic selective
ultrafilters, and if X 1is a ;'.} family of infinite subsets of W, then there
exist A€U and B €V such that X contains all or none of the infinite
subsets of w of the form {_ao < b0 < a < b1 < ...3 with all ai'e A and
all bie B.
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W.BUCHHOLZ: An independence result fog'!r,}-CA):rBI.

It is shown that a certain combinatorial statement on finite trees (with
labels ¢) is independent of the subsystem (W}—CA)+BI of classical analysis.
This result is an extension of an earlier independence result for Peano arith-
metic by Kirby and Paris [Bull. London Math. Soc. 14 (1982), 285—293].

J.DILLER: An embedding of IDx in IDx(W).

We embed the theory of X-times iterated inductive definitions IDy by Feferman's
1970 Ti-translation in a second order system Ty not ‘closed under arithmetic
comprehension and containing bar-induction principles instedd. Ty can.be
directly interpreted in the theory IDk(W) of the hyperjump hierarchy wy

= ww<Y for y4 ok, by relativization to RecW. Similar to Feferman 1982, -

this proves that IDy is an extension by definitions of ID,(W). This is work

in co-operation with H.D.Wunderlich from Miinster.

W.FELSCHER: A lemma on the extension of strategies.

Let So’ S1 be two-'disjoint sets the elements of which are called (even and
odd) statements. Assume that every v in So determines a natural number W v\, -

Assume that every v in Si’ i=0,1, determinés a finite subset A(v) \of'Sl_i

‘and that every w in A(v) determines a finite subset A(v,w) of Si; ‘the elements

of A(\;') are called attacks on v and the elements of A(v,w) are called answers
to thevattack w. Consider a sequence S8y +ee of statements, 8y; € So’
SZil+1 € Sl’ " each of which, except Sy is specified as being either an attack
upon a previous one or an answer to a previously specified attack. Such a
sequence is a liberal g_a_pﬁ provided the following holds: (1) If s; is speci-
fied as answer to an.at.tack s, and if i k' » j, k '—‘j _even, and Sic is
also specified as an attack, then there exists 'h such that i > h9 k

and sy is specified as an answer to sk (2) There must be no two specified
answers referring to the same attack. (3) A statement v in So may be speci-
fied as being attacked at most B v{ times. - The sequence is an illiberal
game if, in addition to (1) - (3), t.he following holds: (&) Séi+l must

refer to Spi A (liberal or illiberal) game is won if it is finite, ends
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at an even position, and cannot be continued without ceasing to be a liberal
or illiberal game respectively.
Lemma: Every winning strategy for illiberal games can be extended to a winning

strategy for liberal games.

S.D.FRIEDMAN: Forcing in recursion theory.

In this talk we indicate how to show that the p(-degrees form an undecidable ‘
partial ordering for all admissible . This result was established for any

23 admissible ® by Dorer, using the minimal degree construction of Shore.

Thus his approach was based on the possibility of realizing finite distributive
lattices as initial segments. Our approach is based on a coding method due

to Slaman-Woodin which is a finite initial segment construction, rather than

one which requires perfect trees. Conjecture Thy(X-Degrees) is recursively
isomorphic to an Order Thy {Ly,€>(if V=L). We can verify this conjecture

when o ié an L-cardinal of uncountable cofinality.

R.O.GANDY: Partial recursive functional of finite type.

Let P be the collection of all hereditarily consistent (= hereditarily monotone)
partial functions of finite type, with wu{.\.\ as the only ground type. Platek

{661 and Kleene [78] have given schemes intended to characterize the notion

of deterministic computability for P; non-deterministic schemes such as "strong

or" are excluded. Kleene has also outlined a semantics for the evaluation

of terms built up by application of these schemes. Computation of the term .
proceeds by "call by name"; if the result is defined then all numerical ex-—
pressions occuring in the computation get a definite value. Kleene characterized |
the functions defined by such computations as "unimonotone", but there are
difficulties at types greater than two.

For the case where P is replaced by the collection £ of hereditarily continuous
monotone partial functions we suggest an alternative approach; it uses the

notion of an interrogation to determine the values of numerical expressions

(in place of_Kleene's oracles). Details have been worked out by N. Garcia

(1983) for a different set of schemes. It is hoped that our approach will

provide a.useful analysis of "call by name" procedures at higher types, and
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a clear characterization of the subclass ' of € which is ‘closed under
the Kleene-Platek schemes. ©' is the class of all functions which can be

computed by finite deterministic, sequential, means.

N.Garcia, New foundations for recursion theory, D.Phil.Thesis, Oxford 1983.

S.C.Kleene, Recursive functionals and quantifiers of finite type revisited I,
in Generalized Recursion Theory II (Ed. J.E.Fenstad, R.0.Gandy & G.Sacks)
North Holland 1978.

, Recursive functionals and quantifiers of finite type revisited II,
in The Kleene Symposium (Ed. J.Barwise, H.J.Keisler & K.Kunen) North-Holland

1980. .
’ R.Platek, Foundations of recursion theory, Ph.D.Thesis, Stanford 1966.

J.Y.GIRARD and D.NORMAN: Embeddability of ptykes.

Ptykes are hereditary functors over ordinals preserving direct limits and
pull-backs. The paper investigates various aspects of the relation "there

is an embedding from A to B": I(A,B) # @.

10) Weak morphisms: when I(A,B) # @, then I(A,B) has a smallest element,

but this does not yield a simple construction of this morphism. The theory

of weak morphisms gives a simple inductive way of constructing this morphism
(if it exists) or to recognize that I(A,B) = @. The use of this theory is

to raluce non denumerable embeddability problems to denumerable ones.

20) Amalgamations: when (Ai’Tij) is an inductive system, indexed by the opposite
‘of a tree, then we show the existence of a point at infinity (the amalgamation)
for the system. The process is sufficiently effective and functorial for

our applications.

. 3%) Functorial boundedness: when f is a "sufficiently" definable function

oF

from \g| to 1t|, we show that f can be bounded (pointwise w.r.t. embeddability)
by a recursive ptyx § € \e 5T| . Two versions are given, according to

the acception of "sufficiently": 1 f is obtained from a Zi graph 2 f is

set recursive; in this case weak morphisms are used to reduce the general case
to the denumerable one.

40) Tq-technology: TA is the tree of descending sequences of A. We show the
existence of a recursive § such that for all A, I(TA,B)¢¢ - }(A,i(B))#ﬁ.

This enables us to generalize Kechris & Woodin's theorem on il sets of ptykes
to lez sets.
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E.R.GRIFFOR: Tzl-logic and definable uniformization.(w/ J.Y.Girard).

We give proofs of the following results using the tools of . -loglc.A

(A) (Martln—Solovay) If all sharps exist, then every non-empty Z (x)

set has a Z&a(x) element.
and

(B) (Martin) If all sharps exist and 0% does not exist, let x e “u

then ever& Zé(x) set of reals can be written as an col-union of Borel

sets. .
Both proofs generalize to Zi(x) for n » 3 ‘modulo the existence, respectively

nonexistence of ‘certain universal ptykes.

L.HARRINGTON: Infinite injury.

We present a format for construing infinite injury priority arguments as

a series of constructions: one recursive in O; one recursive in 0'; and one
recursive in O".(For certain extensions of the infinite injury method, there
will also be a construction recursive in O"', and sometimes beyond). So,

we have.the constructions on three levels: level.O: Al level 1: AZ level
3: 153. )

Level O will be a finite injury construction where, via a limiting process,
the requirements and their priority listing are built at level 1. Similarly
the construction on level 1 (which includes the requirements for level 0)

is built by a finite injury priority argument, and the requirements for this
level 1 construction are built on level 2.

All known examples of priority arguments can apparently be developed using .
this format, -and it is suggested that there are certain mathematical and

pedagogical advantages for doing so.

P.G.HINMAN: Random computations and oracles.

We consider the complexity classes NP, R, BPP, and related classes obtained

by relativization and dualization. Proofs of inclusions OL.&B among such
classes are usually relativizable and yield also ¥ A . QU =3 R, which
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we write A>B. 1t is, of course, much easier to prove negative results
4. 3B than to show Q. ¢3. We survey known positive and negative —» -
reiationships including several new ones. For example, if A: = NP A co-NP,
we have R - A and NP -/#ABPP

of classes using polynomial relations and the quantifiers 3, ¥, and 3+,

BPP2 . Proofs are based on characterizations
where 3+ fulgn . A(x,u) means that for some £, O < € < 1, independent

of x,n, A(x,u) holds for at least £..2n+1 many of the strings ue€ ‘0,1\*
of length at most n.

S.HOMER: Minimal degrees for polynomial reducibilities.

A new polynomial time reducibility is defined. This reducibility, "honest"
polynomial-time Turing reducibility, is a strengthenlng of reducibilities
which are usually considered. It is shown that no recursive set is minimal
with respect to this reducibility. On the other hand, if no set recursive
in O" is minimal then P # NP. The methods used here are recursiontheoretic

and are extensions of those used to construct minimal Turing degrees.

G.JAGER: [ revisited.

Several theories for 1terated admissible sets of strength l' were presented
which share the feature of having fairly strong set ex1stence axioms on the
price of being weak with respect to induction principles available.

One typical example: Let KPU be Kripke-Platek set theory above the natural

numbers as urelements. KPU® is obtained from KPU by restricting complete

. induction on N to Ao formulas and omitting €-induction completely. Then . -

KPU® + ¥x3y(x€y & y is admissible) is the"strongest" theory of strength ro'

A.S.KECHRIS: Examples of '\T} sets and norms.

We present some new examples of Tl'i non-Borel sets, such as (1) The set of
continuous functions with everywhere convergent Fourier series and (2) (Solovay)

The set of closed sets of uniqueness. We also discuss natural Ti-norms on

e
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on these and other examples (such as on the set of everywhere differentiable
functions, due to H.Woodin and the author). In addition we explain some new

methods for proving non-Borelness results. These also give simplified proofs

for some older examples such as the class of nowhere differentiable functions

or the Besicoritch functions (The original proofs of these were due to Mauldin).
Other classifications of sets in the projective hierarchy are given, including
Woodin's result that the set of continuous functions satlsfylng the Mean

Value Theorem 1s'ﬂ but not Zz, and those satisfying Rolle s Theorem is

2} but not Borel. Fmally we discuss an example of a natural Borel inseparable .
pair of 'tr} sets due to H.Becker.

A.KUCERA: Degrees of complete extensions of Peano arithmetic.

In many constructions in recursion theory the concept of l-genericity plays

the key role. E.g. constructions showing that degree 2' has the cupping property,
that any degree below 9' is complemented etc. Studying structural properties

of initial segments of the form ol (< 3), where a is a degree of a complete
extension of PA,the situation is quite different. In fact, there is a degree

of a complete extension of PA which does not bound any l-generic degree.

Thus constructions using a complete extension of PA as an oracle must, in
general, use other techniques. One of the convenient tools is the use of
le—classes (of sets). As an example, the following theorem holds.

Theorem. Any degree of a complete extension of PA has the cupping property.

Some other results and open questions are mentioned too. One of them is of
special interest.

Theorem. There is a degree g of a complete extension of PA and a degree } .
such that 1) B # 0&b« a and 2) for every degree C containing a complete
extension of PA and satisfying ¢ < a b <'c holds.

Question. Given a and P‘ with the just mentioned properties, can 2 be (nontri-
vially) cupped to 2 ?

A.H.LACHLAN: Codes for countable, () -stable, td-categorical structures.

On the basis of recent progress in the study of the class’ € of countable

W-stable, W-categorical structures, a notion of code for structures € C

Deutsche
Forschungsgemeischat © @



oF

" Deutsche
Forschungsgemeinschaft

is proposed. To have a code a structure M e ¥ must have a finit;e ’langu.;:lge.A
In this case a code for M consists of a finite L-structure Nshom M gn'd:\
a fifnite sequence <y, : 1< i< n> of pairs of L-formulas which charactgfize
the isomorphism type of M over N.
Conjecture . Every M€® has a finite language.
Conjecture 2. Every M e¥ has a code.
Conjecture 3. The class € is strongly recursively enumerable, i.e. there

exists an r.e. set C of codes such that every M€E has a code in C..

W.MAASS: Computational complexity.

Development of techniques for proving. quadratic lower bounds for determmlstlc
and nondeterministic Turing machines. Use of Ramsey s Theorem for lower bound

arguments.

G:ODIFREDDI: The structure of m—de.grees.

We give an recursion theoretical proof of an algebraic chargcterizatidn of‘
the m-degrees (obtained by Ershov) and deduce answers for all the kinds pf

global questions that are usually asked for degree-theoretical structures.

W.POHLERS: Inaccessible cardinals and recursive ordinals.

Let Ko denote the class of principal ordinals and let- *0 __l;_e, it‘_s_:o;d‘eri:l_];
function. Define X_, := "closure.of the regular fixed points of Q.S:Jin‘ the
order topology of the ordinals" and K, = N ](‘ for limit A and let Qs
be the ordering function of K . Denote by L the least ordinal in l( and
put A := least ordinal X such that K‘8 X We deflne an ordmal notatlon

~system which internalizes the ordinals below A and gives notations to a

large segment. of the recursive ordinals.
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J.SHINODA: Admissible ordinals relative to absolute type two objects.

G.E.Sacks showed that every countable admissible ordinal > can be represented
as the first admissible ordinal > (d relative to some real X. We shall give
an extension of this theorem. We say that a normal type 2 object F on w is
absolute with parameters ? = (Tl,...,}n) if there exist a Z l-formu]:s §(x,‘§)
and a vl—formula ?(x,?) such that for every admissible set M with }eM, M
is F-admissible iff

WreMad) ME (BED S TED)
and FAOMS= { feMan W ME i(f,‘)& . If F is absolute,then a theorem
similar to that of Sacks holds for F-admissible ordinals with some restrictions.

As a corollary we can show:
Suppose ;< the first recursively Mahlo ordinal. Then every countable
g—recursively inaccessible ordinal can be represented as the first g—recursive-

ly inaccessible ordinal relative to some real X.

S.G.SIMPSON: Recursion-theoretic aspects of the dual Ramsey theorem.

We begin by reviewing the contents of "A dual form of Ramsey's theorem",

by T.J.Carlson and S.G.Simpson (to appear in Advances in Mathematics). Ramsey's
theorem is concerned with subsets of the natural numbers; the dual form is
concerned with partitions of the natural numbers. We also consider the generali-
zation to A-partitions, where A is a finite alphabet. If we force with infinite
recursive A—par‘titions, we obtain an initial segment of the Turing degrees
which is isomorphic to the (nondistributive) lattice of partitions of A.

This initial segment will be biimmune-free provided Carlson-Simpson Lemma

2.4 is true recursively. Is every finite lattice isomorphic to-a biimmune- .

free initial segment of the Turing degrees?

T.A.SLAMAN and J.R.STEEL: Degree invariant constructions on the real numbers.

Definition. ( i) A property P holds a.e. in D, the Turing degrees, if

Deutsche

1a¥by a P(b).

( ii) F: P9 is degree invariant (resp. order, preserving)
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if x 2,y =9 F(x) 2p F(y) (resp. x<py = F(X)NT F(y) ).
(iii) f: DD is representable if 3 F: ¥ 9 so that
f(deg(x)) = deg(F(x)) a.e.

Martin has conjectured: (ZF+AD) Suppose f: D —» D is representable then

(I). If £(d)}$ d a.e. then f is constant a.e. .

(I1) Say f I"P g if ‘f(d)z g(d) a.e. SM wello_rders the representable
functions f so that £(d)» d a.e.
On the other hand, Sacks has conJectured that there is a degree invariant

solution to Post's Problem (which contradicts (II))

Theorem 1. (ZF+AD) If f: D= D and f(d)< d a.e. then f is constant a.e.

Theorem 2. (ZF+AD) If f: D2 D, a<b -? f(a) € f(b) a.e. and f(d)2d
a.e. then either f(d) is greater than any degree hyperarithmetic in d a.e.

or there is a countable ordinal & so that £(d) = d“ a.e.

Remark. In the above AD may be replaced by "f is Borel".

Theorem 3. There is a degree invariant solution to Post's problem for those

reals of degree recursively enumerable in O'.

R.I.SOARE: Finite automata and parallel combutation in recursion theory.

The purpose of this work is to use concepts .of compu'ter science to explain -
and simplify constructions in recursion theory, especially the @', G’;. l

@' -priority arguments. One first designs a strategy to meet a single require-
ment in isolation. One designs a finite automaton (chlp) to implement this
strategy. Secondly one analyzes all possible outcomes A= {al,...,enl] of

this chip including possible infinite cycles. An appropriate ordering <,

is put on /A . The second step is to construct the full machine by placing.

a copy. of the basic chip at each node in the tree | T = A<w of possible
outcomes. This corresponds to the computer architecture. Finally, one specifies
the operating system which specifies exactly how and when eaeh chip acts

and interacts with the others.

J.STERN: Measurability of (lightface) I1 sets.

The measure problem is the follewing: how can one build non-measurable subsets

of R and how complicated are these sets?

o
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From the point of view of set theory the problem has been solved by the work
of SOLOVAY and SHELAH. If our base theory is ZE‘+DC then the measurability

of all sets of reals and the existence of a'n inaccessible cardinal are equicon-
sistent statements. ‘
Although no inaccessible cardinal is involved, the measurability of Z; sets
is itself a strong statement; it implies .that all ;% sets have the property
of Baire. This result has no converse: given a model of ZFC, one can build

a generic extension in which

i) z; sets have the property of Baire

ii) _Z_; sets are Ramsey

iii) some Z; set -is not measurable.

S.S.WAINER: Subrecursive hierarchies.

The aim is to find an 'exact' way of assigning ordinals to computations - as

a measure of their complexity.

The "slow-growing" hierarchy G collapses countable tree-ordinals &« onto
number-theoretic functions G {®) such that nicelystructured &'s are the
direct limits of their corresponding G(&X)'s.

G collapses Kleene-style computations over tree-ordinals onto identical compu-
tations over integers, and this provides a method of assigning ordinals in

a natural wdy. For example the ordinals assigned to "fasf—growing" functions

at levels »IIDnl, n<w are |ID_ .|, n<w respectively.

n+l

G.WECHSUNG: Sparse complete sets.

The following known results show to what extent it is unlikely that NP or
coNP have supl—complete sparse sets:

(1) P = NP &> there exists a snpl—complete sparse set in coNP (Fortune).

(2) P = NP &> there exists a sg-complete sparse set in NP (Mahaney).
Nondeterministic and random versions of polynomial time reducibility (denoted
by sx and SR, resp.) have been studied by L.M.Adleman and K.Manders in
1979. Since é: < SR < ‘8 it could be p0551b1e that there are ‘ -
complete ( =< <y —complete) sets which are not £ -complete ((R-complete)

o®
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We give evidence for sparse sR—complete (s.x—complete) sets not ;:o éxist

in NP and coNP:

(3) NP U coNP = R coR &5 there exists a sR—complete sparse set in NP.
(4) NP = coNP € there exists a sx—complete sparse set in NP.

We get also true statements by replacing NP 'with coNP on the right hand sides
of statements (3) and (4).

H.WOODIN: Aspects of complementation.

Suppose xeWw. Let dx denote the hyperjump of x, i.e. G-X is the cdmplete

zi(x) subset of . Let HYP denote the set of hyperarithmetic subsets. of 3.

Theorem 1. Suppose x & W and x € HYP. Then there exists y & & such'

that Ox, O'y are each recursive in the pair < x,y». In fact y can be chosen

so that &Y 1is recursive in <0,y>.

‘'The -main theorem behind theorem 1 is a complementation result about Tufing

degrees where the join is taken as the usual Turing join, however ‘the meet
is strengthened to the hyperarithmetic meet. .

There is a version of theorem 1 for constructible degrees.

Theorem 2. Suppose x €4 and x € L. Assume x¥® exists. Then there exists

y € & such that x', y’ are each recursive in <x,y>. As before y can

be chosen so that y* is recursive in <y,0*7.

Berichterstatter: Dr. Klaus Ambos-Spies.
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