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Obige Tagung tulter Lei~g von M. ~chbacher (Pasadena) , D. Goldsclnnidt

(Berkeley) uni F. Tinmesfeld (Gießen) hatte sich die ftufgab~ gestellt, den

~sammenhang zwischen graphentheoretischen .(Operation von amalgamier~en.Pro­

dukten auf den' entsprechenden Bäumen) und'geanetrischen Methalen (Tits ' sche

Theorie der Gebäude, Theorie endlicher Tits Geametrien und ihren Ober~ag~­

en) und der. Theorie der endlichen einfachen Gruppen 2'JJ untersuchen. Insbeson­

dere Wlrden Anwendungen obiger Methoden auf ei.:nan (teilweisen) Neu~gB:Jlg 2?Jr

Klassifikation der endlichen einfachen·Gruppen:erörtert.

Un dieser speziellen ThEmenstel1ung Rechmng 2'JJ t~a~en, WJrde die ~agung

durch 2 Obersichtsvort~äge eröffnet. Delgado - Stel~cher referierten über

die AmalgaDDD.ethoden, J. Tits über die Klassifikation der affinen Gebäude van

Rang ~ 4 und Anwendu:ngen auf die Theorie der endlichen Gruppen und Geanetrien.

Auch die üb~igen Vorträge z~igten, daß hier ein nwes Arbeitsgebiet entstaiden

ist, das einen beftuchtenden Zusammenhang zwischen

1) endlicher Gmppentheorie,

2) der Theorie ~lg. Groppen über lokalen Körpern;

3) geanetrischen Objekten, wie Gebäuden und Tit5 Geane'trien

(auch Rang 2 Objekten, wie BälDnen!)

herstellt.
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Vortragsauszüge

F. DJekenhwt :

- z - .

We introduce the concept of a good prime contributor p to the order IGI of

a finite sTInple group G and we determine these prlines for all G but LZ(q) ,

L3 (q), U3 (q). Given G and p, we define a canonical geametry rp(G) whose e
elements are the maximal subgrcups of G and whose incident pairs are those

whose intersection contains a p-Sylow subgrrnp cf G. The geanetries we look

really for, are all tnxncations of r (G) which are fiTIffi, residually connect-. . p

00, on which G acts ch~ber transitively wi~ a solvable chamber stabil~zer

.and whose non-trivial resi~es repr~duce these conditions fqr. sane s:i)n.ple

graup involved in their G-stabilizer or for a solvable ·graup.

We get a full classification: mairily building gecmetries, aseries of sp~~~ic

geanetr1es and sane truncations. Each sporadic grCllp has san~ g~ome~ry of

rank Z at least. Almost all alternating groups' have· "no:geanetry.: -Most geome­

tries which are produced are known by the work cf. Ronan-Smith, Ronan-Stroth,

the au~or and others .

. A. Chennak:

Index-p systens

Let B be a finite p-giwp, B1 and B'Z a pair of maximal subg!Cl.l~s of B,.
Ti E Aut(Bi ) Ci =1, Z). What can be said about the structure of B (and

about" the action of r l ~d r Z) if na non-identity subgroop of B,'n BZ is

both nonnal in B and invariant under both r 1 and r Z?
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This question cari be investigated via themethods of "Amalgams", much in the

spirit of Goldschmidt' s work. ·Here however the "universal canpletion"

G = <B,r1,rf" acts on-a type of geanetric object (a"gtove) which may'be

thought of as a sheaf of trees over a tree.

~ A.M. Cohen

Local recognition öf'bUildings'öf'sphetical-tYpe

Let ß be the s~dow space of a finite building of type F4 on an end node r.

(lines are the shadows of flags of cotype r). Then there is a s~space (i.e.

lineclosed subset) 6(1) such that for each xE 6 we have x.l Q! ß (1) , where

x.l = {y E 6 I y collin~ar with x}.

Suppose that r is aspace (of points and 'lines) 'such that for e~ch,point x,

the set x.l· is a' subspace isanorphic to ß (1). Assune that

. (*) For each path x,y,z,u in r where x,z and y,u are non-~o~linearpairs,

the size of x.l n y.l n z.l nu.l is either ~ 1 or equal to the size of

x.l n .;- n z..l.

Then r Qt 6. "

In the. "thin" case, there is a (unique) cwnterexample (work of fuset). Thee above result is obtained in joint work with B.N. Cooperstein.

A. Delgado, B. Stellmacher

Rank' 2 grauFs"!; "lI

A rank 2 amalgam consists of a tripie of groups Pl' "B, ~2 and embedd~gs'

(()i : B .... Pi (the infonnation "is typically depicted by Pl. 2 . B s;;;; PZ).
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A general method for the analysis of the structure of amalgams was disOlssed

which we have applied to the proof cf the foilowing

Theorem: Let G be a grwp generated by two finite subgrcups Pl,PZ with

B = P, n P2. Assume th~re exists a pr~e p such that for i= l,2:

, , n· n. n. n.
(i) QP (P.IO (P.)) ~ (S)L2(p 1), (S)U3 (p 1), Sz(p 1), Ree(p 1).

1 P 1

(ii) B=Np.(S)' SESylp(P1 nPZ)
1

(iii) No non-trivial normal subgroup of G is.contained in B. •(iv) t_ (0 (P.)) ~ 0 (P.)
-Po P 1 P 1

l -

Then P1 2 B c: P2 is isomorphic to the amalgam Xl :J Y S X2' where Xi are the

maxTInal parabolic subgroups of a rank 2 gr~p of Lie type (possibly decorated

by saue autanorphisms) and Y is the corresponding Borel subgrwp, or where the

amalgam. corresponds to one cf ti?-~ g~oups M'2.' Aut(M'2)' J 2, G2(2)', 2F4(Z) ,

(in all of Which p = 2) or Tb (in which case p = 3).

o. Diawara

Saue facts' about the 'McLatighlirt .gtwp

We investigate geametries for G = Mf, consisting of a set n of points on which

•
c 3,4,4

0---0---0 0 0

1 1 1 7 2

, 1 2 3 4 11

275 22275 779625 12474000 113400

U4 (3) M21 ·2 (24A4)·53 3.54 f..11l

B =' {1}

125 1+2
3 B= 5 .8

299376
51+2.3.8

0--------0

N undetennined hut NE {7 ,8}

2

1

7128

U3 (5)

G acts primitively and of aG-invariant family of subsets of n,. whose maximal

members are orbits' of maximal subgrcups of G. This leads to varioos questions

abcut the subgrwp strucwre of G. We obtain in partirnlar two ne~ geanetries

whose diagrams are as follows:

. 4, 7,' (N)
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A. Dress

If one interprets the barycentric subdivision of.a tessellation of a manifold

as a t~in chamber system, one can reconstroct the .tessellated manifold fran" the

quotient of that chamber system, taken with respect to the action of· fthe .synune­

try grwp of the tessellation, onee one keeps in mind the.degree .of rarnification

e along each face of coiimension 2, which can be clone by associating to each orbit

of the original chamber system a certain'Coxeter matrix.

Applications with respeet to the enumeration of (eambinatorial types of) til~ngs

cf the euelidean plane with pregiven degrees of t~ansitivity of the synnnetry

group on the tiles are indicated.

P. Fan

Set G to be a gr~p of autamorphisms of a tree r ~ueh that Gö is ~ ~~~!e. ~roup

acting transitivelyon the vertices adjacent to ö. We' are_motiyatec;1. by ~~~ so

called G,:>ldscJ:nnidt-Sims problem, i.e. to find a constant m. su~h t~t fq~" al,1 pos­

sible G and f, ~ = 1 (no non-identity element fixes al~ vertic~s" qf ~?ist~ce

m fran.a).

This is easily seen to be false if r has valence (n1,nZ)' where 'n1, nZ are not both

prime. So one naturally asks what happens if the valence of f is given by a pair

of prime IUlIIlbers. In this case, we actually classify all possible amal~ams

Ga 2 Go,ß S;; Gß where 0 and ß are adjacent, and there are ju~st 17 "interesting"

ones. RJ.rther., ror analysis shows that m ~ 4. However, the Goldsclmlidt;..Sims

problEm under the general hypothesis of "primitivity" G~ 2 Go,ß .~ G
ß

: ~is"far

from being resolved.
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D. Goldschmidt

Let G be a primitve, edge-transitive group of automorphisms cf a tree r"

with G(2) * 1 of Thampson-WielanQt characteristie p.a

Assume that no non-identity p-element of G fixes infinitely many element~ of f.

6
Then p IOp(Ga) I ~ q J where

.~ "~~~al _
q = a p ..

m~IOp(G~2))1

D. Gorenste"in

I shall describe the plan which Riehard Lyons, Ronald Solanon, and I have been

developing for revising the classification of the finite s~le groups. I shall

first wtline roT approach to the study of eentralizers of i~o~utions, 'the aim

of which is to show that a minimal cwnterexample .is necessarily a grwp cf 'even

~, a sanewhat weaker concept than that of a grwp of"Chatactetistic 2"~,

and he~ce more easily attained. After that, I 50011 describe the rele we forese.e "

for the theory of Goldschnidt amalgams in classifj~ng the simple grwps cf even

type.

J.I. Hall

it is known that the dwble cover of the Hall-Janko group, 2eID, is a subgrwp

cf Spq(9). I disOJss the construetion cf 2HJ in this context and same of the. ,

geometrie eonsequeneeSe
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G. Hanssens

A characterisatiön öf"bUildirtgs"öf'sphetital'type'iIi"terms'öf.-pöirtts"ärtd lirtes

A result cf Buekenhout ~An appr~ac~ to building geometries based on points,

lines and convexity) is llnproved ~d extended. It concerns a characterisation

of buildings of type .e ,; D ,; E4 1; ES ,; ••• ;ES ,; F4 " using axiomsn, n, , , "' , ,'. "

talking abmt .points and lines only. ~oreover, in the finite ca~e the _axians

can be weakened to enclose also most of the buildings of type A .; e .;. Jl,] n,]

V. Mazurov (Novosibirsk) " .

Let n(X) denote the mininnJm of indices of proper subgroops of a finite group ,x.

A subgrwp A" cf a ,finite grwp G is said to be wide subgrwp of G if A is

maximal'under inclusion in the set {X I X < G,' X is simple and n(X) = n(G)}. If

A is a wide subgraIp of a simple grwp G then' CG(A) ~ A and N{;(A) is a

maximal subgrrop of G.

TIlEORFM (V.Mazurov, A.Fanin)., If all wide subgrwps cf all known finite simple

grwps are known sllnple grwps then all finite simple grwps aJ;'e l<I1~.'

Almost all known sporadic graIpS have na wide suhgroups.

Tb. Meixner

Let 'G be a grwp with finite subgrwps 5, Xl' ••• ,.Xn such that C(G;S;X1,:·· ,Xn)

is a chamber system with affine type M. Sane ranarks were given indicating that
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rank at least 4 a~ost never occurs, since one can show (using Tits' classi-

fication of affine buildings, Tits' "Universal 2-cover Theorem" and a theorem

of Feit-Tits on projective representations of extensions of finite stmple groups)

that th~ "kernel" of the stabilizer 0; a special vertex has to be trivial in most

cases. Examples of rank 3 with diag~ams ~o. over GF(8), 0=0=0 over GF(2)

and 0=0=0 Ov~r GF(3) and their universal 2-covers were given.

•A. Nannaier

In joint work with A. Cohen (Amsterdam), a campilatio~ and classification of the

distance regular graphs known to us is presented. Apart frarn covers of camplete

graphs, the known graphs of diameter d ~ 3 fall into at least one of the

following classes.

1• Pseudo classical graphs, with intersection array

(,d i) ( i ) i i-lb i =~ 1] - [ 1] ß-0[ 1] , ci = [1] (1 +0[ 1 ]) ,

i i-lwhere [1] = 1 + b + ••• + b for a suitable basis b.

2. Pseudo parti tion graphs, with intersection array

bi = (m-i)(1 +o(m-l-i)), cd = yd(l +o(d-l))

ci = i(l +a(i-l)) for i < d, (m,y) E {(2d,2),(2d+ 1,1)}

3. Pswdo near polygons, with intersection ·array satisfying

4. One further infinite family (d=3) and 18 sp<?radic graphs.
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A. Pasini

We prove the following result:

Let r be a geanetry in one of the following diagrams

0-0-0=0 (q >.1)
q q q q

0-0=0-0 (q > 1)
q q q q

Then there is at least one point a such that r a is a building. ~en, as a

corOllary, we get that, if r belangs to

0-0-"-0
q q q

0-0=0 (q > 1, n ~ 4)
q q. q

or to 0-0=0-0
q q q q

(q > 1)

then r is a building if Aut(r) is flag-transitive. Moreover, let r be a geo-

metry in
0-0-0=0 (q > 1)
q q q"q

or 0-'-0=0-0 (q > 1)
q q q q

then r is a 1:uilding if (~) or, respectively, (lli) holds.

s. Rees

We are interested in classifying geanetries cf type· C3 b~cause of a result "of

Tits: a geanetry described by a Coxeter diagrmn is a building or a quotient of

a building precisely if the same is tIDe of its residues of types C3 'and ~.
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My talk is a survey of results on C3-gecmetries, with three main results

(1) A geametry described by 0---0===& is either a building er a quotient

cf a building by a grwp cf automorphisms of order 2.

1 1 1 1
Geametries described by 0---0===0 (equiv. 0---0===0, 0---0===0)

are campletely classified; there are many.
222

(3) A cOIUlection is fwnd between the "A7:"geometry", described by 0---0=0

and the Klein quadric over GF(2). Other C3-geametries arise fram Klein

quadrics over ether fields, though it seems unlikely that other thick

finite geametries arise in this way. Perhaps we might hope to classify
x x x

geametries described by 0---0===0 by exploiting the connection with the

Klein quadric.

M.A. Ronan

Ex: tens ions and trtirtcatiörts "cf' chamber .systems

A flag-geometry obtained by removing the vertices of certain"specified types

from another flag-geanetry is called a truncation. This idea has a natural

generalization te chamber"systems. For exampl~ t~e M24-geometry with ~iagram

0===0---0---0 "is a truncation of a chamber system with di~gram ~o---o---o,

where ~o indicates a cover of the generalized quadrangle. However, given

a geanetry with diagram 0==0---0-0---0-···-0, it is the truncation of a e
chamber system with the "sameft diagram. Several theorems of this trJ?e were

stated and the essential ingredients of the pro~fs were given.

St.D. Snith

Joint work of M. Ronan and S. 9nith develops a construction of modules for

Chevalley groups (in natural characteristic) by coefficient-hamology on the
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Building. We are now developing analogws constructions detennined by natural

geametries for sporadie groups.
- .

lVe aSSlUlle achamber system, with a transitive automorphism group, and indicate

the fonnalism ~f sheaf hanology for this case. We say the gec:metry is "oVer Fq"

if each panel stabilizer induces (P)SL2(q) on the chambers of the panel; in

such a case we CO!lStruct representations over 'pq' wi th s'ome analogy to "restric­

te4 we,ight" representations for Q1evalley grwps .. Thus for a sporadic grouP., we

get a class of representations, usually including most of the irreducibles.

G. Stroth

Geametries'related'tb ~.

/3
or 0-~~o4

1 2~n

10=02
I 11

30-04

1 0=0 2
I ~

30=04

Let r be a Tits geametry of type Mwith f~ag-transitive groUp G. Suppose that

every rank two 'residue is a projective plane of order two er the SP4(2)~quadrangle.

&1ppose ,that the ~-geometry of type C3 is involved. If the diagram 6. of r is

connected, then ~ is of the fenn

10-02 10=02
0-0=0., I. I ' I I
1 2 3 3 0=0 4 3 0=0 4

RIrthennore .tbe 'grrops Gi. are d:etennined .. Examples far these g~ometries may be

fwnd in Q7(3), Q6"(3) and Me. The proof of this theorem uses, that if seme

e diagram looks like n~~' where P1/OZ(P1).,. 53 .,. Prr'0Z(Pn).

then G1/K1 er Gn/~ (where Ki is the.kernel .af the representation of"Gi on

the residue of i) possesses an F1-module, which does not oealr very often; or

CG (K,) $ K,. Using this, it is possible to show that th~re is'no flag-transi-
1 .

tive ~eanetiy cf type ~o=o=o, which is one of the main tools for proving

the theorem above.
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F. Timmesfeld

Tits geametries and theclassificatiön cf finite"s~legtöUps

Let G be a finite simple grcup of (weak) ehar. 2~type, S E Sy12 (G) and

B = N(5) • The~ one can define miniinal parabolic subgrwps Pi of G containing

B and show that G ~ <Pi I i E I>. From this one can dewce a new "program"

to elassify such finite simple groups.

- 2
1

•(1) Dete~ine the structure of the Pi = 0 (Pi/OZ(Pi )).
- . 21

(2) Detennine the strocture of the P. . = ° <P.,P .>/02<P, ,P.> using the
.1,J 1 J 1 J

"Goldschmidt amalgam method".

(3) Develop with the "knowledge of (1) and (Z) a theory of graups of higher rank.

Even if (1) is wide open in general, the strueture of the P. is very restricted
1

in important special cases, as groups with small e(G). (2) is in good shape,

see Delgadb-Stel~cher.The conneetion between (3) and finite f~ag-transitive

classical Tits geametries was autlined and·theorems classifying such geametries

were disOlssed.

J. Tits

Let G be a quasi-simple, simply eonnected algebraie group over a locally cam­

pact loeal field K of eharaeteristie p (we write also G for G(K)), let B

be the nonmalizer of a maximal pro-p-subgroup of G and let Po , .•• ,Pl+l be

the maximal subgrwps of G containing B. Then, the simp~icial complex Ä

whose set of vertices is {Pig li E" {o, .•• ,1+11, g E Gl is a building of irre­

ducible affine type (cf. Bruhat-Tits, FUbl.Math. lHES;·±L (1972) and60 (1984);

also Proe.Symp. Fure Math~33 (1979), 28-69). (Here, for simplieity, buil~ings

are always aSSlUned to be canplete, i. e. endowed with their maximal system of

apartments. )
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Theoren. Every ~thick) Ioeall)' finite building cf' ittech.itible .affine ,tYpe

and rank ~ 4 is obtairted· in the ahave way.

A similar result holds for non-locally finite buildings, starting from alge-

braie or classical groups over arbi~rary loeal division rings.

Let !l. be an arbitrary (thiek, canplete) luilding of affine type. In the apart-

ments of /i, one defines the "quartiers", which are certain simplicial cones, as

in loe. eit~ 41. Two faces of quartiers are 'parallel if their mutual distanees

are finite, ~d they belong to the:same'genn if their inters~etion is ~e~,in

eaeh one of them.

Pr0position'l. The "pataiielism'clässes 'cf "faces "of'quattiets'ate"the'SEnplices

of a building !l.oo, 'ö{'spheriCal"!ype.

When the rank is Z,' A is a tree and ~00 is the set E of i ts ends. Then, A can

be recovered fran the data eonsisting of a certain real valued ftmctiori w on the

set of ordered 4-tuples of distinct elements of E; thi~ ftuiction is submitted

to some comitions which will not be reproduced here, but which we express by

saying that w is a "prbjective 'vahiätion of the set E (such valuations have

been considered earlier by A. Dress).

Caning back to the general case, let now D be a panel (simplex o~codim~~ion 1)

of, A
oo

• One shows that the set of genns (of faces of ccxlimension 1

of quartiers of /i) belanging to the parallelism class represented by Dis,

in a natural fashion, a tree whose ,ends are in 1-1 canonical correspordence with

the chambers C E Star D (i.e. D c C) . Hence a projective valuation ~ .?f

Star D.

Proposition 2•. 'The 'building A' 'can 'be 'cört1pletely ·recöVered'·fran 'Aoo.· "and;'the

systan {un I D a panel of A
aJ

}. ' 'The "lattet .is 'entitely 'detetrnirted 'by,' any' single

Wn, except possibly in 'the 'Cases 'bf 'the 'types C2, GZ• (These two cases are

very probably no true exceptions rot they IIUlSt still be investigated.)
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One can give necessary and sufficient conditions for a system

(6C», (tun I ri a panel cf 6)) to provide a hlilding. Those conditions provlde

the theorem "hut give also same infonnation on the rank 3 case.

Example. In the Az case, ßC» is the flag com~lex of a projective plane, the

stars of panels are lines and pencils of lines and the necessary and sufficient

condition for li to exist is that a perspectivity.~d map Wo onto ~)d·

•In the last part of·the lecnJre, the possibility of applying the theorem to the

classification of finite geometries with diagrarns of affine types was discussed

(only in principle: same basic difficulties remain, e.g. ,in handling the case

cf a field K cf equal characteristic). Here one uses deep theorems of Margulis

(arithmeticity), Borel-Harish Chandra (campacity criterion) and Harder (Hasse

principle), ~t they can be replaced by more elementary arguments when we assume

the existence ·of a flag-transitive group of autamorphisms.

M. Wester

Triangle .Gtöüps .

Let C be a connected chamber system with diagram ~~o such th~t the 2-cells

are classical finite projective planes and such that C admits a flag-transitive •

autamorphism group G ~th finite stabilizers of 2-cells. By a result of

Timmesfeld G is then a triangle group, i.e. G = <a1,a2,a3> wi~ <ai>~. Z3 er

Zg and' <ai,aj > ~ FZ1 or F73.9~ Considering the Frobenius (21)-case, this leads

to fmr possible sets of relations between the generators ai and thus .. to four

'universal" triangle grwps G1, ... ,G4. Two of. these four grwps are' eXplicitely
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constructed as regular automorphism grwps of the chamber systems corresponding

to the S~(K)-buildings of type Az, where K is the field of 2-adic numbers

or the field of Laurent-Series over GF(Z). In partiQllar one obtains by'a pro­

jection-process finite chamber systems with diagram ~~o over GF(2) and

regular automorphism grwps .SL3 (p), P E 1,2;4(7), ·SU
3

(p), P == 3,5,6"(7),

P an odd prime, or SL3 (Zn), n '= 3.

Berichterstatter: Th.Meixner
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