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Gruppen und Geometrien
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Die Tagung fand .unter Leitung von Herrn B. Fischer (Bielefeld’ und”
Herrn D.G. Higman.(Ann Arbor) statt.. Neben Fragen zur internen Struktur
und Darstellungstheorie endlicher einfacher Gruppén wurden hauptsidchlich

geometrische Problemstellungen behandelt. Dabei waren Themen aus. dem

Bereich der Blockplidne, Graphentheorie und der pro;ektlven bzw. affxnen
Geometrie vertreten. Ferner wurden Ergebnlsse der Kodxerungstheor1e vor-‘
gestellt. In mehreren Vortragen splelten topolog1sche Aspekte (Homolog1e)

eine besondere Rolle."

Sehr fruchtbar waren auch die Diskussionen, die auBerhalb des offiziellen
Programms gefiihrt wurden. So trafen sich abends kleinere Arbeitsgruppep,

um spezielle Fragestellungen zu diskutieren.




Vortragsausziige

L.M. BATTEN:

- Affinely and projectively extendable finite affine subplanes

Those Desarguesian projective planes containing primitive cube roots of
unity and therefore affine subplanes-of order 3, also contain, in an
interesting tiay, dual .affine subplanes of order 3. Motivated by this
observation we show that under certain.conditions, a projective plane

which contains an affine subplane of order m also contains a dual affine

v4m+1 -1
—_— -

subplane of order m or a projective plane of order

B. BAUMANN:

Linear groups generated By a pair of quadratic action subgroups

Some comments on the proof of the following theérem had been made, which

is a joint result with Chat Ho.

Theorem. Let G be a finite group and V be a finite dimensional faith-
ful F _G-module, where p is a prime. Suppose T . is a G-invariant set
of elementary abelian p-subgroups-of G satisfying 1 = [V,A,A] for

all AE€T. Asgmne that any two members of T .generate either a p-group
or G. Then G/O‘p(G) is isomorphic to one of -the following groups:

(@) 1,
(b) SL(2,q), where ‘q- is a power of p,
(¢) Sz(q), where q is an odd power of p and p = 2,

(d) Dygs where s is an odd prime and p = 2.

A.M. COHEN:

Two properties of Coxeter groups

Joint work with Andries Brouwer.
Let (W,R) be a Coxeter system, R finite, and r € R. For JcR - {r}

and k €N set
. kKT i
B(J,k) = <J>(r<J>) - U <I>(r<J>)" ,
i=o

S = {s €3 | rs has order k}.

The following two properties hold for K< J < R - {r}:
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(¢))] r<I>r<J>r N <J> = <§ >S3<s >,

(2) B(J k) N <K U {r}> = B(K,k).

The f1rst property . general1zes a lemma of Cooperstein (concernlng the
spherical case). It can be used to show that (excepp for some ‘well des-
cribed instances, among which the projective spaces) singu;ar lines of
the collinearity graph-of a Lie incidence system are in fact (ordinary)
lines of -the incidence system. .

The second .property can be used to show that the_geodesics between two
points Y,8 of a Lie incidence system are all contained in a subsystem

determined by a Coxeter system (<B>,B) if vy,8 belong to that subsystem.

A. DELANDTSHEER:

Some geometric consequences of -the classification of finite doubly

transitive permutation groups

The finite linear spaces containing a proper linear subspace and admitting
an automorphism group which is transitive on the ordered pairs of inter-
secting.lines are .the projective and affine spaces of dimension > 3, unless
all lines have size 2. Moreover, the finite planar. spaces gdmitting an
automorphism group transitive on the ordered pairs of intersecting lines’
and those admitting an automorphism .group transitive on the pairs consisting

of a plane and -a line intersecting this plane are determined.

G. GLAUBERMAN:

Viewing 0—{3) as a characteristic 2 group

Although 0, (3) -is not isomorphic to a. group of L1e type of character1st1c 2,
it. shares many propertles of such groups. For example, Ronan and Smith
observed that its maximal 2-loca1 subgroups yield a geometry with a diagram
of type o=0=0, Kantor has shown that this is a GAB (geometry that is almost
a bu11d1ng) We show how 0 (3) can be constructed as a natural, but spo-—
radic, linear group of character1st1c 2 conta1ned in U (2). We do this

by ‘extending to GF(4) the natural 6-dimensional module for G,(2) over GF(2).

J.I. HALL:

" Characterizing certain 3-transposition groups and Fischer spaces

I will discuss recent work on the classification of all center-free groups G
generated by a conjugacy class D of 3-transpositionsAand in addition

satisfying one of:
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(1) |G| finite and G possesses a normal 2-subgroup . o
or . :

(2) G contains no subgroup H = <H N D> with [H| = 18 or 54.

Ch. HERING:

The factorizations of E6(q)

Let G = E6(q), q a prime power. Let r, and T, be primes dividing .
q4 - q2 + 1 and (q6 + q3 + 1)/(3,q-1) respectively. Using the classifi-

cation of finite simple groups we find ’ .

Theorem 1. If U is a subgroup of G whose order is divisible by T,

and rz, then U = G.

Also, the>subgroups of G whose order is divisible by r, or r, can be

classified. This information leads to

Theorem 2. G does not admit any non-trivial factorization.

Many arguments used in the.proof I owe to. J.G. Thompson.

D.G. HIGMAN:

Configurations and incidence structures

. Adjacency algebras of type '’ (2 g) and (3 g). correspond to quasi-symmetric

designs and strongly regular incidence structures respectively. Some appli-

cations, in particular to quasi-symmetric designs, were discussed.

Z. JANKO:

The unknown small block designs

‘ The construction of the symmetric block designs with the parameters - .
(70,24,8), (71,21,6) and (78,22,6) will be discussed. We use the method
of tactical decompositions in these constructions. The main problem is to
find the suitable collineation groups. The full collineation groups of the

constructed designs have ‘also been determined.

D. JUNGNICKEL:

Translation transversal designs

In group theoretic language, a translation transversal -design (TD) corresponds to
a partition T = {To,...,Ts} of a group G such that G = ToTi for all
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i=l,...,s. The TD then has parameters s.= |T | (= size of po1nt classes)
and k = ITil (= block size). Such a -partition is of one of the following
types:

(i) G a p-group, HP(G) < '1'0;

NI

(ii) "G a Hughes-Thompson group, T, = HP(G)’ ’ Ti= Zp. for i > o;.__,. o
(iii) G a Frobenius group, T the Frobenius partitioo.

(iv) G a Frobenius .group, =T < K (the kernel of G), T. = K.H, -
’ o 4 g i ivio

‘ (i # o) for some complement l-l and K = T K for 1 # o. : -

While types (i) to -(iii) are not. surprising, the ‘existence of partltlons

as in (iv) was in doubt. Examples with K elementary abelian exist Tiff
= pa, k= prh (1 <r<a), h (p -1,p -l).' There are also’ examples with

K a non-abelian p-group. Most of.these results are due to: R.H. Schulz,

M. Biliotti and G. Micelli} - the non-abelian examples make essential use of

results of A. Herzer. (Arch. Math. 34 (1980), 385-392). Case (iii) was

studied by the speaker. (J. Geom. 17 (1981), 140-154). R

G.I. LEHRER:

Generic chain complexes .

The action of a finite group of Lie type.on a building mdy be linearized
using homology. The resulting tepresentat:.on may be studied generically -
‘i.e. by means of a chain complex of’ d.‘[q,q ]-modules, where -'q 1is-an-inde-
terminate. The.specifications ("putting q equal to.a prime-power", eig.)
of this.chain.complex apply to specific geometric situations, which may be

studied via the universal coefficient theorem. In this lecture, thé back-

. ground to groups acting on homology- will be d1scussed, .and a br1ef 1nd1cat1on

of its uses glven, 1nc1ud1ng the: Del1gne—Luszt1g vanxsh1ng theorem.

M.W. LIEBECK:

'On the orders of maximal subgroups of fnute s1mp1e gro ps R

1. We present some results of the follow:.ng type. 1f '1‘ 1s .a f1n1te -
simple group.of Lie type, T 9 G < Aut T and H is a maxnnal subgtoup of G,
then either (I) H ‘is known, or (II) [H| is small.' All proofs assume

H ey

the classification of finite simple groups (f.s.g.).

Theorem 1 (ﬁ.WL ) Let T be a classical f.s.g. mth natural ‘module V
of dunens:.on n over GF(q), let T<G<Aut'1‘ and let H max G. -
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Then either (I) H is known (with well-~described action on V), or (II)
[H] < %%, . ‘ s :

For T nonclassical, J. Saxl and I have results for all types, e.g.:

Theorem .2 (M.W.L. and J. Saxl) If H max E8(q), either (I) H is

known, or -(II) la| < qlla.

2. J. Saxl and I have recently obtained the following result:

Theorem 3 Let G be a primitive permutation group of odd degree on a

set Q. ‘

(a) If G has simple socle, then GQ is known.

(b) In any case, either G < AGL(d,p) (p. an odd prime), or G < Go wr Sm

in the product action, with G ~ as in (a).

WM. Kantor has also recently proved this result, and has usad it to deter-

mine all projective planes with a primitive automorphism group.

R.A. LIEBLER:

Tactical configurations and their generic ring

A constructioﬁ of Tits is used to cast the argumsnt of Solomon and Kilmoyer
proving the.Feit-Higman theorem in the context of tactical configurations.
An analog of.a result of Cvetkovic shows ‘what additional combinatorial data
is needed to determine the representations associated with a given configura—
tion. A bound for the size of certain configurations for whlch the f1rst

nonzero bit of this data is suff1c1ent1y large is given.

V. MAZUROV:

On symmetric .subgroups of finite groups : .

This talk concerns some results by my post-graduate student, Dmitrij Flaass.

His article on these results is to appear in Algebra i Logika.

Hypothesis 1. G is a finite group generated by a class D of involutions;
S 1is its. subgroup isomorphic to the symmetric group Su; A=SND is the

class of transpositions in S and S acts transitively on D-A.

This situation arises in many groups generated by 3-transpositions. One may

conjecture that the class- D is almost always a class of -3-transpositions.

Theorem 1. 'Let Hypothesis 1 hold and suppose that CA(d]) # CA(dz) for
any two different elements d],d2 of D-A. Then D -is a class of 3-trans-
positions.

Deutsche
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Theorem 2. Let Hypothesis 1 - hold and .suppose that CA(d) =@ for any
d € D-A. Then either n < 4, or. G =0_(G)S, or G = S7 and D 1is the
class (2)

The work was . inspired by the notion of "ﬁidth extension" introduced by

B. F1scher in his paper "Gtoups generated by 3-transp051t10ns and by

. G. Enrxght s construction of F22 and F23 (J. Algebra, 46: 2(1977))

D.M. MESNER:

Some configurations in strongly regular graphs

Let H be the Hoffman-Singleton graph. .It is shown that.cycles Cn occur as
induced subgraphs.of H precisely for 5 < n. < 10 and n = 12,13,16,18.

A computer search.was used for n > 7. The longest induced paths in H

have 21 vertices. The 25-vertex Petersen incidence graph, say I, occurs

as an induced subgraph of H in two ways. ‘A C in a Petersen graph- leads

to an induced C2 ‘in T and in H account1ng for some (but not all). of

-the orbits of C2 's in . H..

The ngman-Slms graph contains H as an induced subgraph and hence at least
the same.1nduced‘subgraphs as H. A computer search shows that while it has
more orbits of Cn's and T's than H, no C, 's for new n are found

except Ca's.

A. NEUMAIER:

Uniqueness.of]soﬁeAdistance‘regularAgraphs

A proof is g1ven that all d1stance regular graphs with intersection array

b. = —(d—x)(a—c ),c., =1+ c( ) are known. They are the graphs of Hamming

-and Johnson, the half cubes;, the Gosset polyope 32] (all .distance trans1t1ve),

and some further graphs w1th the same parameters discovered by Shr1khande,
Chang, and Egawa. -

The proof is based on'the fact that to 'the eigenspace belonging to ‘the
eigenvalue - k-A-2 one can associate a root lattice such that each edge of
the graph .corresponds to-a.root. Results of Cameron et al. then imply that
locéllyAthefgiaph is a‘iine graph or represented by a set of roots of E8
(cocktail party graphs cannot occur). The line graph case leads to the

- Hamming graphs, the Johnson graphs and the half cubes; the Eg-case leads .

. 8
to 321 and the exceptions.
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S. NORTON:

The Monster Algebra

Deutsche
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The 196883-dimensional algebra invariant under the Fischer-Griess Monster

can be extended by adjoining an identity (with use of the inner product) in

a partiéularly interesting way. If *, (, ) denote the algebra and inner
products, then (a*c,b*d) - (a*d,b*c) is a bilinear form on the exterior
square of the 196883-dimensional representation. Because this exterior

square has norm 2, it is possible to choose the 196884-dimensional algebra .
'so that this form vanishes in one éomponent. If a*b =0, then aAb

will lie in this component, and the operations of multiplying by a and b

commute. This was the main result proved.

D.K. RAY-CHAUDHURI:

Multiplier theorem for a difference list

Let G be an abelian group. A mapping L : G —*N (non-negative integers)

is called a A*-difference list if V1 #h €G, X L(a)L(b) 8 _-l(h) =
: ’ a,b€EG ab
where Gg(h) =1 if h=g and O otherwise. Difference list is a genera-

lization of the.concept of difference set.

Theorem 1. Let L be a A*~difference list (A* > 0) on G of order v
and exponent v¥, Let t and. LI be integers such that (nl,v) =1, In*
(n* =2L (8) - A¥), for every prime divisor p of 0, there exists an 1nte—

ger f satisfying ¢t = pf mod v*. If n, > > A* or if (v, M'(—))

(here M' denotes Mcpharland's function), t is a mult:.pher of L.

Multiplier of L is the obvious generalization of the notion of multiplier ‘

of a difference set.

Theorem 2. Let k and A be odd, v .be such that A(v-1) = k(k-1), .
p prime, p,k—k P>2X, (p,v) =1, blv and 3¢ such that pc =S -1modbd
and 8 ‘|~ (b-1)(k-A). Then a (v,k,\)-difference set does not exist.,

Theorem 2 proves .nonexistence of several infinite families of (v,k,A)-
difference sets which are not excluded by Bruck-Ryser-Chowler Theorem. The

above theorems are proved jointly by K.T. Arasu and D.K. Ray-Chaudhuri.
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M.A. RONAN: e
Duality for sheaves on group geometries
Given a flag-geometry (or more generally a.chamber system) defined by a
group G.- chamber stabilizer B, panel .stabilizers Po,..:.,Pﬁ, one,can) -
define a universal sheaf U by taking modules for B and .the Pi’ Under
resonably mild conditions one can define a "dual" sheaf U*. This has the
property that HO(U) = Hn((l*). The proof of -this theorem was discussed; and
. applications of sheaf -homology to embeddings of geometries. in projective
space.were also discussed. ' : RS

H. SALZMANN:

Groups on the octonion plane S B

A topological projective plame with a locally cbmpact point set of posjtive
dimension d < ® having an automorphism group I such that in the éompact-
open topology dim I > 40 is isomorphic to the classical Moufang plané’

over the real octonions.

J. SAXL:

- On_distance transitive graphs

We report on recent work' towards the classification of .finite distance tramsi-
tive graphs. We assume that the automorphism group is primitive on vertices.
" A theorem of Praeger and myself shows that if the graph is not a Hamming
graph, its automorphism group G is either affine o::almost' simple. If the
group is affine, that is if it ‘contains.an elementary-abelian réguiar normal
subgroup of order p", then the diameter d is at most f. The work on the
. affine rank 3 (t_hat is d = 2) case is almost complete. . (M.W.: Liebeck)
_and we hope to extend . his techniques to deal with all. the affiné.graphs_.
In the case where G is almost simple (so T <G < Aut T for some ‘simple T),
we restrict our attention to groups of Lie. type. - Then the stabilizer of a
point is 'large (IGGI > |G:B]/|W|) and the bounds discussed by Liebeck in his
lecture apply. This will leave.a finite number of pqssible'fgmilies to be
investigated. Inglis is at present dealing with the ;:gseé" whereth »Ai:‘ila

classical group.
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R. SCHARLAU: ¢
A subset A of a metric space (C, d:CxC — R, ) is called gated

(inside €) if, given C € C, there exists. .D € A such that d(C,E) =

d(c,D) + d(D,E) for all E € A. Let C be.the set of chambers (maximal

. simplices) of .a building, with the usual digtange.function'aefined by

galleries. .It is a standard fact that every star in C (set of chambers -
containing a fixed simplex) is gated. Using the first criterion of Tits'

paper "A local approach to buildings', one shows that this property even ‘

characterizes the buildings among all (numbered) complexes belonging to a
Coxeter diagram. Ome only needs to assume the gate property for the "small"

stars of rank 1 and 2.

|

|

|

Tits buildings as metric spaces
‘ J.J. SEIDEL:

|

Harmonics and combinatorics

| Die Geometrie der Spihre in ]Rd, die ein Modell bietet fiir gewisse kombina-
torische Konf'i.gurationen, wird beherrscht von sphdrischen Harmonischen.

Grenzen fiir die Kardinalitdt von solchen Konfigurationen werden hergeleitet
mit Hilfe einer Methode der linearen Programmierung. Dies hat Anwendungen
fiir Systeme von gleichwinkligen Geraden, fiir Wurzelsysteme .utvldvfiir Newton-
sche Zahlen. Die Methoden gestatten Verallgemeinerungen im hyperbolischen

Fall und auch im diskreten Fall.

S.D. SMITH:

Some coombinatorial and topological aspects of sporadic-group geometries

As interest increased in the'area of diagram geometriesA('pioneered b§ ‘
 Buekenhout), Tits and Ronan cast a new light by means of study of .topological
properties .of -geometries. A strong motivation for such study is the analogy .

of buildings with sporadic-group.geometries (especially, the failure of the

analogy). The talk will consider details of a number of examples, examining:

apartment-like structure,
homology groups and the representations they provide,

geometric structures found in homology.

These considerations connect naturally with ideas of shellability now studied
by combinatorialists (Stanley, Bjérner); sporadic geometries provide naturally-

occurring examples in this context.
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J.A. THAS:

Characterizations of generalized quadrangles by generalized homologies

Let S = (P,B,I). be a generalized i;uadfangle (GQ) ‘of order (s,t). For
x,y €P, x +y, let H(x,y) be the group of all collineations of S fixing
X and y linewise. If z € {x,y}l, -then the set of all points incident
with the line xz (resp. yz) .is denoted by xz (resp. yz). The GQ

S = (P,B,I) is said to be- (x,y)-tranmsitive, x 4y, if H(x,y) is transi-
tive on each set xz - {x,-z}v and yz - {y,z}, z EA'{x',y}'L. If S = (p,B,I)
is a GQ of order (s,t),s >1 and t > 1, which is. (x,y)-transitive for

all x,y € P with x 4y, then we have one of the following:

(i) S ~ W(s), the GQ arising from a symplectic polarity of PG(3,‘s);"
(ii) S Q(l;,s)‘, the GQ arising‘from a'non-singulaf quadric in i’G(4,s');
(iii) 8 =~ H(4,s), the ‘GQ arising from a non-singular hermitian variety’
~ in PG(4,8); " ' '
(iv) S =« Q(5,s), t.he' GQ at"ising from an elliptic qdadric in PG(5,s);
(v) S =~ H(3,s), the GQV- arising from a non-singular hermitian variety
 in PG(3,8);

i.e. 'S 1is a classical GQ.

" J.G. THOMPSON:

.The Frobenius-Schur index and. modular- representation.

Let p be an odd prime,.G '~a'.finitevgroup, and 'k "a splitting field for G
with' char k.= p- Let M- be an irreducible kG-module. Assume that M

is self-dual. Then there is a non-zero G-invariant form M which is either
symmetric or a skew symmetric.' Set e€(M).= +]1 ‘or -1 according to the two
péssibilities.—- There is an ordinary irreducible character X which is real
valued, and such that X contains the Brauer character of M with odd

multiplicity. .For any such x

B

€(M) = e(x) = Frobenius-Schur index of x = -1— T )((gz) .
. . [ 3e

F. TIMMESFELD:

Amalgams with rank 2 groups of Lie-type

" Applications and the ptoof' .of the following theorem were discussed:

Let G = <Gl,Gz> satisfying
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(1 G = 02 (Gi/Oz(Gi)) are 'nearly' quasi simple, finite rank 2 groups

of. Lie-type in characteristic two. (Allowing all types of degeneracies!)
(2) ‘G1 n G2 is a max. parabolic of both.
(3) There exists no N« G, N < G1 n GZ'

(4) Let S € Syl (G, N G,). Then [s| <= and z = Q,(2(8) 4 G;

for 1 =1 and 2.

Then one obtains a complete list of poésibilities for G, and G,. .

. P, VANDEN CRUYCE:

Geometries related to PSL(2,19)

We construct geometries related to PSL(2,19). They arise from the Perkel
i (m
5

(Agl) deﬁotes one of the two conjugacy classes of subgroups’ A5 in PSL(2,19)).

graph, which is a graph of degree 6 associated to PSL(2,19)/A

We get in particular another view on two interesting rank .4 geometries

obtained recently by H.M.S. Coxeter and A.I. Weiss.

J.H. VAN LINT:

Codes from algebraic geometry

»

We present a simple version of a construction of a sequence of codes exceeding
the Gilbert bound. The method is due to-Goppa, Tsfasman, Vladut, and Zink.
| Let X be a smooth projective curve in the projective plane over the alge-
braic closure of Fq'_ 1f Pl;sz""Pn’Q are the-rational poinﬁs on X
we consider the space of rational functions L(ZPi - aQ) and map a.function £
on (Resp.‘f, Respzf,...,ResPnf). The dimension of this.code follows from .

Riemann's theorem and clearly the distance d is at least. a. The choice of X
depends on the following result:

If q= p2n then there is. an-infinite sequence of curves X over ]Fq with

Vé_‘)-l

increasing genus g such that g/n tends to (q . Taking the optimal

choice of a (followed by some simple calculus) shows that we exceed the
Gilbert bound q > 49.
J.H. VAN LINT:

Subsets of the affine plane with square differences

Let AG(2,q) be a model for ¥ 2° Let X be a subset of the planés with
q
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the properties: .
G) x|l =q, (i) o €X, (iii) v [x-y is a square in TF 51
TN . - q

Clearly half of the lines through o have this property.

Theorem. X is a line through o.

Several proofs were known, all of which work onlyAif q is:a piiméﬁ_ We pre-
sent a proof by A. Blokhuis (found in April'84) of the theorem for .any prime

power q.

Berichterstatter: Thomas Westerhoff -
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