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Theorie, Numerik und Anwendungen

nichtlinearer Eigenwertprobleme

6.5. bis 12.5.1984

Die Tagung stand unter der Leitung von

H.B. Keller (Pasadena), K. Schmitt (Salt

Lake City) und H.-O. Peitgen (Bremen).

Der Zielsetzung der Tagung entsprechend,

wurden Ergebnisse aus der

Theorie gewöhnlicher, partieller und

zeitverzögerter Dif~erenti~lgleichungen,

Anwendungen aus der Hydrodynamik, Chemie,

Biologie und Physik, und die

Numerik nichtlinearer Eigenwert- und

Verzweigungsprobleme

diskutiert.
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J. ALEXANDER:
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A Tale of Two Brusselators

The Brusselator is the system for u

f (u) (
A- (B+-' ) x+x2y )

Bx-x2y

where A, B > 0 are kinetic parameters.For fixed A, there

is a "third" stationary point x=1,y=B/A. This point is

stahle for B < A2+1 There is a Hopf bifurcation at

B=A2 +1 and for B > A2+1 there is a globally stable periodic

limit cycle.

We consider two such Brusselator "cells" cou~led by

diffusion. That is we consider the 4 variable system of

u
1
,u2 with

where

Ü.
l.

i=1,2 mod 2

D

is a diffusion matrix.

We attempt to investigate the bifurcation diagram as

A,B,D1 ,D2 are varied. The interesting parameters to vary

are B,D1 • There are several types of orbits:

i) a new branch of asymmetrie stationary points.

ii) synchronous orbits with tne two cells oscillating

identically"in phase.

iii) antisynchronous orbits with both orbits oscillating

identically, but i out of phase.

iv) asynchIo~periodic orbits.

v) possibly chaotic orbits.

                                   
                                                                                                       ©



- J -

The connections of the various branches and. their b1fur­

cat10ns are investigated both analytically and numerically.

J. BEBERNES:

Miscellanea on Ut - Au Aeu

The ignit10n model for- a ri9~d explosive in a bounded con-
Utainer is: (I) Ut - Au Ae u(x,O) = 0 x E C , and

u(x,t) = 0, x E aD, t > O. The Gelfand or associated

st~ady stat~ problem i5:

(SS) - Au = Aeu , u(x) 0 on ac. Three related problems

are discussed.

A) The sm~ll heat lass problem. This arises by considering

the boundary layer affects of (I).

B) The development of the hot spot for (Sm. In particular,

we show that ~e exists X < AFK ' the Frank-Kamenetski

criticalvalue, such that for

A E [A, ~K] allsolutions of (SS) are bell-sheped.

C) L1 blow-up. We compare thermal blow-up in the L, and

L -sense.
m

E. BOHL:

~ Numerical identification of an organizin~ center: The Gierer­

Melnhard-model'of Morphogenesis.

It 1s possible that Gier~r -Meinha~d-objects after their first

differentiation fall back into an unstructured state before

they develop into the state of the next level of differentia­

tion. To understand this the steady states of the G-M-model

arediscussed. Th~ bifurcation diagram with respect to growth

an~ activator diffusion shows a singularity with unfolding pic­

tures r~ling these cf the elliptic umbilic. The action of

further chemical cell assemblages has been linked to varieus

s!ngularities.
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St. CANTRELL:

Secondary bifurcation in the steady-state solutions to the

Volterra-Lotka competition model with ·diffusion.

We discuss joint 'work (with our colleague Chris Cosner) on

the sy~tem of equations

( 1 ) -AU

-AV

u[a-u~cv]

v[d-eu-v) in g , Cl c If a srrooth lx>unded danain

U - 0, v - 0 on aa

This system is usually interp~eted as the steady-state system

corresponding to the Volterra-Lotka competition model with

diffusion. Nonnegative solutions (usually 'thought of as .the

only sOlutions with physical relevance) are saught wi~h the

aim of determining their stability. Same progress has been

made on this problem by preceding investigaters. Our werk has

been motivated by two 9f the principal preceding results. Namely,

if c and e are arbitrary fixed positive constants and

a > Al' where A, is the first eigenvalue of.the problem

w - 0

(2) -AW AW in C

in ac

coexistence states (both u and v positive in C) may be ob­

served to emanate from extinction states (one of u and v

identically zero) by varying the parameter d·. Furthermore,

other investigati~ns have noted that unique coexistent states .~

are stahle. Dur research adv~nces understanding of the probl~m

in several ways: first, we view the problem as being multipara­

meter in a and d and obtain estimates on the loeation of

the secondary bifureation curves, obtaining in case c and e and

both less than 1 the sharpest necessary conditions to

date for existence of coexistence states; second, we perform a

bifurcation analysis which views (1) as a system, determining .

a formula for the initial parameter direetion of secondary bi­

furcation; and third, we observe that more than one coexistence

state 1s sometimes possible wheri a *d if e<l<c or c<l<e

(the result being known when a=d and c=e=l).
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P. CHOSSAT:

Bifurcation of rotating waves in the Couette-Taylor problem.

The couette-Taylor problem concerns the description of states

of fluid flow between two concentric rotating cylinders. Re­

~~~t accurate experiments have shown a variety of patterns of

-wavy flows bifurcating either ·from the basic Couette flow or,

as a secondary bifurcation, fram the Taylor vortices, depen­

ding on the value af different physical parameters (angular

velocities of the cylinders, aspect ratio ... ). Bifurcation

theory in the presence of symmetry provides a sui~able frame

for explaining these patterns, and has permitted to compute

the possible solutions and to determinethe conditions of their

stability.

J. DESCLOUX:

On the rotating rod.

The stationary motion of a rotating rod clamped at one extre­

mity, free at the other one is given by the equations

-vn(s) =A5in8(s) v'(O) =v(1) =0

0<s<1,

-8" (s) Av(s)cos8(s) 0(0)=~'(1)=0

where A is a parameter repre5enting the angular velocity.

We study both fr~m theoretical and numerical points of view

the bifurcation diagram.of this problem. In particular we

show the global existence of one solution branch and obtain

nodal properties for certain solutions.

We furthermore consider in connection with the Golubitsky­

Schaeffer theory the"perturbed problem obtained by replacing

the boundary conditions Vi (0) = 0, 0(0) = 0 by v' (0) =
AB , a (0) = Q •
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St. R. DUNBAR:

Traveling Waves in Diffusive Predator-Prey Equations:

Periodic Orbits, and Point-to Periodic Heteroclinic Orbits.

We establish the existence of ~al related kinds of

traveling wave solutions for reaction-diffusion systems

based on a predator prey interaction model. In particular,

we prove the existence of small amplitude periodic trave­

ling wave solutions by means of the Bopf Bifurcation Theorem .

We also prove that for high values of the wave speed, con­

stant or periodic traveling wave solutions are the oply
\

possible traveling wave solutions satisfying natural'ampli-

tude restrietions, thereby excluding the existence of chao­

tic solutions. We also prove the existence of traveling wave

front solutio~s connecting spatially homogeneous ~olutions.

Finally, we prove the existence of traveling wave front

solutions connecting a spatially homogeneous soluti~n and

a periodic solution.

B. FIEDLER:

•

Global Hopf bifurcation for Volterra integral equations.

An abstract bifurcation theorem for systems

co

x(t) = J aÄ(s)fÄ(x(t-s)ds ,
o

ÄElR, xERu •
is presented. For the case of a unique stationary so~ution

Xo = 0 , for example, the theorem asserts that any net

change of stability of Xo between Ä =- ~ and Ä =+

leads to global bifurcation of periodic orbits from X
o

However, at present ~ne has to,exclude characteristie

roots 0 ~ in pa~ticular steady state bifurcations. The

theorem is applied to an epidemie model.
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K. GEORG:

Error propagation for matrix modifications.

In many numerical methods (e.g. linear programming steps,

Broyden update) one solves at each step a linear system with

a matrix A, and in the next step the matrix A is ebtained

by same simple modification of the form

A = A + (y-AS)WT , wTs = 1 • The idea i5 to use the werk done

on A also for A. As an example, consider a decomposition

AQ L where Q is orthogonal and L lower triangular.

4It Then AQ = L is obtained in O(N 2
) arithrnetic operations,

see Gill-Golub-Murray-Saunders 1974. There are several ways

to da this, e.g. (1) A 1s not used to obtain Q,L from Q,L

(2) Q 1s not used to obtain L. In case (2), essentially

2/3 cf the numerical effort cf (1) is saved since Q is not

updated. This latter method has been proposed by Gill-Murray

1973 for the simplex algorithrn and by M. Todd 1980 for PL­

algorithms. Error analysis: (A+dA)Q=L, (A+AA)Q=L. The error

. in' the next step comes from two sources: (a) new roun·d off

errors (b) propagation of previous errors. The latter can easily

be calculated: dA = äA(1-swT) in case (1),

iA = ~ - (Y-AS~WTaATA-T+o(1 IAA) 1 2 ) in case (2). This shows:

method (1) is " selfcorrecting n and method (2) is generally un­

stable. In fact, I can recommend it only in cases where one

knows apriori that I IY-Asl 1cond(A) = 0(1) • Numerical tests

confirm this error analysis.

M•. GOLUBITSKY :

Hopf Bifurcation w1th Symmetry.

Using group theoretic techniques we obtain a generalization

of.the Hopf bifurcation theorem to differential eguations

with symmetry, analogons to a static bifurcation result of

Cicogria. This iso "joint work with lan Stewart.

As an application we study the bifurcation of fluid states

in the Taylor problem describing fluid flew between two con­

centric counterrotating cylinders.
\
'.
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P. HESS:

Positive solutions of nonlinear periodic-parabolic

eigenvalue problems

The linear periodic-parabolic eigenvalue problem

OUot + A(x,t,D)u

u =
u(· ,t)

Am(x,t)u

o
u (. , t+T)

in

on

on

CxlR

aa x lR

D,Vt,

with T-periodic, uniformly parabolicGdifferential operator

L = it + A(x,t,D) and gi~~ T-periodic ~not necessarily

positive) weight function m, i5 first investigated. It

is shown that necessary and sufficient for the existence

of a positive eigenvalue A having a positive eigenfunc-
T

tion u is that f(ma! m(x,t»dt > o. Then applications
o xED

to the nonlinear eigenvalue problem (a necessary and

sufficient condition for bifurcation. of positive solutions

from the line of trivial solutions) and the construction

of positive sub- and supersolutions are given.

H. HOFER:

Solutions of Hamiltonian systems having prescribed ~inimal

period (report on a joint work with I. Ekeland, ~aris)

Studying autonomous Hamiltonian systems -Jü = a' (u) at

least two problems are interestinq concerning the existence

of periodic solutions: Do there exist periodic solutions with

a prescribed period T or with a prescribed energy E. Since

the seminal work of Rabinowitz in 78 employing variational

technique's a whole industry has studied these questions.

However the most important and exciting questions are still un­

answered today. A question raised in Rabinowitz's paper was

if the T-periodic solutions found have actually minimal period

T • The question was· thenzaised in nearly all papers-con-
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cerned with this subject but never satisfa~ily answered. Up

to now there are only a paper by Ambrosetti and Mancini and

Clarke and Ekeland concerned with the minimal period

problem. Ther~ is now an answer'to that question for convex

Hamiltonian systems: Always when ~he moun.tainpass theorem

can be applied to the dual functional

u ~ f~ [~ (JU(t) , f~ u(T)aT) + G(-Ju(t»]dt

~ (G the Fenichel transform of H) , then there exist periodic

solutions having min~al period T .

J. IZE:

Bifurcation and Symmetry

The notion,af equivariant extensions of maps 16 used in order

to prove existence of global branches of bifurcating solu­

tions forequations which are equivarian~ ~ the action of

some compact Lie group.
In case of one parameter problems one 1s red~ced to the

cl~ssical degree criterium or fixed point subspaces of 1so-

topy subgroups.
For more parameters the problem is more complicated but can

be completely studied for 5' (as in Hopf bifurcation) and

53 actions. In this case ~uses obstruction theory or pro­

jective spaces ~o obtain integers-which will determine the

existence of.bifurcating branches.
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A. D. JEPSON:

A Numerical Approach for the Analysis of Multi-Parameter

Nonlinear Systems.

Nonlinear problems of the form !(!,A,~) = Q are considered,

where ~ E mn is the state variable, A E m is a.bifurca-

tion parameter, ~ E mP _.Ois a 'vector of auxiliary parameters,

and f is a su~ficie~tly smooth function. A numerical approach

is developed to calculate·the regions in auxiliary parameter

space for which the problem ?as qualitatively similar bifurca­

tion diagrams. The approach is based an r~twork in singula- ~

rity theory, which is used toconstruct equations and inequa­

lities characterizing various types of singular points for the

above equation. Numerical results, given for ~ model of a

stirred~ tank ch~mical reactor, illustrate the power of the

approach.

B. KAWOHL:

Rearrangements.

Rearrangements are mappings which transform a given·function

u into a function u* with prescribed symmetries. The talk

contains a survey of various kinds of rearrangementos (Stei~

ner-, Schwarz-, circular symmetrization) as weIl as same stan­

dard'properties.

Main result is a discussion of the equality sign in the

inequality

(*) < flvul P dx •
g

~

This quest ion had been dismissed as hopeless in the book of

polya and Szegö (onp. 186). For p > 1 and for a dense subset

of. w"P' one can show that the equality sign in (*) implies
o

u=u*. A counterexample shows that this result cannot be exten-

ded to all of w"po ·

As an application one can obtain new information on the

multiplicity and shape of nonrotationally invariant solutions

to semilinear elliptic equations on annuli. This extends re­

cent resultsof C.V. Coffman.
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H • B. KELLER:

Complex Bifurcation tram Simple Quadratic Folds.

In a general Banach ~oe setting the nonlinear problem

G(U,A) = 0 tor G: B x~ ~ B has ". a real solution" path

r: {U(S),A(S)} • A point [U(So),A(SO)] = [UO,AO] is said

to be a:• FOLD POINT iff: i) Tl (GO) "* 0 ,
u

ii) G~ t R(G~) ;

SIMPLE FOLD POINT iff: in addition

iii) dirn n(G~) = codim R(G~) ,-

QUADRATIC SIMPLE FOLD POINT iff: in addition

iv)

Here: 'l(Go)
u span {ep}, n «G~) *) = span {lJJ} and G~ - Gu (UO,A

O
)'

etc.

THEOREM. Let G(U,A) be analytic in u at (UO,A
O
). Let

the real solut~on path ~: {U(S),A(S)} contain a quadratic

simple fold at (Uo,A
O
). Then the COMPLEXIFIED problem:

G(U+iV,A) = 0; G: (B+iB) xm ~ (B+iB)

has a bifurcation at (U,V,A) = (UO,O,A) . A complex branch

r~ bifurcates "orthogonally" from rm and turns in the

"opposite" direction.

[i.e. r~ exists for A > Ao « Ao ) if the fold on rm opens

left (right)]

                                   
                                                                                                       ©



- 12 -

H. KIELHÖFER:

Multiple Eigenvalue Bif~rcation for Fredholm Operators.

For parameter~ependentequations

G(A,U) = 0 , G: lR x D ... E ,

where D c E are real Banaehspaces , we assume the trivial

solutions

G(A,O) = 0 I for A E lR •

The bifurcation of nontrivial solutions at (Ao/O) where

Gu(Ao,O) = A(Ao) 1s singular is linked to the eigenvalue

perturbation of A(A) = G (A/O) . near the er1tieal ei"genvalue
u "

zero. It turns out that all results of "linearized bifurea-

tion theory" (imposing only conditions on the Fredholm opera­

tors A(A,)can be embedded into a single theorem: A suffi­

cent condition fo~ loeal bifurcation is fulfilled if an odd

number of critical eigenvalues leave or enter the negative

real axis through zero ("odd crossing number"). If in addition

G is proper an"d if GU(A,U) has only finitely many eigen­

values on the negative real axis ·then the bifurcating braneh

exists globally. This result is aehieved by introdueing the

degree for nonlinear Fredholm operators in a simple and natu­

ral way.

T. KUPPER:

Nodal propert1es of non11naar polason equat1ons.

By var1ational methode it has been shown that there are infi­

nitely many radialsymmetrie solutions for the nonlinear Poisson

equation (or qenerali~ations of it)

6u + lulou + Au.= 0

"·u EL
2

(mn )

if 0 < a < 4/(n-2) and that there are no solutions if
\

o > 4/(n-2) It has long been suspeeted that these solutions

are ordered by the number of zeros in the radial variable, hut

a proof was only known for the special ease ß· 3
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In a joint work with C. Jenes it 1s shown by a shooting argu­

ment (which is also helpful for numerical calculations) that

for each MEIN there exists a solution with exactly M zeros.

In addition this approach provides a geometrie explanation for

the failure of existence at the critical exponent 0 = 4/(n-2) .

This result also gives a classification for the infinitely many

"branehes" bifurcating at the lowest point of the continuous

speetrum of the linearized equation by nodal properties in a

similar way as is known for problems on bounded dornains.

J. MAWHIN:

The forced pendulum equation with periodic boundary

conditions: closed range and open problems.

Some recent work of the author, Willem and Fournier is sur­

veyed about the structure of the set R of e E L'(O,T)

such that the periodic problem for the forced pendulum equa­

tion

(1 )
u"(t) + cu' (t) + A sin u(t)

u(Q) - u(T) = u' (0) - u' (T)

e(tl

o

with e = ('/T) f~ e(t)dt, A > Q and CER, has at least

one solution.

By the use of upper.and lower selutions techniques, it i5

shewn that R is closed and that for each e there exists

Y, = Y, (e) < Y2 = Y2(e) such that (1) has a solution if 'and

only if Y, < e < Y2' and has at 1eas~ two distinct solu-

tions when Y1 < e < Y2 . If Y, Y2 , (,) has infinite1y

many solutions but it is unknown if such a e exists.

When c = 0 , Nariational techniques ShO\\' that

Y, < 0 < Y2 and that ·the set of e such that Y, < 0 < Y2
is dense in the L'-norm. Special results in this direction

when c 1 0 are also discussed.
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R. D. NUSSBAUM:

Global continuation and complicated trajectories for

periodic solutions of a differential-delay equation.

This talk represented areport on same aspects of joint work

with John Mallet-Paret on the equation

(l)E EX(t) = E: = - x(t) + f(x(t-1» , E > 0 ,

or equivalently (A = E- 1 ) •
( 2) A x(t) = - AX (t) + Af (x (t-1 » , A > 0 •

Assume that there exist positive numbers A,B such that

f([-B,A]) c [-B,A], fl [-B,A] . is C 2
, xf(x) < 0 for

all x E [-B,A] - {ol and f'(O) = - k < - 1 . Define a

periodic solution x(t) of eq. (2)1 to be a "slowly osci­

llating periodic solution" if there exist numbers q > and

q > q + 1 such that x(O) = 0, x(t) > 0 for 0 < t < q ,

x(t) < 0 for q < t < q and x(t+q) x(t) for all t.

We prove that equation (2)1 has a global continuum of such

periodic solutions bifurcating from 0 at some value AO>O.

We are interested in the behaviour (partieularly nboundary

layer" behaviour) of such solutions of (1)E as E'" 0+ •

Space allows .me to mention only one such theorem. Theorem:

If f is as above, there exists a constant C such

that the minimal per iod

die solution x(t) of

(C independent of E) .•

P of

(1) E

any slowly oseillating perio­

satisfies p < 2 + CE •
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H. OTHMER:

Bifurcation Phenomena in Coupled Oscillatores.

We present results of joint work with D. Aronson and E. Doedel

on the bifurcation in a two-parameter family of coupled oscilla­

tors. The governing equation are

i = ',2
(mod 2)

When ö = 0 . there is an invariant torus in R4 that -is co­

vered by periodic solutions, and this torus per~ists under

weak coupling. The method of averaging is used to show that

the only periodic solutionsthat persist are those which corres­

pond to a phase difference of 0 or TI radians between the

oscillators. The former is uninteresting in that it exists for

a Ö > 0, is asymptotically stable in R4 , and is glo­

bally stahle with respect to the invariant manifold·def±ned

by t(xi,yi ) Ix,=x2 'Y,=Y2' (xi'Yi)*(O,O)}. The latter dis­

appears via a double heteroclinic bifurcation along ß = 26

for ß E (0,1) .' Near (ß,o) = (1/2, 1/4) there is an in­

finite sequence of bifurcations from thig periodic .solution

that accumulates at (1/2, 1/4).
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M. REEKEN:

ASymmetrically suspended rotating strings.

Rotating elastic strings which are suspended from points on

the axis of rotation give rise to continua of solutions para­

metrized by the a~gular velocity and nodal properties. If

suspended from points not in a plane through the axis of rota­

tion nodal properties are destroyed. They are replaced by a

topological invariant which has a geometrical interpretation.

These continua emanate from limit configurations of infinite

extension. The non-elliptic character of the underlying equa­

tions gives rise to a wealth of exotic solutions all "forrning

analogous branches.

K.· Rybakowski:

Homotopy index and differential equations.

An introduction to Conley's homotopy index theory is given.

Starting with Wazewski Principle, we define isolated invariant

sets and isolating blocks and show how the latter are used

to define the index. The homotopy index has the important

homotopy invariance property which make it a ~seful tool in

perturbation problems. This is illustrated by a simple appli­

cation to finding equilibria of ODEs.

Finally an extension (due to this author) of .Conley's theory

to infinite dimensional systems and some applications to pa­

rabolic equations are mentioned.

J. SCHEURLE:

Successive Bifurcations and Unfolding of Singularities.

There are various types of sequences of successive bifurcations

known which the state of a dynamical system might undergo when

parameters are varied. Although these are global phenornena in

general, to some extent it 1s possible to understand·thern from

a more loeal point of view, namely by unfolding a singularity.
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As an example a two-parameter unfolding of a smooth vector

field in mJ is considered which has a singular point at the

origin generated by a zero and a pair of purely imaginary ei­

genvalues. Explicitely computed non-degeneracy conditions are

given which guarantee the occurrence of three successive bi­

furcations along generic paths through parameter space: tri­

vial equilibrium ~ pr~ary branch of non-trivial equilibria

~ secondary branch of periodic orbits ~ tertiary branch of

invariant two-tori. In particular, it turns out that there

are continuous paths along which all the bifurcating tori

carry quasiperiodic flow. But a generic path will meet resonance

zones (Arnol'd tongues) of periodic tori in between points of

quasiperiodic tori. Explicite exchange of stability"results

are given tao.

M. STRUWE:

Variational problems without compactness.

For the nonlinear eigenvalue problem on g ce mn
, n > 2 ,

2n
with A E:IR , 2* =n-2

(1 ) I 1
2*-2

-~u - AU = U u in

the classical Palais-Smale compactness condition does not

hold globally. However, it may be shown that the compactness

properties of ( 1) are determined by the spectrum of •• energies"

of solutions to the "limiting problem" associated with (1)

in ]Rn , u (x) ~ 0 (I xl .... co) •

As an application, existence results "in th~ large" for

problem (1) may be formulated, extending recent results of

Brezls and Nirenberg. The method extends e.g. to the Dirich­

let and Plateau problems for surfaces of constant mean cur-

vature.
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H.-O. WALTHER:

Bifurcation of periodic solutions of the second kind in

differential delay equations.

Consider eq.

(af) x(t) = af(x(t-1»

with a function f: lR ... :IR having per iod B - A > 0 ,

f(A) 0 = f(O) f(B), f positive on (A,O) and negative

on (O,B) . This represents astate variable on a circle,

with one rest point and with a delay in the response to deVia­

tions. The parameter a > 0 may be transformed into the delay.

In 1978, T. Furumochi

tions of the 2nd kind:

proved existence of periodic solu-

x(t) = x(t+p) - (B-A) , with P > 0 ,

for certain n9nlinearities fand certain parameters a.

This means that the state variable on the circle performs a

periodic rotation. Numerical experiments suggested that these

movements are stahle and attractive.

We show how such solutions arise: For a suitable class of

functions .f there exists a parameter a o so that there

is a heteroclinic solution of (aof) with

x (t) ... A as t ... - CD, x (t) ... B as t ... + CD. For a > a 0

(and elose to a o ) there is no connection from A to B.

There exists a sequence an~ao with periodic solutions of

the second kind of eq. (anf) , and these con~erge to the he­

teroclinic orbit as n'" + ~ •

Berichterstatter: H.-O. Peitgen
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