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Die Tagung wurde von den Herren R.K. Derinis (Ithaca) und

u. Rehmann (Bielefeld) geleitet. Die großen Fortschritte, die

seit der letzten Konferenz in Oberwclfach vor vier Jahren in

der algebraische~ K-Theorie erzielt worden sind, wurden in

den Vorträgen und Gespräch~n sehr deutlich, insbesondere die

tiefen Verbindungen zur algebraischen Geometrie, zur Zahlen-

theorie und zu de~ erst kürzlich entwickelten zyklischen

Homologie.

Die große Beteiligung - auch diesmal wieder überwiegend aus

dem Ausland - zeigte, wie gefragt und wie notwendig ein häufiger

~ intensiver Gedankenaustausch in diesem sich immer noch rasch

entwickelnden Zweig der Mathematik ist.

Vortragsauszüge

C.A. WEIBEL: K-theory 'cf 'var"ieti'e's' wi"thiso'lated "sin'qularities .

Theorem: Let X be a quasiprojective var~et~[with isolated"

singularities]. Then

                                   
                                                                                                       ©



r ---, .""" --. .,,"~ .- ". ~·.l

.~ .. ~ ~"-."~~'; *~ ~;t-,.-;:j" ,,~

t .. \ \.;" :; ~
L----=-·-- ...--,---

- 2 -

(1) A*(X) e ~ ~ KO(X) ~ ~ ~ JLL HP(X,~p) ~ ~

(2) HP(X'~q) 0 for p ~ 2+q and can be nonzero for p=l+q (q~-l)

(3) There is a spectral sequence

HP (X, K ) Q K (X)
=-q -p-q

(p ~ 0, q E Zl)

and the associated filtration on Ko(X) coincide5 with the

geometrie filtration Ko (X) ~ K (X) ::> SK (X) = Fi12 (X) => •••o 0

•.• ~Fild(X)·::>O where (p ~ 2) FilP(~) i5 generated by

[0 ] , codim(Y) ~ p and Y n sing(X) = ~ •
y

We conjecture that this theorem holds if [with isolated

5ingularities] is removed, except that in (2) we must have

o if P ~ 2+q+dim(sing X) (q ~ -l-dim(sing X»

In addition, we conjecture that Kq(X) = 0 if q ~ -l-dim(sing(X» .

After stating the theorem and the conjectures, we pointed out

in our talk .that the theorem inunediately implied several results

of Collino, Weibel, Pedrini-Weibel, and Levine. For example, if

2
dbm(X) = 2, then we immediately obtain H (X'~2) = SR, (X) . If

X = Spec of a semilocal ring, dim(X) = 2 , then SR, (X) SKo(X)

implies that

showing that

~2 is flasque on

CH2 (X,y) ~ SR (X) ­
o

X ". This was the key step in

2
H (X'~2) when X is a surface

with isolated singularities.

w. RASKIND: !2-cohomology of algebraic var"ieti"es

Let X be a smooth, proper, geometrically connected algebraic

variety over a field k . We use the work of Merkur'ev-Suslin,

Suslin and the Weil conjectures as proved by Deligne to determine

much of". the structure of the ~2-cohomology groups

i = 0,',2 . Among other things, we show:

for
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Theorem 1: If k is a p-adic field then is the direct

sum of a finite group of order prime to p and a group which is

unique~y divisible prime to p.

Remark: This theorem is a generalisation of and depends on results

of Moore, Carroll and Tate on the structure of K
2

of a p-adic

field.

Theorem 2: If

n , the group

k is a number field then for any positive integer

o
(H (X'~2~/K2k)/n is finite.

One expects that under the hypotheses of Theorem 2, the group
o .'

H (~~~2)/K2k is finitely generated. Because of the analogy

o·
between H ~X'~2.!/K2k and the group of k-points of an abelian

var,iety, . we like to call Theorem 2 "The Weak Mordell-Vleil

o
Theorem~ for ,H {X'~2)/K2~ •

v. SNAITH: Calculation of K3~[tl/ti) i 2,3

'«joint" with J. Aisbett and E. Lluis-p'uebla)

If A is a ring with an ideal I let (1+I)* denote units

in A which are one mod I

Theorem. Let p be an odd prime and m ~ 1 There are

isomorphisms

(i) K3 ( F m[tl/(t3
» ,..,

p

'+tlF [tl *
( . .m) 3

" 6P /<l+at ja ElF>
(t ) . pm

(ii) K
3

( F ~[r.tl/"(t2»
p

" + t lF . [t 1 *
,.., K

3
(lF m) EB ( lm ) /<1+at2

ja >]F >
P . (t) . - . pm

Let ~. denote lF ni. and F(n) denote lF m[tl/(tn ) . Since
p p

K2 (F (n)) = 0 , K3 (F(n» ~ H3 (SLF'(n); Z) and the above calculation

is..accomplished by studying the.homology spectr~l sequence of the

extensions. .
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(2 ~ t ~ co) •

Here oM
t

(n-1) is the additive group of trace-zero matrices

with entries in F with SLt F(n-1) acting through SLtF via

conjugation .. The talk illustrated how to playoff the similarities

of the homological algebra related to (*) for different values

of n.

A.O. KUKU: ~n,SKn of integral group rings.

Let Tl be a finite group. For n ~ 0 let SKn(~ Tl) be the kernel

of the canonical map Kn(~n) Kn{~TT}. It is weIl known that

for i = 0,1 , Ki(~n) is finitely generated and that SKi(~n)

is a finite group and answers to such finiteness questions for

Kn (~TT) , SKn (2Zn) , n ~ 2 , have been open for some time. We prove

in this paper that for all n ~ 2 , Kn(~n) is finitely generated

and SKn (2Zn) iso fini te. We then deduce that for a rational prime

p , SKn (1lp lT) .is finite for all n '= , •

If R is the ring of integers in a number field F, P a rational

prime, p the prime of R lying over p, k

finite group, then we show that for all n ~ 1 ,

R/p , Tl any

(i) K2n (kn) is a finite p-group 4It,
(ii) The Cartan homomorphism ~2n-': K2n_,(kn) ~ G2n_,(kTl) is

surjective and Ker ~2n-l is the Sylow p-subgroup of

K2n_,(kn) where K2n_,(kTl) is a finite group.

A. COLLINO: Torsion in the"Chow group of codim 2: the case of

varieties with isolated sigularities

Let X be a variety with one isolated singular point, the Bloch-

Ogus theory goes through in this case as in the smooth case and
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as a consequence one has that the n-torsion stibgroup of

H2(X'~2} = CH2 (X} is finite. ,If X :is proper Blocn has remarked

that lim H1(X,~2(~~2}} ~ Tl CH2
(X} , up to torsion kerneI.

+ In

Let X be a desingularization of X, then the kernel of

Tl CH2
X Tl CH2X is bounded by "topology". If X 1.s a surface

CH2 (X} ~ CH2 (X} which was a result of Levine. 'F611owihg an'n n

indication of Bloch we provide an example of a '3-fold .X

above, for'which the Tate group of the group of eyeles of·:,

eod 2/"alg. equiv." is not 0 •

H . GILLET: Some new eases of Gersten's.conjecture

Reeall that Gersten' s eonjeeture says that if R is a regula'r ",

loeal" ring and !:!(i} (R) is t~e eategory of f.g. ~.,;,.~odules·with.

eodimension of support ~ i , then K M(i} (R) ~ K M(i-1} (R) is*- *-
zero for i ~ 1 • If Gersten's conjeeture is t~ue tpe BI9Gp'S

formula holds:
~ .;. ~. .

CHP(X} ~ HP(X,Kp(OX}}

Quillen proved Gersten's eonjeeture for regular loeal rings

e~sentially of finite type over a field. The general ease is still

open. We now have some new results.

Theorem A (joint with M. Levine) Let R be a loeal ring smooth
.... ......

over a discrete valuation ring A,' MF(i} (R)' the eategory of f.g.

R-modules flat over A. Then

K MF(i} (R) K 'MF(i-1) (R)
*- *-

is zero.

Corollaries i) Gersten's eonjecture for R is true iff it iS.true
.-.1

for the discrete valuation. ring whieh is the loeal .r~I1g:.,a,t the
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generic point of the closed fibre.

ii) K~(i} (R) is generated by classes of modules [R/(f" •.. ,f
i
)]

where (f" ... ,f i ) is a regular sequence.

iii) CHP(X) ~ mP(X,U.Kp(Ox
F

) ~ i.Kp- 1 (OX
k

) where

u: Xp ---> X , i: Xk ---> X are the inclusions of the generic

and closed fibres, for X smooth over a dvr. A.

Theorem B Let R be a dvr. with n ER. Then

,"<c-

K. (k, 2Z/n) .... K. (R, 2Z/n) is zero (k r.f. R) i.e. Gersten's

conjecture is true for the K-theory with coeffieients of R.

Corollary i) Gersten's conjecture is true for the K-theory with

2Z/n coeffieients for all regular Ioeal rings ·R smooth over

a dvr. A with 1 E A
n '

ii} HP (X,K
p

(Ox,2Z/n}} ~ CHP(X) Q!D 2Z/n for X smooth-over a dvr.

D.L. WEBB: Quillen G-theory of abelian group rings

Consider the Quillen K-theory G*(Rn} of finitely-generated

Rn-modules, where R is a ring with and TI is a finite

Abelian group. Given a cyclic quotient p of n , generated

say by t, let R(p) Rp ~ the nth cyclotomic
(~I pi (t» , n

polynomial, and R<p> R(P)[rir l

Then the following analogue of Lenstra's formula for Go(Rn)

is valid-for all n:

(1) SGn(RTI) ~ .~ SGn(R<P» , p a cyclic quotient of n
p

For the case R =. 2Z , one obtains, via a vanishing theorem

of Soule,

( 2 ) SGn (2Z t:r ) o.

Combining (2) and an explicit devissage description of the
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relative term in the localization sequence yields Lenstra's

formula

(3) G
n
(~n) m G

n
(ll<p» •

p

The.idea i5 to obtain a Heller-Reiner type presentation for

SGn(Rn) and ~se a map analogous to Lenstra's to ~ap to a

suitable localization sequence.

J. HU~RELBRINK: A question on squares in K2.

This is areport on a joint paper with- R.- Perlis and D~ Estes.

F always denotes an algebraic number field; recall:

2- 1 -+ K2 (F) -+ K2 (F) -+ Bi (F) is exact.

Question 1: Given a E F* totally posit~ve, when does there exist

a positive q E ~ such that {a,-q} E K2 (F) ?

Theorem 1: a E F* i5 totally positive

~ 3 positive q E ~ : {a,-q} E ~2(F)2

~ 3 infinitely many rational primes q

Corollary: a E F* sum o~ squares in F

222
Q a = x +y +~ .• + y for some x,y E F

Question 2: Which classe5 in the Witt ring W(F) can be

represented by trace forms over F?

Theorem 2 (P. Conner): F totally imaginary ~ every class in

W(F) can be represented by a trace.form over F.

Remark: Theorem 1 ~mplies Theorem 2.

S.C. GELLER: On injectivity of Ki of a 1-dim integral domain

into Ki of its field of fraction5 (i ~ 3)

Let A be a 1-dimensional integral domain and F its field of
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fractions. When does K (A) inject into Kl..(F) ? For i =.2 , A
i

~ .or

Also, K
3

(k ED (t-a, ) ..• (t-ar ) k [t]) c.. K
3

(k (t) )

a" •.• ,ar E kare distinet and k = F q , lFp .

In fact, Ki +, (k) ~ ker(Ki(k ED(t-a1 ) ••• (t-ar )k[tl) ~ Ki(k(t»)

for all i ~ -1 and all fields k. Other examples of both

seminormal, loeal, equicharacteristie Ki(A) ~ Ki(F) ~ A is

regular. For i = 1,3, many non-regular A have K. (A) ~ Ri(F)
a, a l.

For example Ki (k ED(t-a,) ... (t-os ) sk[t]) c.. K, (k(t» where

Q" ... ,os E kare distinet, a. ~ 1 and k = nr , F
1. P q

where

injectivity and non-injectivity were given.

B. LIEHL: Bounded word length in matrix groups over arithmetic

Dedekind rings

The fallawing result was presented: Let k be an algebraic

number field, not totally imaginarYi A c k an arithmetic

Dedekindring with infinitely many units, and let Q1,Q2 be

ideals of A. Then by a theorem af Vaserstein (1972) every matrix

° E G(Q"Q2) {(~~) E SL2 (A) I a-', d-1 E Q,Q2 ' b E q, , c E Cl.2}

can be written as a product af elementary matrices

{ 1 x , 0 I
t j E (0')' (y 1) ,x E Q, , Y E q2} • Suppase there exists a

natural number I, such that every prime p with p = -1 (mod 1)

splits completely in k, then it is praved, that the number'a~

factors t j necessary to express a 1s a bou~ded function on

G(Q"Q2) · The bound can be chosen independently fram Q1,Q2 •

Further ane gets similar results about elementary word length in

SLn (n '= 3) and' SP2n (n. ~ 2) •

                                   
                                                                                                       ©



-,

- 9 -

G. TADDEI: Normality of elementary groups in Chevalley groups

over a ring

Let C be a complex semi-simple Lie algebra, let ~ be the

root system of C with respect to a (fixed) Cartan sub-algebra

Hand let r be a lattice of H which contains the root weight

lattice Pr and is contained in the weight lattice P of ~

~ Associated with ~ and r there is a group scheme G~,r =·G

over 1l, called the Chevalley-Oemazure group scheme.

For all roots a we have an injective·natural map

and for a commutative ring R with unit we define

eatta --> G

E(R) to be

the subgroup of G(R) generated by the images of the e a (R) -'5.•

Theorem: If ~ does not contain a component of type A1 then

for any commutative ring 'R , E(R) is anormal subgroup of G(R) .

K. VOGTMANN: Outer Automorphisms of Free Groups (joint with M. Culler)

Let Fn be the free group of rank N. We study the group r n of

outer automorphisms of F
n

by constructing aspace Xn analogous

to the Teichmuller space 'used for studying the mapping class group

of a Riemann surface or the homogeneous space used for'studyi~g an

4It arithmetic group. Points in X are equivalence classes of

marked graphs (g,G) , where G is a metric graph with n 1G = F
n

(and G is connected and has no nodes of valence 1 or 2) 'and . 9

is a homotopy equivalence from a standard bouquet'of:circles to· G •

Theorem is contractible, and acts on X discretely
n

with.finite stabilizers.

To prove the contractibility of X
n

, we use the following

Theorem 2 There is a contractible simp~icial defo~ation retract

X such that
n
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(i) K is r -invariant
n n

(ii) dirn K = 2n-3
n

(iii) Rn/rn is a finite CW cornplex

Corollary (i) r is VFL
n

(ii) VCD(rn ) = 2n-3

This corollary has also been recently proved by S. Gersten.

C. PEDRINI: Bloch's Formula for singular varieties

Let X be a quasi-projective variety over a field k. If X is
•

non-singular it is well-known ~hat (Bloch's

formula) where CHP(X) is the Chow group of codirnension P. cycles

modulo rational equ~valence and ~p. is the sheaf associated to

the pre-sheaf U ~ Kp(U) on x. If X is singular we assume:

y = Sing X is contained in an open affine set and we define

CHP(X,y} to be the cokerhel of the "cycle map":

k(x)* ~ U ~

xEX~

where xp

*
{x E xP / {x} n y = ~} • Define: Xy = n u , U open

affine such that Y c U and X-U is a divisor. Then there is a

long exact sequence:

In the case p = 2 and X has only finitely many singular points

we prave the following results (jointly with C. Weibel):

Theorem: Let X be a quasi-projective irreducible variety over a

field k having only finitely many singular points. Then the

1 2
groups H (XY'~2) and H (Xy'~2) have finite exponent; in

2 . 2 .
particular CH (X,Sing X) ~ ~ ~ H (X'~2) ~ ~ .

Corollary: Let X as in the theorem and assume dirn X ~ 3 • Then

CH2 (X, Sing X) ~ H2(X'~2)
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R. CHARNEY: K-theory and moduli spaces (joint work with R. Lee)

We consider applications of K-theory teehniques to moduli spac~5.

We show that eertain families of moduli spaces are related by

sum operations or by collapsing maps which can be used to define,

respeetively, "+-eonstruction" and "Q-constructions" for moduli

spaees. This is applied to moduli spaees of Riernann' surfaees and

~ moduli spaces of abelian varieties to produce stable rational

eohomology elasses and to eompute the effect of the Jacobian map

on these classes. In partieular, for

A~ Satake eompaetifieation of moduli spaee of.principally

polarized abelian varieties of dirn 9

M* moduli space of stable eurves of genus 9
9
J M* ~ A* the (extended) Jacobian rnap

9 9

J* ~*(A;;~) ~ H*{M;:~} the induced rnap

we prove

Theorem: For 9 ~ i+1 , "i{A;:~) is the i-dimensional subspaee

in the polynomial algebra ~[X4j-2] & ~[Y4j+2] , (j ~ 1) •

Theorem: J*(Y4j+2) o .

M. KAROUBI: eyelie homoloqy

Let G be any diserete group. One can extract from the double

complex defining the cyclie homology cf the ring ~[G] another

double eomplex (take the product of the g. 's to be equal to
6

1 )
~ def

whieh homology in dimension n is H '(G) ED "n-2 (G) ED ... - HCn(G)n

If now G = GLr(A) , where A is a ring, we define group maps

Hi(G) -+ HCi + 2p (A) as the composition of the maps
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Trace

From this we can deduce easily the "Chern character"

. eh
Ki(A) --E-> HC i +2p (A) ·

Hi +2p (A) ·

In fact, these maps are· compatible with the S operator of Connes

and we have more precisely maps

Ki(A) ---> l:m HC i +2p (A) ·

P

This can be generalized ea5ily to the "relative" situation:

Ki(A,I) ---> ·lim HCi~2p(A,I) ·
+
p

In particular, if p = 0 , one has a commutative diagram

cy HCi(A,I)

K. (A,I) t
1 ~

D Hi(A,I)

where D i5 the map defined by Denni5 some years aga (1976).

Let us assume now that A is a ~-algebra, then one can define

"regulator maps"

.... R
Ki(A,I) ---> HC i _ 1 (A,I)

which makes the following diagram commutative

Ki(A,I) --->

~

HC
i

_
1

(A,l)

B~ ~
HCi(A,I)

where B i5 the Connes operator and A 1im i/In .··This 15

defined via differential geometry technics.
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R. OLIVER: !2~pG) and eyelie homology

For any prime p and any abelian p-group G, there is a short

exaet sequenee

(1 )

Here, lim (K 2 ( ~/pn[G])/{±G,~G}), g2(G) -
~

n

-(~G)/<gfi)h+h~g> ,HC l ( 1lpG) .(~ 1lpG)/<g~g>, and with these

-1identifieations w2Cg~h) = g~g h. A comparison with the exact

sequence

He, (:?lpG) .... H
2

(G) .... K, ( ~pG) / (±G) 1: HCo (:?lpG) .... H, (G)x 2Z/ (p, 2) .... 0

(for any p-group G) suggests the existence of some stilllonger

sequenee eontaining both.

The inunediate problem now is to eonstruct an exact sequence ~fIriilar

to (1) for non-abelian p-groups. As one immediate consequence,

this would yield a simple combinatorial algorithm describing

SK1(~G) for any finite G: at least up to exponent 2 ~ Ariother

consequence of Cl) (and eventual generalizations to the nonabelian

case) is a lower bound for IK2(~G) I

Theorem If G' 1s an abelian p-group, then

"'"ISK
2

( 1lG) I ~ ISK
2

( 1l
p

G) I
lSK1·(OG) 1-·lHe1 ( ~G) r··'Kt2~P{ ~. ).,.. p p

IGI 1G1

n ICl tP (lcl)+l
C:iG
C cycl.

where· 0 ?Z if

if P 2 • In particular; for any n ~ 1 ,

                                   
                                                                                                       ©



- 14 -

N
P

pn_ 1
where N = p-1

n(n+1 )
2

This last formula eomplements results of Chaladus, who faund

lower bounds for IK2 (7ZG) /SK2 (2ZG) I for eyelie p-groups G.

R. STAFFELDT: Rational algebraie K-theory of truneated polynomial

rings over rings of integers

Let 0 ring of integers in a number field K

A O-algebra, f.g. projective as an O-module, augmented

A ~ 0 and with nilpotent augmentation ideal A = Ker E •

Let R 4}~ A,R=(Df&' A.
~ 2Z

Theorem: dim~(K*(A)/K*(O» f&' ~ = dim~HC*_1 (R) , wh~re the cyclic

homology of R is eomputed viewing R as a K-algebra.

We analyse the spectral sequence of the fibration

BG(A) ~ BGL(A) ~ BGL(O) , where G(A) = Ker E

matriees with entries in ~, mostly zero.}

{I+M(A) I M(A)

Rational homotopy theory qives.a model for the loeal system of

eoeffieients {H.(BG(A»} since G(A) is nilpotent, Borel's

vanishing theorem for cohomology of arithmetie groups with

coefficients in non-trivial irreducible algebraic representations

implies the spectral sequenee collapses, and the Loday-Quillen

theorem applied to the rational homotopy theory model

A*(gl(h) ~ R) for the chains on the fibre gives the eomputation
k

of the primitives in the coinvariant homology of the fibre in terms

of cyclic homology.

Ta calculate the example A
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we applied ,F. Goodwillies

{
[K:«2l·n

o

* odd

* even

Theorem: Suppose R is a commutative 4,} - algebra with 4,}­

derivation D 0 induces an endomorphism L o of HDR(R} and

moreover LO = 0 •

z. WOJTKOVIAK: Two lattices in the complex fundamental group of

an 'alqebraic variety

We show that iterated integrals of ehen behave like polynomial

functions on the fundamental group made nilpotent. Using this

property we" define the algebraic de Rham fundamental group .

rr~lg.dR() for affine, smooth varieties. Then we describe same

part of the image of the transcendental n,(} in the aigebraic

de Rham fundamental group for ell~ptic curves minus a point and

for the complex plane minus 0 and , .

O. RAMAKRISHNAN: !, of Hilbert modular surfaces and values

"of L-functi'öns

For any smooth projec~ive variety X over ~, there are higher

regulators (with values in Deligne cohomology)

ra,b

as defined by A.A. Beilinson (and H~ Gillet, ••• ). H~re Gr(b}­

denotes the graded piece of weight b with respect to Adams.

operations. These regulators generalize the classical Oirichlet

regulator on the group of units in a number field. The higher

regulator on K2 of curves was first defined and studied by Bloch,
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after Borel's striking work relating higher odd K-groups of rings

of iDtegers of any number field F to the values at negative

integers of 4
F

(S) .

If 2b-a ~ , then there is an exact sequence (cf. Beilinsdn)

=.nd

F
b Hb - 1 (X) TT b - 1 a-1 + ao -+ OR ~ m. --> HB (~(t), lR(b-1}} -+ HV(XlR,lR(b)} -+ 0

(resp. H
OR

) denotes Betti (resp. De Rham) cohomology

denotes the map on complex cohomology induced by the

morphism _ er: = m(b-1} ED m(b) -+ m(b-1) . There is a natural (D­

structure on A
max

H~(Xm ,m(h» -by.taking the quotient of

~ax(H:-l (X(t), ~(b-l))+) by Arnax(FbH~;l(X») •

We now speciali?e to the case of dim·X = 2 , and consider the

regulator~ r 3 ,2: Gr(2)K 1 (X) ~ <!> _-+ H~(Xm ,m(2» . Combining this

with the cycle map on the Neron-Severi group NS(X) of divisors

modulo algebraic equivalence, we get the modified r~gulator

Conjecture (Beilinson) (weak form)

(a) r ~:m is surjective

(b)

Here

lm(r) contains a ~-lattice whose volume is (up to a non-zero

rational number) the leading term at s = 1 of L(2) (X,s) .

L(2} (~,S) denote~·the H2-piece of the· Hasse-Weil zeta •
function of X. Bloch proved th{s conjecture when X =Jac (Xo (37» ,

where X~(37) isthe stan~ard modular curve of level 37. Then

Beilinson proved this for X = M x M where M is any modular

curve/cD .

Theorem: Let X be any Hilbert modular surface/~ • Then the

conjecture of Beilinson is true for X.

We use the techniques and results of Harder, Langlands, Rapoport

and Beilinson, and same techniques fram representation theory.
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R.W. THOMASON: Equivariant alqebraic K-theory

Consider a linear algebraic gr~up G acting on .a nQetherian

scheme X. The exact ca.tegory o.f G-coherent modules on X gives

rise to equivariant algebraic ~-theory spectra G(G,X) • There are

analogues of the localiza~jon theorem, the,calculation of the

K-groups of G-linear projective space bundles, and a homotopy

"axiom" for torsers under aG-linear vector bundle.

For schemes over a'field, there is a G-equivariant Riemann-Roch'

theorem for the map of the algebraic K-theory spectrum'to the

topological K-theory spectrum. This yields a gerteral Lefschetz~'

Riemann-Roch formula, extending previous results of Atiyah, ',Bqtt{

Segal, Baum, Fulton, Quart, and Nielsen.

For schemes X of finite type over an algebraically closed~'field,

the IG-adic completion of the ring of mod ~n equivariant a~~~~r~ic

K-groups local~zed by inverting the Bott element 1s isomorp~ic:t:o

the ring o~ equivariant topological.K-homology gro~ps.

M. KNEBUSCH: Semialgebraic K-theory

Report on,. some work with Hans Delfs. Let, ,M.' be a .semialgebraic '

subset of the set VeR) of rational po~nts.of an algebr~ic.

variety over areal closed field R. We define.~rtho~o~~~ ~!g~~~ps

KOi(M) which have properties similar .to tqe ort~9gonal K-gr~ups.

in topology, and in fact coincide with them.for. R= lR. At least
: . . . . ~ .' .- 1

for V affine the ring KOo(V(R» has a elose connection,to ~~~

Witt ring W(V) of V (Brumfiel). If X is. a vari~ty C?v~r. an:,

algebraically closed .fie~d C of characteri~ti~ z~ro we.hay~,

after choice of a field R with R(v=T) = C , KO-groups

since we can regard X(C) as a semialgebraic set over R. The

dependence of these groups on the choice of R is still mysterious.
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S. CHAtADUS: The I-rank of the K2~F for a nurnber field F

1. If G
F

denotes the quotient group H
2
F/H2F, then -it is

possible to calculate from the description of J. Brovkin the

group GF for several number fields. We find this group for

+and ~(~ r) - the maximal real
p

~(~ r) •
p

2. Let r = {a E F* : {~l,a} E K2 0 F } and j(l) rkl(Cl~!)/Cll(F»

where Cll(F) is the subgroup of the ideal class group Cl(F} of F ,

generated by divisors of the ideal (1) in

Theor.em 1: If '~l € F " then rk(r/(F*)l) = r1+r2+g(1)+j (1) , where

gel) is the number of different prime factors.. of ,the ideal, (I,)

and r,,(r2 ) is the number of real (complex) places'of', F, .

Theorem 2: If ~l E F , then rkl (K2oF ) = r,-1+g(1)+j(1) •

The proof of theorem' 1 runs as the proof 'of the theorem of'J. Browkin

(case 1 = 2). We need the Dirichlet-Hasse-Chevalley theorem on

units and a very simple lemma. Theorem 2 follows from theorem 1.

M. KOLSTER: On the 2-primary part of the Birch-Tate conjecture

Let 0' be the ring of integers in a totally real number'field

The Birch-Tate conjecture pred~cts IK2 (O) I ; w~(~)~I~E(-') I ,
wher~· ~E is the ~-function of E and ~i(E) = i. n pn(p)

p
n(p) . being the largest integer n such that E(l; n)/E is

p
quadratic.

Theorem 1: If the 2-Sylow-subgroup of K
2

(O) is elementary abelian

the2-prirnary part of the Birch-Tate conjecture holds.

This theorem is deduced using results of K.S. Brown qn the 2-

fractional part of ~E(-1) from the following structure theorem:
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Let F = E(v=T) , S = set of dyadic and infinite primes of E,

CS(E) (resp. CS(F» the 2-Sylow-subgroup of the class-group

of the ring of S-integers in E (resp. F).

Theorem 2: The 2-Sylow-subgroup of K2 (O) is elementary abelian

if and only if the dyadic primes of E are undecomposed in F

and the kernel of the norm map CS(F) ~ CS(E) is elementary

abelian of order rk(CS(E»

Among others the proof uses a generalized relative genus theory.

B. MAGURN: Reviews in K-Theory

Through lengthy consultations with every conference participant,

a Gomprehensive .subject classification of algebraic K-theory ~as

been developed for use in organizing an American Mathematical

Society publication of c611ected "Reviews in K-Theory", and for

consideration in amending the MR-ZBL subject clas~ification of

mathematics, to take into account the emergence of K-~heory..

as a major, active field of research. Experts in 'each'specialty, of

K-theory contributed much'time and effort in these consultations.

The "Reviews in K-Theory" will be completed and published

early in 1985.

Berichterstatter: M. Kolster (Münster)

--- --- -- --------------------------------
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