MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsberichdt 24 /1984

. Algebraic K-Theory -

27.5. bis 2.6.1984

Die Tagung wurde von den Herrén R.K. Dennis (Ithaca) und

u. Rehmanﬂ (Bielefeld)geleitet. bie groBen Fortschritte, die
seit der letzten Konferenz in Oberwolfach vor vier Jahren in
der algebraischen K-Theorie erzielﬁ worden sind, wurden in
den Vortrégén.und Gespridchen sehr deutlich, insbesondere die
tiefen Verbindungen’zur algebraiéchen Geometrie, zur Zahlen-
theorie und zu der erst kiirzlich en£wickelten zyklischen
Homologie.

Die groBe Beteiligung - auch diesmal wieder {iberwiegend aﬁs

dem Ausland - zeigte, wie gefragt und wie notwendig ein hdufiger

‘ intensiver Gedankenaustausch in diesem sich immer noch rasch

oF

entwickelnden Zweig der Mathematik ist.

Vortragsauszﬁée

C.A. WEIBEL: K-theory of varieties with isolated sinqularities

Theorem: Let X be a quasiprojective variety [with isolated’

singularities]. Then

Deutsche .
Forschungsgemeinschaft ©



UFG

<

<

t{‘\
. -3
* = 4 p
() 2*(x) @ 0 K (X) @@ HE(X,K,) © @
(2) Hp(x,gq) =0 for p z 2+q and can be nonzero for p=1+q (gz-1)
(3) There is a spectral sequence
Pq _ 4P
E5 H (x,g_q) = K_P_q(x) (p20, g € Z)
and the associated filtration on Ko(x) coincides with the
geometric filtration KO(X) = ﬁo(x):DSKO(X)==F112(X)=...
...:Fild(x)ﬁao where (p 2 2) Filp(x) is generated by
[Oy] , codim(Y) 2 p and Y N sing(X) = ¢ . .

We conjecture that this theorem holds if [with isolated
singularities] is removed, except that in (2) we must have
BP(X, K) =0 if p 2 2+q+din(sing X) (q 2 -1-dim(sing X)) .
In additio;, we’conjecture that Kq(x) =0 if q s -1-dim(sing(X)) .
After sfating the theorem and the conjectures; we poinﬁed out

in our talk that the theorem immediately im@lied several results

- of Collino, Weibel, Pedrini-Weibel, and Levine. For example, if

dim(X) = 2, then we immediately 6btain HZ(X,gz) B SK1(X) . If
X = Spec of a semilocal ring, dim(X) = 2 , then SK1(X) = SK_(X)
implies that §2 is flasque on X . This was the key step iﬁ.
showing that cr?(x,y) = SK_ (X) = Hz(x,gz) when X is a surface

with isolated‘singularities.

W. RASKIND: K.,-cohomology of algebraic varieties

Let X be a smooth, proper, geometrically connected algebraic
variety over a field k . We use the work of Merkur'ev-Suslin,
Suslin and the Weil conjectures as proved by Deligne to determine
much of. the structure of the K,-cohomology groups Hi(X,gz) for

i =0,1,2 . Among other things, we show:
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Theorem 1: If k is a p-adic field then H°(x,§2) is the direct
sum of a finite group of order prime to p and a group which is
uniquely divisible prime to p . o

Remark: This theorem is.a generalisation of and dependé on résults
6f Moore, Ca;roll and Tgte on the structure of K2 of 5 p-adic
field. ‘ - ‘

. Theorem 2: If k is a number field then for any positive integer

n , the group (H®(X,K,)/K,k)/n is finite.

~ One expects that under the hypotheses of Theorem 2,.the group
' H-o()_(,gz)/l(zk- is .finit':ely gene‘rated. Bécaﬁse.bf the analogy
_betwegﬁ .HOKX,gé)/szA éndlthé group of k-points of An abelian
va>r‘iety,vwe 1}ike~ to call Theo'réxt{ 2 "The wéék Mofdell-Weil

Theorem" for Ho(x,gz)/KZk .

V. SNAITH: Calculationiof K, (F [t]/tl) , i =2,3
PR . . . L M .
(joint with J. Aisbett and E. Lluis-Puebla)

If‘ A is a ring with an i;.ieal I let (1+I)* i&enote> units
in.‘ A whiéh arAe' one modAI . A o -
Theorem. Let p be an odd érime and mz 1 . Therg are
isomorphisms )

. 3
® . Fa‘Fpm[t]/‘t”_

1+ ¢t F m[t] *
——P 3,
K3(IF m) ® ( ) /<1+at” ;a € ¥ s

P % P

e

'1+t:|an'l[t] *
N R 2, A
K3(]F m) 0( - ) /<_1+at',a>]F m>

n

. , 4.2
(i1) Ky(TF _[t)/ (%)) 2
P P : (t") P

Let F denote IF . and F(n) denote F m[t]/(tn) . Since
' P i P .
KZ(F(n)) =0, K3(F(n)) = H3(SLF'(n);Z) and the above calculation

is- accomplished by studying the homology spectral sequence of the

extensions,

Deutsche
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(o] i n (n- ©
(*) Mt(n-1) _> SLtF(n) —_> SLtF(n 1) , (2 £t 5= .

Here Mi(n—1) is the additive group of trace-zero matrices

with entries in F with SLtF(n-1) acting through SLtF via
conjugation. The talk illustrated how to play off the similarities
of the homological algebra relafed to (*) for different values

of n .

Let n be a finite group. For n 2 O let SKn(Z n) be the kernel

A.O. KUKU: gr,SK of integral group rings.

of the canonical map Kn(Zn) - Kn(Qn) . It is well known that

for i =0,1, ‘Ki(Zn) is finitely generated and that SKi(Zn)

is a finite group and answers to such finiteness questions for
Kn(Zn), SKn(Zn), n 2 2 , have been oﬁen for some time. We prove
in this paper that for all n 2 2 , Kn(ZR) is finitely generated
and SKn(Zn) is finite. We then deduce tﬁat for a rational prime
P ., SKn(&pﬁ);s finite for all ﬂ 2 1 .

If R is the ring of integers in a nhmber field F , p a rational
prime, p the prime of R 1lying over p, k = R/p , W any 4

finite group, then we show that for all n 2 1 ,

(i) K, (km) is a finite p-group ) .

(ii) The Cartan homomorphism Pon-1t

Kyn-q (kW) - GZn_1(kn) is
surjective and Ker ®5n-1 is the Sylow p-subgroup of

Kyn-q(kn) where K, ,(km) is a finite group.

A. COLLINO: Torsion in the Chow group of codim 2: the case of

varieties with isolated sigularities

Let X be a variety with one isolated singular point, the Bloch-

Ogus theory goes through in this case as in the smooth case and
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as a consequence one has that the n-torsion subgroup of

Hz(x,gz) = CHZ(X) is finite. If X -is proper Bloch has remarked

that 1lim H1(X,}L2(u°i)) 3 T, cu?(X) , up to torsion kernel.
« 1

Let X be a desingularization of X , then the kernel of

Ty CH?X - Ty Cﬂzi is bounded by "topology". If X 1is a surface

nCHz(X) ~ nCH2(§) which was a result of Levine. Following an "
; ‘ indication of Bloch we provide an example of a 3-fold X as
above, for which the Tate group of the group of cycles of :.

cod 2/"alg. equiv." is not O .

H . GILLET: Some new cases of Gersten's.conjecture e

Recall that Gersten's conjecture says that if R is a regular ..
local ring and g(i)(R) is the category of f.g. B—modules‘with.
codimension of support 2 i , then K*g(i)(R) - K*g(i-1)(R) is
zero for i 2 1 . If Gersten's conjectu:e is t:ue‘the P10¢P'S ’
formula holds: S

cHP (x) ~ HP (X, K, (0)) .
Quillen proved Gersten's conjecture for regularllocal rlngs

essentially of finite type over a f1eld. The general case is still

. open. We now have some new results.

Theorem A (joint with M. Levine) Let R be a local rlng smooth
over a discrete valuatlon ring A , MF (i)(R) the category of f g.

R-modules flat over A . Then

kD (R) ~ koME 1) ()

is zero.

| Corollaries i) Gersten's conjecture for R is true iff it is.true

fof the discrete valuation ring which is the local ring. at the
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generic point of the closed fibre.

ii) Koﬂ(i)(R) is generated by classes of modules [R/(f1,...,fi)]
where (f1""’fi) is a regular sequence.

iii) CHP(X) ~ :mP(x,u,xp(oxF) 3 i*Kp-1‘0xk) where

u: XF —_—> X , i Xk ——> X are the inclusions of the generic

and closed fibres, for X smooth over a dvr. A .
Theorem B Let R be a dvr. with % € R . Then
Ky (k,Z/n) - K,(R,Z/n) 1is zero (k = r.f. R) i.e. Gersten's

conjecture is true for the K-theory with coefficients of R .

Corollary i) Gersten's conjecture is true for the K-theory with

Z/n coefficients for all regular local rings R smooth over
a dvr. A with % € A,

ii) Hp(x,Kp(Ox,z/n)) ~ cHP(X) ® Z/n for X smooth.over a dvr.

D.L. WEBB: Quillen G-theory of abelian group rings

Consider the Quillen K-theory G,(Rn) of finitely-generated
Rn-modules, where R 1is a ring with 1 and uwn is a finite
Abelian group{ Given a cyclic quotient p of w , generated

Rp [} the nth

————r cyclotomi'c
(O|p|(t)) n

say by t , let R(p) =

. 1

polynomial, and R<p> R(p)[TET] .

Then the following analogue of Lenstra's formula for Go(Rn)
is valid for all n:

(1) sG_(Rm) e SG (R<p>) , p a cyclic quotient of =
o

For the case R = Z , one obtains, via a vanishing theorem
of Soulé,
(2) sG (zZm) =0 .

Combining (2) and an explicit devissage description of the
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formula

(3) G (=mm) = 2Gn(22<p>).

The idea is to obtain a Heller-Reiner type presentation for
SGn(Rn) and use a map analogous to Lenstra's to map to a

suitable localization sequence.

J. HURRELBRINK: A question on squares in K

2
This is a report on a joint paper with- R.- Perlis- and D. Estes.
F always denotes an algebraic number field; recall:
1 KZ(F)2 + K, (F) - Br(F) is exact.

Question 1: Given a € F* totally positive, when dbes there exist
a positive q € ¢ such that {a,-q} € K, (F) ?
Theorem 1: a € F* is totaliy positive

e 3 positive q € @ : {a,-q} € KZ(F)2

< 3 infinitely many rational primes q : {a,-q} € K2(F)2 .

Corollary: « € F* sum of squares in F

= a = x2+y2 oot y2 for some x,y € F .

‘ . Question 2: Which classes in the Witt ring W(F) can be

represented by trace forms over F ?

Theorem 2 (P. Conner): F totally imaginary = every class in

W(F) can be represented by a trace form over F .

Remark: Theorem 1 implies Theorem 2.

S$.C. GELLER: On injectivity of Ki of a 1-dim integral domain

into Ki of its field of fractions (i s 3)

-7 -
o
. relative term in the localization sequence yields Lenstra's
|
Let A be a 1-dimensional integral domain and F its field of
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fractions. When does K (A) inject into Ki(F) ? For i =2, A
i
seminormal, local, equicharacteristic Ki(A)‘» Ki(F) <> A is
regular. For i = 1,3, many non-regular A have Ki(A)Ca Ki(F) .
a a ’ :
For example K, (k Q(t-a1) 1...(t-as) Skit]) & K1(k(t)) where
O seees0g €K are distinct, a, 21 and k=TF. , F or © .
s 1 P q
Also, Ky(k ®(t-a;)... (t-a)k[t]) & K,(k(t)) where

a;s...,a, € k are distinct and k = T .

_
In fact, Ki+1(k) € ker (X, (k e(t-a1)...(t-ar)k[t]) - Ki‘k(t)))
for all i 2 -1 and all fields k . Other examples of both

injectivity and non-injectivity were given.

B. LIEHL: Bounded word length in matrix groups over arithmetic

Dedekind rings

The following result was presented: Let k be an algebraic

number field, not totally imaginary; A < k an arithmetic
Dedekindring with infinitely many units, and let 9914, be

ideals of A . Then by a~theorem of Vaserstein (1972) every matrix
o € G(qq,9,) = {(2 g) € SL,(a) | a=1, a-1 € 9,9, » b € q, , c € qz)
can be written as a product of elementary matrices )

£. € {(‘I

%y, (1o | x € ¢, , v € ¢g,} . Suppose there exists a
j o1 y 1 1 2

natural number 1 , such that every prime p with p = -1 (mod 1) ‘
splits completely in k , then it is provéd, that the number- of

factors cj necessary to express a is a bounded function on

G(q1,q2) . The bound can be chosen independently from 4,19 -

Further one gets similar results about elementary word length in

SL, (n 2 3) and Sp,, (n 2 2) .
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G. TADDEI: Normality of elementary groups in Chevalley groups

over a ring
Let L be a complex semi-simple Lie algebra, let @ be the
root system of £ with respect to a (fixed) Cartan sup—algebra A
H and let T be a lattice of H which contains the root weight
lattice Pr and is contaiyed in the weight lattice P of © .
Associated with ® and T there is a group scheme GO,F =.G
over 2% , called the Chevalley-Demazure group scheme.
For all roots a we have an injective natural map Ga —% 6
and for a commutative ring R with unit we define E(R) to be

the subgroup of G(R) generated by the images of the ea(R)"su

Theorem: If @® does not contain a component of type .A1 “then

for any commutétive ring 'R , E(R) 1is a normal subgroup of | GiR) .

K. VOGTMANN: Outer Automorphisms of Free Groups (joint with M. Culler)

Let Fn be the free group of rank N . We study the group Fn of
outer automorphisms of Fn by constructing a space xn anélogous

to the Teichmuller space used for studying the mapping class group

of a Riemann surface or the homogeneous space used for studying an .
arithmetic group. Points in X are equivalence ciasées of

marked graphs (g9,G) , where G is a metric graph with MG = Fn

(and G is connected and has no nodes of valence 1 or 2) and g

is a homotopy equivalence from a standard bouquet of circles to. G .

Theorem 1 Xn is contractible, and Fn acts on xn discretély

with.finite stabilizers.
To prove the contractibility of xn , we use the following
Theorem 2 There is a contractible simplicial deformation retract

Kn of xn such that
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(i) Kn is Fn-lnvarlant

-

(ii) dim K = 2n-3 . ‘ ' ‘
(iii) Kn/l"n is a finite CW complex . ’ ‘ |
Corollary (i) Fn is VFL

L (ii) VCD(Fn) = 2n-3 .

This corollary has also been recently proved by S. Gersten.

C. PEDRINI: Bloch's Formula for sinqular varieties

Let. X be a quasi-préjective variety over a field k . If X is
non-singular it is well-known that CHP(X) o Hp(x,gp) (Bloch's
formula)_where cHP(X) is the Chow group of codime;sion p cycles
modulo rational equivalence am; gp. is the sheaf Iassociated tp
the pre-sheaf U - KP(U) on X . If X is_;iﬁgular we assume:
Y = Ssing X is contained in an open affine set and we define
CHp(X,X) to.be the cokerhel of the "cycle map":

1l x*-]] =

xex§‘1 xex§
where xP = {x € xP / (X} nY =g} . Define: X, =N U , U open
affine such that ¥ S U and X-U is a divisor. Then there is a

long exact sequence:

.. Hp_“(X:gp). - Hp-1(xyl£p) - cEP(x,v) - HP(X'ép) _’ H?(XY’gp) - C.

In the case p =2 and X has only finitely many singular points

we prave the following results (jointly with C. Weibel):

Theorem: Let X be a quasi-projective irreducible variety over a

field k having only finitely many singular points. Then the

groups H1(Xy,§2) and HZ(Xy,gz) have finite exponent; in

particular CHZ(X,Sing X) @ @ =~ Hz(x,gz) 0 .

Corollary: Let X as in the theorem and assume dim X <3 . Then
cu?(x, sing X) ~ H?(X,K,)




R: CHARNEY: K-theory and moduli spaces (joint work with R. Lee)

We consider applications of K-theory techniques to moduli spaces.
We show that certain families of moduli spaces are relatéd by '
sum operations or by collapsing maps which can be used to define,
respectively, "+-construction" and "Q-constructions" for moduli
spaces. This is applied to moduli spaces of Riemanntsurfacés and
moduli spaces of abelian varieties to produce stable rational
cohomology classes and to compute the effect of the Jacobian map
on these classes. In particular, for

A; = Satake compactification of moduli space of principally

polarized abelian varieties of dim g

M; = moduli space of stable curves of genus g

J M; - A; the (extended) Jacobian map

J* :_H*(A;;Q) - H*(M;;Q} the induced map
we prove

Theorem: For g 2 i+1 , Hl(A;;Q) is the i-dimensional subspace

in the polynomial algebra Q[x4j_2] ® Q[y4j+2] , (3 21) .

E. Miller proves that J* is an injection on Q[x4j_2] .
We prove . ;

Theorem: J*(y4j+2) =0 .

M. KAROUBI: Cyclic homology

Let G be any discrete group. One can extract from the double
complex defining the cyclic homology of the ring Z[G] another

double complex (take the product of the gi's to be equal to 1)
’ ) def

which homology in dimension n is HA(G) ® Hn-z(G) ® ... = HCn(G) "

If now G = GLr(A) , where A is a ring, we define group maps

Hi(G) - Hci+2p(A) as the composition of the maps
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Trace

(G) ~ HC, M_(2) = Hy, o (B) .

i+2p 1+2p(zG) » HC;

H,(G) - HC i+2p

From this we can deduce easily the "Chern character”
. ch -
B
Ki(A) > HCi+2p(A) .

In fact, these maps are compatible with the S operator of Connes

and we have more precisely maps

K, (a) —> lim HCi+2p(A) . ’
p

This can be generalized easily to the "relative" situation:
Ki(A,I) ———>-1im HCi+2p(A,I) .
P

In particular, if p = O , one has a commutative diagram

ch HCi(A,I)

Ki(A,I)’g//» T
\

D H; (A,I)

where D is the map defined by Dennis some years ago (1976).
Let us assume now that A is a Q-algebra, then one can define

"regulator maps"

K, (a,1) 2R HC, .(a,I)

i-1
which makes the following diagram commutative

K, (A, 1) > HC,_, (A,I)

>~ .

HCi(A,I)V

where B is the Connes operator and A = lim A/I" . 'This is
N . - . .

defined via differential'geometry technics.
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R. OLIVER: K, (%Z G) and cyclic homology
< 1

For any prime p and any abelian p-group G , there is a short
exact sequence

- r - ©
: o top 2 2
(o} th ( ZPG) = HC1( ZPG) = H2(G) -0 . (1)

Here, Wh3OP( Z ) = lim (K,( z/p"[61) /12G,6}), H,(e) =
a
' (G®G) /<g®h+he®g> +HC, ( ZpG) = (G® ZpG)/<g@g>, and with these

identifications mz(g@h) = g@g-1

h . A comparison with the exact
sequence

- ~ - T - .
HC, ( ZPG) -+ H,(G) - K, ( zpc)/(tc) » HC_( sz) - H, (G} zZ/(p,2)» O

(for any p-group G) suggests the existence of some still longer
sequence containing both. ‘ ' ’ e

The immediate problem now is to construct an exact sequence similar
to (1) for non—abelian‘p-groups. As one immed;ate conseduence,»
this would yield a simple combinatorial algorithm déscfibigq- '
SK1(ZG) for any finite G : at least u§ to expénéﬁt 2 ::Aﬂother
consequence of (1) (and eventual generalizations to the nonabelian

case) is a lower bound for IKZ(ZG)I :
I Theorem If G 'is'an abelian p-group, thén

. |sx2( ZG) | 2 |sx2( zpc)l =

P

ISKT.(OG) |-.|HC1 ( ZPG) [+ IK;OP( zp) I ;

Ixz_(opc)v(p“ L Tlend
11 'S! e
ISK‘](O-G)I --——-—I—--I——rl ‘Cl(p( BES , where. 0 = Z if p>2 A’:o =‘vz§3
CcsG
C cycl,

if p =2 . In particular, for any n 2 1 ,

|
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- n
- N P} _ nn+n)
|SK2( Zcén)| 2 |SK2( chpn)l = p , where N= 51 5 .

This last formula complements results of Chaladus, who found

lower bounds for IKz(ZG)/SKZ(ZGH for cyclic p-groups G .

R. STAFFELDT: Rational algebraic K-theory of truncated polynomial

rings over rings of integers

Let 0 ring of integers in a number field K

A = (O-algebra, f.g. projective as an 0(-module, augmented

A 50 and with nilpotent augmentation ideal A = Ker ¢ .

1
o
®
>
|
I
(54
®
B

Let R

Theorem: dimQ(K*(A)/K*(O)) ® Q= dimQHC*_1(ﬁ) , where the cyclic

homology of R is computed viewing R as a K-algebra.

We analyse the spectral sequence of the fibration

BG(R) - BGL(A) - BGL((0) , where G(A) = Ker ¢ = {I+M(A) | M(A)
matrices with entries in A , mostly zero.!}
Rational homotopy theory gives a model for the local system of
coefficients {H,(BG(A))} since G(A) is nilpotent, Borel's
vanishing theorem for cohomology éf arithmetic groups witﬁ
coefficients in non-trivial irreducible algebraic representations
implies the spectral sequence collapses, énd the Loday-Quillen
theorem applied to ihe rational homotopy theory model
Ay (gl(h) ® R) for the chains on the fibre gives the coniiaut‘ation
of the prgmitives in the coinvariant homology of the fibre in terms
of cyclic homology.

To calculate the example A = 0[T]/Tn+1

Deutsche
Forschungsgemeinschaft

a

o®




oF

Deutsche

- 15 -

[K:9)-n * odd

dim K, (A) /R, (0) ® @ =
0 * even

we applied F. Goodwillies

Theorem: Suppose R 1is a commutative ¢ -algebra with @-

DR

derivation D D induces an endomorphism LD of H (R). and

moreover LD =0 .

Z. WOJTKOVIAK: Two lattices in the complex fundamental group of

an algebraic variety

We show that iterated integrals of Chen behave like polynomial
functions on the fundamental group made nilpotent. Using this

property we define the algebraic de Rham fundamental group -

n319 AR

part of the image of the transcendental n1( ) in the algebraic

for affine, smooth varieties. Then we describe some

de Rham fundamental group for elliptic curves minus a point and

for the complex plane minus O and 1 .

D. RAMAKRISHNAN: K, of Hilbert modular surfaces and values

" of L-functions
For any smooth projective variety X over $) , there are higher

regulators (with values in Deligne cohomology)

. (b) a
a,b P G Ky (X)) @ @~ Hy(Xp, R(b)),

(b)-

as defined by A.A. Beilinson (and H. Gillet, ...). Here Gr
denotes the graded piece of weight b with respect to Adams .
operations. These regulators generalize the classical Dirichlet

regulator on the group of units in a number field. The higher

regulator on 'Kzl of curves was first defined and studied by Blbch,
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"

after Borel's striking work relating higher odd K-groups of rings
of integers of any numbér field F to the values at negative
integers of CF(S) . '

If 2b-a 2z 1 , then there is an exact sequence (cf. Beilinson)

b, b-1 n

b-1
O =->F HDR (X) ® IR

a-1 + a
> Hy (X(€), R(b-1)) -~ HD(XIR,]R(b)) - 0

where Hp (resp. HDR

) denotes Betti (resp. De Rham) cohomology .
2nd LI denotes the map on complex cohomology induced by the

morphism ¢ =1R(b-1) & IRR(b) - R(b-1) . There is a natural ¢@-

max
A

structure on HS(X]R +IR(b)) by taking the quotient of

@S @), o=y by A (PRI (x))

We now specialize to the case of dim X = 2 , and consider the

regulator: ry 5 ¢ Gr(z)K1(X) ® 0 - I-Ig()(]R ,JR(2)) . Combining this
r

with the cycle map on the Néron-Severi group NS(X) of divisors

modulo algebraic equivalence, we get the modified regulator

r:ar®x ) e0ensx e ~nx), RONY .

Conjecture (Beilinson) (weak form)
(a) r ® R is surjective
(b) Im(r) contains a Q-lattice whose volume is (up to a non-zero

rational number) the leading term at s = 1 of L(z)(x,s) . .

Here L(z) (;(,S) denotes-' the Hz—piece of the Hasse-Weil zeta
function of X . Bloch‘proved this conjecture when X =Jac(X_(37)) ,
vwhere Xo'(37) is the standard modular curve of level 37. Then
Beilinson proved this for X = MxM where M is any modular
curve/Q .

Theorem: Let X be any Hilbert modular surface/® . Then the
conjeéture of Beilinson is true for X .

We use the techniques' and results of Harder, Langlands, Rapoport

and Beilinson, and some techniques from representation theory.
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R.W. THOMASON: Equivariant algebraic g—theory

Consider a linear algebraic group G acting on a noetherian
scheme X . The exact category of G-coherenf modules on X gives
rise to equivariant algebraic K-theory spectra G(G,X) . The;e ére
analogues of the localization theorem, the calculation of thg
K-groups of G-linear projective space bundles, and a homotopy
"axiom" for torsers under a G-liﬁear veétor bundle. A B

For schemes over a field, there is a G-equivariant Riemaﬁn—Roéh‘“
theorem for the map of the algebraic K-theory épéétrum:to‘fhé'
topological K-theory spectrum. This yields a general Lefscheti-
Riemann-Roch formula, extending previousvresultsvof Atiyah, "Bott,
Segal, Baum, Fulton, Quart, and Nielsen.

For schemes X of finite type over an algebraically closed-field,
the IG-adic completion of the ring of mod I" equivariant a%geg:gic
K-groups localized by inverting the Bott element is 1som§fpﬁie;£§

the ring of equivariant topological K-homology groups.

M. KNEBUSCH: Semialgebraic K-theory

Report on some work with Hans Delfs. Let. M ' be a semialgebraic
subset of the set V(R) of rational points_of an algebraic,
variety over a real closed field R . We define orthogonal Krgroups
Koi(M) which have properties similar,;o the orthpgopal K-groups_
in topology, and in fact coincide with them for. R = IR. At leqsg
for V affine the ring K0°(V(R)) has a close connection to gpg
Witt ring W(V) of V (Brumfiel). If X is a varigty‘qvgr_an
algebraically closed field C of characteristic zero wg,bévé;J‘r
after choice of a field. R with R(V?f) = C , KO-groups Koi(x)“
since we can regard X(C) as a semialgebraic set over RJ. Tﬁé v

r

dependence of these groups on the choicé of R is still mysterious.



"

o _for a number field F

2—F"

S. CHALADUS: The l-rank of the K

1. If GF denotes the quotient group HZF/HéF , then it is
possible to calculate from the déscription of J. Brovkin the
group GF for several number fields. We find this group for
P p
F=0(c ), 0Cvd) , Q(Cp, vd) and @(g r)+ - the maximal real
p . P
subfield of the cyclotomic field (¢

r) °
p .

2. Let T = {a € F* : {Cl,a} € K and j(l) = rkl(Cl(F)/Cll(F)) ,.

2%F)
where Cll(F) is the subgroup of the ideal class group Cl(F) of F,

generated by divisors of the ideal (1) in Op -

Theorem 1: If ‘Cl € F ,: then rk(F/(F*)l) = r1+r2+g(l)+j(l) , where
g(l) is the number of different prime factors of the ideal (1)

and r11r2) is the number of real (complex) places of - F..

Theorem 2: If ¢, € F , then rk.(K, o ) = r =-1+g(1)+j(1) .
_— 1 1'"2°F

1
The proof of theorem 1 runs as the proof of the theorem of J. Browkin
(case 1 = 2). We need the Dirichlet-Hasse-Chevalley théorém on

units and a very simple lemma. Theorem 2 follows from theorem 1.

M. KOLSTER: On the 2-primary part of the Birch-Tate conjecture

Let o0 be the ring of integers in a totally real number :field E . .

' The Birch-Tate conjecture predicts [K,(o)| = wy(E)*[z (-1)] ,
where ' ¢ is the z-function of E and w,(E) = 2.1 pn(P)
n(p)  being the largest integer .n such that E(Z n?/E is
quadratic. ' ' P

Theorem 1: If the 2-Sylow-subgroup of Kz(o) is elementary abelian

the 2-primary part of the Birch-Tate conjecture holds.

This theorem is deduced using results of K.S. Brown on the 2-

fractional part of CE(-i) from the following structure theorem:

Deutsche
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Let F = E(V=1) , S = set of dyadic and infinite primes of E ,
CS(E) (resp. CS(F)) the 2-Sylow-subgroup of the class-group

of the ring of S-integers in E (resp. F).

Theorem 2: The 2-Sylow-subgroup of Kz(o) is elementary abelian
if and only if the dyadic primes of E are undecomposed in - F
and the kernel of the norm map CS(F) - CS(E) is elementary

abelian of order rk(CS(E)) .

Among others the proof uses a generalized relative genus theory.

B. MAGURN: Reviews in K-Theory

Through lengthy consultations with every conference participant,

a comprehensiveVsubject'ciassification of algebraic K-theory has
been developed for use in organizing an American Mathematicai
Society publication of collected "Reviews in K-Theory", and for
consideration in amending the MR-ZBL subject classification of
mathematics, to take into account the emergence of K-theory

as a major, active field of research. Experts in"each‘specialty,of
K-theory contributed much time and effort in these consultations..
The "Reviews in K-Theory" Qill be completed and published

early in 1985.

Berichterstatter: M. Kolster (Miinster)
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