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Orders and their applications

3.6. bis 9.6.1984

The organizers of this "Tagung'" were Irving Reiner (Urbana) and
Klaus Roggenkamp (Stuttgart).

In the past 4 years since the last meeting, much progress has
been made in various aspects of the topic, and most of it has

been reported in the lectures of our meeting:

I. GALOIS MODULE STRUCTURE, NON-ABELIAN CLASSFIELD THEORY AND
ANALYTIC NUMBER THEORY OF ORDERS

J.Brinkhuis (Rotterdam) Galois modules and embedding problems

C.Bushnell (London) Principal orders II

M.Desrochers (Cambridge) Torsion Galois modules

A .Frohlich (London) Principal orders I

L.McCulloh (Urbana) Stickelberger relations, monoid rings
and Galois module structure

A .Raggi (Urbana) Zeta-functions of 2-sided ideals in
arithmetic orders v

I.Reiner (Urbana) Zeta- and L-functions, a survey

M.Taylor (Cambridge) Galois modules and elliptic functions
I1. K-THEORY OF ORDERS AND CONNECTION WITH ALGEBRAIC GEOMETRY

M.Auslander (Waltham) Almost split sequences and isolated
singularities

J.Brzezinski (Goteborg) Algebraic geometry of quatefnion orders
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J.Carlson (Athens)
W.v.d.Kallen (Utrecht)

A .Kuku (Ibadan)
R.Oliver (Aarhus)
I.Reiten (Trondheim)

P.Salberger (Goteborg)

D.Webb

2 - ' e

Ll

Nilpotent elements in the Green ring
The Merkurjev-Suslin Theorem
K—tﬁeory of group rings over maximal
orders in division algebras

A survey of KO(ZG)

Presentations of Grothendieck groups

Class groups of orders in algebras over
function fields

G, of dihedral and guaternion groups

II1. APPLICATIONS TO GROUP THEORY AND GROUP REPRESENTATIONS

G.Janusz (Urbana)

W.Kimmerle (Stuttgart)

]

.Mollin (Calgary)

=

.Plesken (Aachen)

J.Ritter (Augsburg)

K.W.Roggenkamp (Stuttgart)

Units in crossed product orders
Decomposition of relation cores of non-
soluble groups

The Schur group of a commutative ring

Finite unimodular groups of prime degree

and circulants
On a Zassenhaus conjecture about units in

group rings

/

Isomorphisms of p-adic group rings I ‘\

R.Sandling (Manchester) Computer calculations of units in modular

group algebras

L.L.Scott (Charlottesville)

.Webb (Manchester)

]

Isomorphisms of p-adic group rings II

Permutation modules and group cohomology

H.Zassenhaus (Columbus) On A-group rings
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IV. CLASSIFICATION OF INDECOMPOSABLE LATTICES

G.Cliff (Edmonton) Crossed product orders

E.Dieterich (Bielefeld) The Auslander-Reiten quiver of a non-
domestic tame group ring

R.Guralnick(Los Angeles) Isomorphism of modules under ground

ring extensions

~ W.Gustafson (Lubbock) Hereditary orders
L.Levy (Madison) . Modules over Dedekind-like rings
W.Rump (Eichstidtt) Representations of tiled orders and

module valuations
A.Wiedemann (Stuttgart) Auslander-Reiten quivers of local

Gorenstein orders of finite type
V. APPLICATIONS TO CONCRETE PROBLEMS

H.Lenstra (Amsterdam) Applications .of ring theory to number-

theoretic algorithms

Summarizing, we are proud to say that many of the people
interested in our subject were present at this meeting. However,
since the last meeting 4 years ago - a too long tiﬁe - there was
not enough time to cover the recent ihferesting developments

thoroughly.

There were always lively mathematical discussions, which led to

new insighfs and sometimes to new results.

In the evenings we socialized together over glasses of wine and

continued our discussions in a friendly atmosphere.
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Vortragsausziige

M.AUSLANDER: Almost split sequences and isolated singularities

Let R be a fixed complete regﬁlar local ring. An R-algebra

A  which is a finitely generated free R-module, is called an
isolated singularity, if for all nonmaximal prime ideals

p ¢ R we have that gl.dim A, = gl.dim R, = dim Rp K Suppose
A is an R-algebra and finitely generated free R-module and

let $R(A ) be the category of A-modules which are free
R-modules. Then we have the following theorem: A is an
isolated singularity if and only if $R(A ) has almost split

sequences.

J.BRZEZINSKI: Algebraic geometry of quaternion orders

Let R be a Dedekind ring with field of quotients K and A
a central simple algebra over K of dimension n2 . Each
R-order A in A defines a SpecR-scheme XA . The set of
R'-rational points, for a commutative R-algebra R' , is the’
set of R'-projective left A'_jideals I' of R'-rank n suéh
that A'/I' is also R'-pr;jective. We look at the schemes

XA in the particular case of quaternion algebras A . In this
case, XA is integral if and only if A is Gorenstein, normal
if and only if A is Bass, and regular if and only if A is
hereditary. Each Gorenstein order A defines in a natural way
a Bass order B(A ) such that XB(A ) is the normalization of
X . For each Bass order A there is a sequence of orders

A

A=A _ cAyc ...c A such that X is an elementary
o 1 r Ai+1

Forschungsgemeinschaft

o

o®



UFG

Deutsche

Forschungsgemeinschaft

-5 -

transform of Xx at singular points in one of its fibers
i
(suitable blowings-up followed by a suitable contraction)

and XA is a regular scheme. -
r

J.BRINKHUIS: Galois modules and embedding problems

We combine the embedding problem with the problem of Galois
module structure of rings of integers. We derive a necessary
condition for the solvability of the "e;bedding problem with
prescribed frée Galois module structure'". This is analoguous
to.the classical condition of Hasse-Wolf for the embedding
problem. Our approach leads to a number of explicit results,
for example: no cyclic extension of the rationals of odd prime
power order has a normal integral basis over any proper
intermediate subfield. A basic tool is a map from a Hoch-
schild-Serre sequence to a Frohlich-Wall sequence. One
intriguing feature of this diagram is that two of its vertical
maps are not in general a homomorphism, but only have a weak

multiplicative property.

J.CARLSON: Nilpotent elements in the Green ring

Let G be a p-group and let R be an integral domain in which
p is not a unit. Let #(RG) be the Green ring or representation
ring of RG-lattices. The speaker and David Benson have found a
nev method for finding nilpotent elements in ¥ (RG) for many
p-groups G . The method improves on that used by Zemanek in

that it gives an infinite number of examples and it substitutes

o®
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a cohomology calculation for the more difficult tensor product

calculation.

Let K be a field of characteristic p > o . Benson has shown
that if M is an absolutely indecomposable KG-module then, for
any indecomposable N , K is a direct summand of M ® N if

and only if N o M* and p does not divide the dimension of M

Let %(KG,p) be the subgroup of %(KG) generated by all [M] .

such that p divides the dimension of every component of K' ® M
for any extension K' of K . Then % (KG,p) is an ideal in

% (KG) and % (KG) /9 (KG,p) has no nilpotent elements. The speaker
working with M.Auslander has discovered a proof of Benson's
result that appears to extend these results to #%(RG) for R

a complete D.V.R.

G.CLIFF: Crossed product orders

Let K/* be a finite Galois extension of local fields (with
[+ :‘up] finite) with Galois grouﬁ G , and rings of integers
®;0 (resp.). Let A = (K/t, p) be a crossed product algebra
where o, 1is a factor set on G with values in o* , and let

AN = (®/o, p) be the crossed product order in A

Let A  =A , and A .4 = o‘(J(Ai )) be the left order of the

i+
Jacobson radical of Ai Then
Aocl\lcl\zc...CAS=AS+1=...=A°°
FECE A g |
It is shown that s = d - (e-1) , where QK/! =% , B the

maximal ideal of © , SK/I the different, e = e(K/t) the i
ramification'index. Also, the type numbers of the hereditary

order A are J(f,f,f,...,f) where f = f(K/t) is the inertial
had m times

degree, and m is the Schur index of A

DF Deutsche
Forschungsgemeinschaft ©
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M.DESROCHERS: Torsion Galois modules

Let KA be a finite Galois extension of algebraic number fields
with Galois group T , and let © be the ring of integers of
K, o , the ring of integers of ¢ . The trace map gives an

oT-isomorphism between & , the codifferent of the extension

. K/t , and Homo ©,0) , the dual of ©® , enabling one to use

the torsion module . T = €/ to '"measure" the difference
‘between © and its dual. More precisely, if S8 is a fixed

set of primes of o , let‘ q:(or) (respectively K§(°r)) denote
the Grothendieck group corresponding to the category of finitely
generated o-torsion free or'-modules (respectively also locally
projective at the primes of o outside S ), with the relations
arising from short exact sequences splitting at the primes of

o outside S . By computing the class of T in a suitably
chosen Grothendieck group one obtains a purely algebraic

proof of: )

Theorem (Cassou-Nogués, Queyrut) : If SZ contains all the
rational primes with a divisor in o wildly ramified in K ,

then [0] = [Homo(o,o)] in sz(zr) ; as well as another

. ~theorem computing the difference [Homo ©,0)]-[0] in G:(ol‘) s

UFG

where § contains the primes of o wildly ramified in K
This difference is seen to depend only on the ramification

groups T and FE 1 and on the class of p in the ideal
’

p,0
class group.of o , where p runs through the primes of o
ramified iﬁ K, P is a prime of ¢ above p , and

Tp 3 = {y€r such that y(x)-x¢ 31+l for 211 xc0} . In
particular, (o] = [Homo(a,o)] in q:(or) if all the primes

of o ramified in K are principal.

\
‘
Deutsche
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E.DIETERICH: The Auslander-Reiten quiver of a non-domestic

tame group ring

Let C3 be the cyclic group of order 3, R a complete

discrete valuation ring in which the prime number 3 has

valuation 4 , and let A = RC3 be the corresponding group

ring. Let ¢ be the residue class field of R and put .
S = {monic irreducible polynomials in ¢?[X]} u {«} . Then the

stable Auslander-Reiten quiver ﬂS(A) of the lattice category

'EA consists of a P;(@)-family of J-tubular series:

4 (W) = U T.. , I,..  =u T, _O0) . Each §-tubular series
5T siaepyj@ P Bi@ ey B
Is-a is of tubular type Dy if ¢ is a splitting field for C3

€Dy if t is not a splitting field for Cg

Moreover, let 8 and o« be relatively prime integers. not both
equal to zero. Then the dimension-type of the primitive series

of Ig. is given by |8lb + lola ¢ 24 , where b = (2,1,0.1)

o
and o« = (1,0,1,0

A.FROHLICH - C.BUSHNELL: Principal orders I and II

The basic arithmetic properties of a principaltorder % (where .
3% (its Jacobson. radical) is left (hence right) principal) were
noted and the congruence Gauss sums for admissible represenfations
of the normaliser, of % , G = G(2) were introduced. The
significance of these in connection and comparison with Galois

Gauss sums was discussed.

DF Deutsche
Forschungsgemeinschaft ©




continued by C.Bushnell

The relation between the Gauss sum v (p) attached to a
representation p» of the normaliser &(2) of a principal
order % in a p-adic simple algebra A , and the Godement-
Jacquet local constant € (w,s) attached to a representation

* s
n of A was given:

@ ¢t = DM y @y 1)) 32/ g
’ /| ﬁ‘)"
(o

a2 = dim y(B) , A M (® , D a division algebra.

Z(A

R.GURALNICK: Isomorphism of modules under ground ring extensions

Let D be a Dedekind domain and R a module finite D-algebra.
If M is a finitely generated R-module. there is an equivalence
‘of categories between the classes of modules which are summands
of M® for some e and finitely generated projectivé R'-modules
where R' is a D-order in a semi-Simple algebra. In parficular,
this equivalence preserves the genus. Hence for D the ring of
algebraic integers in a number field, one obtains a generalization
of Jacobinski's cancellation theorem and a variation of his
extension of base ring theorem ( M and N are in the same

‘ genus if and only if M ®DD' e N ®DD' for some- larger ring of
algebraic integers D' ). We also discuss another proof of.
the extension theorem which depends essentially only on the
fact that one is in the stable range of the ring of all

algebraic integers.

W.GUSTAFSON: Hereditary orders

We show that an order is hereditary if and only if all of its

artinian factor rings are of finite representation type. The

DFG Deutsche
Forschungsgemeinschaft ©
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proof depends on a theorem about artin algebras that may be
of independent interest. The work was done jointly with

Edward L.Green.

G.JANUSZ: Units in crossed product orders

Let K be either a totally real number field, normal over @

or a totally imaginary quadratic extension of such a field.
Then K admits complex conjugation x »X . Let G be a
finite group and J the involution on KG defined by

_ — -1 _ o .
J(T g g) =% vy B . Ry = algebraic integers in K

Theorem: Let A be any RK-order in KG which contains
RKG . Then UJ(A\ = {MA : A J(A)Y =1} is a finite group
containing G . If Gc Hc (K& with H finite. then

Hc UJ(A) for some order A

Consider the case G = Frobenius group of order p(p-1) ,
p an odd prime. One can explicit;y determine the orders in
QG containing ZG . They can be indexed as rl. Lrp_l
and for these orders UJ(ri) can be determined. In 4 cases

this group is (-1) x Sym(p) . If p+l is divisible by .

4,6,8 or 12, then some groups are (-1) xXPGL(2,p)( p at most 8 ).

The remaining groups are <(-1) x G

W.v.d.KALLEN: The Merkurjev-Suslin theorem

Let n be a positive integer, F a field so that 1/n ¢ F

- The Merkurjev-Suslin theorem states that the Galois symbol

®2)

. 2 .
ap ! KZ(F)/nKz(F) - H (F,un‘

is an isomorphism.

DF Deutsche
Forschungsgemeinschaft ©
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See Math. USSR Izvestiya Volzi, 1983, 307 - 340. Discussed
was Merkurjev's more elementary proof of this theorenm, based -
on Hilbert 90 for K, and specialization arguments similar

to those used in his original proof for the case n = 2

‘ W.KIMMERLE: Decomposition of relation cores of non-soluble
groups

Theorem. Denote by Sn the finite symmetric group of degree n
Then relation cores of Sn decompose if, and only if, n = p
or n=p+ 1 , where p 1is an odd rational prime.
Remarks. .
a) The proof closes one gap left by Gruenberg and Roggenkamp
‘ on this topic and establishes that there exist finite
insoluble groups with decomposable relation cores.
‘ b) The proof uses a criterion in terms of H1 giveﬁ by
| Gruenberg and Roggenkamp and yields the appropriate
‘ . estimations for Hl . In the case when n = p (and only
| " in this éase) the proof requires the classification of the
‘ finite simple groups.
. c) The proof applies to many other finite groups. e.g. it
follows that relation cores of every Zassenhaus group are

decomposable.

A KUKU: K-theory of group rings over maximal orders in

division algebras

If B is a regular ring, =« a finite group, n 2 o , let

K (n, P(B)) be the K -group of the category [v. P(B)] of

DF Deutsche
Forschungsgemeinschaft
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n-representations in the category P(B)Y of finitely génerated
pfojective B-modules. Swan proved that if R is a semi-local
Dedekind domain with quotient field F , then the canonical
map Ko(n,P(R)) > Ko(n,P(F)) is an isomorphism. We prove
that K_(v,P(a)) %> K_(v,P(D)) is not injective if A is
a maximal order in a central division algebra D over a .
p-adic field F thus showing that Swan's result is not true
in general if R is non-commutative. We then compute Ker 8
We also compute for all n = o , Kn(n,P(A)) , Kn(n.P(Ap)) ,
SKp (M, P(A)) . SK (1, P(A Y, SK (v, P(A))  where A (A is
the localization (completion) of A at a prime p of R if

R is the ring of integers in a number field.

H.LENSTRA: Applications of ring theory to number theoretic

algorithms

In this lecture it is shown how Galois theory for finite rings
underlies most practical primality testing methods. Let A be

a Galois extension of Z/nZ with group G ; i.e., A is a

Z/nZ -algebra, commutative, that is f.g. free as a Z7Z/nZ —module..
and A ® A -)IIGGG A, a®bbp (ag (b))&EG is 'an isomorphism.

Assume G is abelian. Then for every prime r dividing n

there is a unique oL, € G (the Artin symbol) with vx € A

<pr(x) = x¥ mod rA . Extend this definition to all r,\n by

© = o

re' The decomposition group Dc G is defined

r ©r'
to be the subgroup of G generated by all ‘?r . rln . Clearly
(cpn) c D, with equality if n is prime. Many primality

testing methods can be interpreted as attempting to show that

Forschungsgemeinschaft © @
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(@n) = D . For example, if there is a ring homomorphism

{o )
A" S52mz (mapping 1 to 1) then we must have D = (¢n) .

Applying this to A = Z[Cs]/(n) (cyclotomic, with ged(s, n)=1)
with G e (Z/sZ)° this leads. if n passes certain tests, to
the information that vr|n : 3i : r = n1 mod's . If s is
large and #{n mod s) is small this can be used tq check
whether n 1is prime. The best methods used nowadays rely

on the same ideas but are somewhat more involved. For

n < 10100 one can use

8 = 2’504°'nq prime, gq-1}5040 ~
-1009-2521 ~ 1-5-10°2 ;

then #(n mod s)> < 5040 , for gcd(n.s)=1 . The resulting test

runs for approximately 45 seconds.

L.LEVY: Modules over Dedekind-like rings

There are very few commutative Noetherian rings, all of whése
(finitely generated) modules ére known. Dedekind-like rings are
a generalization of Dedekind domains. Tﬁeir modules can be
described, together with the direqt—sﬁm behavioriénd local-
global behavior of these modules. Examples of Dedekind;like
rings are ‘
(i) Group rings ZGn , Gh cyclic of square-free order n ;
(ii) some rings of algebraic‘integers that are not integrally
closed in their field of fractions; and h
(iii) many subrings of Z & ... ® Z
Artinian homomorphic images of Dedekind-iike rings (the mo&ule-

structure theory obviously applies here., too) include the well-

Forschungsgemeinschaft
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discussed ring K[x,y]/(x,y\2 , Nazarova and Roiter's dyad of
two discrete valuation rings, and all (commutative) artinian
PIRs.

Main results: As with Dedekind domains. we associate an ideal
class cl M with each R-module M in such a way that

M N M is locally =« N and cl1 M = ¢c1 N . Moreover,
cl(M® N) = (¢1 MV(cl N) , and cl1l M 1is projective of

rank 1 over some ring between R and its integral closure.

L.McCULLOH: Stickelberger relations, monoid rings and Galois

module structure

Let K be a number field with ring of integer o . and G a
finite abelian group. To G , one can associate a certain
commutative monoid E and a Stickelberger submodule s* of
the dual ZE" - Hom, (ZE.Z) such that
(iy if G~ (ln,...,ln\ , 1 an odd prime, then
lc1@e ™| = [zE*7:8*7] and
(ii) if G is any abelian l-group (1 odd), then

1°p@ze)| = | @E**/s*H or more generally, if G has

torsl
odd order or has gyciic 2-primary component, then

| ze*t/s* ) =>|A0(G\| (A, (G) = the cokernelof Artin

tors|
induction).

If R(oG) (resp. Rd(oG)\ is the subset of C1(0G) consisting

of the Galois module classes of tame (resp. domestic) extension

L/K with Gal(L/K) « G , then one can define an action of

ZE* on the group I' of oG-ideals relatively prime to |G|

in terms of which one can characterize the elements of Rd(oG\

Forschungsgemeinschaft
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¥*
Moreover, one can show that Rd(oG) > the image of (I’)S
under the natural surjection I' - Cl(oG) . In particular

*
Cl(ZG)S = (1) . One can also show Rd(oG) is a group.

R.MOLLIN: The Schur group of a commutative ring

We define the Schur subgroup S(R) (for a commutative ring

R with identity), of the Brauer group B(R) , to consist of
those classes. having a representative A such that there
exists a finite group G and an R-algebra epimorphism '

f : RG>» A . If R is a commutative ring of non-zero
characteristic then S(R) = (O) . On the other hanq. any -
finite abelian group is the Schur group of a commutative
ring which is finitely generated as an algebra over the
rational integers. We generalize several standard facts
about the Schur group of a field to commutative rings with
finitely many idempotents. We also investigate two subgroups
of S(R) , one generated by cyclotomic algebras and the other

by homomorphic images of separable group algebras.

(joint work with Frank De Meyer)

R.OLIVER: A survey of K (7G)

The current state of knowledge about the D(ZG) c C1(ZG) Q'KO(ZG)

finite G was summarized. The groups

"D(ZG) G a 2-group
D(ZG)~ G a p-group. p odd
peze* G a p-group, p odd and regular

are now fairly well understood: formulas have been derived for

Forschungsgemeinschaft
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their orders, and relatively simple algorithms for computing
their structure are known. Also, Steve Ullom has results
which describe D(ZG)+ in many cases where G is a cyclic

p-group and p an irregular prime.

The difficult problem is thus to understand the kernel groups

D(ZG) for G not of prime power order. Results on this problem ‘

worth mentioning include:

(1) Matchett has computed |D(ZCn)| when n is squarefree

(2) Martin Taylor has described D(ZSn)(=C}(ZSn)) : at least
modulo 2-torsion

(3) Miléram has made computations in the D(ZG) for certain
semi-direct products: G Cpq % Q(8) (p ¥ q odd primes);
and succeeded in determining whether or not certain

projective modules arising topologically are stable free.

W.PLESKEN: Finite unimodular groups of prime degree and

circulants

The maximal finite irreducible subgroups of GL(p.Z) for prime

degrees p < 23 are classified up to conjugacy. Due to the .

fact that the p-th cyclotomic field has class number 1 for

p < 19 they can be represented as integral automorphism groups
of quadratic forms whose Gram matrix is a circulant., The
additional cases in dimension 23 are related to the Leech
lattice. For dimensions p < 11 and p = 19 all groups are
essentially reflection groups. For dimensions 13, 17 and 19

it was necessary to compute the integral automorphism groups

of some quadratic forms by machine.
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A.RAGGI: Zeta-functions of 2-sided ideals in arithmetic orders

The work begins with an introduction to the theory of Z- and
L-series. The basic plan is to compare these series with a
Z-integral whose analytic properties are more accessible,

and then use these properties to obtain some analogous ones

‘ ‘ of Z- and L-series. Next the theory of two-sided ideals is

studied. First we translate the general theory just developed
to our context; then we obtain.explicit formulas for the zeta
functipns of orders in simple algebras. and we calculate the
zeta functions for a quaternion algebra and for the integral

group ring of a dihedral group of order 2p . We also study,

in the simple case, the behavior of the zeta functions at their

largest pole. We conclude with a discussion of some possible
generalizations of the prime ideal theorem to two-sided ideals

of arithmetic orders in simple algebras.

I.Reiner: Zeta- and L-functions, a survey

Let A be an R-order in a f.d. semisimple K-algebra A ,

. where R = alg.int.{K} , dimpk finite. L.Solomon defined

oF

a zeta function cA(s) = gﬁ((nx)-S , where X ranges 6ver all
left ideals of A of finite norm nX = (A:X) . Let

g(A) = genus of A - set of locally free ideals X’. and let
Cl A be the locally free class group of A , whose elements
are stable isomorphism classes M] , M€ g(A)V. For each

linear character ¢ : CL A - C* . we introduce an L-function

L, (s,4) = T . (X)) (X)"5 , Res > 1
Xegn)

Deutsche
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There are Euler products
() =n ¢ (8, L(s,4,) . 1L (s,4)
A P AP ’ A P P I\p P

where P ranges over all maximal ideals of R and

*
Wp AP-+c . In the local case, L“p

expressed as a zeta integral J* 8 (x) XIS y(x) d*x  over

Y
(s,wp. can be

the locally compact group A; , with ¢ a locally constant
function of compact support, |Ixil = P-adic absolute value,
d*x = Haar measure. A key theorem shows the existence of a
""common denominator" LAP(S,wp\ for all zeta integrals

(as & wvaries). When ¢ =1 on (Ab)* , wWhere Ab = maximal
order, LA(s,wp\ = Lh$(s’wp‘

A
analogous results for L-functions. Combining these facts

The above implies that (, (s)/C,, (s) € Z[P™®] . with
P P

with the Euler products, we obtain analytic continuation

of zeta and L-functions in the global case, as well as their
behavior at s = 1 . Consequences:

1) Given a left ideal M of A , the number of X c A with

XM and nX < T is asymptotic (as T ->) to

1 (M‘le) w* AutAM\bA, '1‘(1og'r)"‘1 , where
- (A" : M
® = number of simple components of A , A' = maximal order,
and M1 - {x€A : MX c A} . Here b,,> 0 depends on A’

but not on M or A
2) Given a class c¢c € C1 A and an integer k 2 1 , the number

of X € g(A) with X € ¢ , composition length 1(A/X) =k

nX S T is asymptotic to N&,c) T (log log k-1
&1 ¥ E.A logT :
as T »« , where k, = jc1 Al , and N&k ,c) = non-negative

Deutsche
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integer. (Further, N(&.,c) = O if and only if there are
no X € c with 1(A/X = k)
3) Given M € g(A)Y , let Ml' ...',Mk represent the isomorphism
classes in the stable class [M] . Then Zi(A*: Aut, M)
is an explicitly computable constant, independent of the

choice of M € g()

I.REITEN: Presentations of Grothendieck groups

We introduce the concept of coherent pair (A,B) of additive
categories over a commutative ring R ." We use Quillens long
exact sequence of K-groups to study the Grothendieck group
Ko(mod B) , where' mod B is the category;of finitely presented
contravariant functors from B to Mod R . We show that

Ko(mod A/B) > Ko(mod A) is a monomorphism if mod B is
regular or if every object in mod B has finite length, or if
B - mod A where A is a classical order of finite lattice
type in a simple algebra. We further show that if G is a
finite subgréup of GL(n,C) acting naturally on C[[X4,....X 1]
and the action of G on V\{0} (V = corresponding n-dim.
vector space) is free, tﬁen Ko(mod R) = Z® finite group,

where R = c[[Xl, - ,Xn]]G .

J.RITTER: On a Zassenhaus conjecture about units in group rings

For a unit u of finite order in the integral group ring 7G
of a finite group G one of the Zassenbhaus conjectures states
the existence of a group element g such that u =o g ot

with some invertible o € QG . It is shown that this conjecture

Forschungsgemeinschaft
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is true if G = (a) 4 (x) is split metacyclic with either
(ord a, ord x) =1 or ord a =.pm ,ord X = pq. p and

q| (p-1)being prime numbers here. Moreover, if G is a
nilpotent class 2 group or a metacyclic p-group, then actually

us=og a-l wheren = g mod W , where W is any Whitcomb

ideal in ZG . .

K.ROGGENKAMP - L.SCOTT: Isomorphisms of p-adic group rings I, II

Let G be a finite p-group. Our main result is that there is
only one conjugacy class of subgroups of order \G] in the
group of normalized units (augmentation 1) of the p-adic group
ring 2pG . As a consequence we obtain a positive answer to the
isomorphism problem for group rings over Z7Z of finite nilpotent
groups, as well as any extension of a finite abelian group by

a finite p-group. In the nilpotent case a conjecture of
Zassenhaus, that the isomorphism may be achieved by a group
aufomorphism followed by conjugation with a unit in the group

ring over @ , is verified.
The main result holds also with 2p replaced by 7 or .

ZTT where n is a finite set of primes containing' p . The
consequences above also hold with Z replaced by Z" , if

n contains each prime divisor of the group order.

For such a Zﬂ with G finite nilpotent, we have
Piccent Z G =0 R,. P. o1 4Outcent (P.)n1 where P, is a
n 45 13 1% i i
Sylow p-subgroup and Rij is the center of a component of
ZﬂPi , where G = Pi x P; . As a consequénce we show that the

analogue of our main result for ZnG need not hold. and that
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there are non-isomorphic groups E.E' , extensions of . G

by abelian groups A,A’' (for some G ), with isomorphic -

"small" group rings,

ZnE/I(A3'I(E) > Z E'/I(A)I(E") -

W.RUMP: Representations of tiled orders and module'vaiuatibné

Die Darstellungstheorie der vollreduz1b1en Ordnungen (t11ed
orders) soll als spezielles Beispiel fiir die Theor1e der Modul—
bewertungen, dig hier erstmalig vorgestellt wird, e:lﬁuterp N
werden. Hierzu fﬁhren.wir zunidchst den allgemeinen Begriff der
Modulbeﬁertung, vom speziellen Fall herkommendA schrittweise
ein. Es wird sich dann zeigen, daB d1egen1gen Modulbewertungen,
die von Darstellungen vollreduz1b1er Ordnungen herkommen, Qoﬁ
besonders einfacher Bauart sind, namlich gewisse Funkt1onen auf
Vektorriumen mit Werten in einem distributiven Verband auf dem
die unendliche zyklische Gruppe lokalendlich operiert.

Als weitéres Beispie1.3011 der Fall def Darstellungen k&mmuta-

tiver Ordnungen kurz umrissen werden.

P.SALBERGER: Class groups of orders in algebfas over function

fields

Theorem: Let k be a field. R = k[t] K = k(t) and A‘ be
a hereditary R-order in a central 81mp1e K-algebra of prime

index 1 . Then Cl(A) is finite if

(a) k global, 1l % ch(k) or

(b) k f.g. over Q and there is a maximal left A-ideal M

such that 14 dim A/M .
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To prove the theorem we use Galois descent. We choose a Galois
extension k' of k such that K' := k'(t) splits A and
consider a group homomorphism & : Cl(A) - Hs(k'/k,Kq(AW)
where A' := k' ®kA . The proof of the theorem then consists
of twe parts. First we prove that Im & is finite by using
class fiezld theory in case (a) and a theorem of Mordell-Weil-
Néron in case (b). Then we prove that & is injective if

(a) or (b) holds by using a result of Merkunjev-sdslin and

®2)

. 3
some calculations on Het(k,ue

R.SANDLING: Computer calculation of units ‘in modular group

algebras

Let G be a finite p-group, I the augmentation ideal of
FpG ., V =1+ the Sylow p-subgroup of the group of units
of FpG . Using Fortran programs to calculate in FpG (for
16 < 27 ) , 1 have obtained workable presentations for V
Group theoretic properties of V are then investigated by
use of the software packages CAYLEY (from Sydney) and -
SOGOS (from Aachen). Such experimentation has suggested new
theoretical results such as:
Theorem: If G is of nilpotency class 2 and has elementary
abelian commutator subgroup, then ‘

(i) V has a normal complement to G and

(ii) G 1is determined by FpG .
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M.TAYLOR: Galois modules and elliptic functions

Let K be an imaginary quadratic number field in which 2
splits. We let OK denote the ring of integers of - K and
we fix w € 1440, such that (m,m) =1 . For o € oy we
let K(a) denote the ray  classfield of K with conductor

‘ a®, . We then construct an elliptic function . 7 and a

4n2

division point for the complex torus (:/0K with the
property that Y(o¢) generates the ring of integers of
K(4n2) as a Galois module over the associated order for

the extension K(4112). /K(4m)

D.WEBB: G, of dihedral and quaternion groups

Let R be a ring with 1 , G a finite group, GO(RG) fvhe
Grothendieck groupo\ffinitely generated RG-modules. Methods
used by H.Lenstra in the calculation of GO(RG) for

G abelian are employed to obtain computations of Go (RGY

for various non-abelian groups; for example, for the dihedral

group D, ~of order 2n , G, (ZDy ) = dEiB,n Pic(Z[Gd,_‘li_h) )

® | ° -

oF

where + denotes "maximal real subring'.

A similar formula is obtained for generalized quaternion
groups of order 4m . Finally, if G is a finite group in
which every element has prime-power order and Mc QG is a
maximal Z-order containing ZG , then the transfer

GO(M) > GO(ZG) is an isomorphism. Similar computations are

possible for the functors Gn , for n>0
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P.WEBB: Permutation modules and group cohomology

The following theorem provides a means of computing the
p-part of cohomology from p-local subgroups.

Theorem: Let the finite group G act simplicially on the
simplicial complex A such that for each simplex o € &

the isotropy group Go fixes ¢ pointwise. Suppose that

for each subgroup H < G with H/Op(H\ cyclic the fixed
point complex AH has Euler characteristic x(AH) =1 . Then

dimo G . - .
(a) 7 = I (-1 Z, \t (mod projectives) in the
(® c€EA/G (® Go

Green ring A(Z(p)G)

(b) For any ZG-module M and integer n

"G, = I (—13dim° H (G ,u) in Ko(finite abelian
. P seasc c P

groups, O)
The hypotheses of the theorem are satisfied when A‘ is either
the simplicial complex of elementary abeliaﬁ p-subgroups of
G , or of all p-subgroups of G , or 4 is a Tits building

of a finite Chevalley group in defining characteristic p

A .WIEDEMANN: Auslander-Reiten quivers of local Gorenstein orders of

finite type
We derive necessary conditions for the configuration of a

Gorenstein order A of finite type. In particular these .

conditions give rise to a complete list of possible finite
Auslander-Reiten quivers of local Gorenstein orders. Concrete

examples show that the above conditions are also sufficient.

s

If A is a local Gorenstein order in the algebra A =1 (Di\n s
. i=1 i

then s,ny,...,ng are already determined by the combinatorial

structure of the AR-quiver of A . Then for a A all ni's are

1 and the valuation of all arrows in the AR-quiver is (1,1}

if and only if A has the "same' AR-quiver as a simple plane

curve singularity over C
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H.ZASSE&N‘HAUS: On A-group rings

The Brauer conjecture (ZG = 7ZH ; G,H finite groups; = G ~ H
seems to be intimately connected with the conjecture of the

Brauer invariance of the group ring ZG of a finite group G

(For any automorphism o of ZG there is x € UQG such
that o G = xGx"l) as is demonstrated in the.‘case that G is
an A-Sylowtower group

n,
- - P § .
(G—GO:GI:...:GS-I, (G._l,Gi_l\c G;,1G;_1:Gy =Py >1, (1si<s)

i

Pys---sPg distinct prime numbers) . It is shown that such groups
are both Brauer invariant and affirmative for the _Brauer
conjecture. The methods seem to be suitable for showing the same
thing for A-groups(Taunt 1947) which, it is suggested. are”simply
defined as finite groups in which every Sylow subgroup is abelian
(equiv. every nilpotent subgroup is abelian). The case ‘s -1 is
dealt with by D.G.Higman's thesis - Induction over s . Applying
a theorem of Schur-Zassenhaus one uses the iﬁduction argument to
the proof of the following theorem: Let

G=AxB; (A,A) =1, |A] =p">1, pl|Bl, p prime,

a € AutZ (ZpG), a(b) = b(b€B), ca=a (mode) (a€A) where

p
Wp =4, BA, A+ AZZA is the Whitcomb ideal; let it also be known
P P 1Y

that o merely permutes the class sums Ci (1<i<o) over
the G-conjugacy classes. Then o{(Ci\ = Ci . Use of lattice

theory, tensoring.

Berichterstatter: K.W. Roggenkamp
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