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Orders and their applications

3.6. bis 9.6.1984

The organizers of this "Tagung" were Irving Reiner (Urbana) and

Klaus Roggenkamp (Stuttgart).

In the past 4 years since the last meeti~g, much progress has

been made in various aspects of the topic, and most of it has

been reported in the lectures of our meeting:

I. GALOIS MODULE STRUCTURE, NON-ABELIAN CLASSFIELD THEORY AND

ANALYTIC NUMBER THEORY OF ORDERS

J.Brinkhuis (Rotterdam) Galois modules and embedding problems

C.Bushnell (London) Principal' orders 11

M.Desrochers (Cambridge) Torsion Galois modules

A.Fröhlich (London)

L.McCulloh (Urbana)

A.Raggi (Urbana)

I.Reiner (Urbana)

M.Taylor (Cambridge)

Principal orders I

Stickelberger relations, monoid rings

and Galois module structure

Zeta-functions of 2-sided ideals in

arithmetic orders

Zeta- and L-functions, a survey

Galois modules and elliptic functions

11. K-THEORY OF ORDERS AND CONNECTION WITH ALGEBRAIC GEOMETRY

M.Auslander (Waltham) Almost split sequences and isolated

singularities

J.Brzezinski (Göteborg) Algebraic geometry of quaternion orders
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J.Carlson (Athens) Nilpotent elements in the Green ring

W.v.d.Kallen (Utrecht) The Merkurjev-Suslin Theorem

A.Kuku (Ibadan) K-theory of group rings over maximal

orders in division algebras

R.Oliver (Aarhus) A survey of Ko(lG)

I.Reiten (Trondheim) Presentations of Grothendieck groups

P.Salberger (Gö"teborg) Class groups of orders ,in algebras over

function fields

D.Webb Go of dihedral and quaternion groups

111. APPLICATIONS TO GROUP THEORY AND GROUP atpRESENTATIONS

G.Janusz (Urbana) Units in crossed product orders

W.Kimmerle (Stuttgart) Decomposition of relation cores of non-

soluble groups

R.Mollin (Calgary)

W.Plesken (Aachen)

J.Ritter (Augsburg)

The Schur group of a commutative ring

Finite unimodular groups of prime degree

and circulants

On a Zassenhaus conjecture about units in

group rings

K.W.Roggenkamp (Stuttgart) ~

Isomorphisms of p-adic group rings I ~;

R.Sandling (Manchester) Computer calculations of units in modular

group algebras

L.L.Scott (Charlottesville)
Isomorphisms of p-adic group rings 11

P.Webb (Manchester) Permutation modules and group cohomology

H.Zassenhaus (Columbus) On A-group rings

                                   
                                                                                                       ©



W.Gustafson (Lubbock)

L.Levy (Madison)

W.Rump (Eichstätt)
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IV. CLASSIFICATION OF INDECOMPOSABLE LATTICES

G.Cliff (Edmonton) Crossed product orders

E.Dieterich (Bielefeld) The Auslander-Reiten quiver of a noo­

domestic tame group ring

R.Guralnick(Los Aogeles) Isomorphism of modules under ground

ring extensions

Hereditary orders

Modules over Dedekind-like rings

Representations of tiled orders and

module valuations

A.Wiedemann (Stuttgart) Auslander-Reiten quivers of 10cal

Gorenstein o·rders of 'finite type

V. APPLICATIONS TO CONCRETE PROBLEMS

H.Lenstra (Amsterdam) Applications.of ring theory to number­

theoretic algorithms

Summarizing, we are proud to say that many of the people

interested in our subject were present at this meeting. However,

since the last meeting 4 years aga - a too long time - there was

not enough time to cover the recent interesting developments

thoroughly.

There were always lively mathematical discussions, which led to

new insights and sometimes to new results.

In the evenings we socialized together over glasses of wine and

continued our discussions in a friendly atmosphere.
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Vortragsauszüge

M.AUSLANDER : Almost spl i t seguences and isolated·· singulari t ies

..'

Let R be a fixed complete reg~lar local ring. An R-algebra

A which is a finitely generated free R-module, is called an

isolated singularity, if for all nonmaximal prime ideals

PeR we have that gI.dim 1\0 = gI.dim Hp = dirn Hp . Suppose •
A is an R-algebra and finitely generated free R-module and

let ~R(A) be the category of A-modules which are free

R-modules. Then we have the following theo!em: A is an

isolated singularity if and only if ~R (1\) has almost 'split

sequences.

J.BRZEZINSKI: Algebraic geometry of quaternion orders

Let R be a Dedekind ring with field of quotients K and A

a central simple algebra over K of dimension n 2 . Each

R'-rational points, for a commutative R-algebra R' , is the

that A 'lI' is also R'-projective. We look at the schemes

set of R'-projective Ieft A '-ideals I' of R'-rank n such

R-order A in Adefines a SpecR-scheme X
A

The set of

•
XA in the particular case of quaternion algebras A . In this

case, X
A

is integral if and only if is Gorenstein, normal

if and only if A is Bass, and regular if and only if A is

hereditary. Each Gorenstein order Adefines in a natural way

a Bass order B(A) such that XB(A is the normalization of

X
A

• For each Bass order there is a sequence of orders

such that is an elementary
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transform of XA . at singular points in one of its fibers
1

(suitable blowings-up foliowed by a suitable contraction)

and X
A

is a regular scheme.·
r

J.BRINKHUIS: Galois modules and embedding problems

~ We combine the embedding problem with the problem of Galois

module structure of rings of integers. We derive a necessary

condition for the solvability of the "embedding problem with

prescribed free Galois module structure'~. This is analoguous

to the classical condition of Hasse-Wolf for the embedding

problem. Our approach leads to a number of explicit results,

for example: 00 cyclic extension of the rationals of odd prime

power order has a normal integral basis over any proper

intermediate subfield. Abasie tool is a map from a Hoch-

schild-Serre sequence to a Fröhlich-Wall sequence. One

intriguing feature of this diagram is that two of its vertical

maps are not in general a homomorphism, but only have a weak

multiplicative property.

J.CARLSON: Nilpotent elements in the Green ring

Let G be a p-group and let R be an integral domain in ·which

p is not a unit. Let ~(RG) be the Green ring or representation

ring of RG-lattices. The speaker and David aenson have found a

new method for finding nilpote~t elements in 3 (RG) for many

p-groups G. The method improves on that used by Zemanek in

that it gives an infinite number of examples and it substitutes
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a cohomology calculation for the more difficult tensor "product

calculatioo.

Let K" be a field of characteristic p > 0 . Benson has shown

that if M is an absolutely indecomposable KG-module theo, for

any indecomposable N, K is a direct summand of M ® N if

and only if N ~ M* nnd p does not divide the dimension of M .

Let ~(KG,p) be the subgroup of ~(KG) generated by all [M] tIt
such that p divides the dimension of every component of K' ® M

for any extension K' of K. Then ~(KG,p) is an ideal in

21 (KG) and 21 (KG) 1~1 (KG, p) has no nilpotent elements .. The speaker

working with M.Auslander has diseovered a"proof of Benson's

result that appears to extend these results to ~(RG) for R

a complete D.V.R.

G.CLIFF: Crossed produet orders

Let K/' be a finite Galois extension of loeal fields (with

[. QpJ finite) with Galois group G, and rings of integers

0;0 (resp.). Let A = (Kif, p) be a crossed product algebra

where p i8 a faetor set on G with values in and let

'" = (0/0, p) be the crossed product order in A .

Let A0 A, and "i+l 10
1

(J( Ai?) be the left order of the

Jacobson radical of "'i . Then

"0 c A1 c A2 c ... c As = As+1 = ••• = "00 .
~ f; ~ f d

It is shown that s = d - (e-l) , where ~K/' = ~ , ~ the

maximal ideal of C , ~K/f the different, e = e(K/') the

ramification index. Also, the type numbers of the hereditary

order 1\ are
00

degree, and m

,(f,f,f, ... ,f~ where f
e)'m t1mes

is the Sehur index of

f (Kif)

A .

is the inertial
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M.DESROCHERS: Torsion Galois modules

Let K!? be a finite Galois extension of algebraic number fields

with Galois group r , and let ~ be the ring of integers of

K , 0 , the ring of integers of . The trace map gives an

or-isomorphism between ~ , the codifferent of the extension

KIf , and Homo (Q) ,0) , the dual of Q) , enabling one to use

the torsion module . T = ([/~ to "measure" the difference

between Q) and its dual. More precisely, if S is a fixed

set of primes of ° , let (respectivelY K~(or» denote

the Grothendieck gro~p corresponding to the category of finitely

generated o-torsion free or-modules (respectively also locally

projective at the primes of 0 outside S), with the relations

arising from short exact sequences splitting at the primes of

° outside S. By computing the class of T in a suitably

chosen Grothendieck group one obtains a purely algebraic

proof of:

Theorem (Cassou-Nogues, Queyrut): If Sz contains all the

rational primes with a divisor in ° wildly ramified in K,

then [I!)] = [Homo (I!) ,0 )] in K:Z (zr) .; as well as another
S

theorem computing the difference [Homo (Q),o) ]-[~] in Gm(or)

where S contains the primes of 0 wildly ramified in K .

This difference is seen to depend only on the ramification

groups r~ and
I' ,~

class group of

r l' and on the class of p in the idealr ,
o ,where p runs through the primes of 0

ramified in K ~ i8 a prime of ~ above p , and

rp,i = {yEr such that V(X)_XE~i+l for all xEI!)} . In

particular, [I!)] = [Homo(ll),o)] in G:(or) if all the primes

of ~ ramified in Kare principal.
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Gauss sums was diseussed.

A.FRÖHLICH - C.BUSHNELL: Prineipal orders 1 and 11

G = G(~) were introduced. The

be the residue class field of Rand put

of the normaliser, of ~

significance of these in conneetion and comparison with Galois

The basic arithmetic properties of a prineipal order ~ (where

equal to zero. Then the dimension-type of the primitive series

of !e:a is given by 1S'b + 'O'\a'E Z4 , where b = (2,1,0.1)

and a = (1,0,1,0)

Moreover, let sand a be relatively prime integers. not both

tarne group ring

valuation 4, and let A = RC3 be the eorresponding group

3?1 (its Jacobson. radieal) is left (hence right) principal) were

noted and the congruence Gauss sums for admissible representations

Let C3 be the cyclic group of order 3, R a complete

discrete valuation ring in which the prime number 3 has

ring. Let

E.DIETERICH: The Auslander-Reiten guiver of a non-domestic

3 =' {monie irredueible polynomials in f [X]} U {oo} . Then the

stable Auslander-Reiten 'quiver ~s ~) of the lattiee eategory

c'A eonsists of a 1P1 (0) -family of ~-tubular series:

't!'s(A) \J :t 6 , :t S ""'" = Ü !e.O'(A). Each ~-tubular series
8 :aEPl (0):0' ur AE~ •

I8:0' i8 of tubular type {~4 if is a splitting field for C3

CD3 if is not a splitting field for C3
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continued by C.Bushnell

The relation between the Gauss sum ~(p) attached to a

representation P of the normaliser 6{~) of a principal

order ~ in a p-adic simple algebra A , aod the Godement-

Jaequet local eonstant ~(n,s) attaehed to a representation

n of A* was given:

@. (Tl , s) = (-1 )n (d-1) N (D f (p )) (1/2 - s) /n :,. Cf
!I 21 ....jN-f p f

R.GURALNICK: Isomorphism of modules under ground ring extensions

Let D' be a Dedekind domain and R a module finite D-algebra.

If M is a finitely generated R-module. there is an equivalence

'of eategories between the classes of modules whieh are summands

of Me for same e and finitely generated projective R'-modules

where R' is a D-order in a semi-simple algebra. In part'icular,

this equivalence preserves the genus. Henee for D the ring of

algebraie integers in a number field, one obtains a generalization

of Jacobinski's cancellation theorem and a variation of his

extension of base ring theorem (M and N are in the same

genus if and only if M ~DD' ~ N ~DDt for some'larger ~ing'of

algebraic integers D' ). We also diseuss another'proof of.

the extension theorem which depends esseotially only on the

fact that one i8 in the stable range of the ring of all

algebraic integers.

W.GUSTAFSON: Hereditary orders

We show that an order is hereditary if ~nd only if all of its

artinian faetor rings are of finite representation type. The
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proof depends on a theorem about artin algebras that may be

of independent interest. The work was done jointly with

Edward L.Green.

G.JANUSZ: Units in crossed product orders

Let K be either a totally real number field. normal over O. 4It
or a totally imaginary quadratic extension of such a field.

Then K admits complex conjugation x 7 x . Let G be a

finite group and J the involution on KG defined by

J(t ~g g) = t ag g-l ~ = algebraic integers in K.

Theorem: Let A be any ~-order in KG which contains

~G Then UJ(A) = {AEA : A J (A ) I} is a finite group

containing G If Ge He (KG) * with H finite. then

He UJ(A) for some order 1\

Co~sider the case G = Frobenius group of order p(p-l) ,

p an odd prime. One can explicitly determine the orders in

OG containing ZG . They can be indexed as rio ... ,fp _1

and for these orders UJ (r i) can be determined. In 4 cases

this group is (-I) X Sym(p) . If p+l is divisible by

4,6,8 or 12, then some groups are <-I} xPGL(2,p)( p at most 8 ).

The remaining groups are <-1) X G .

W.v.d.KALLEN: The Merkurjev-Suslin theorem

Let n be a positive integer~ F a field so that l/n E F 0

The Merkurjev-Suslin theorem states that the Galois symbol

O'F : K 2 (F)/n K
2

(F) -+ H
2 (F, .~:~ )

is an isomorphism.
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See Math. USSR Izvestiya Volzi, 1983, 307 - 340. Diseussed

was Merkurjev's more elementary proof of this theorem, based

on Hilbert 90 for K2 and speeialization arguments similar

to those used in his original proof for the ease n = 2 .

W.KIMMERLE: Deeomposition of relation eores of non-soluble

groups

Theorem. Denote by Sn the finite symmetrie group of degree n .

Then relation eores of Sn decompose if, and only if, n = p

or n = p + 1 , where p 1s an odd rational prime.

Remarks.

a) The proof closes one gap left by Gruenberg and Roggenkamp

on this topie and establishes that there exist finite

insoluble groupe with deeomposable relation eores.

b) The proof uses a eriterion in terms of H1 given by

Gruenberg and Roggenkamp and yields the appropriate

estimations for H1 . In the ease when n = p (and only

in this case) the proof requires the elassification of the

finite simple groups.

e) The proof applies to many other finite groups. e.g. ~t

follows that relation cores ofevery Zassenhaus group are

decomposable.

A~KUKU: K-theory of group rings over maximal orders in

division algebras

If B is a regular ring, n a finite group, n ~ ,0 , let

Kn~' P(B)) be the Kn-group of the category [no P{B)] of
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n-representations in the category peS) of finitely generated

projective B-modules. Swan proved that if R i5 a semi-Iocal

Dedekind domain with quotient field F, then the canonical

p-adic field F thus showing that Swan's result i5 not true

a maximal order in a central division algebra D over a

map

that

Ko(n,P(R)) ~ Ko(n,P(F)) is an isomorphism. We prove

K (Tl" ,P(A)) ~ K (Tl" ,P(D)) is not injective if A iso 0

•
in general if R is non-commutative: We then compute Ker 5 .

We also compute for all n ~ 0, Kn(TI,P(A)) ,

SKn (TI ,P(A)) , SK (TI ,P(A )) , SK (n ,P(A)) where
n p n p

the localization (completion) of A at a prime

R is the ring of integers in a number field.

K (n.P(A )) ,
n p

A (A) is
.P .P

p of R if

H.LENSTRA: Applications of ring theory to number theoretic

algorithms

In this lecture it is shown how Galois theory for finite rings

underlies most practical primality testing methods. Let A be

a Galois extension of 1/nI with group G; i.e., A is a

Z/nZ -algebra, commutative, that is f.g. free as a Z/nZ -module.•

and A ® A ~ n
aEG

A., a @ b 1-7 (a 0 (b» ~EG is 'an isomorphism.

Assume G is abelian. Then for every ~rime r dividing n

there 1s a unique wr E G (the Artin symbol) with Vx E A

Extend this definition to all rJn by

CD rrt = CD r (Ort . The decomposition group D c:: G is defined

to be the subgroup of G generated by all ~r . rln . Clearly

<CD
n
>cD, with equality if n is prime. Many primality

testing methods can be interpreted as attempting to show that

J
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(~n) = D . For example, if there i8 a ring homomorphism

<w )
A n ~ Z/n l (mapping 1 to 1) then we must have D;=: (4)n) .

Applying this to A = 1('8)/(n) (cyclotomic, with gcd(s,n)=l)

with G ~ (Z/sl)* this leads. if n passes certain' tests, to

the information that V r'1-n : 3i
i

r = n mod"s . If s i8

one can use

4It large and #(n mod s) i8 small this can be used to check

whether n i8 prime. The bestmethods used nowadays rely

on the same ideas but are somewhat more involved. For

n ~ 10100

s = 2.5040.n q prime, Q-115040 26 .3
3

:5
2

.7 2 .11.13.17.19.29.31 ....

·1009'2521 ~ 1.5'1052 :

then #(n mod ~) S 5040 , for gcd(n.s)=1 . The resulting test

runs for approximately 45 seconds.

L.LEVY: Modules over Dedekind-like rings

There are very few commutative Noetherian rings, all of whose

(finitely generated) modules are known. Dedekind-like rings are

a generalization of Dedekind domains. Their modules can be

described, together with the direct-sum behavior and local-

global behavior of these modules. Examples of Dedekind-like

rings are

(i) Group rings ZG
n

Gn cyclic of square-free order n ;

(ii) some rings of algebraic integers that are not integrally

closed in their field of fractions; and

(iii) many subrings of Z tB •.. E9 Z .

Artinian homomorphic images of Dedekind-like rings (the module-

structure theory obviously applies here. too) include the well-
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discussed ring K[X,y]/(x,y)2 , Nazarova and Roiterts dyad of

two discrete valuation rings, and all (cornmutative) artinian

PIRs.

Main results: As with Dedekind dornains. we associate an ideal

class cl M with each R-module M in such a way that

M ~ N ~ M ~s locally ~ N and cl M = cl N . Moreover, •cl (M EB N) (cl M) (cl N) and cl M i8 projective of

rank i over some ring between Rand its integral closure.

L.McCULLOH: Stickelberger relations, monoid rings and Galois

module structure

Let K be a number field with ring of integer 0 and G a

finite abelian group. To G, one can associate a certain

commutative monoid E and a Stickelberger submodule S* of

the dual l.E* = H0lllz(l-E.Z) such that

(i) if G ~ (ln, ... ,ln) , 1 an odd prime, then

(ii) if G is any abelian l-group (l odd), then

\ °D(ZG) 1 = 1 (ZE*+/S*+)tors l or more generally, if G has

odd order or has ~yciic 2-primary component, then •
(Ao (G) = the cokernelof Artin

induction) .

If R(oG) (resp. Rd(oG)) is the subset of CI(oG) consisting

of the Galois module classes of tarne (resp. domestic) extension

L/K with Gal(L/K) ~ G , then one can define an action of

lE* on the group I' of oG-ideals relatively prime to tGt

in terms of which one can characterize the elements of Rd(oG) .
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Moreover, one can show that Rd (0 G) ~ the image,af (I ' ) s*

under the natural surjection 1 ' ~> Cl (0 G) In particular

Cl (ZG) S* (1) One can also show Rd (0 G) is a group.

R.MOLLIN: The Schur group of a commutative ring

• We define the Schur subgroup S(R) (for a commutative ring

R with identity), of the Brauer group B(R) , to consist of

those classes. having a representative A such that there

exists a finite group G and an R-algebra epimorphism

f : RG ~> A . If R is a commutative ring of non-zero

characteristic then S(R) (0) . On the other hand. any'

•

finite abelian group is the Schur group of a commutative

ring which is finitely generated as an algebra over the

rational integers. We generalize several standard facts

about the Schur group of a field to commutative rings with

finitely many idempotents. We also investigate two subgroups

of S(R) , one generated by cyclotomic algebras and the other

by homomorphic images of separable group algebras.

(joi~t work with Frank De Meyer)

R.OLIVER: A survey of Ko(IG)

The current state of knowle~ge about the D(lG) c Cl(lG) ~ Ko(ZG)

finite G was summarized. The groups

. D(ZG)

D(ZG) ­

D(ZG)+

G a 2-group

G a p-group. p odd

G a p-group! P odd and regular

are now fairly weIl understood: formulas have been derived for
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their orders, and relatively simple algorithms for computing

their structure are known. Also, Steve Ullom has results

which describe D(lG)+ in many cases where G is a cyclic

p-group and p an irregular prime.

The difficult problem is thus to understand the kernel groups

D(ZG) for G not of prime power order. Results on this problem ~

worth mentioning include:

(1) Matchett has computed 'D(ZCn )' when n is squarefree

(2) Martin Taylor has described D(lSn)(=C~(lSn)) : at least

modulo 2-torsion

(3) Milgram has made computations in the D(ZG) for certain

semi-direct products: G ~ C ~ Q(8) (p * q odd primes) ;pq

and succeeded in determining whether or not certain

projective "modules arising topologically are stable free.

W.PLESKEN: Finite unimodular groups of prime degree and

circulants

The maximal fi~ite irreducible subgroups of GL(p.Z) for prime

degrees p ~ 23 are classified up to conjugacy. Due to the ~

fact that the p-th cyclotomic field has class number 1 for

p ~ 19 they can be represented as integral automorphism groups

of quadratic forms whose Gram matrix is a circulant. The

additional cases in dimension 23 are related to the Leech

lattice. For dimensions p S .11 and p = 19 all groups are

essentially reflection groups. For dimensions 13, 17 and 19

it was necessary to compute the integral automorphism groups

of some quadratic forms by machine.
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A.RAGGI: Zeta-functions of 2-sided ideals in arithmetic orders

The work begins wit~ an introduction to the theory of Z- and

L-series. The basic plan is to compare these series with ·a

Z-integral whose analytic properties are more accessible,

and then use these properties to obtain some analogous ones

of Z- And L-series. Next the theory of two-sided ideals is

. studjed. First we translate the general theory just developed

to our context; then we obtain.explicit formulas for the ~eta

functions of orders in simple algebras. and wecalculate. the

zeta functions for a quaternion algebra and for the integral

group ring of a dihedral group of order 2p. We also st~dr,

in the simple case, the behavior of the zeta functions at their

largest pole. We conclude with a discussion of some possible

generalizations of the prime ideal theorem to two-sided ideals

of arithmetie orders in simple algebras.

I.Reiner: Zeta- and L-functions, a survey

Let A be an R-order in a f.d. semisimple K-algebra A ,

where R = alg.int.(K} , di~K finite. L.Solomon defined

a zeta funetion 'A (s) L(nX)-S where X ranges over all
X

left ideals of A of finite norm nX = (A :X) . Let

g(A) = genus of A = set of locally free ideals X . and let

Cl A be the locally free class group of A . whose elements

are stable isomorphism classes [M], M E g(~) . For each

linear character w Cl A 4 C * . we introduce an L-funct ion

~ ~(X) (nX)-s , Re ~ > 1
XE g (A )
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There are Euler produets

CA (s) = TI CA ( s ) , LA (s, Wp) . TI LA (s ,*p)
p p p p

where P ranges over all maximal ideals of Rand

Wp = Ap ~ c* . In the loeal case. LA (s,w p ) can be
p

expressed as a zeta integral S ~ (X) 11 xii S \11 (X) d*X over
A*p

the loeally compaet group A; , with t a locally constant

function of compact support, Ilxll = P-adic absolute value,

*d· X = Haar measure. A key theorem shows the existence of a

•
"common denominator" LA (s, wp)

p

(as , varies). When w·= 1 on

for all zeta integrals

*(A'p) ,where A'p = max"imal

order, LA (s,W p ) = LA" (s,"'p) .
P

The above implies that CA (s) /CA, (s) E Z [p-s] . wi th
p P

analogous results for L-functions. Combining these facts

with ~he Euler products, we obtain analytic continuation

of zeta and L-functions in the global case. as weIl as their

behavior at s = 1 . Consequences:

1) Given a left ideal M of 'A , the number of X C A with

X ei M and nX S T

1 (M-1 : A) (A' *
~! (A' : M)

is asymptotic (as T ~oo) to

: Aut
A

M) b
A

, T (logT) r'-l , where

r = number of simple components of A, A' = maximal order,

and M-1
= {xEA : M x cA} . Here bAt> 0 depends on A'

but not on M or A .

2) Given a class c E Cl A and an integer k2!: 1 , the number

of X F g (A ) with X E c composition length I(A/X) = k

nX ~ T is asymptotic to N(k ,c) T (log log T)k -1

(k-l )! k
A logT

as T -. 00 , where k" = 1 Cl A\ and N(k ,c) non-negative
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integer. (Further, N(k~c) = 0 if and only if there are

no X E c with 1 (A IX) = k)

3) Given M E g(A) , let Mt, ... ',Mk represent the isomorphism

classes in the stable· class [M]. Then Et (A *': AutA Mi)

is an explicitly computable constant, independent of the

eho ice 0 f M E g (A) .

I.REITEN: Presentations of Grothendieck groups

We introduce the eoncept of coherent pair (~~~) of additive

categories over a commutative ring R. We use Quillens long

exact sequenee of K-groups to study the Grothendieck group

KO(mod §) , where' mod ~ is the category'of finitelypresented

contravariant functors from ~ to Mod R . We show that

Ko(mod ~/~) ~ Ko(mod~) is a monomorphism if mod ~ is

regular or if every object in mod ~ has finite length, or if

!! = mod A where A is a classical order of finite lattice

type in a simple algebra. We further show that if G is a

finite subgroup of GL(n,C) acting naturallyon c[Ix1 ,·· .,xn ]] ,

and theaction of ß on V,{O} (V = corresponding n-dirn.

vector space) is free, then Ko(mod R) = Z m finite group,

where R = C [[Xl' ... ,Xn]]G .

J.RITTER: On a Zassenhaus eonjecture about units in group rings

For a unit u of finite order in the integral group ring 1G

of a fi~ite group Gone of the Zassenhaus conjeetures states

the existence of a group element g such that u = a g a-
l

with Bome invertible a E OG . It i8 8hown that this conjeeture
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1s true if G = (a) A <x} 1s split metacyclic with either

(ord a, ord x) = 1 or ord a =. pm , ord x = pq. p and

q' (p~1 )being prime numbers here." Moreover, if G is a

nilpotent class 2 group or a metacyclic p-group, then actually

u = a g a-1 where n ~ g mod W ,where W i8 any Whitcomb

ideal in ZG

K.ROGGENKAMP - L.SCOTT: Isomorphisms of p-adic group rings I, 11

Let G be a finite p-group. Our main result is that"there i8

only one conjugacy class of subgroups of order \G\ in the

group of normalized units (augmentation 1) of the p-ad~c group

ring tpG . As a consequence we obtain a positive anSwer to the

isomorphism problem for group rings over Z of finite nilpotent

groups, as weIl as any extension of a finite abelian group by

a finite p-group. -In the nilpotent case a conjecture of

Zassenhaus, that the isomorphism may be achieved by a group

automorphism followed by conjugatiqn with a unit in the gro~p

ring over 0 , is verified.

The main result holds also with '- replaced by Z or
p p

Zn where Tl i8 a finite set of primes containing p The

consequences above also hold with I replaced by Zn , if

Tl contains each prime divisor of the group order.

For such a Zn with G finite nilpotent, we have

Piccent l G = TI R .. Pi ~ TI Outcent (Pi)ni where Pi i8 a
Tl ij 1J

Sylow p-subgroup and Rij i~ the center of a com~onent of

lnPi ,where G = Pi x p~ . As a consequ~nce we show that the

analogue of our main result for Z G need not hold. and that
Tl
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there are non-isomorphie groups E.E' , extensions of . G

by abelian groups A,A' (for some G), with-iso.m~.r~h~c... _"

usm~ll U gr<?up rings.

W.RUMP: Representations of tiled orders aod module'vaI"uations

Die Darstellungstheorie der vollreduziblen Ordnungen (tiled '

orders) soll als spezielles Beispiel für die Theorie der Modul-

bewertungen, die hi~~ erstmalig vorgestellt wird, e~läuter~ .~

werden. Hierzu führen wir zunächst den allgemeinen Begriff der

Modulbewertung, vom speziellen Fall herkommend, schrittweise
'\ .

ein. Es wird sich dann zeigen, daß diejenigen Modulbewertungen,
. . .

die von Darstellungen vollreduzibler Ordnungen herkommen, von

besonders einfacher Bauart sind, nämlich gewisse Funktionen auf

Vektorräumen mit Werten in einem distributiven Verband~ auf dem

die unendliche zyklische Gruppe lokalendlich operiert.

Als weiteres Beispiel soll der Fall der Darstellungen kommuta-

tiver Ordnungen kurz umrissen werden.

P.SALBERGER: Class groups of orders in algebras over function

fields

Theorem: Let k be a field. R = k[t], K = k(t) and A be

a hereditary R-order in a central simple K-algebra of prime

index I . Then Cl(A) is finite if

(a) k global, I * eh (k) or

(b) k f.g. over Q aod there is a maximal left A-ideal M

Such that 1 l' dimk AlM •
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Ta prove the theorem we use Galois descent. We choose a Galois

extension k' of k such that

consider a group homoroorphism ~

K' = = k' (t·) spli ts A and

Cl (A) ~ H3 (k ' /k, K (A ')) ,
q

where A' k' ®kA . The proof of the theorem then consists

of two parts. First we prove that Im ~ is finite by using

class field theory in case (a) and a theorem of Mordell-Weil-

N~ron in case (b). Then we prove that ~ 18 injective if

(a) or (b) holds by using a result of Merkurj.ev-Suslin and

same calculat ions on H3 (k 11. ~2)
et ''''e

R. SANDLING: Computer ca.lculation of units "in modular group

algebras

Let G be a finite p-group, . I the augmentation ideal of

FpG ~ V = 1+1 the Sylow p-subgroup of the group of units

of F G . Using Fortran programs to calculate in F G (for
p p

lGt S 27 ) , I have obtained workable presentations for V.

Group theoretie proper~ies of V are then investigated by

use of the software packages CAYLEY (from Sydney) and

SOGOS (from Aachen). Such experimentation has suggested new

theoretieal results such as:

Theorem: If G i8 of nilpotency elass 2 and has elementary

abelian commutator subgroup, then

(i) V has anormal complement to G and

•

(ii) G i9 determined by F G .
P
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M.TAYLOR: Galois modules and elliptic functions

Let K be an imaginary quadratic number field in which 2

splits. We let ~K denote the ring of integers of·K and

we fix TT E 1+4 ~K such that (TT ,n) = 1 . For a E ~K we

let K(a) denote the ray 'classfield of K with".conductor

e O"~K We then coostruct an elliptic function and a

4TT
2 division point for the complex torus C/~K with the

property that T(0') generates the ring of integers of

K(4TT
2 ) ae a Galois module over the ~ssociated order for

the extension K(4 TT 2)' /K (4 TT)

D.WEBB: ~o of dihedral. aod quaternion groups

Let R be a ring with 1, G a finite group, Go (RG) the

~ ..Grothendieck ·group f1n1tely generated RG-mo.dules. Methode

used by H.Lenstra in the ·calculation of Go (RG) for

G abelia~ are employed to obtain ~omputatio~s of Go (RG)

for various non-abelian groups; for e~amp~e, for the dihedral

group D20 . of order 20 G (lD2 ) ~ 6 Pic (l [ (:d' 1 ] ) ,
o 0 dl'n er- +

d>2

where + denotes "maximal real aubring".

A similar formula is o,btained for generalized quate~nion

groups of order 4m. Finally, if G i8 a finite group in

which every elem~nt has prime-power order and Me OG i8 a

maximal Z-order containing ZG, then the transfer

Go(M) ~ Go(ZG) i8 an isomorphism. Similar computations are

possible for the functors Gn ' for n > 0 .
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P.WEBB: Permutation modules and group cohomology

The following theorem provides a means of computing the

p-part of eohomology from p-Iocal subgroups.

Theorem: Let the finite group G aet simplieially on the

simplieial complex ~ such that for each simplex' er E ~

the isotropy group G
a

fixes er pointwise. Suppose that

for each subgroup H S G with H/O (H)
P

cyclic the fixed

point eomplex 6 H has Euler eharaeteristic x.(6
H

) = 1 . Then

(a) I == L: (_l)dimo Z t G (mod projectives) in the
(p) aE6/G (p) Ga

Green ring A(Z(p)G)

(b) For aoy lG-module M and integer n

Hn (G, \Jl ) p L: (-1 ) d im a Hn ( G ~) in K
o

(f i 0 i te abe I i an
aES/G c' P

groups, 0)

The hypotheses of the theorem are satisfied when 6 is either

the simplicial eomplex o~ elementary abelian p-subgroups of

G , or of all p-subgroups of G, or 6 is a Tits building

of a finite Chevalley group in defining characteristic p .

A . WIEDEMANN: Auslander-Reit en guivers 0 f loeal" ·Gerenst ein orders of

finite type

We derive neeessary conditions for the configuration of a

Gorenstein order A of finite type. In particular these

eonditions give rise to a complete list of possible finite

Auslander-Reiten quivers of local Gorenstein orders. Concrete

is a local Gorenstein order in the algebraIf A

examples show that the above eonditions are also suffieient.
s

A = n (D.) ,
i=1 1 D i

then s,ol' ... ,n s are already determined by the combinatorial

structure of the AR-quiver of A . Then for a A all ni's are

1 and the valuation of all arrows in the AR-quiver is (1,1)

if and ooly if A has the "same" AR-quiver as a simple plane

curve singularity over C .

J
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H.ZASSENHAUS: On A-group rings

The Brauer eonjeeture (ZG ~ ZH ; G,H finite groups; ~ G ~ H)

seemS to be intimately eonneeted with the conjeeture of the

Brauer invarianee of the group ring ZG of a finite group G

(For any automorphism a of lG there i5 x E ua G such

that a G = x G x-I) as i8 demonstrated in the case that G is

an A-Sylowtower group
n.

1
(G = Go ~ Gt =' ...~ Gs = 1, (Gi_I' Gi _1 ).s. Gi' lGi _I : G~ = Pi > 1, (I~i~s) ,

PI" ··,ps distinct prime numbers) . It is shown that Buch graups

are both Brauer invariant and affirmative for th~ Brauer

conjecture. The methods seem to be suitable for showing the same

thing for A-groups(Taunt 1947) which, it is suggested. are simply

defined as finite groups in which every Sylow subgroup is abelian

(equiv. every nilpotent subgroup i8 abelian). The case s = 1 is

dealt with by D.G.H~gman's thesis - Induction over s. Applying

a theorem of Schur-Zassenhaus one uses the induction argument to

the proof of the following theorem: Let

G A. ~ B~ (A~A) = 1, !Al = pn > 1, p.fl BI, P prime,

a E Autz (Z G), a(h) = b(bEB), a a= a (modW ) (aEA) where
p p p

W = Öz Btl A + ßZ2 A i8 the Whitcomb ideal; "let it also be known
p p -p p

that er merely permutes the elass sumS Ci (1 ~i $0 ) over

the G-conjugacy classes. Then a(C
i

) = Ci . Use of lattice

theory, tensoring.

Berichterstatter: K.W. Roggenkamp
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