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Tagungsleitung: M. Aigner (Berlin) und R..Wille (Darmstadtl:.. '... .:

Im Mittelpunkt des Interesses stand die ~heorie endlicher g~o~d~

neter Mengen. Die Themen der Vorträge lassen sich schwerpunktmäßig

gliedern in:

- Extremal- und Optimierungsprobleme geordneter M~ngen -(lin.."· Er­

weiterungen, scheduling, sorting);

- Struktur und Darstellung (endlicher) geordneter M~ngen';(~l~~~i-

fikation, Diagranune); .. '

Topologische Methoden in. der Ordnungstheorie; ..

- Anwendungen.

Zusätzlich fand eine nproblemsitzung" statt, auf der jeweils mit

einer kurzen Einführung offene Probleme vorgestellt wurd~n•. ;

;~ ..... -. (

Vortragsauszüge

W.T. TROTTER: Extremal Problems for Ordered S.ets

Extremal Problems for Ordered Sets constitut~,a,rela~~:y~ly1?-e~:

but promising area of research in combinatorial mathematics. In

this talk, we will survey recent results in the area co~cent~~ting

on results which have not yet. be~n published .. ln particul~r!_;we will

outline the proof of the fact tha~ the dimension of an ordered set

is bounded as a function of the maximum degree in the 'comparabili­

ty graph. Although the exact v~lue~ pf the ~est.possib~e funct~on
2 2 ,"e

are not known, we can prove: ~ /logk' f (k) ~ k . . .
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D. KELLY: Free ~-lattices on same ordered sets

(This research was done jointly-with GeorgeGrätzer). Let us call

an ordered set p slender if P does not contain 1 t 1 + 1,
2 + ~, or ! + .2.. In an AYI-lattice, all sets X with 0< \x\<'N.r have

joins and meets. (Here* is a fixe~nfinite regular cardinal.) The

results we describe- below were first proved for WV = No by I. Rival

and R. Wille [J. Reine Angew. Math. 310 (1979), 56-80J. We described

the free hW-lattice on the ordered set H = tx1 in Order 1 (1984),

47-65. We shall show that F~ (P), the free ~-lattice on the ordere~
set P, can be embedded in F~(H) whenever P is linearly indecompo­

sable and slender. Consequently, an ordered .set P is -slender iff

F
IN

(P) does not contain F"... (3) as an ",.-sublattice.

J.KAHN and M. SAKS On the Width cf Distributive Lattice~'

For a finite ordered set Pt let·w(p) be the width. We prove the

following conjecture of Bill Sands: For every ()O there is an

n that if L is a distributive lattice with ILI~n then w(L)/lLI<f..

P. WINKLER Random Orders

Fix positiv~ integers k and n and let Pk (n) be the (partial) order

obtained by intersecting krandom linear orderings of a~ n-element

set. What does Pk(n) look like for fixed k and large n? ~

R. CANFIELD P-recursireness of menage and related nurnbers

The derangement nurnbers count the permutations ~ avoiding a repi­

tition in any col~ of the arr~y'

1 2 n

e-( 1) r-{ 2) • •• ö"(n),

while the straight menage numbers count those! avoiding coLv..mn

repititions in the three-line array

- 1 2 n

2 3 ••• n X

0'( 1) es' ( 2) • •• (f( n)                                   
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There is .a generalization to"menage-r numbers", and a problem is

to decide whether these new ~equences, like the cl~ssical d~r~nge­

ment and menage nurnbers, satisfy finite recursions with poly~omial

coefficients. We discuss this problem and some related issues.

H.A. KIERSTEAD Inequalities for the Greedy Dimension of

Ordered Sets

4It Every linear extension L: [x,< x 2 < ••. < xm] of an ordered set p

on ~ ,points ar~se~ from the s~~ple algorithm: For each i with

o <. i '( m, choose x. 1 as a minimal element of p - \.x. : j.~ i'5 .
~+, '. , )

A linear extension is said to' be greedy, if we als~ require ~hat

x i + 1 covers xi' in P whenever possible. The greedy dirnensio~ ?f an

~'ordered se~ is the minimum number of greedy lin~ar e~tension of P

who~e i~tersection is P. We shall develop several ~nequalit~es

bounding the greedy dimension of P as .a. function of other parameters

of P. If A is an antichain in P and lp - Al) 2, we show that th~

gre~dy dimension of P does not exceed )p - Al. 1f the width of

P - A is n and n ~ 2, we show that the greedy di'm'ension of P does

~ot e~~eed.n2+ n. If A 1s the set of ~in~m~~.el~ments of p'. th~n
this inequality can be strengthened to 2n - 1. 'If A is the set of

maximal elements, then the inequality can be further .st~engthened

to ~ + 1. Example~_ are pre.sented to show that eac,h of these inequa­

;~ties 1s best pos~ible.

L.H. H~ER On The ASymptotic Rota Conjecture

.Let P be a <,f~nite) poset with rank funct~on r, and let R(P) =
max size 0i an an~ichain. 1n'1928 Sperner showed that R(B )=1,
max size· 0 a ran' n
Bn being the latticeof subs~ts of an n-set. In 1967 Rota asked

if R(TTn )= ,1, TTn.be~ng the lattice of partitions of an n-set.

Canfield (1979) showed 'R{ TI ) .,. 1 for n > Avogadro I s number (which
'. n 6" .

Klei~an & Sha have !ecently lowered to 3.4 X 10 .) However the

asyrnptotic behaviour of R (TT
n

) has remained a mystery. Based upon

the result of Graham-Harper that R{TT )= R (P ), P 'being the un-
. ~ n n I

ordered partitions of n weighted by W("'t) = "n ~ .. I ( I )'t
r

r~1 r· r.
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and the assumption that Pn may be approximated by a Gaussion pro­

cess & have made a rough calculation which indicates that R(lT n )-+

1.69 ... as n~~

J. GRIGGS k-color Sperner theorems

Results will be discussed concerning families F of subsets of an

n-set S with the property that with respect to some k-coloring of ~

S there do not exist A, B E: F such that A ~ Band B - A is monochro.

matic. Let f(n,k) denote the maximum value of\F\over all such F.

By Spernerls theorem and by the two-part Sperner theorem it follows

that f(n,l) and f(n,2) equals (n/2) . It will be shown here for

arbitrary k that ~~eott(n,k) '/ (n/2)J exists, call it d k . For

k ~ 3 d 3 > 1.036. For k -+00 dk "" V'tC k /4ln k • Related re­

sults and conjectures will be discussed. Thi~ is joint work with

A. Odlyzko and T. Shearer and includes independant results of z.
Füredi.

K. ENGEL Extremal problems in cubical lattices and chain products

Let Cn be the lattice of all faces of an n-dimensional cube, or-

dered by inclusion, and E~ ~e a product of n copies of the chain

(0< 1 < ••• < k-1). A subset (ar family) F of these lattices satis­

fies the Sperner, intersection, or union conditian if x 1: y, X" y :f

minimal element, resp. x 'I y :f maximal element holds for all x, y e. F.

We consider families satisfying these conditions in all 7 possible e
combinations. For C we determine all vertices of the convex clo-n .
sure of the set of profiles of such families. Here! = (~O, •.. ,fn)

is the profile of F if f i equals the nurnber of rank i elements.

For E~ we (together with H.-D.O.F. Gronau) determine the maximum

size of such families. The cases of intersecting Sperner families

(satisfying the union condition) remain unsolved for even n and k

<2n. Last hut not least we (together with P. Frankl) detenmine

asymptotically the maximum size ofan intersecting family of rank

1 elements in E~, where .1 = l'Anj, "fixed, and n---::, 00
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Finite famil~es of sets and semilattiees

Let k, t be positive integers and let Kbe a family of k-element

sets.lmproving earlier results of Erdös (1967), Erdös and Kleitman

(1968) and Erdös and Rado (1962) we obtained the following

Theorem There exists a subfamily ~~ ~ [ :'wi'th the following pro­

.p~rties:

i) IK*\~C(k, t)·\K\where C depends only on k and t,

ii) [*is k-partite (i.e. There exist V1 , V2 ' ...Vk such that

\FnV.\ =1 holds for all F~ F~ 1 ~ i~ k ).
1 -

iii) Every pairwise intersection in [* is a kernel of at-star in

!*" (i. e. for all Fl' F 2 ~ !1t there are F3' • • · · J F tE: Y. such· that

F i (\ F j = F 1 " F 2 hO,lds for all 1 ~ i < j ~ t. )

iv) There exists a family ~ on the elements {l, 2, .•. ; k} such

thatM is isomorphie to M· (F ,K*) for all F E:. [*, where M (F, r.--)
= : l F " H : H ~ !*}.

v) ~ is a semilattice (i.e., M, MI E. M implies M " MI ~ ~).

This theorem was eonjectured by P. Frankl. Several appliea­

tions were presented.

A. BEUTELSPACHER Embedding ,of geometrie lattiees in projective

geometries

A planarspaee ( geometrie lattice of dimension 3, matroid of rank. 4)

eonsists of points, lines and planes such that the following axi­

oms hold :e 1) Any two points are on exactly one line;

2) planes are subspaces, there are at least two planes;

3} any three non-eollinear points are on exactly one plane.

The following theorem w~ll be discussed:

Theorem. Let S be a finite planar space in which any two plaries

meet in a line. Suppose furthermore that S is nota degenerate pro­

jective space. Then

(a) For any point p, the quotient ~ /p is a projective plane of the

same order n.

(b)If the number of points of ~ is at least n 3 , then ~ is embadablein

PG(3,n), the3 dimensional projective space of order n.
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Posets and similarity coefftcients between linear

orders

There exist two classical agreement coefficients between two li-

near orders: Kendall's ~ and Spearman's ! . The Daniels inequality,

and -equivalently- the Guilbaud Formula providesa (not simple)

relation between ~ and g • We prove a third -equivalent- relation

between two metrics defined as the, set of all linear orders (on a

finite set). This proof i5 obtained by considering .several parameters

that can be defined on an arbitrary poset. ~
This point of view allow5 also

1) to give an ordinal interpretation for g-~ , allowing to get

its extremum values ( and the corresponding pair of linear or­

ders)

2) to show that the coefficient ~(L,L') i5 an isotone mapping of

the partial order L n L~.

3) to raise other- problems.

D. SCHWEIGERT On heuristics for optimal matching5

While draw~ng, the pen of a plotter moves. very ofteri lifted up.

The plotter problem is to minimize "wasted pen rnovements". One of the

many approaches is to find an optimal matching. Exact algorithm

are known with o(n3 }, but these are.useless for problems with

thousands of points. A heuristic algorithrn is .developed fo~ ~he

optimization of graphic datas, a problem which is related to the

plotter problem. ~

w. POGUNTKE Level schedules by interchanging matched subsets

A well-known result of T.C.Hu(1961} is the basis for the little

progress that has been made on this problem: schedule unit time

jobs subject to precedence constraints on identical parallel

machines to rninimize the maximum completion time. In the case

that the precedence constraints form an inforest- th~t is, each

job has at most one successor - any "level" schedule 15 optimal.

We present and study a procedure to transform a given schedule

for a set of jobs with arbitrary precedence constraints into one
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which is more like a level schedule - without increasing the

completion time. This is a particularly interesting since, an

a~bitrary level schedule need in general not be optimal-at all,

and,.indeed, there are even simple settings in which na level

··schedule can be optimal.

(This~is joint work with .1van Rival).

. o. PRETZEL The diagram of 'an ordered set

A ~-orientation of a graph is an orientation in which ,every cycle

h~s at least k edges oriented.each way.Every orientation .dete~~ines

an,additive function, itssignature, that gives an integer. value to

·every.circuit.

W~ p~e~ent an algebraic proof, using this signatur~, that Ms has no

1 -o~ientat~on. This suggests that ~here should.be a~·obstructionU

theorY'9f k-orientability. As a first step in this direction w~

give a ';rheorem ·.t.hat any additive function on circuits, taking on­

ly admissible values 1s the signature of·sqme orientation..

1f time permits we sh~ll discuss the relation between the signature

and long circuits and !' pushing down n maximal vertices.

: D·.,. DUFFUS Gap and Selection Properties for Ordered Sets

.~~ order variety i~·a. class K of ordered set isomorphism types

closed under the formation of retracts and direct products. Ip-

evestigation of conditions sufficient to insure membership in par­

ticular varieties. ha~ led to the. formulation of two types of pro­

per~tes: gap and selection properties. In fact, an ordered set be­

longs tO.CH, th~ va~iety generated by the cl~ss of isomorphism

types of chains, if and only if each of its gaps.is prese~ved by

some chain.and there is aQ order preserving s~lection function.

Recent work of Duffus and Pouzet has concerned this question:

1s each finite dimensional lattice a member of eH? It is known

that all finite ~imensional distributive lattices ~nd all 2~di­

mensional modulas lattices belong to eH. Moreover, by a charac­

teri;zation of gaps '''preservable'' on chains, they prove that all

lattice~.of finite breadth have their gaps so preserved.
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Retracts of Poset>s and Graphs: The Metric Approach

We consider a generalization of the notion of metric space where

the distance take values in a complete ordered semi-group V

having an involution. The' notions of balls, contraction (or non­

expansive) maps and isometries have a natural interpretation. As

in the case of metric spaces, the notions of absolute retracts,

injective spaces and hyperconvex spaces are equivalents. Also if

V satisfies a distributivity property then V is hyperconvex and •

the hyperconvex spaces are exactly the retracts of powers of V ;

moreover every space has an injective envelope. Finally it is shown

that the bounded hyperconvex sets h~ve the fixed point property

for contraction maps. For particular choices of V this includes

the results of N. Aronszajn, P. Panitchpakdi,B.Banaschewski,G.Bruns

A. Quilliot, I. Rival, R. Nowakowski on absolute retracts of me­

tric spaces, posets and graphs; the Tarski fixed point theorem

and also the recent result of R. Sine and p!Soardi on the fixed

point property ~or some ~~subspaces. The results presented here

have been obtained in part with D.Misane.

M. SEKANINA Categorical approach to combinatorics of ordered sets

A. Joyal in his paper nUne teorie combinatoire des series formelles~

Advances of Math. 42 (1981), 1-82 described a method joining in­

tuitive combinatorics of the theory of enumeration with afunctor­

ial formalism in the category of the sets. In dealing with a ge­

neralization to the category of the ordered sets one of the main •

questions is to find a suitable addition for ordered sets. Two

natural candidates are cardinal and ordinal sums. Especially. for

cardinal SUfi many principal >aspects of Joyalls paper remain valid.

There are presented other examples of addition of ordered sets,

which can be useful in the studied generalization.

M.K. BENNETT The Convexity Lattice of aPoset

I wish to report on joint work with Garrett Birkhoff in which we

investigate the lattice Co (P) of convex subsets of a general
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partially ordered setp. In particular we determine the conditions

under which Co (P) and CO (Q) are isomorphic; and give necessary

and suffieient conditions on a lattice L so that L i~ isqmorphic

to CO(P) for some P.

Let L be a distributive lattice and let B(L) be the.maximal· essen­

tial extension of L. Banachewski and Bruns have shown that .B(L)

is a complete Boo~an algebra. Let geL) be the smallest complete

sublattice of B(L) containing L. We call geL) the essential com­

pletion of L. The Zariski topology on L is the smallest ·topolpgy

for which solution sets of lattice equations p(x ) = q(x.) are

closed.

•
G. GIERZ

Theorem.

Essential Completions

(i) geL) is complete, meet-continuous, and join-continu-

ous.

(ii) If S(L) is complete, meet-continuous and join-continuous,

then geL) = L.

(iii) ~(L) is cornpletely distributive~L is Hausdorff -in the

Zariski topology.

(iv) If L is an open sublattiee of a completel~istributiv~lattice

M (equipped with the interval topology) and if the closure

L of L in is connected, then ~(L) = L.
The theorem implies t~at the essential completion of an open

hypercube ]0,1[Dis the closed cube [0,1]n .

J.D. LAWSON Infinite antichains in semilattices

The nation of a continuous semilattice together with its inherent

topology is introduced and the existence of countably .infinite

antichains conv~rging to an upper bound is diseussed. In the most

free situation the antichain generates (as a complet~ semilattice)

a copy of 2N; i~ the given continuous semilatt~ce. has no suc~

copy, then it has compact-finite breadth, i.e. every eo~pa~~ ~nf

may be replaced by a finite one. A semilattiee DELTA is intro­

duced isomorphie to the free semilattice on countably many
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generators e i module the relations that the meet of e i and e j is

less than e k for i less than j less than k. Any continuous semi­

lattice containing an infinite antichain converging to a larger

element contains a continuous semilattice embedding of DELTA.

P.H.EDELMAN Convex geometries and same dimension problems

Associated with a nation of abstract convexity is the class of

meet-distributive lattices. We examine the structure of the set

of all meet-distributive lattices with a fixed labeled set of

join-irreducibles. This set has a natural partial ordering on it

which forms a lattice. Using these ideas we define the notion of

convex dimension for a meet-distributive lattice and discuss how

it relates to standard notions of dimension.

J.W.WALKER Shellability of Hypogeometrie Lattices

We study a- new class of lattices, to be called hypogeometrie lat­

tices, which ineludes the class of geometrie lattices. Two other

examples are the poset of independant sets of a matroid, with a

greatest element adjoined, and the dual of the lattice of affine

subspaces of a finite dimensional vector space. Hypogeometrie

lattiees ean be shown to be shellable. These results imply two

lemmas used by Lusztig in representation theory.

D.HIGGS (A) Nicely graded lattices.

Or(B) Lattices of antichains and related subsets in

finite posets.

(A) An interpolation antichain in aposet P is an antichain A in

P such that if a, b are in A and a ~ y, y ~ x, x ~ b then x ~ c ~ y

for some c in A. P "is nicely graded if it is graded and, for each

interpolation antichain A in P, the elements of A are all on the

same level. Various results and questions about nicely graded

lattices will be discussed.

(B) It is known that the set of maximal antichains and the set of

minimal cutsets in a finite poset P each form lattices under the                                   
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appropriate order and that these two lattices intersect in the

distributive lattice of cross-cuts of P. The possibility of find­

ing a single lattice of suitable subsets of P containing the above

two lattices will be discussed, along with some related questions.

K.B.BOGART Subalgebras of the Incidence Algebra and Generating

Functions

4It Dou~let, Rota and Stanley introduced the idea of studying.gener­

ating :functions by representing various important algebras of

gen~rating functions as subal~ebras of the inc!dence I(P} algebra

of an appropriate partially ordered set P. In particular,· they

studied the standard algebra, the algebra of functions constant

on isomorphism classes of intervals. Although the inc~dence alge­

bra I(P~Q} of a direct SUffi of partially ordered sets is the ten­

sor product I(P,) ~I(P2} of the incidence algebras of the compo­

nents, this does not carry over to the standard algebra. We.in­

troduce a slightly larger subalgebra A(P) of the inc±dence alge­

bra with the property that A(P$ Q) = A(P) ~A(Q). In all the cases

of algebras of generating functions Doubilet, Stanley, and Rota

studied, A(P} is the algebra of generating functions. Further, the

tensor factorization of A(P) carries over to infinite direct

sums. This tensor factorization provides a bridge which lets us

unify the Bender-Goldman theory of prefabs with the incidence al­

gebra approach to generating functions.

H.-J.BANDELT : Modular graphs·and ordered sets

A modular graph is a graph in which for every tripie u, v, W of

verticesthere exists a vertex geodesically between each pair of

u, v, w. Among modular graphs are all median graphs, absolute re­

tracts of bipartite graphs, and the covering graphs of discrete

modular lattices.· One can characterize those discrete ordered sets

with 0 which have modular covering graphs. The ord~red sets in

question are modular multilattices (sensu Benado) satisfying two

additional conditions.
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Serniantichains, Unichain Coverings, and Related

Parameters

•

We review recent results concerning semiantichains, unichain

coverings, and: related problems ,in direct products of posets.

Semiantichains are subsets of a product in which distinct elements

are incomparable if equal in either coordinate. Unichains are

.chains in which one coordinate is fixed. Since semiantichains and

unichains intersect at most once, any unichain covering uses at

least as rnany chains aso the size of any semiantichain. It is

conjectured that every direct product has "a unichain covering

and a semiantichain of the same size. West and Tovey proved a

special case of this. We prove another special case not covered

by their result and suggest a common generalization. In addition,

we introduce new parameters generalizing unichain coverings, se­

miantichains, and chain coverings to arbitra~y posets without pro­

'duct structure, and we obtain several results about these using

a network flow model.

D.T. KLEITMAN Some Extremal Problems Concerning Ordered Sets

Some recent (and not so recent) results are discussed:

(1) (with Sha J. Chang). We describe a class of antichains la r g e r

than any rank in the lattice of partitions of a finite set (of size

at least 4 X 106 ) under refinement ordering, and give an intuitive

picture of what is happening and a calculus for computing some.

(2) ( with C. Greene). We give a characterization of maximum sized •

chains in the lattice of partitions of nunder the majorization

ordering; this yields the maximal length of such a chain, (essen­

tially i J2.n 3/2 ) and other related results. (~)
(3) (with J. Chang). \"Je find bounds of TI (~) a- (upper) and

j] "
TT(~)! (lower) on the number of linear extensions of ~n. Open

. J --a- •
problem! Which is closer to the answer?

(4) The maximum number of meet-irreducibles given n join-irredu-

cibles is shown to be between(n/2) (1 + cn- 1) and (n/2)· (1+ cn- 1/ 2);

which is right? (the first probably is~

(5) (with M. Saks) We describe strenghtenings of the LYM inequali-
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ty for sets on ~n.

(6) The largest family of elements of ~n
n

and 2-union free has size n/2) (1 +(1 In»
for even n.

that is"2-intersection
n

for odd n and n/2 )+1

w. DEUBER The unequeness of the solution for Kruskal's extremal

problem

Abstract. The Kruskal problem iso the following. Find-'a collection

of i-many sets A 1 ••• Ai in (~), such that the l-shadow ~ (~j) has

minimal cardinality . (1 ~ 1 < k < n, l ~ i ~ ( ~. ) ,.. '

One solution is given by the" first t sets in the antilexigraphic

ordering on ( ~ ).

Theorem. For i=' ( ~1 ) + ~~1 ),+ .. I +( ~~t" + 1)' this solution 'rs

unique up tö renumbering of elements iff

1 ~ t or i= ( Q,l + 1 )
J\. -1 or i ~ k + 1 •

As an intermediade step an extension of the Kruskal problem is con­

sidered, which as a consequence generalizes Kleitmanis' extension

of the Erdös, Ko, Rado theorem.

M.ERNt : Clique numbers oI grap~s

(joint work with P. Erd~s and U. vo~lert). We study the sets G(n)

(n E. IN) of all numbers c for which there exists a graph wi th n

vertices and c cliques (i. e. 'comPl~te subgraphs , not nE!ces'sarily

maximal). This problem is strongly -related to the .problem o'f ~eter­

mining the number of"antichains in posets. In order to know the

sets G(n), it suffiees to compute the n'umbers ~(c) =' min ·t n:- c

~ G(n)} since c belongs to G(n)" ~ff g(c) ~ n <. ·e. Let b(e) denote
. . ~ .

the number of ones in the binary representation of c .and wr!te Id
. "

for 1092. Then a straightforward c?mputation gives the estimates

ld e + ld j · Id b(c) ~ g(c') ~ Id c +~+ Vid c - b(er , while a

rather technical proof is necessary in order to obtain the upper

bound Id e + -"ld c) 5/6 whieh shows that c e. G (n) whenever
n-~n~ . :

n < c ~ 2 .. On the other hand, the lower' bound for g(c)

gives \G(n)l:!; 2n · n- 2 / 5 = O(2n ). The numbers in G(n) which are

greater than 2n -2 can be described .explicitl~y simple inequalities.
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A generalization of the mapping degree to cartesian

products of linearly ordered contihua

A linearly ordered continuum C is a non-empty dense linearly or­

dered set, which has no first and no last element and has no gaps:

If I is an initial segment of C with ~ + I t C then I has a last

or C-I a first element. In C we have the usual order topology.

If C1 ' .•. , Cn are linearly ordered continua we call their carte-

sian product C = C,x .•. x Cn an n-continuum~ It is equipped with the e

product topology which has as basis the set of all boxes O,x .. x On'

where 0v is an open interval of Cv . The question arises which

notions and theorems of~n can,be generalized to.n-continua. Here

we generalize the nation af mapping degree and winding number to

n-continua. U~ing this concept one can generalize all classical

invariance 'theorems, in particular the separation ~heorem ~f Jor-

dan - Brouwer - Alexander (which implies the others) :

If K is a compact subset of C, f : K~C continuous and injective

then C-K and C -f(K) have the same (cardinal) number of connecti­

vity components.

u. FAIGLE : Identifying ordered sets of height 1

The identification problem for ordered sets asks for the minimum

number of calls of a comparability oracle ( with respect to pairs

of elements) necessary so that a hidden (partial) order on a ground

set E can be identified. This talk reports on joint work with G.

Turan on this problem~ In particular, we pre~ent an algorithm WhiChe

is optimal for height 1 ordered sets within factor 2. The general

problem remains open. Our current approach is ba~ed on the na-

tion of an essential set and we offer a conjecture which would imply

that these methods are not sufficient to even handle the case of

bounded height ( note, in contrast, that the case of bounded width

is easy: the infarmatian-theoretic lower bound can be achieved) .

M. AIGNER Lower Bounds for Sorting Problems

Let P be aposet, Ipl = n. The sorting complexity C (p,) is the

minimum number of comparisons needed to produce P. Let P = ( ~ ) .
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be the ordinal sum of a top-part T, IT\=t and an antichain A,

lA\=n-t; Result 1: C(T/A) ~ (n-t)+rlOg([n]t/e(T»l, rnJ t =

n(n-1) ... (n-t+1), e(T)= nurnber of linear extensions.

If p=(T/A/B), T top-part,IT\=t, B bottom-part,lB\= b, A antichain,

lAt= n-t-b we have Result 2: C(T/A/B) ~ (t+b)-\min Tl-lmax B\+

rlog(~) (n~t~. Let vt(n), Vt - 1 ,t(n) denote the complexities of

selecting the t-th element and the (t-1)-th,t-th ele~ent, resp ..

Let O<x<l; Conjecture(Backelin): lim(V In)= l+(-xlogx-'
"''''00 lxnJ

(1-x)log(1-x»). Bounds on this limit are obtained and it is men-

tioned that 1- xlogx - (l-x)log(l-x) is a lower bound for

V 1 In, adding strength to the conjecture: single selection~
lxn.1 - ,~11j" .

double selection.

I.G. ROSENBERG Cover graphs via 0 - 1 inequalfties

•

The cover graph Cov (~) 'of an order is the symmet:r:ic hutl of ~he

covering relation and a graph is a diagram if it is the cover graph

of some order. Given a graph G = (P,E) fix an orientation of E.

For a simple l-cycle C = {V'V2' ... , vIv11 of G put ~1 = , if

(Vi' Vi +') is in the orieritation and ~i = 0 otherwise. Further let

a O : = , -a and a' : = a . For x: E.....a,2 ( : = t 0, 1} ) the cycle in~,-
e9uality of C is

2 ~ xCV, V2 )ol"+ x (VI V, )tltJ.. .~ 1-2 (1.c ).

There is a bijection between the solutions x~ ~E of the system

(ic ) (over all simple cycles of G ) and the discrete orders on

P whose cover graph is G. The system ( ~c) may be reduced. We

solved it: for the complete biparti te graph Knan ' .find an infinite

set critical non-diagrams and an infinite set of critically 4-chro­

matic triangle free diagrams.

I. RIVAL : Greedy Linear extensions

Loosely speaking a· greedy linear extension of a finite ordered set

is a iinear extension constructed according to the rule "c limb as

high as you can ll
• It is a natural construction for.the jump nurn­

ber problem. In recent work with N. Zaguia we have used the ideas

of a IIsubdiagram fl and a "chain interchange algorithm,n to estab-
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lish new results about the role of greedy linear extensions in

the study of the jump number, the greedy dimension, andenersi­

bility of greedy linear extensions.

•
Algorithmic aspect~ .af greedy linear extensions of

partiarl~ drdered sets

M.M.SYSLO

Let P be a partially ordered set (poset) . We eonsider the jump

nurnber problem which is to find an optimal linear extension L of

P that eonsists of the ,least number of chains of P. An are dia-

gram D.of P is an aeyelic directed graph in whieh the poset elements

are represented by a subset of ares of D. Every poset has an op­

timal linear extension which consists of ehains generated by the

greedy methode Making use of are diagrams, we define a strongly

greedy chain in P and show that if P has suep a ehain ethen there

exists an optimal linear extension of P which begins with C . As

a eorollary, we obtain the expression for the jump number of N-

free posets. Moreover, we identify a elass M of posets which

properly contains N-free posets and every P ~ M has an optimal li­

near extension which can be generated by the strongly greedy al-

gorithm.

R.H.MÖHRING On series-parallel and N-free partfal orders

(Jointly with M.Habib). We consider two generalizations of series-.

parallel posets and investigate their complexity with respeet to

3 well-known combinatorial (optimization) problems which are po­

lynomially so~vable on series-parallel posets: the jump nurnber

problem, the isomorphism problem, and the 1/prec/~wjCj' seheduling

problem (minimizing the SUffi of weighted eompletion times on one

machine).

The first generalization is the class of'N-free posets, for which

the jump number problem is known to be polynomially solvable. We

show that both other problems are, however, hard on this elass

(i.e. isomorphism eomplete and NP-eomplete, respeetively).

On the other hand, all 3 problems are shown to be polynomially

solvable for the seeond generalization, which eonsists of all

posets obtained by substitution (lexfbgraphic sum) from indeeom-
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posable posets of fixed size (posets of bounded diameter) .

This adds some evidence to our opinion that, with regard to com­

putational complexity, the second class constitutes a much more

natural generalization of series-parallel posets.

F.FARMER: Retracts: Topological Methods

Problem: If 0(.: A-+X)when does there exist r : X-4tA so that

r 0 ~ = idA ? '. "A solutiC?n to this problem depends on being ahle

to compute the reduc~d poincare polynomials p (X), P (A'-, and

p (X/A) when the spaces are nice and ~ is an embedding.

~f RsXxX then T(X, R) is the topological,realization of the

sirnplicf.al comp'lex lIm(f) : f: fin.lin.ord~rR)where rR is a

refle~ive relation.

'THeorem: If (X,R) ns~ a directed forest then

(1) T ( X, "es R) is a' homotopy n~sphere for some n ~ 00 ,

(2) T (X, cstR) is a homotopy cluster ,of spheres,

where t, 5 are transitive (resp. ~ymmetric) clo~ure and eR

~ 'x x)- R. On the class (2) above the element~ry 'result

[ p (X) 4= P (A) + P (X/A)~, A is not a retract of X) ~lmost b~­

comes an equivalence. The polynomials p (X) , P (A) are easily

computable but more work needs to be done to compute p (X/A).

B.VOIGT Ramsey's theorem and the property of Baire

We introduce the notion of partition category arid then have the

following

Theorem: For every Baire mapping Ä: <t ( ~) ~ {o, ... , r-1}

where k,r<w , there. exists F ~ [.( ~ ) with A(F·G)= 6(F.H).

As corollaries one obtains Ramsey's theorem (J. London Math. Soc.

1930 ), a theorem for Graham - Rothschild parameter word (Prämel ­

Voigt, to appear in Trans.AMS ), an extension of the Graham - Leeb ­

Rothschild theorem for vectorspaces ( Voigt, to appear in CrelIe's ~)

as weIl as other results. In particular, we have the following

result of Prömel and Voigt:

Th~ For ~very Baire mapping ~~ =BOu •• vBr _ 1 (powerset of~,

topologized as Cantorspace ) there exist nonempty and mutually
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u .
disjoint subsets Ak , k<w , as weIl as i < r such that I Ak

E. Bi for all nonempty I s:w
In view of a result of Sheiah and Stern it follows that it is con­

sistent with ZF ( if ZF is consistent) to assume that this result

holds for all finite partitions, altheugh this cantradicts the

axiom of choice.

G.F. MCNULTY Ordering \vords

Two words will be regarded as equivalent if there is a permu- ~
tatian of the alphabet which transforms one of the words into the

ether. For example, "start" and "order" are equivalent. Let Pn
denote the set ef all (equivalence classes of) words on the n .

letter alphabet. For wards u and w we write u ~ w to mean that

some substitution instance af u is a subword (i.e .. a factor) of

w. 4 is a partial order on Pn which arises in algebra and logic.

(Pn , ~ ) has a very intricate structure and it is the purpose of

this talk to present what is known about it and to frame some

problems concerning it. We say that the ward u is n-avoidable

provided the complement in Pn of the principal filter above u is

infinite; u is said to be avoidable iff u is n-avoidable for

some natural number n. There is a n~ce algorithm (Bean, Ehren­

feucht, and McNulty 1979) for determining whether words are avoi­

dable. It is unknown whether every avoidable ward is actually 3­

avoidable. It-is known that the length 2 word aa is 3-avoidable

(Thue 1906), that the complement in P3 of the principal filter

over aa has an infinite antichain (Jezek 1977), and that aa has

infinitely many covers in P3' Whether similar results hold for ~
arbitrary words is unknown.

R.WILLE An order-theoretic foundation for similarity measures

(Joint work with Silvia Geist). The similarity between objects

are often deterffiin~d by the sets ef their attributes which are

elements of a given attribute set M. Then the proposed similari­

ty measures are certain order-preserving maps from (f(M)2, ~ )

into (m+o I ~ ) where the order on 'W(M) 2 can be defined as follows:

(A,B) ~ (C,D) :# A"B5CnD, At\B2CnD, ÄnB~C"D, and
- - '- - . .. 2An B SC" D. The structure of ( lP(M) , ~) is clarified by the

following                                    
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Theorem: 'r~ (X):= (A, (An X) v (An X» and' 'f~(X) :=( (An X) v (A "X),
A) defines isomorphisms 'P~: 'U(M)~ [(A,A) , (A,A)] and

'Pi:· '& (M)~ L(A ,A) , (A ,A)] , respectively;

in particular, . 'B (M) 2= U [(A,A), (A,A)1 = U I.(Ä,A), (A,A)]
A€ (i(M) A~ 'f(M) .

and the order of ~(M)2 is the transitive hull of the orders of

the described intervalls. For characterizations of cornmon simi­

_ l~r;ity: measure~s. the following definition is used:

·An order-preserving map 6: C '& (M) 2 , ~ ) ~(IR~, ~) is addi tive

iff Glfi(X)+ G'fi,(y)= ~'Pi(XUY) for xny= ~ (i=1,2).

Theorem: let" r-: fi(M)--tm~ "·be additive and let c(,~,·'r,~~R~.

If ~(A,B):= acr(At\B)+ ~t4(Al\B)+ tt'(ÄnB)+ 3 r (Är\B) then

is additive iff ~ = 0 =·0.
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I.R1VAL: Call an order theoretieal property a diagram invariant

if it is satisfied in every orientation (=diagram) of the eovering

graph of an ordered set provided it is satisfied in one of them.

What are the non-trivial diagram. invariants?

P.EDELMAN: For 6~ Sn (symmetrie group of an n-element set) the ig

version set of 0' is I «() = t (es' (i) , (5"( j»: i< j, es (i) > es( j») • Order

Sn by « ~ tt: ~'1 (es"") S: I (~) , the weak ordering of Sn denoted

by WB(Sn). Is WB(Sn) Sperner? - deeomposable into symmetrie

ehains?

D.KELLY: Are the middle two layers of the diagram of ~n (n odd)

Kamiltonian?

M.A1GNER: (due to Fürstenberg) Call A ~ {O,1}n a cylinder set if

A= t~: xi, =a 1 , ••. ,xik=ak} for some a" ••• ,ak €. to, 1}, i" ••• , i k E.

\,1, ••• ,n}. For cylinder sets A,B define (supp(A)= (i" ••• ,ik} ):

if supp(A)n supp(B)= ~

else.

Let Ol = U A., ~ = VB. be eolleetions of cylinder sets, and
i~1 1 j~J )

().o~ = V(A.QB.). Conjeeture: 2nIO\o~l~lO\"''ß'
i,j 1 )

U .FA1GLE: P a ( finite) ordered set, 0< S < 1; Call x E.. P &' -eentral

if E ~ N (x) ~ 1- G... N "'ö;

of P).

(N(x)= Hof ideals eontaining x, N= H of idealse
1s there an effieient algorithm to deteet &-eentral elements?

K.ENGEL: A representation of a finite poset P is a function

x:P~lR with x(p)- X(pl)~ 1 whentlVeT pi< p. Define:

1 "" 2 1 ~ 2 2 2
P'x= lPI~px(P) , O"'x= lPf~p(X(p)- t"-x) , and \f" (P)= inf t.ti x :

x is a representation of p}. A ranked poset P is called rank

compressed if this infimum is attained by the rank function r.

1s the lattice of partitions of an n-element set 'rank compressed?
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D.WEST: Does there exist a minimum chain decomposition of PxQ

so that consecutive elements on each chain are unicomparable (i.e.

equal in one coordinate)?

M.ERN~: P aposet, M(P) the system of principal ideals,. C(P1 the

system of non-empty lower ends genera ted by chains;

Does C(P)~ P imply e(p)= M(P) ?

Z.FÜRED1: 1s there a chain decomposition of ~n intO(n/~ chains

of almost equal length (i.e.

. "

T.W.TROTTER: Find aleast f(n) so that for every poset of w-idth·--

n, P,

of Q

there is aposet Q of width

there is some monochromatic

f(n) s.t. for ev~~y 2~coloring

pi ~ Q with pl~ P •.

1.ROSENBERG: Characterize the strict infinite orders < s.t~ ..~~l~<)

(t~e clone of isotone operations)~ is a coatom .in the poset 'cf '10:"

callyclosed clones.

R.NOWAKOWSKI:Let xE.?:,n. Aset F isa cutsetfor·x if

no element of F is comparable to x and if every maximal.chain

intersects F v~x}. Find the size' 0; a maximum-sized irredundant~

cutset for x.

M.SAKS: L a finite distributive lattice of rank r(L), Lkthe set of

elts. of rank k, u(x) the number of elts. covering x. 1s it true

that for each 0< k ~ r(L): I ~ I L u(x) ~ (-I~\ L. u(y» - ?
k xeLk k-l y(Lk - 1

W.POGUNTKE: 1t was observed by M.Pouzet that in each finite ordered

set with a proper automorphism there are elts. x,y s.t.

1/3 ~ pr(x< y) ~ 2/3. 1s it possible to prove an even better

estimate? (partial results obtained by G.Häfner).

O.PRETZEL: Ca!l a linear extension of aposet P imperial if it can

be obtained as follows: if- an initial segment x
1

, ••• ,x
i
_

1
has been

selected, choose xi among the minimal remaining elts. so as to

maximize max t j<i: x. < x.}. Prove results for "imperial dimension"
) 1

analogous to those for greedy dimension.
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R.CANF1ELD: Consider the transformation on permutations whieh maps

6(1) ••. 6(n) into ~ = cf(i)<r(i-1) ••• er(1 )cr(i+1) .•• tr(n) where

i= ~(1) (i.e. flipping an initial segment of length ~(1) ).

Wilf has shown that ~ is transformed into ~ with ft" (1 ) = 1 in ~

2n _1 iterates of the transformation. Prove or disprove O(n2 ).

J.KAHN: L,L',M geometrie lattiees. An embedding fram L to L' is an

injeetive, rank- and join-preserving r:L, LI with \f(O)=O,

'P(1)=1. M is a minor of L (M~L) if M embeds in [F,f) for some

F E. L. L is k-eonneeted if there is no partition A v B of the atoms

of L with lA', lBl ~ k and r(A)+r(B) ~ r(L)+k-1.

Conj.: for all M there is some c(M) so that if (a) L is a geometrie

lattice, L ~ M, (b) X e. L, r(X)=r(M) ,and (c) r(L) > c(M), L is e(M):'

connected, then there is a complement F of X s.t. M embeds in

[F I 1] .

M.POUZET: (with E.Milner and F.Galvin) G=(V,E) a 'countable directOed

graph. 1s there a subset A of V and an ordering ~ on A s.t. fer e-

very B~A B dominates A (with resp. to ~) iff B "dominates V

(with resp. to E) ?

D.SVRTAN: Realize TTn (the partition lattice of an n-elt. set) in
. N .

same Euelidean spaee E so that every automorphism of 11
n

will

be the restrietion af same isometry of EN•

Berichterstatter: P. Nevermann
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