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Tagungsleitung: M. Aigner (Berlin) und R. Wille (Darmstadt). - .

Im Mittelpunkt des Interesses stand di& Theorie endlicher geord-

neter Mengen. Die Themen der Vortrdge lassen sich schwerpunktmdB8ig

gliedern in:

-~ Extremal- und Optlmlerungsprobleme geordneter Mengen -(lin.- Er-
weiterungen, scheduling, sorting);

- Struktur und Darstellung (endlicher) geordneter Mengen- (Klassi-
fikation, Diagramme) ; . ) -

- Topologische Methoden in der Ordnungstheorie; . I I

- Anwendungen.

Zusdtzlich fand eine "Problemsitzung" statt, auf der jeweils mit

einer kurzen Einflihrung offene Probleme vorgestellt wurden. ;

Vortragsausziige R

W.T. TROTTER: Extremal Problems for Ordered Sets

Extremal Problems for Ordered Sets constltute .a. relatlvely new,

but promising area of research in comblnatorlal mathematics. In

this talk, we will survey recent results in the area concentrating
on results which have not yet been published. In §articularije will
outline the proof of the fact that the dimension of an ordered set
is bounded as a function of the maximum degree in the comparabili-
ty graph. Although the exact values of the best possible function

are not known, we can prove: kz/logks f(k) < kz._ .
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D. KELLY: Free m-lattices on some ordered sets

(This research was done jointly ‘with George Gré&dtzer). Let us call
an ordered set P slender if P does not contain 1+ 1+ 1,

2+ 3,0r 1+ 5. Inan m-lattice, all sets X with O<|Xlkw have
joins and meets. (Here w is a fixed.linfinit.e regular cardinal.) The
results we describe below were first proved for W =N, by I. Rival
and R. Wille [J. Reine Angew. Math. 310 (1979), 56-80]. We described
the free M-lattice on the ordered set H = M in Order 1 (1984),

47-65. We shall show that F,, (P), the free mv-lattice on the ordere’
set P, can be embedded in F yy(H) whenever P is linearly indecompo-
sable and slender. Consequentlyl, an ordered .set P is ‘slender iff

Fow (P) does not contain Fo (3) as an m-sublattice.

J.KAHN and M. SAKS : On the Width of Distributive Lattices.

For a finite ordered set P, let w(P) be the width. We prove the
following conjecture of Bill Sands: For every ¢>0 there is an
n that if L is a distributive lattice with |L{2n then w(L)/[L|<f_.

P. WINKLER : Random Orders
Fix posi'tive integers k and n and let Py (n) be the (partial) order

obtained by intersecting k random linear orderings of an n-element
set. What does Pk(n) look like for fixed k and large n? .

R. CANFIELD : P-recursireness of ménage and related numbers

The derangément numbers count the permutations ¢ avoiding a repi-
tition in any column of the array-
1 2 ... n
(1) €(2)... g(n), :
while the straight ménage numbers count those ¢ avoiding column
repititions in the three-line array
1 2 «.. N
2 3 c..n X .
s(1) ¢(2)... &(n) .-
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There is a gemeralization to"ménage-r numbers", and a problem is
to decide whether these new sequences, like the classical derange-
mént and ménage numbers, satisfy finite recursions>with polfpemial
coefficients. We discuss this problem and some related issues.

H.A. KIERSTEAD : Inequalities for the Greedy Dimension of
Ordered Sets

Every linear extension L: [x < Xy< ...<X ] of an ordered set P
on m points arises from the 51mp1e algorithm: For each i with

0 <ic<m, choose X;,1 .88 a minimal element of P - {xj : js 1} .

A linear extension is said to be greedy, if we also require that
X;,q covers x;. in P whenever possible. The greedy dimension ef an

~ordered set is the minimum number of greedy linear extension>of P

whose intersection is P. We shall develop several inequalit}es'
boundiné the greedy dimension of P as a function of other parameters
of P. If A is an antichain in P and |P - A2 2, we show that the
greedy dimension of P does not exceed |P - A|. If the width of

P - A is n and n3 2, we show that the greedy dimension of P does

not exeeed.n2+ n. If A is the set of minimal elements of P, then
this ihequality can be strengthened to 2n - 1. If A is the set of
maximal elements, then the inequality can be further strengthened

to n+1. Examples are presented to show that each of these 1nequa—
11t1es is best p0551b1e. )

L.H. HARPER : On The Asymptotic Rota Conjecture

Let P be a (flnlte) poset with rank functionr, and let R(P)-
max size of an antichain

max Size of a rank . In 1928 sPerner showed that R(B )—1,
B, being the latticeof subsets of an n-set. In 1967 Rota asked
1f R(TT )= 1, TT being the lattice of partltions of an n-set.
Canfield (1979)showed R(TT ) >1 for n> Avogadro' s number (whlch

Kleitman & Sha have recently lowered to 3.4 X 10 .) However the

asymptotic behav1our of R (TTn) has remained a mystery Based upon
the result of Graham-Harper that R(TTn)= R (P ), P,

ordered partitions of n weighted by W(Tt) =TT _—___T?TT*
r=1

P belng the un-




and the assumption that Pn may be approximated by a Gaussion pro-
cess & have made a rough calculation which indicates that R(T\'n)—)

1.69... as n—s oo .

J. GRIGGS : k-color Sperner theorems

Results will be discussed concerning families .I-‘ of subsets of an
n-set S with the property that with respect to some k-coloring of

S there do not exist A, BeF such that A g B and B - A is monochro‘
matic. Let f(n,k) denote the maximum value of \Flover all such F.

By Sperner's theorem and by the two-part Sperner theorem it follows

that f(n,1) and {'(n,Z) equals (nx/mz) . It will be shown here for
arbitrary k that }gn-[f(n,k) / (n‘/lz)) exisih;s, call it d; . For
k>3 dy> 1.036. For k —oo cik~\}'rtk /41ln k . Related re-

sults and conjectures will be discussed. Thi/s is joint work with

A. 0Odlyzko and T. Shearer and includes independant results of 2.
Fliredi.

K. ENGEL : Extremal problems in cubical lattices and chain products

Let Cn be the lattice of all faces of an n-dimensional cube, or-
n

k

. (0O<1<...<k-1). A subset (or family) F of these lattices satis-

fies the Sperner, intersection, or union condition if x4y, XAy #

dered by inclusion, and E, be a product of n copies of the chain

minimal element, resp. xVvy # maximal element holds for all x,y € F.
We consider families satisfying these conditions in all 7 possible .
combinations. For Cn we determine all vertices of the convex clo-
sure of the set of profiles of such families. Here f = (fo,...,fn)
is the profile of F if fi equals the number of rank i elements.

For E? we (together with H.-D.O.F. Gronau) determine the maximum
size of such families. The cases of intersecting Sperner families
(satisfying the union condition) remain unsolved for even n and k

< 2n. Last but not least we (together with P. Frankl) determine
asymptotically the maximum size of an intersecting family of rank

R elements in Eﬁ, where £ = \An}, Nfixed, and n—> w .
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Z. FUREDI : Finite famili'es of sets and semilattices

Let k, t be positive integers and let F be a family of k-element
sets.Improving earlier results of Erdés (1967), Erdds and Kleitman
(1968) and Erdds and Rado (1962) we obtained the following
Theorem There exists a subfamily E*s F “with the following pro-
.perties: .
i) |E*{2C(x, t)-|F|where C depends only on k and t,
ii) F*is k-partite (i.e. There exist Vir Vy, ...V, such that

‘ |[FAv,] =1 holds for all FeF, 1sisk ).

iii) Every pairwise intersection in E* is a kernel of a t-star in
F*(i.e. for all Fy, Fye F*there are Fyreoon, € g?such-that
Fir\ Fj = F1I\F2 holds for all 1si<jsgt.)

iv) There exists a family M on the elements {1, 2, ...; kXY such
that M is isomorphic to M (F,F*) for all F ¢ F*, where M(F, F*)
=:{FNnH:HeEY).

v) M is a semilattice (i.e., M, M'e¢ M implies M N M'e M.
This theorem was conjectured by P. Frankl. Several applica-
tions were presented.

’

A. BEUTELSPACHER : Embedding of geometric lattices in projective
' - geometries

A planarspace ( geometric lattice of dimension 3, matroid of rank. 4)
consists of points, lines and planes such that the following axi-

oms hold :

. 1) Any two points are on exactly one line;

oF

2) planes are subspaces, there are at least two planes;

3) any three non-collinear points are on exactly one plane.

The following theorem will be discussed: '

Theorem. Let S be a finite planar space in which any two planes

meet in a line. Suppose furthermore that S is not a degenerate pro-
jective space. Then : )
(a) For any point p, the quotient § /p is a projective plane of the
same order n.

(b)If the number of points of S is at least n3, then S is embadable in

PG(3,n), the 3 dimensional projective space of order n.
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B. MONJARDET : Posets and similarity coefficients between linear

orders

There exist two classical agreement coefficients between two 1li-

near orders: Kendall's % and Spearman's ¢ . The Daniels inequality,

and -equivalently- the Guilbaud Formula provides a (not simple)

relation between v and ¢ . We prove a third -equivalent- relation

between two metrics defined as the set of all linear orders (on a

finite set). This proof is obtained by considering several parameters

that can be defined on an arbitrary poset.

This point of view allows also

1) to give an ordinal interpretation for ¢-% , allowing to get
its extremum values ( and the corresponding pair of linear or-
ders) .

2) to show that the coefficient g(L,L') is an isotone mapping of
the partial order L n L"'. )

3) to raise other problems. »

D. SCHWEIGERT : On heuristics for optimal matchings

While drawing, the pen of a plotter moves very often lifted up.

The plotter problem is to minimize "wasted pen movements". One of the
many approaches is to find an optimal matching. Exact algorithm

are known with o(n3), but these are useless for problems with
thousands of points. A heuristic algorithm is developed for the
optimization of graphic datas, a problem which is related to the

plotter problem. . .

W. POGUNTKE : Level schedules by interchanging matched subsets

A well-known result of T.C.Hu (1961) is the basis for the little
progress that has been made on this problem: schedule unit time
jobs subject to precedence constraints on identical parallel
machines to minimize the maximum completion time. In the cése_
that the precedence constraints form an inforest- that is, each
job has at most one successor - any "level" schedule is optimal.
We present and study a procedure to transform a given schedule

for a set of jobs with arbitrary precedence constraints into one

DF Deutsche
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which is more like a level schedule - without increasing the
céhpletion time. This is a particularly interesting since, an
arbitrary level schedule need in general not be optimal-at all,
and,  indeed, there are even simple settings in which no level

(This:is joint work with Ivan Rival).

/ O. PRETZEL : The diagram of -an ordered set

-+ A k-orientation of a graph is an orientation in which every cycle

has at least k edges oriented each way.Every orientation determines
an additive function, itssignature, that gives an integer. value to

-every circuit.

We present an algebraic proof, using this signature, that M; has no
1 -orientation. This suggests that there should .be an'obstruction"
theory of k-orientability. As a first step in this direction we
give a Theorem-.that any additive function on circuits, taking on-
ly admissible values is the signature of -some orientation.

If time permits we shall discuss the relation between the signature
and long circuits and " pushing down " maximal vertices.

’

.D. .DUFFUS : Gap and Selection Properties for Ordered Sets

An order variety is-a.class K of ordered set isomorphism types

closed under the formation of retracts and direct products. In-

vestigation of conditions sufficient to insure membership in par-

ticular varieties. has led to the. formulation of two types of pro-
perties: gap and selection properties. In fact, an ordered set be-
longs to.CH, the variety generated by the class of isomorphism
types of chains, if and only if each of its gaps is preserved by
some chain. and there is an order preserving selection function.
Recent work of Duffus and Pouzet has concerned this question:

Is each finite dimensional lattice a member of CH? It is known
that all finite dimensional distributive lattices and all 2-di-
mensional modulas lattices'belong to Cﬁ . Moreover, by a charac-
terization of gaps “preservable" on chains, they prove that all
lattices of finite breadth have their gapé so preserved.

o




M. POUZET : Retracts of Posets and Graphs: The Metric Approach

We consider a generalization of the notion of metric space where

the distance take values in a complete ordered semi-group V

having an involution. The notions of balls, contraction (or non-
expansive) maps and isometries have a natural interpretation. As

in the case of metric spaces, the notions of absolute retracts,
injective spaces and hyperconvex spaces are equivalents. Also if

V satisfies a distributivity property then V is hyperconvex and

the hyperconvex spaces are exactly the retracts of powers of V ; .

moreover every space has an injective envelope. Finally it is shown
that the bounded hyperconvex sets haée the fixed point property

for contraction maps. For particular choices of V this includes

the reéults of N. Aronszajn, P. Panitchpakdi,B.Banaschewski,G.Bruns
A. Quilliot, I. Rival, R. Nowakowski on absolute retracts of me-
tric spaces, posets and graphs; the Tarski fixed point theorem

and also the recent result of R. Sine and P/Soardi on the fixed
point property for some ﬂf’subspaces. The results presented here
have been obtained in part with D.Misane.

M. SEKANINA : Categorical approach to combinatorics of ordered sets

A. Joyal in his paper "Une teorie combinatoire des series formelles?
Advances of Math. 42 (1981), 1-82 described a method joining in-
tuitive combinatorics of the theory of enumeration with a functor-
ial formalism in the category of the sets. In dealing with a ge-
neralization to the category of the ordered sets one of the main ’
questions is to find a suitable addition for ordered sets. Two
natural candidates are cardinal and ordinal sums. Especially for
cardinal sum many principal aspects of Joyal's paper remain valid.
There are presented other examples of addition of ordered sets,

which can be useful in the studied generalization.

M.K. BENNETT : The Convexity Lattice of a Poset

I wish to report on joint work with Garrett Birkhoff in which we
investigate the lattice Co (P) of convex subsets of a general

Deutsche
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partially ordered set P. In particular we determine the conditions
under which Co (P) and Co (Q) are isomorphic; and give necessary
and sufficient conditions on a lattice L so that L is isomorphic
to Co (P) for some P.

G. GIERZ : Essential Completions

Lef L be a distributive lattice and let B(L) be the . maximal essen-
tial extension of L. Banachewski and Bruns have shown that B(L)
is a complete Boelean algebra. Let R(L) be the smallest complete
sublattice of B(L) containing L. We call g(L) the essential com-
pletion of L. The Zariski topology on L is the smallest -topology
for which solution séts of lattice equations p(x ) = g(x ) are
closed. .
Theorem. (i) g(L) is complete, meet-continuous, and join-continu-
ous.
(ii) If g(L) is complete, meet-continuous and join-continuous,
then g(L) = L.
(iii) S(L) is completely distributive <& L is Hausdorff -in the
Zariski topology. . . . co
(iv) If L is an open sublattice of a completelﬂdistributiVe lattice
M (equipped with the interval topology) and if the closure
T of L in is connected, then QL) = T.
The theorem implies that the essential completion of an open
hypercube ]0,1[ is the closed cube lo, 11" .

J.D. LAWSON : Infinite antichains in semilattices

The notion of a continuous semilattice together with its inherent
topology is introduced and the existence of countably .infinite
antichains converging to an upper bound is discussed. In the most
free situation the antichain generates (as a complete semilattice)
a copy of ZN; if the given continuous semilattice has no éhéh
copy, then it has compact-finite breadth, i.e.'evéry cbmpaqt';nf
may be replaced by a finite one. A semilattice DELTA is intro-
duced isomorphic to the free semilattice on countably many

o®




generators e, modulo the relations that the meet of ey and ej is
less than e, for i less than j less than k. Any continuous semi-
lattice containing an infinite antichain converging to a larger
element contains a continuous semilattice embedding of DELTA.

P.H.EDELMAN : Convex geometries and some dimension problems

Associated with a notion of abstract convexity is the class of

meet-distributive lattices. We examine the structure of the set ‘
of all meet-distributive latticés with a fixed labeled set of
join-irreducibles. This set has a natural partial ordering on it
which forms a lattice. Using these ideas we define the notion of
convex dimension for a meet-distributive lattice and discuss how

it relates to standard notions of dimension.

J.W.WALKER : Shellability of Hypogeometric Lattices

We study a new class of lattices, to be called hypogeometric lat-
tices, which includes the class of geometric lattices. Two other
examples are the poset of independant sets of a matroid, with a
greatest element adjoined, and the dual of the lattice of affine
subspaces of a finite dimensional vector space. Hypogeometric
lattices can be shown to be shellable. These results imply two
lemmas used by Lusztig. in representation theory.

D.HIGGS : (A) Nicely graded lattices.
Or (B) Lattices of antichains and related subsets in

finite posets.

(A) An interpolation antichain in a poset P is an antichain A in

P such that if a, b are in A and a s y, ¥ X, X< b then x& cs y
for some ¢ in A. P -is nicely graded if it is graded and, for each
interpolation antichain A in P, the elements of A are all on the
same level. Various results and questions about nicely graded
lattices will be discussed.

(B) It is known that the set of maximal anticha;ns and the set of
minimal cutsets in a finite poset P each form lattices under the
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appropriate order and that these two lattices intersect in the
distributive lattice of cross-cuts of P. The possibility of find-
ing a single lattice of suitable subsets of P containing the above
two lattices will be discussed, along with some related questions.

K.B.BOGART : Subalgebras of the Incidence Algebra and Generating

Functions

‘ Doubilet, Rota and Stanley introduced the idea of studying .gener-
ating ‘functions by representing various important algebras of
generating functions as subalgebras of the incidence I(P) algebra
of an appropriate partially ordered set P. In particular, they
studied the standard algebra, the algebra of functions constant
on isomorphism classes of intervals. Although the incidence alge-
bra I(P®Q) of a direct sum of partially ordered sets is the ten-
sor product I(P1)®]JP2) of the incidence algebras of the compo-
nents, this does not carry over to the standard algebra. We in-
troduce a slightly larger subalgebra A(P) of the incidence alge-
bra with the property that A(P® Q) = A(P)@A(Q). In all the cases
of algebras of generating functions Doubilet, Stanley, and Rota
studied, A(P) is the algebra of generating functions. Further, the
tensor factorization of A(P) carries over to infinite direct
sums. This tensor factorization provides a bridge which lets us
unify the Bender-Goldman theory of prefabs with the incidence al-
gebra approach to generating functions.

H.-J.BANDELT : Modular graphs-and ordered sets

A modular graph is a graph in which for every triple u, v, w of
vertices there exists a vertex geodesically between each pair of
u, v, w. Among modular graphs are all median graphs, absolute re-
tracts of bipartite graphs, and the covering graphs of discrete
modular lattices. One can characterize those discrete ordered sets
with O which have modular covering graphs. The ordered sets in
question are modular multilattices (sensu Benado) satisfying two
additional conditions.
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D.B. WEST : Semiantichains, Unichain Coverings, and Related

Parameters

We review recent results concerning semiantichains, unichain
coverings, and related problems in direct products of posets.
Semiantichains are subsets of a product in which distinct elements
are incomparable if egual in either coordinate. Unichains are
.chains in which one coordinate is fixed. Since semiantichains and
unichains intersect at most once, any unichain covering uses at
least as many chains as the size of any semiantichain. It is ‘
conjectured that every direct product has 'a unichain covering

and a semiantichain of the same size. West and Tovey provea a
special case of this. We prove another special case not covered

by their result and suggest a common generalization. In addition,
we introduce new parameters generalizing unichain coverings, se-
miantichains, and chain coverings to arbitrary posets without pro-
duct structure, and we obtain several results about these using

a network flow model.

D.T. KLEITMAN : Some Extremal Problems Concerning Ordered Sets

Some recent (and not so recent) results are discussed:

(1) (with Sha J. Chang). We describe a class of antichains larger
than any rank in the lattice of partitions of a finite set (of size
at least 4 X 106) under refinement ordering, and give an intuitive
picture of what is happening and a calculus for computing some.

(2) ( with C. Greene).We give a characterization of maximum sized
chains in the lattice of partitions of n under the majorization
ordering; this yields the maximal length of such a chain, (essen-
tially %\ﬁin3/2 ) and other related results. .

(3) (with J. Chang). We find bounds of TT(?)i (upper) and

]TT(?H (lower) on the number of linear extensions of 2". Open
¥,

problem! Which is closer to the answer?

(4) The maximum number of meet-irreducibles given n join-irredu-

; : n =1 n . -1/2, |
cibles is shown to be between(n/z)(1 + cn ) and (n/Z) (1+ cn )
which is right? (the first probably is.)

(5) (with M. Saks) We describe strenghtenings of the LYM inequali-

Deutsche
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ty for sets on g?. .
(6) The largest family of elements of gn that is-2-intersection
. . n n
and 2-union free has size ( n/2)(1+(1/n)) for odd n and ( n/2.)4-1
for even n. - o

W. DEUBER : The unequeness of the solution for Kruskal's extremal
problem Ll

. Abstract. The Kruskal problem is the following. Find a co‘llection
of i-many sets A1 ...A in ( ), such that the 1 shadow \u)(lj) has
minimal cardinality. (1 l<k<n, 1< i¢g( k ) ). -
One solution is given by the first U sets in the antilexigraphic

ordering on ( 2 ). .
Theorem. For i= ( Q1 )+ %2 Y4+ k t¢4 1)+ this solution is
unique up to renumberlng of elements iff o
) Lreori= (YT .
" As an intermediade step an extension of the Kruskal problem is con-
sidered, which as a consequence generalizes Kleitman's' extension

of the Erdés, Ko, Rado theorem.

M.ERNE : Clique numbers of grapls

(301nt work with P. Erdos and U. Vollert) We studyAthe éets G(n)
| (ne N) of all numbers c for whlch there exists a graph w1th n
. vertices and ¢ cllques (i.e. complete subgraphs, not necessarlly
maximal). This problem is strongly ‘related to the problem of deter-
Amlnlng the number of antichains in posets. In order to know the
sets G(n), it suffices to compute the numbers g(c) = min {_n c
€ G(n)} since c belongs to G(n) iff g(c) ¢ n < c. Let b(c) denote
the number of ones in the b1nary representatlon of c .and wrlte 14
for logz. Then a straightforward computatlon gives the estlmates
ldc+1a4 1db(e) ¢ glo) ¢ 1d c+2{¥ 4 \Tac - b(or , while a
rather technical proof is necessary in order to obtain the upper
bound 1d ¢4 ¥1d c) /8
n<ecs on-9n™

gives lg(nm)ls 2" - n
n-2

which shows that c € G(n) whenever

. On the other hand, the lower bound for g(c)

=2/5 < 0(2™). The numbers in G(n) which are

can be described_explicitlﬂby simple inequalities.
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E.HARZHEIM : A generalization of the mapping degree to cartesian

products of linearly ordered continua

A linearly ordered continuum C is a non-empty dense linearly or-
dered set, which has no first and no last element and has no gaps:
If I is an initial segment of C with & # I # C then I has a last
or C~I a first element. In C we have the usual order topology.

If C1, ceey Cn are linearly ordered continua we call their carte-
sian product C = C1x.“x Cn an n-continuum. It is equipped with the
product topology which has as basis the set of all boxes O1x..x O,/

where 0, is an open interval of Cv . The question arises which
notions and theorems of R® can be generalized to n-continua. Here
we generalize the notion of mapping degree and winding number to
n-continua. Using this concept one can generalize all classical
invarianceAtheorems, in particular the separation theorem of Jor-
dan - Brouwer - Alexander (which implies the others) :

If K is a compact subset of C, £ : K— C continuous and injective
then C-K and C - £f(K) have the same (cardinal) number of connecti-
vity components. ‘

U. FAIGLE : Identifying ordered sets of height 1

The identification problem for ordered sets asks for the minimum
number of calls of a comparability oracle ( with respéct to pairs

of elements) necessary so that a hidden (partial) order on a ground
set E can be identified. This talk reports on joint work with G.
Turé&n on this problem. In particular, we present an algorithm which.
~is optimal for height 1 ordered sets within factor 2. The general
problem remains open. Our current approach is based on the no-

tion of an essential set and we offer a conjecture which would imply
that these methods are not sufficient to even handle the case of
bounded height ( note, in contrast, that the case of bounded width
is easy: the information-theoretic lower bound can be achieved).

M. AIGNER : Lower Bounds for Sorfing Problems

Let P be a poset, |P| = n. The sorting complexity C (P) is the
minimum number of comparisons needed to produce P. Let P = ( % )
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be the ordinal sum of a top-part T,|T|=t and an antichain A,
|A}=n-t; Result 1: C(T/A) > (n—t)+|10g([n]t/e(T)ﬂ, [n] =
n(n-1)...(n-t+1), e(T)= number of linear extensions.

1f pP=(T/A/B), T top-part,|T|=t, B bottom-part,|Bl= b, A antichain,
|Al= n-t-b we have Result 2: C(T/A/B) » (t+b)-|min T|-|max B|+
[log(:)(ngtﬂ. Let Vt(n), Vt-1,t(“) denote the complexities of
selecting the t-th element and the (t-~1)-th,t-th element, resp..
Let O< x < 1; Conjecture(Backelin): &%g(ﬁxn(n)= 1+(-xlogx -
(1-x) log (1-x)). Bounds on this limit are obtained and it is men-
tioned that 1- xlogx - (1-x)log(1-x) is a lower bound for
%xn1-1,Bn/"' adding strength_to the conjecture: single selection ~
double selection.

I.G. ROSENBERG : Cover graphs via O - 1 inequalities

The cover graph Cov (P) of an order is the symmetric hull of the
covering relation and_a graph is a diagram if it is the coverAgraph
of some order. Given a graph G = (P,E) fix an orientation of E.

For a simple l-cycle C = {V1V2, <ees V1V, of G put wy = 1 if

(Vi' Vi*1) is in the orientation and a; = O otherwise. Further let
a®: =1-aanda': =a . For x: E-2 ( : ={0,1} ) the cycle in-
equality of C is

28 x(vy v )My Ll x v, v1)"’~'s 1-2 ().

There is a bijection between the solutions xe g? of the system
(4.) ( over all simple cycles of G )} and the discrete orders on

P whose cover graph is G. The system ( 1. ) may be reduced. We

solved it for the complete bipartite graph Kn , -find an infinite

n
set critical non-diagrams and an infinite set of critically 4-chro-

matic triangle free diagrams.

I. RIVAL : Greedy Linear Extensions

Loosely sﬁeaking a greedy linear extension of a finite ordered set

is a linear extension constructed according to the rule "climb as
high as you can". It is a natural construction for the jump num-
ber problem. In recent work with N. Zaguia we have used the ideas
of a "subdiagram" and a "chain interchange algorithm” to estab-

o®



lish new results about the role of greedy linear extensions in
the study of the jump number, the greedy dimension, and enersi-
bility of greedy linear extensions.

M.M.SYSLO : Algorithmic aspects of greedy linear extensions of
partially drdered sets .

Let P be a partially ordered set (poset). We consider the jump
number problem which is to find an optimal linear extension L of .
P that consists of the least number of chains of P. An arc dia-

gram D.of P is an acyclic directed graph in which the poset elements
are represented by a subset of arcs of D. Every poset has an op-
timal linear extension which consists of chains generated by the
greedy method. Making use of arc diagrams, we define a strongly
greedy chain in P and show that if P has such a chain C then there
exists an optimal linear extension of P which begins with C . As

a corollary, we obtain the expression for the jump number of N-

free posets. Moreover, we identify a class M of posets which
properly contains N-free posets and every P € M has an optimal li-
near extension which can be generated by the strongly greedy al-
gorithm.

R.H.MOHRING : On series-parallel and N-free partial orders

(Jointly with M.Habib). We consider two generalizations of series-
parallel posets and investigate their complexity with respect to .
3 well-known combinatorial (optimization) problems which are po-
lynomially solvable on series-parallel posets: the Jump number
problem, the isomorphism;p;oblem, and the 1/prec/3 w.C. scheduling
problem (minimizing the sum of weighted completion t;més on one
machine) .

The first generalization is the class of N-free posets, for which
the jump number problem is known to be polynomially solvable. We
show that both other problems are, however, hard on this class
(i.e. isomorphism complete and NP-complete, respectively).

On the other hand, all 3 problems are shown to be polynomially
solvable for the second generalization, which consists of all
posets obtained by substitution (lexiffographic sum) from indecom-
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posable posets of fixed size (posets of bounded diameter).

This adds some evidence to our opinion that, with regard to com-
putational complexity, the second class constitutes a much more
natural generalization of series-parallel posets.

F.FARMER: Retracts: Topological Methods

Problem: If o«: A— X,when does there exist r : X— A so that
. roo = idA ? A solution to this problem depends on being able

to compute the reduced poincaré polynomials P (X), ¥ (A), and

E (X/A) when the sﬁaces are nice and « is an embedding.

If R eXxX then T(X, R) is the topological realization of the

simplicial compiex {Im(f) . fin.lin.o:dF—»rR} where rR is a

reflexive relation. ‘ -

‘'THeorem: If (X,R) iscsa directed forest then

(1) T ( X, .cs R) is a.homotopy n-sphere for some n g ,

(2) T (X, cstR) is a homotopy cluster of spheres,

where t, s are transitive (resp. symmetric) closure and CR =

@'x X)- R. On the class (2) above the elementary result

[P (X) #8 (A)+ P (X/A)>A is not a retract of X almost be-

comes an egquivalence. The.polynomials ﬁ'(x), T (n) are easiiy

computable but more work néeds.to be done to compute P (X/37).

B.VOIGT : Ramsey's theorem and the property of Baire

We introduce the notion of partition category and then have the

following .

Thedrem : For every Baire mapping A: C( %) — {0,..., r-13} ,

where k,r<w , there exists F ¢ C( : ) with A(F-G)= A(F 'H).

As corollaries one obtains Ramsey's theorem (J. London Math. Soc.
1930 ), a theorem for Graham - Rothschild parameter word (Prdmel -

Voigt, to appear in Trans.AMS ), an extension of the Graham - Leeb -
Rothschild theorem for vectorspaces ( Voigt} to appear in Crelle's J)
as well as other results. In particular, we have the following
result of Promel and Voigt: .

Theorem For every Baire mapping gw =B0u..vBr_1(powerset of w,

topologized as Cantorspace ) there exist nonempty and mutually
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disjoint subsets A,, k<w , as well as i < r  such that \flhk

| € By for all nonempty Icw .

| In view of a result of Shelah and Stern it follows that it is con-

| sistent with ZF ( if ZF is consistent) to assume that this result
holds for all finite partitions, although this contradicts the
axiom of choice.

G.F. MCNULTY : Ordering Words

Two words will be regarded as equivalent if there is a permu- ‘
| tation of the alphabet which transforms one of the words into the

other. For example, "start" and "order" are equivalent. Let Pn

denote the set of all (equivalence classes of) words on the n -

letter alphabet. For words u and w we write u @ w to mean that

some substitution instance of u is a subword (i.e. a factor) of
w. q 1s a partial order on P which arises in algebra and logic.
(Pn' 4 ) has a very intricate structure and it is the purpose of
this talk to present what is known about it and to frame some
problems concerning it. We say that the word u is n-avoidable
provided the complement in Pn of the principal filter above u is

i infinite; u is said to be avoidable iff u is n-avoidable for

| some natural number n. There is a nice algorithm (Bean, Ehren-

| feucht, and McNulty 1979) for determining whether words are avoi-
dable. It is unknown whether every avoidable word is actually 3-
avoidable. It is known that the length 2 word aa is 3-avoidable
(Thue 1906), that the complement in P3 of the principal filter
over aa has an infinite antichain (Jezek 1977), and that aa has
infinitely many covers in P,. Whether similar results hold for

arbitrary words is unknown.

R.WILLE : An order-theoretic foundation for similarity measures

(Joint work with Silvia Geist). The similarity between objeéts
are often determined by the sets of their attributes which are
elements of a given attribute set M. Then the proposed similari-
ty measures are certain order-preserving maps from ( P(M)z, <)
into (lR*O,S ) where the order on ‘@(M)z can be defined as follows:
(A,B) & (C,D) & AnBsCnD, AnB2CnD, ANB2CAD, and
AnBecCnD. The structure of { P(M)2,§) is clarified by the

DFG = following .
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Theorem: ‘P (X):= (A, (An X)U(Ar\x)) and" \pA(X) =((AaX)v AnX),

A) defines isomorphisms ‘PA T M) — [(A A), (a, A)] and
‘pA -y —UZE,A), (B, A)] respectively;

in particular, - B (M) 2 =\U [&a,3,ma,n)]= W, LA.2), @, a)]
. Ae P(M) AeP(M)” .

and Ehe order of P(M)2 is the transitive hull of the orders of
the described intervalls. For characterizations of common simi-
. larity measures the following definition is used:

‘An order-preserving map @:( \G(M)Z, <) —-)OR;, <) is additive

‘ iff c;q»A(x)+ Gyin= G\PA(xw) for Xny=g (i=1,2).
Theorem: let’ p: N(M)—)lR be additive and let «,f, ¥ SeR
If ©(A,B):= Xp(AnB)+ pp(An B)+ SpAnB)+ 3 p(AnE) then
is additive iff [p=¥= 0.
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Probleme

I.RIVAL: Call an order theoretical property a diagram invariant

if it is satisfied in every orientation (=diagram) of the covering
graph of an ordered set provided it is satisfied in one of them.
What are the non-trivial diagram invariants?

P.EDELMAN: For ¢ € S, (symmetric group of an n-element set) the in
version set of ¢ is I(§)= {(G(i),c(jnz i<j, 6(i)> 6(3)} . Order
Sp by €s% &= I(r) © I(¥) , the weak ordering of S, denoted

by WB(S,). Is WB(Sp) Sperner? - decomposable into symmetric .
chains?

D.KELLY: Are the middle two layers of the diagram of gn (n odd)
Hamiltonian?

M.AIGNER: (due to Fﬁrstenbefg) Call A s{p,1)n a cylinder set if
A= {x: xi1=a1,...,xik=ag} for some a,,...,ap¢ 0,1}, igreeeripe
{1,...,n}. For cylinder sets A,B define (supp(A)= {i1,.;.,ik} ):
AnB if supp(A)n supp(B)= §
A O B =
[} else.
Let A=0UA, , ® =\U.B. be collections of cylinder sets, and
i€1 1 jeg 3 n
eB = \U (a0 Bj). Conjecture: 2" |ovo®R|s |0l |8]
1i,]

U.FAIGLE: P a (finite) ordered set, 0< § <1; Call xeP § —central

if § sgézl-s 1-3 (N(x)= #of ideals containing x, N= # of ideals
of P).
Is there an efficient algorithm to detect §-central elements?

K.ENGEL: A representation of a finite poset P is a function
x:P—> R with x(p)- x(p')> 1 whenever p'< p. Define:

1 2_ 1 2 2 : 2
M= ToTapX(P) + Ti ﬁ‘-gp(x(p)- py) s and o (P)= inf {§ :

x is a representation of P}. A ranked poset P is called rank
compressed if this infimum is attained by the rank function r.
Is the lattice of partitions of an n-element set rank compressed?

o®
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, D.WEST: Does there exist a minimum chain decomposition of PxQ
so that consecutive elements on each chain are unicomparable (i.e.

egual in one coordinate)?

M.ERNE: P a poset, M(P) the system of principal ideals,. C(P) the
system of non-empty lower ends generated by chains;
Does C{P)T P imply C(P)= M(P) ?

z.FUREDI: Is there a chain decomposition of 2" into(n?2\ chains.

of almost equal length (i.e. “Ci|— leH 1) 2

T.W.TROTTER: Find a least 'f(n) so that for every pdéet of width--
n, P, there is a poset Q of width f(n) s.t. for e§gry Zfébiqrihg
of Q there is some monochromatic P'c Q with P'Z P.. ) ‘

I.ROSENBERG: Characterize the strict infinite orders < s.t. Pol(<)
(the clone of isotone operations).is a coatom in the ppset'df'idi'
callyclosed clones. o ‘

R.NOWAKOWSKI: Let xc 2. A set F is a cutset for x if
no element of F is comparable to x and if every maximal chain

intersects F v{x}. Find the size:of a maximum-siégd ir#eduﬁ@ant"
cutset for x. o ' » . ’ I

- -5

M.SAKS: L a finite distributive lattice of rank r(L), thhe set of
elts. of rank k, u(x) the number of elts. covering x. Is it true

that for each 0< kg r(L): L SZ: ul(x) > (1%——7 :Z: u(y) ) -1 2
k-1

‘ Ly %<tk YLy 4

W.POGUNTKE: It was observed by M.Pouzet that in each finite

ordered
set with a proper automorphism there are elts. x,y s.t.

1/3 < prix<y) ¢ 2/3. Is it possible to prove an even better
estimate? (partial results obtained by G.H&fner).

O.PRETZEL: Call a linear extension of a poset P imperial if it can
be obtained as follows: if- an initial segment x,l,...,xi_1 has been
selected, choose X; among the minimal remaining elts. so as to
maximize max { j<i: xj< xQ-. Prove results for "imperial dimension"

analogous to those for greedy dimension.
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R.CANFIELD: Consider the transformation on permutations which maps
6(1)... 6(n) into v= e(i)e(i-1)... s(1)s(i+1)... «(n) where

i= (1) (i.e. flipping an initial segment of length &(1) }.

Wilf has shown that & is transformed into ~ with <«(1)= 1 in <
2"_1 iterates of the transformation. Prove or disprove O(nz).

J.KAHN: L,L',M geometric lattices. An embedding from L to L' is an
injective, rank- and join-preserving \f:L—) L' with \f(?)):ﬁ,

\((?):?. M is a minor of L (MgL) if M embeds in [F,?] for some

FelL. L is k-connected if there is no partition AuvB of the atoms

of L with |Al, IBl > k and r(A)+x(B) £ r(L)+k-1. .
Conj.: for all M there is some c(M) so that if (a) L is a geometric
lattice, L2 M, (b) XeL, r(X)=r(M), and (c) r(L)> c(M), L is c(M)=
connected, then there is a complement F of X s.t. M embeds in
ir, 1.

M.POUZET: (with E.Milner and F.Galvin) G=(V,E) a ‘countable directed
graph. Is there a subset A of V and an ordering ¢ on A s.t. for e-
very Beg A B dominates A (with resp. to g¢) iff B dominates V

(with resp. to E) ? ’

D.SVRTAN: Realize Tl'n (the partition lattice of an n-elt. set) in

some Euclidean space EY  so that every automorphisﬁ of 'lTn will
be the restriction of some isometry of EN.

Berichterstatter: P. Nevermann
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