
MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e r ich t

Mathematische Stochastik

10.3. bis 16.3.1985

D~e Tagung wurde gele±teti von H.v. We~zsäcker (Kaiserslautern)

und P. Huber (Cambridge, MA). Die Themen waren breit gestreut.

Sie zeigten klassisch-analytische, modellbildnerische, geome­

trische und algorithmische Aspekte der Stochastik in wechsel­

seitiger Beziehung zu inner- und außermathematischen Grenzgebieten.
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Vortragsauszüge

E. BOLTHAUSEN

Laplace approximations in the theory of large deviations

Some refinements of the results of Donsker and Varadhan on ~arge

deviations for empirical meastires of Markov processes are pre­

sented. Let X
t

be a Markov process either in discrete or conti­

nuous time and let L t be its ernpirical'measure, i.e.

! r ö in disc~ete time or t1 ft ~x ds in continuous time.
n j=1 Xj 0 s·
If f is a Banach space valued function on the state space and

t is areal valued function on this ~anach space then under

suitaple conditions

Ex (exp(t41(ffdL
t
») = p(x)exp(t sup (~(y)-h(y}» (1+0(1»

y
where p is a positive function on the state space.

K: H. BORGWARDT

The influence of the stochastic model on the expected numberof

Pivot steps required by the'simplex-method .

The Simplex-Method, which had been introduced by George B. oantzig

around.1947/48, is still the most efficient algorithm for solving

linear programming problems. This holds, although since 1972 seve­

ral variants.of the method were proven to be nonpolynomial, i.e.

the number of required pivot steps cannot be bounded fram above by

a polynomial in the dimensions of the problem, m the number of.re­

strictions, n the number of variables. The search for.a polynomial

variant 1s without success until today.

Hence it became clear, that only a theoretical analysis of the ave­

rage behaviour could explain the efticien~y of:t~~ methode For that

p~rpose one has to define a stochastic model·describing the
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"distribution of the real-world linear progranuning problems".

Based on different stochastic models, as

coordinate permutation-invariance model

sign-invariance model

rotation-invariance .model

very interesting results on those expectation values eould be

derived. The result under the different models differ signifi­

eantly. We want to show how the stoehastic assumptions have a

direct effeet on the results.

H. DINGES

What is Skewness

The eontribution dealt wi th sequences of probability densities

of the form

rn. exp (-n. K (x» • v'K""lXT." H (x) • exp (1 S (n ,x),) dx
v~ n

where K(x), the "entropy function" is convex with K(ll) =0,. K" (ll) =-;.
H(X) the "modulating function" is smooth, and 0

S(n,x) ~ :ß(x) uniformly in some neighbourhood Ofll.

Such distributions turn up in many situations of asymptotic norma-·

lity with good large deviation-properties,in particular . .~

sums of i.i.d. random var.· satisfy~ng Cramer's .condition·
('H. Daniels, "1954 "saddle .point approximation", •.• )

empirical quantiles (Alfers & Dinges, 1983),

eurved bondary absorption of random walks (H. D. Klein forth­
corning)

In the present contribution the Ioeal behaviour (near II = 0) was

studied 2
_ 1 2 ö 3 r K. . ö] 4

K (x) - 2x + 6x . -:r t- 24 :+ 18 • x +
1 .' 2

In H(x) = ÖX '+ 2(e: - yö)x + •• '.

Ö "irritation of mean", e: = "irritation of dispersion"

y "coefficient cf skewness", ~ = "coefficient of kurtosis"
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!!!~Q~~':' Let (Xn ) be random variables s. that ~ ;. (X -~) has

densities as above then there exists a standard normal Z s. that
3

n Xn-nep-öcr 1 Ö 2 1 [';(' 3 y2] -2 . . 4 2
n~e: = Z+- - - (Z -1) + -- - (Z -3Z) - _e Z + n tP (Z) (K=K--Ö)

ae~ vn 6 n 24 36 n. 3

·cr. FRANKE

On recursive autoregressive-~ovingaverage estimation

Given a sample Y1 ' ••• 'YN from a weakly stationary process, we

want to fit autoregressive-moving average models

Yn + f Qk(P,q)Yn - k = En + f ek(p,q)En _k

to the data for a large range of orders p,q. The E k are uncorre­

lated random variables with common variance 0
2 • Under the assump­

tion that Yn , -co < n < CD, is a purely nondeterrninistic, time series,

we present an algorithm which allows for a recursive (in p and q)

calculation cf ARMA(p,.q)-coefficient estimates ak.(p,q), 1 ~ k ~ p,

8k (p ,q) -, 1 ~ k ~ q, from .est~a:tes of the autocovariances and. of the

crosscovariances of theYn and the corresponding linear innovations.

This algorithm.generalizes the well-known Levinson-Durbin algorithm
. .

for the pure autoregressive . case: (q = 0)., and it is closely related

to the Whittle~algorithm for.the multivariate autoregressive case.

We discuss how our algorithm may be used to make .the ARMA-estima­

tion procedure, which includes choosing th'e. model order from the

data, of 'Hannan and Rissane computationally less expensive.

s. GEMAN

Bayesian Image Analysis

We develop a class of probability image models that accomodate

smoothness, edges, textures, and other, "higher level", image

attributes. These are Markov Random Fields with a three dimensio-

                                   
                                                                                                       ©



- 4 -

nal graph structure. The "bottom" level of the graph is the

pixel process, corresponding to. the actual digi~ized image.

Successively higher levels correspond to increasingly complex

attributes, including locations and orientations of edges,

line segments, and polygonal regions. The constructed distri­

bution is employed as a prior distribution on images. Given a

degraded picture, we seek the image that maximizes the posterior

distribution (the so-called MAP estimatorl. Maximization is per-4It

formed by ·a highly parallel computational technique called sto­

chastic relaxation.

We will present the results of experiments with some simple

pictures. These demonstrate: (1) parameter estimatien for the

prior; and (2) blur and neise removal·, segmentation, and boun­

dary-finding at extremely lew signal to neise ratios.

F. GÖTZE

Approxlmations. for multivariate U-statistics

Multivariate U-statistics are defined with respect. to a vector of

kerneis H(x,y) =(H 1 (x,y) , ••• ,Hk(x,y» and i.i.d. observations

X1' ••• '~· i~ X. They appear for exarnple aso leading terms of sto­

chastic expansions of multivariate estimator sequences. Assuming

that H(X, ,X2 l has mean zero anda finite absolute third moment, 4It

the order of normal approximation for sets with "smooth" boundary

15 given by O(N- 1 / 2 ), provided the asymptotic covariance is non­

degenerate. 'Furthermore, if E(H(X1 ,X
2

) I X1 ) has non lattice distri­

bution an Edgeworth expansion o~ error O(N- 1/ 2 ) holds for sets

with "smooth" boundary.
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A. GREVEN

Infinite particle systems on (~)S
. S

We consider a class of Markov proce~'ses on (:N) (S;; ?Z~ ). with

transitions of the type: motion of .a particle,. birt~ and death·

of a particle, extinction of all particles at a site and spli~ting

of all particles at. a site.

We compare the different processes in our class from the point

of view of phase transition.

We show how presence, absence and strength of the interdependence

of the fate of different partfcles in'fluences· the longterm beha­

viour of the,process and shapes the appearence oEthe pha~e tran­

sition. Finally we study the question whe~ and how thebehaviour

of the system changes if it evolves in a-random environment, i.e.

we randomise'the birth rates, death:rates at each site.

R. GRÜBEL

ASymptotic analysis using Gelfand's ·theory.

We introduce a class of convolution algebras of measures and give

a related Wiener-Levy-Gelfand result. This turned out .to be impor­

tant in the investigation of problems such as the following:

Suppose (Xk)kE ~ is an i.i.d. sequence of random variables with
n

partial sums (Sn) E:N ' S :: 0, S L :.~ k. What can be sa~d
n 0 0 n k=1

about the asymptotic behaviour of

l a P (Sn E ·x + Al as x ~ ±m?
n=O n

«an)n E E c JR fixed, A a fixed Borel set).

Questions of this kind arise in renewal theory, in connection with

randomsmns, .Wi.ener-Hopf factors and infinite divisibility. As a

concrete example' of application of our method we give a n~w esti­

mate cf the renewal function.
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P. J ..HUBER

Data analysis and projection pursuit

The principal purpose of (exploratory~ data analysis is to

detect nonantlcipated features. In low dimensions (up to 3)

this is best done by drawing pictures, histograms, curves,

scatter plots (at this point, a short movie illustrating the

visual opportunities and problems of 3-d data graphics was ShOWn)~
For higher dimensions, dimension reducing techniques must be

employed~ The classical method is principal components analysis,

a more recent one is projection"'pursuit (Kruskal 1969, Tukeyand

Friedman 1974): find interesting projections by maxirnizing a.

certain projection index. Two issues w~re discussed: (1) the.

choice of an indeXi- (2) some sampling issues. It can be argued

that the least normal projection is the most interesting. This

leads to a certain inequality the projection index should

satisfy. It holds for the following indices: standardized absolute

cumulant, Fisherinformation, Shannon·information. It turns out

that with the usual sampie sizes the power of tests ~ill be very

low, and so the question to be posed is notwhether a feature

one has discovered is spurious, but ~ow many false leads one

is wilLing to pursue for the sake'of a good one.

M. c. JONES

An Introduct"i'on' 'tö, P'röj"e·c·t"i·ön Pürsüit

In 1974, Friedman and Tukey introduced II pro jection pursuit ll as

a technique for the explor~tory analysis of multivariate datasetsi

the method seeks out 11 interesting n
. linear proj ections of the

multivariate data onto a line or plane, thereby yielding an

informative cOllection of II v iews" of the dataset. In this talk,

we concentrate on this exploratory form of the method, considering

both the arguments motivating the use of the patticular techiques

employed and some computational aspects of an efficient implernen-
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tation of the algorithm. Application to published data illu~

strates thepower of the method. Much further work on this

topic (by others) hasconcentrated on applying these ideas to

other multivariate problems such as non-linear multi~ regres­

sion and multivariate density estimationi the way in which

these methods fit into the same basic framework is described .

•
H. KELLERER

Measure theoretical versi'OtlS of "line'ar pro'g'rarmning

Given Hausdorffspaces X, Y and a kernel P from X to Y consider

the following pair of problems:

(1) ~ € M+(X), ~P ~ v and ~f_max!

(2) g € B+(Y), Pg ~ fand vg minI

where v is a finite (Radon) measure and Y and f(~O) is a measu­

rable function on X. Sufficient conditions for the '''duality

theorem" (0) max(1) = min(2) to hold are derived .. They use

notions as lower semicontinuity of P, tightness of the pair

(P,v) and discreteness of P~ This yields equatio~ (0) respec­

tively for campact support or arbitrary upper semicontinuous

functions or all Suslin functions f. Applications concern,

among others, marginal problems (as treated in ZW "67) as weIl

as continuous models for network problems (as proposed by

~ K. Jacobs).

W. KLIEMANN

Results on Stochastic Systems

For linear stochastic system i t ~ A(~t)Xt in nf , where ~tis a

diffusion process onamanifold M of dimension m and A M -+ GL(d,lR),
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-,
the Lyapunov exponents A(XO'W) = lim t .log I x(t,xo'w) I are.

t~

studied. The multiplicative ergodie theorem of Oseledec states,

that for stationary ~t A(XO'W) ~akes on r values A,< ••• <A r ,

each one realized in a subspace E. (w) of dimension d.. Nondege-
~ ~

neracy conditions in terms of the Lie algebras generated by

the vector fields that deterrnine ~t and the pair process (Xt'~t)

guarantee that A (x ,w) = A a.s. for all x E lR d......{o}, hence
00"

in these cases only the greatest Lyapunov exponent "can be ~

seen". This is a result in the spirit of Furstenberg's law of

large numbers for products of random matrices. Furthermore if

one considers without lass of generality the case where trace

A(~) = 0 for all ~ E M, then A = 0 iff there exists "a T E GL(d,lR)

with T-'A[M]T C SO(d,lR) , otherwise A > o. This generalizes

known results by Mol~anov for the random linear oscillator and.

theorems on stability of linear, parameter excited systems.

H. KUNSeH

Robustness in time series

Consider.an estimator for the parameters of a stationary ARMA­

model of the form
n n
E 1P(X., X·_ 1 '.·'Xi _ +1,T) = 0 or L 1P1..(X i , ...X"Tn ) = 0 ..

i=m 1. ~ m n i=1 ~

with $i tending to $ in a suitable sense. We discuss the asymptotic

properties of T if we have observations X. = Y.+ z~ where i.
n ~ J. J. J.

follows the model and Z: is stationary with Eelz:li Iz:\ < 1)
J. 1. J.

+ pelz:1 > 1) = 8. We study the asymptotic bias as E tends to
J. -

zero by differentiating the functional defined ny 1'im ~

along the are of the marginals of the contaminated processes.

As a consequenee we can bound this bias uniformly over certain

eontaminations by choosing $ suitably. However,. no rnuch robusti­

fication is possible for the asymptotic distribution and the

asymptotic efficieney. Finally,.we discuss robustification in the

presence of nonstationary trends.

I

'1

I
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T. LINDSTRöM

Nonstandard methods in mathematical stochastics

By means of the __ultrapower construction,we give abrief

introduction to the basic concepts of nonstandard analysis.

In particular, we emphasize hyperfinite sets. as natural infinite

counterparts of finite sets, carrying rnuch of the same combi­

natorial structure and information. To illustrate the use of

_ the method in probability theory·,·..we construct Brownian motion

as the standard part of a hyperfinite random walke

P. MAJOR

On the asymptotic behaviour of the product-limit estimator

We consider the so-called Kaplan-Meier product-limit estimat~ of

a distribution function on the basis of censored data. Breslow

and Crawley proved that the difference of the estirnate and the

real distribution function multiplied with vn tends to a

Gaussian process. in the talk we gave the exact rate of this

convergence. We also diseussed some open questions and some

technical problems during the proof, which are of independent

interest.

P. MATTILA

Unvisible sets

A Borel set E in the plane is unvisible if it is unvisible from

alrnos t all ~_direetions, tha"t 1.S, i ts orthogonal proj ection, on

a~ost every line through the origin has length zero. This means

that random lines a~ost surely fail to meet the set. If E has

finite one-dimensional Hausdorff rneasu;e H' (E), the unvisibility

means irregularity in the sense of Besicovitch, and a lot is

known about the geometrie structure in th~s case. In general

unvisible sets have Hausdorff dimension at most one, and they

may have non-cr-finite H' measure. The only C2 diffeemorphisms

preserving unvisibility are the ones mapping line segments onte

line segments. Results of K.J. Faleoner and M. Talagrand imply

that a non-unvisibel set need not be visible from almost all

directions.
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R. D. MAULDIN

Random Construetions asymptotie geometrie and topologieal

properties

We study some notions of "random construetions" which lead

almost surely to a particular type of topologieal objeet-Cantor

set, Sierpinski eurve or Menger curve. We demonstrate that

associated with each such eonstruetion .1.s a "universal" number,

a nurnber a such that almost surely the random object has Haus- ~

dorff dimension a.

D. MOLLISON

Epidemie Models: Stucture and Sensitivity

For eeological processes such as epidemics~ a wide variety of

types of model have been proposed, for instance stoehastie

branching, percolation and diffu~ion processes, as weIl as deter­

ministie differential and differenee equation models. While the

most int'erestiing theoretieal advanees of reeent years have been

on simple spatial stoehastic proe~sses, most applied workers

still rely on ,nonspatial models, or on over-complex simulati0I?­

models.

I shitll diseuss the relati0n.s between various simple epidemie'

rnodels,with.particular reference to the ways in which they ~
include basic epidemiological eomponents and how this affeets

their qualitative behaviour.

Some aspeets of model behaviour (level of prevalence, period of

oseillation)appear to be robust, while others, unfortunately

ineluping'crucial questions' of control, are very sensitive to

the detailed form of the model components.

Referenees: Mollison, De~is (1984) "Simplifying simple epidemie

models", Nature, 310, 224-225. Mollison, Denis&Kuulasmaa,Kari

(1985, in press) USpatial epidemie models: theory and simulations",

in "The Population Dynarnics of Wildlife Rabies u
, ed PJ Bacon,

Academic Press.
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u. MULLER-FUNK

Some two-sided LMP tests

The main purpose of the talk is to exhibit the stucture of

locally most powerful (LMP) tests for multiparameter families.

To that end we present an ex.tension of the Neyman-Pearson lenuna

that can be applied to certain concave objective functions under

linear constraints. This generalizes and complements a result

_ by IS<;l.akson (1951). The whole approach is based on methods from

~onve~ .programrning. The above mentioned result is then used

to derive LMP rank tests for one- and multiparameter families

and to study their asymptotic' behaviour. This offers a different

approach to problems studied by Rudnicki (1984) and others.

(Jdin;t work with F. ~'ukelsheim and H.· Witting) •

M. NAGASAWA

A statistical model for interacting particles and its limit

theorem

We consider a system of interacting coloured Brownian rnotions

on m' such that n-reds stay always to the left of rn-blues.

Therefore, if a red and a blue rneet, they will be reflected as

hard balls, but reds (resp. blues) can cross over. Moreover,

_ the interaction between them is of the mean field type. It is

explained that the propagation of chaos for the system holds.

1) The empirical distribution of particles in the system

converges weakly to a prob. distribution u(.t). 2) Fronts of reds

arid blues converge to a non-random front. 3) Reds (resp. Blues)

become eventually independent of each other and their probability

distribution converge to the left part of u(t) (resp. the

right part of u(~», as n/rn ~ ~ under the constraint n/(n+m) 8.
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F. OST

Significance of Homologies on DNA - Sequences

According to their biological i~plication, the analysis of

DNA-sequences (ATTGCTACT •.. ) focuses on repeats of strings

(words) on a single sequence or the common occurr~ of a word

on two or more sequences. Suchlike structural patterns are called

hornologies.

To distiguish between important homologies and merely random

effects, th~ question arises: Are homologies ob~ained on given"

sequences significant? What is the probability of getting a

certain homology on similar random sequences - e.g., Markov chains?

Results on calculating this probability and the asymptotic distri­

butions of sorne associated random variables are highlighted.

Generalizations and open questions in defining homologies and

assessing them within the framework of a stochastic model are

commented on.

R. REISCHUK

Probabilistic Algorithms

We give an introduction how computational problems can be

solved efficiently by probabilistic methods. Here efficient means~

that the computation time is bounded by a polynornial in the size

of the input. In the distibutional app~oach one assumes a proba­

bility distribution on the input space and defines the time

complexity of a deterrninistic algorithm as the expected.number

of computational steps with.respect to this measure. On the

contrary a randorn algorithm performs internal randomiz'ation steps

and a computation depends on the input and the specific chosen

random sequence. The time complexity in this case is·the maximum

expected nurnber of steps over all inputs. It is independent of

the distribution of the inputs. As an example it is shown how

                                   
                                                                                                       ©



- 13 -

this approach has successfully been applie~ to storage and

retrieval problems using hashing methods.

Further we study probabilistic computations that rnay yield

incorrect results, but with probability less than 1/2, called

Monte Carlo algorithrns, in contrast to error free Las Vegas

algorithrns. For sorne so far difficult computational problems very

efficient Monte Carlo algorithms are known, for example for

decidingWhether a nurnber is prime. Finally the complexity of

functions is classified with the help of polynornial time bounded

probabilistic algorithms. These classes are called P, RP, BP,
NP and PP.

H. RIEDER

The Role of the LAM Bound in Robust Statistics

or : A "0 - co
n Law of Bias

Contrary to the parametric Hajek, Le Carn (1972) LAM bound, the

LAM bound for functionals, which dates back to Koshem and Levit

(1976) and has been employed as a.robustnesscriterion by'

Beran (1981, 1982) and MilIar (1981, 1982) in their studies of

minimum Hellinger, respectively L2{~), distinct estirnat~rs, '~ay
be shown to be a result on bias as every regular estimator hut

(the optimum) one is assigned bias co, hence maximum risk. The

robustness content of the functional LAM hound is thus only

a qualit~tive one, narnely by the implicit requirement to construct

an estimator which is uniformly asymptotically"normal over

shrinking balls. To call such an estimator robust, however, the

centering func~ional must be so; as for possible robustness

theories for functionals we refer to Rieder (1984).
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B. D. RIPLEY

Statistical problems in image analysis

One consequence of the increasing use of computers in controlling

experiments is that much greater ~unts of data are being produced

in structured forms. One new type of dataset is a digitized image.

The talk will consider statistical models and summaries for

digital black/white images as weIl as giving an overview of the .

area and future prospects.

M. SCHEUTZOW

Stabilization by additive white neise

We intreduce the coneepts af stabilization and (weak and strang)

destabilization by white noise for n-dimensional diffusion

processes. We then determine the minimal dimension n for various

.classes of diffusion processes where these phenomena occur.

By providing an explicit- example it is shown that additive

white noise can stabilize a two~dimensional unstable determi­

nistic system. We then show by examples that for nonlinear

diffusions (solutions of "Me Kean"- equations) and stochastic

delay differential equations stabilization by neise is even

possible in. dimension one.

A. STOLL

Self-Repellent Random Walks and Polymer Measures in two

Dimensions

The statistical description of polymers requ~res a probability

measure v which takes into account the excluded velume effect.
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Thus Edwards proposed the following polymer model: Equip the

Wiener measure 1.1 on C ([0, 1 ], ]Rd) with a d:.ensity

:~ (w) = ~ exp [-g J(w)] , where the functional

1 1
J(w) ~ J J o(w(t) - w(s»dsdt is intended to measure the double

o 0

pointsof the path w,·g is a positive coupling constant, and Z is

the normalization constant. Varadhan (d=2) and Westwate~ (d=3)

could rigor~ly establish the polymer measure v as weak limit of

polymer measuresv n , where the 0- function is replaced by a

continuous approximation f . By nonstandard analysis, we can give. n
a prec1se meaning to Edwards' heuristic approach in the two-dirnen-

sional case. As a corollary, we obtain that suitably scaled self­

repellent random walks weakly converge to the polymer" measure v.

w. STUTE

Nonparametrie Estimatibn of Densities and Hazard Rates in the

Presence of Censori'ns

We first give a brief review of the available method for nonpara­

metrie handling of censored data. After that we discuss a repre­

sentation of local-type characteristics, fram which exact a ..s.

rates of converge and distibutional limit resul"ts .may be easily

derived.

G. WINKLER

From triangles to Gibbs states

The intersection.of a decreasing sequence of finite dimensional

simpl±ces is a finite dimensional simplex {Borovikov (1952».

More generally: the inverse limit of an inverse system of simplices
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is again a simplexi the single simplices are neither assumed to

be finite dimensional nor compacti the inverse system has to be

countahly generated. From this general result we derive, that

inverse limits exist in the cat~gory of standard Borel spaces and

substochastic kernels. In this frame concretemodels from proba­

bility theory and statistical mechanics are considered such as

Markov processes and Gibbs states.

M. YOR

An Introduction to Brownian Motion, via Stochastic Calculus

A number of important features of Brownian motion will be presented,

using stochastic calculus (the basic facts of which will be

briefly recalled at the beginning of the lecture). The features

to be presented will be taken among the following:

a) an explicit solution to SkorokhQj's problem.

b) the Ray-Knight theorems on Brownian local times.

c) Paul Levy's computations on the stochastic area of planar

Brownian motioni a decomposition of Bessel bridges.

d) the are sine law for one-dimensional Brownian motion.

e) the asymptotic study of winding numbers of the planar

Brownian motion.

f) a construction of stahle processes from one-dimensional

Brownian motion.

Berichterstatter M. Scheutzow
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