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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g 5 b e r ·i c h t

Surgery and L-Theory

Die Tagung fand unter Leitung der Herren A. Bak (Biele.fel~) t M,. Kreck

(Mainz) und A. Ranicki (Edinburgh) statt.

Es wurden Anwendungen der Surgery-Theorie und der alge~raischen

L-Theorie in versc~iedenen Bereichen der Topolog~e behandelt, wie

Klassifikation von Mannigfaltigkeiten und Poincare-Räumen,'G-Mannig­

faltigkeiten, die Theorie der höherdimensionalen Knoten, G~uppen­

operationen auf Sphären.
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Vortragsauszüge

Bruce WILLIAMS. Geometrie Applications of Higher und Lower Algebrai.c

K':"'"Theory

(joint work with Bill Dwyer and Larry Taylor)

Notation. h.f. (X --+ Y) = homotopy fiber over the base point in Y

~ closed topological manifold

S (M) h. f . « GI
T

) M~ L h oz1f) ) , 1T = 7T 1Mop n

.. simplical

SeM)

set of block, topological structure on M

fibered, M

h.fiber (BTop -4 BS) over M, where

Top simplical category of closed manifolds, and

S simplical category of finite CW ~complexes.

Stabilize by crossing with ~i -

SeM) ~ Sb(MXRi )

1 1a (i)

SeM) ~ Sb(MxRi )

bounded, fibered stroctures on MxJRi

, block

Ideas of Hateher, Anderson-Hsiang, and Mads~n-Rothenberg yield the following

results:

Theorem 2.

(a) There exists a (homotopy) diagram

H(M) Hb (M>qR 1) Rb (MxRi )

! ! I b! ·
SeM) --+ Sb(MxR ) --)- ••• --+ S (MxJR1

)

s. set of bounded h-bordisms on

M xR
i .
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(c) There exists an action of Z/2

following diagram commutes

bi-Ion n.(H (MXI~ » such that the

where T

abi-I
-+ nj_I(H (MXR »

!xl
b i-)

~ nj_I(H (MxI~ »

generator of 7J./ 2.

(d) For b in.(H (MXR » ~ Wh l .. (n).
J _ +J-1

(e) Consider the homotopy group exact couple for the tower of fibrations

in (a). Then the derived exact couple yields exact sequences .

(related to work of Anderson-Pedersen, Hambleton-~~dsen).

Consider the commutative diagram

SeM)~ Sb(MXR~) = Sb{M~w)

a\. /a
SeM)

Conjecture h.f. (aß) ~ S: 1\ "8./2 H(M)
thru the

Igusa stable
range

where H(Mr = lim H(MXlk ) where H(M) becomes an 03-loop space H(M)
k

via H(M) ~ ni Hb(M~i) = ni lim Hb(MXlk~i).
k

This conjecture can be broken into two parts:

(in the sense

h.f.(a)High conjecture ~ S~ A H(M)high
thru the + Z/2----

19usa stable
range

where H(M') high q: :<'-1) connec ted cover of H(M) ~ n Wh(M)

of ~aldhausen).

~_ Sm lowLow Theorem 3. h.f:(ß) + A Z/2 H{M)

where
H(M)low H{M) •--IH(M)h1gh (as oo-loop space)

Q::! Wh(TT) I
W

"h(1T)high (Anderson-Hsiang Theory)
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About surgery on Poincare spaces

Let P be a Poincare space of formal dimension n, with ap = a_p u a+P.

Let n{p,a+p) be the set of bordism classes of "normal map of degree one"

f : (p,a_p,a+p) ~ (p,a_p,a+p) such that fja_p: a_p --+ a_p is a homotopy

equivalence. (P a Poincare ·space). The theory of surgery on manifolds can be

extended as foliows:

Theorem A. There exists a map s

groups) such that

I) If a+p = 0 or n~' h, then s{a) 0 iff a contains a homotopy equival~

2) s is additive

3) if a is represented by a r.lassical surgery problem f M~ P, then

s{f) = cr{a), the·Wal1 surgery obstruction for f.

Theorem B. If n > 6, the map s of Theorem A .is characterized by I), 2) + 3).

This is a joint work with P. Vogel and will appear in a.book: "The geometry of

Poincare-spaces'~•

Rainhard SCHULTZ. An infinite exact sequenee in equivariant surgery

Let X be a compact manifold and Sk{X) the set of homotopy structures

on Dk xx that are standard on the boundary. The infinitely 10ng exact

surgery.sequence of Sullivan and Wall provides a means for understanding

Sk(X) in terms of two more accessible o~jects: The homotopy groups of the

space of continuous functions .from X U {pt.} to F/O and the Wall surgery

obstruction groups L.{UtX). If a finite group aets smoothly on ~ then

one consider the corresponding set Sk(X;G) of G-equivariant homotopy

structures on X that are standard on the boundary. Under certain restrie­

tions, results of Dovermann and Rothenberg yield a corresponding exact

sequence involving Sk{X), suitably defined equivariant homotopy groups of

the function space, and equivariant surgery groups r;(X) that are periodic

mod 4. However, this sequence stops after finitely many terms because of

the basic underlying restrietions. The principal result in this work is an

infinite extension of the Dovermann-Rothenberg sequence in some cases.

                                   
                                                                                                       ©



- 5 -

Theorem. Let G be an odd order eyelie group .. Assume all fixed point sets

in X are I-eonneeted. Then there is an infinite.-lang exaet sequence exten­

ding the Dovermann~Rothenbergsequenee, with a fi~st oder approximation

D1-S
k

(X) replacing Sk (X) after the Dovermann-~o·thenb~rgseque~c~ terminates.

Rela~~d but more e()1D.plicated results hold, .tor arbitrary groups of. odd order.

F. CLAUWENS K~OP of rings of· power series and applicationsto L-theory

In my earlier work (see: Aarhus 1978 eonference) a a(P) E LZpCZ[t)[n,p])

popped up that determines.the surgery obstruetion of idp x f from the

obstruction of f. So try to eompute LnA[t] where A ~ Z[w,p) • Using

local/eomplete exaet sequenee one needs

I) LnA~[t] whieh is isomorphie to' LnA~ ,

2} LnAi?l where one can use L~ilil "" LnAl t 1./ (Z) ,

3) Ln~]~ where one splits A[t]. in matrix rings over divison rings D

and uses the faet that a symmetrie element in the convergent power series

D{t} over D is equivalent to a polynomial.

But all this gives you L?A[t] with some funny deeoration at best; so
n

understanding of K1A[t] is needed.

Look at the ease A = Z[x] n abe1ian Z-group; then the 10c/eomple~exact

sequenee gives

In fact one on1y needs K~oPA{t} = liw KZ ~{t}/Zn instead of K2A{t}.

Write R = A{t} • Let I = kerne1 of augmentation A-+Z{t}.

To eompute . K2(R,~) use Maasen/Shensha presentation

<a,b? + <a,bZ> = <a,b l +bZ-ab 1b2>

<a,b1bZ> = ~abl,b2> + <ab2,b l >

. generators
<a,b>aEI,bER or· aER,bEI {

relations

<a,b> -<b,a>

Problem that secortd relation nonlinear; to correct that use that .R is

a ).-ring.

i.e.
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R --+ R such that {
Ai(X+Y)

Ai(X.y)

). iOAj (x)

E ).i(X)Ah(y)
j+h=i
universal polyn. in ).-(X),A-(y)

A-(X)

There is a "universal" )."ring U such that for any r E R there is unique

). ring map U --+ R mapping sI to r.

Every element of U defines an operation on ). rings.

e.g. adams operationS Fi Fi(r) = (_J)i-J E jAj(r».h(-r)·
j+h=i

FPr = r P mod p Fi ring homomorphism; FiOFj = Fij •
If R has 00 Z torsion then F operations determine ).-structure.

Define new operations ßn(r) = l E Fh(rn / h) has meaning in U 8 ~
def n fin

hut lies in U.

b.nl(a,b)

: 0R --+ 0R (Kahler differentials) such that

Fi additive Fi(rw) = Fi(r)Fi(w).

K~oP(R,I) ---+ In~oP/ÖI2

<a,b> ---+ E
oo

ßm(a)Fm ö E
oo

nn(a,b).
aEI,bER m=J n=1

nm(a,b)" L n1(a,am/ 1- 1) p1 ßm(b);
def tim

l*tn

Furthermore there is Fi

Now define

That is weIl defined, and has very small kerne! & cokernel in the cases

to which it is applied.

I. HAMBLETON. Surgery ObstructiQns on Closed Manifolds •
Let TI be a ~inite group aod w: n -+~/2 a homomorphism. af ~ ~ Bn is a

line bundle with wl = w denote by Bnw the Thomspace of ~.. The problem of

(f,f)
computing the surgery obstruction' A(~ ------+ Nn) E L:OZntw) for any normal

map of closed topological manifolds, with TI 1N = n, wJN =.w, is equivalent

to the evaluation of two· sequences of natural homomorphisms:

a.
1

K.
1

s
---+ L i +2 (7l1T,W) (2)·
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~f.we evaluate instead in L~OZn,w) where / denotes torsions allowed in

SKI (lln) EIl {±na~} ~ K'I (lln)/±I' then it is known that 3~ = 0 for i > 0 and 30

is the ordinary signature.

In the talk we described how the Ki's are determined by anothersequence of

homomorphisms

obtained, byproduc.t wi~h .the twisted Kervaire problem. Let

involution '1~15 ~')~{5 then there is a transfer map

with

y( ) trf. , tt77 )Li Rlf,W ~ L i +2 V6"U,W"

'.:J-" .

Theorem 1. There is a natural factorization

ßn
~ L~+2(Zn,w)

';:rf.
LY(Rn,w)

n

We then showed how to compute "the groups and the maps and trf.

Theorem 2~ There is a natural factorization of the maps K.
1

through

C. STARK. Surgery, on Seifert fibered spaces over 3-orbifolds

A conjecture sometimes attributed to A. Borel holds that any homotopy equivalence

Mn ~ Nn of closed, aspherical manifolds ought to be deformable to a homeo­

morphism, at least for large enough n's. This conjecture seems especially

probable for a~pherical manifolds with a great deal of synnnetry, and we know

(Conner-Raymond) a lot about such a manifold if ~t po~sesses an effective action

f
: .. - b n 1- f (Tn MD+2)

c:> '.-, a compac,t L~e group. Th1S L1.~ group must e a torus T ; j

is an effective torus action on a closed aspherical manifold, then we know~that
k .. '," ..

STop (M x D ,a) = 0 for n+k ~ 4 (aM ~ 0 has also been dealt wi th), by work

of Farrell-Hsiang, Stark, and Nicas-Stark. This talk dealt with the codimen­

sion-3 problem, (Tn,~+3), for which T~n+3 is a 3-orbifold in the sense

of Thurston.
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Theorem. Suppose (Tn ,Mo+3) is an effective action on an orientable, closed

aspherical manifold su~h that all the isotropy groups T
n have odd order and
X

either

(a) Tn 'Mn+3 is a Haken hyperbolic 3-orbifo1d,

(b) Tn 'Mn+3 is a Seifert fibered 3-orbifold, or

(c) Tn,~+3' is a Haken orbifold made from hyperbolic and Seifert

fibered subspaces. If n+k ~ 3 then ST (M xDk,a) = o.op

The pioof in case (a) relies on a root-closure proposition to see that

Cappell's UNil groups vanish here.

Jim DAVIS. Swan Modules and Swan Formations

Let n be a fi~ite group. The Swan ~ubgroup Tm(n) of L
n

(7ln) is defined

analogously to the Swan subgroup T(n) of K QZn). The point is that the
o

Swan subgroups of L-theory often play the same role in closed manifold problems

as the Swan subgroup of K-theory plays in the theory of finite complexes.

Tm(n) is the subgroup of Ln(X~) represented by surgery obstructions of

degree one normal maps f:M ~ X such that ~ (f) e 7J./ In I = 0 and TT

. acts trivially· on K.(f).

Two examples of the above philosophy are discussed: (I) free actions of

finite groups on spheres - here the k-invariant of a spherical space form

is relating to the vanishing of an element (depending on k) in Th(n).
n

(2) Smooth semifree actions of 1T on Sn. Here the homology of the fixed

set is related to the vanishing of an element in Th (1T). (I) and (2) are
m

joint work with Shmuel Weinberger. •
E. PRDERSEN. Finiteness obstruction of nilpotent spaces

Given a nilpotent group TT, let N(n) ~ KoOtn) be the set of finiteness

"obstructions rea1ized by nilpotent complexes. Mislin proves that N(n) = 0

if n is infinite and in general Mislin-Naradarajan prove that N(n) ·~D(1T).

Consider TT = X1T
." P

(Qn = Ol1T
p

x CQTT/e:.

a finite nilpotent group.

Let N (TT) be the image of
p

Then decomposes
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where a(p) is associated with the square

r~Tp)n

Zln ---.. ~n •

P

T(n) + 1: Np(n) where T(n) is the image of.'the
pllnl

Swan homomorphism. This proves that N(n) is a group, and N(n).= D(n)

follows as ,an easy corollary, thus giving a new proof of Misli~-Narada.r~jan's

result.

ßören ILLMAN. A product formuls for equivariant Whitehead'·torsion.

Geometrie applieations.

Let G and P denote campaet .Lie groups, and let f: X --+ Y be a G~homotopy

equivalenee between finite G-CW eomplexes and let h:X' --+ Y' be a P-homotopy
~ t .

equivalence between finite P-CW complexes. We give a formu~~ for ~he equivariant

Whitehead torsion -r(f xh) E WhGxp(X xX') of the (G xP)-homotopy equivalence

f xh : X xX' ~ Y xy'

in terms of the equivariant Whitehead torsions of fand .h, and various Euler

eharacteristies derived from the G-spaee X and the P-spaee X' •

In the ease of a finite group: G ·we obtain·as a eorollary of the prod~ct· farmula

the. geometrie resultgiven below. We let V be any eomplex unitary ;representa­

tion spaee of G, and by S(V) we denote the unit sphere in V,'with the induced

G-aetion.

~. Let f:X --+ Y be a G-homotopy equivalenee between finite G-CW complexes,

where G i8.8 fini te group. Then .; ....-

f x idS(V): X x S(V) --+ y x S(V)
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is a simple (G xG)-homotopy equivalence, and hence also a simple G-homotopy

equivalence when X x S (V) and Y x S (V) have diagonal' G-action.

This result does not hold for arbitrary compaet Lie groups. We show in this

connection, by a simple example, that equivariant Whitehead torsion for compact

Lie groups is not determined by restricting to all finite subgroups.

Eva BAYER Stably hyperbolic E-hermitian farms

Let R be a commutative ring with I, and let L be a R-module af finite

type. Let h: L x L --+ R be an E-hermitian form. We shall· say.t~at h

is unimodular if ad(h)': L~ L* = Ho~(L,R) is an isomorphism. Let

N be a reflexive R-module, then we associate to N the hyperbolic form H(N).

A form (L,h) is said to be stably hyperbolie if thereexistreflexive modules

NI and

Theorem

N2 such that (L,h) m H(N I) ~ H(N2).

(E.B. - Neal Stoltzfus)

Let R be an S-order in a product of number fields with an involution r ~ F.

Let (L,h) be a stably hyperbolic E-hermitian form, E = ±I. Then (L,h) is

hyperbolic (except possibly in an excepticnal ease of "rank" 2).

Let E = ~(~) with d a negative integer. Set (a+b (d) = a - b~.

Then there' exists an order R af E and an invertible R-ideal I such that

H(I) m H(D) ~ H(R) m H(D) . (where D is the ring of integers of E) but

H(l) ~ H(R) •. In fact, it is possible to choose l such that I e I-I ~ R e R.

As a consequence of this, we obtain:

Corollary

This theorem has the following applieation in knot theory:

Corollary (E.B. - Neal Stoltzfus)

Let E2q-IcS2q+l, q > I, be a simple knot such that the knot module is annihi­

lated by a square free polynomial A. Assume that E2q-1 is stably doubly

slieed. Then E
2q-1 is doubly sliced (this is an applieation of the above

with R = Z[t,t-I]/(A». On the other h~nd, there exist stably isomorphie

hyperbolic forms whieh are not isomorphie:

Proposition •
For every integer n > 3, there exist knots

E~ # Ln and L~ # L~ are isotopic but L~

n n n
LI' L2~ and E such that.

and L~ are not isotopic.
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Quadratic forms over rings of coritinuous functions

Let B = R (the reals) or ~ (the complex numbers), X a topological space,

A = BX (the ring ef continuous functions X --+ B), Sn A =" {a =a· E GLn Al.

Definition. a equivalent ß if 3 y ECL A such that y* ay = ß.n

Definition. a homotopic ß if 3 d € 5 B ·(X x [0,1 ]) such thatn

dl x x {O} = a and dl x x {I} = ß.

Theorem 1. a homotopic ß =0 a equivalent ß,----
Theorem 2. a equivalent 8 ~ a stably homotopic ß •

(: o 0 I) homotopic (~)(i.e. fer some m).
I m
m 0 .

Remark. In general, "stably homotopic" in Theorem 2 cannot be replaced

by "homotopic".

Corollary. WBX is a homotopy type invariant of X.

Theorem 3. WBX
o

K BX , where
o 0

BX c BX' is the subring of
o

bounded functions.

Open problem. SK1BX is a homotopy type invariant of X. (Done for X = Rd

.with d = 1,2,3; the case d = 3 jointly with Thurston).

Justin R. S~ITH. Topological Realization of Chain Complexes

I study the question: Given a group n. and a projective Zn chain-

complex C., does there exist a topological space.with fundemental group n

whose equivariant chain complex is C.

I present anobstruction theory for the existence of the topological space

realizing C. the obstruction.lie.in ·the cohomology of C•• The

existence of this obstruction theory and basic facts about Eilenberg-MacLane

spac~imply that if C. is a finite dimensional ~n-p~ojective chain

. complex then some suspension.of C. is reducible~

I focus upon the rational case and ~ive a fairly complete solution. I develop

an equivariant theory of "minimal modules" for homotopy types.
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Algebraic Approach to Diffeomorphisms of Surfaces

An algebraic obstruction theory analog of higher dimensional surgery obstruc­

tion can be developed for the theory of diff~omorphisms of two-manifolds

(surfaces) using the Biderivations of Papakuriakopolous." Let F(g:1) be

a surface of genus g with one boundary circle, A = Z~l(F(g:l» and

k = kernel of the augmentation e:: : Zn i ~ Zl, the .foundamental ideal.

There is a pairing A: k x k --+ A satisfying:

A is Zl-l ineari)

ii) A(aS,y)

A(a,Sy)

A(a,y)e::(S) + aA(S,y)

A(a,S)e::(y) + A(a,y)ß
(Biderivation) •

iii) Adjoint k ~ DerA(k,A)

is an isomorphism

(unimodularity)

iv)

v)

A(a,S) + A(ß,a) = (a-e::(a»(ß-e::(S»

A induces a pairing A' : k/k2
x k/k2

--+ Alk = Zl
o

which is the algebraic intersection pairing under the identification
2k/k ~ H] (F ,Zl) •

-lf f is a diffeomorphism of F(g:l), then f induces a "twisted isometry"

f N of A A(fNx,fNy) = f, A(X,y). For the first application, we prove that

(k,A,f H) can be used to .give a faithful algebraic obstruction to the question

of whether a diffeomorphism extends to a diffeomorphism of some handlebody

(solid torus of dimension 3).

Theorem. (F,f) extends to a diffeomorphism f of some handlebody bounding

F ~ there is an ideal K c A satisfying:

i) A(K,K) c K

ii) fH(K) c K

iii) The image of K in k/k2 is a subspace of rank g (= i rank k/k2)

and self-annihilating under the algebraic intersection pairing on k/k2 .

As a second application we show that, under certain restrictions, we can

capture the isotopy class of f, using an easily computeable invariant

obtained as foliows: Consider the fol1owing group extension derived from

the universal spin cover F of F: H1(F;%) --+ Lg --+ Hl(F;Z/2)~(Z/2)2g together

with the quotient biderivation X on Zl[E 2g ]. Using Thurston's classiC:ication

of surface diffeomorphisms into "geometrie" pieees, we can show:
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Theorem. If the pseudo-Anosov "pieces" of the Thruston decomposition of ~

each leave a non-trivial one-form invariant (up.to areal factor > 1) then

f is isotopic to the identity ~ f N is an inner auto. of r .g

•
Frank CONNOLLY. Proper Actions of Virtually Torsion Free Groups

on Contractible Complexes

Let r be a group with virtual cohomological dimension finite' ( v~cd(f) < =).

(This means that for a subgroup ro of finite index in f, K(f,l) is a .

finite dimensional complex). Serre proved that there is a fin~te dimensiona~

r. cw-complex {r., on which r acts properly (i.e. ~ll isot~opy groups are

finite), such that (~r)H is contractible for each finite subgroup H in r.
~r i~ determined, up to f homotopy type,·by this condition~ and iS'a

familiar object to topologists. For example, if f is an arithmetically

defined group in the alge~raic group G, then ~r is ,G(R)/Max.Compact.Sub-:.

group; if r is chrystallographic, ~r is the corresponding euclidean,sp~c~~.

if r is one of the Coxeter groups studied recently by M. ~.Davi~, then ~~.; :''';

is the space U(r,X) studied by Vinberg and later Davis.

Serre's.love1y construction of ~r leaves unsettled the conditions under

which ~r can be chosen as a f inite r cw-complex '. when i t ,is domina,ted by a

finite r complex, and when the dimension of ~r and its fixed sets, will

coincide·with the dimension·which the.algebra would predict.· Specifically,

it is conjectur~d (by C.T.C. Wall and K. Brown) that it is possible~'to choose

~r so that dim(~r)H vcd Nr(H) for each finite group H.

It is the goal of the present work to answer these questions •

• Theorem I. ~r is a finitely dominated r comple~ <==:;I> for each finite

subgroup H in r, N(H) has type FP(J) and also there are only finitel~ many

conjugacy classes of finite subgroups of r. In this case, ~r c~n be chosen

as a finite r cw-complex ~ an obstruction li(r) in ED K' !7zN(H) IH)" vanishes.
o . I • "

The sum is over a co~lete set of representatives öf conjugacy classes'of finite

subgroups. (A group r "has type FPcolt iff K( r, I) can be' chosen to have

finite skeleta).

In order to discuss the dimension 'conjecture we need notation. Let H be a

finite subgroup of r. JH(r) means the collection of finite subgroups of' r
which properly contain H. JH(f) is a pos~t (via~) on wh~ch .~(H)/H acts.

Its geometrie realization is arspace whose homo1ogy and equivariant coho­

mology will be used.
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Theorem 2. (f can be chosen so that .for each H finite,

{

vcd N(H) if this is * 2
dim«(f)H if and only if the following two

"3 if vcd N (H) = 2

conditions hold for each finite subgroup H of r:

(b) There is a subgroup ~

"d
H~(JH(r);B) = o. Here

of finite index in

d VCd N(H) or

N(H)/H such that

3, as above.

Corol1ary. (r ean be chosen as in Theorem 2 in case r = SP(4,1l) .or GL(n,1l) ••

(The latter ease, GLn(Z) , is known from work of C. Soule and A. As~).

This result also has striking consequenees for virtual Poincare duality groups).

The proof of Theorem 2 uses the following lemma on projeetive modules whieh

webelieve will be useful to topologists.

Lenuna (Projeetive Module Criterion). Let "r be a group. Let M be a

zr module. Assume vcd(r) < 00. Then M is zr projeetive ~ M is

projective over ·ZH for each finite subgroup Hand M is Z~ projective

for some subgroup 6 of finite index in f.

Michael WEISS Products in Surgery

. Let A be a ring with involution. The symmetrie L-groups of Mishehako­

Ranieki are defined to be the algebraic bordism groups of n-dimensional

algebraic Poincare eomplexes (C,~), where C is a .finitely generated left

projective A-module ehain complex graded over Z, and ~ is an n-dimensional

eyele in

sati~fying a nonsingularity condition. Here W is a projeetion resolution

of Z over Z[Z2]. The eyele ~,or its homotopy elass

[~] E H-
n CZ 2 ; C 8A C), should be regarded. as a nonsingular symmetrie form on

the dual chain eomplex C-*

Diffieul~ies in computi~g Ln(A) suggested the following modification.

Suppose that A is a group ring Zn witH the w-twisted involution for

some w n --+ %2. ~nsted of using
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where P is a projective resolution of Z over Zn. (To make sense of this,

let Zn aet on HO~[Z lew, C ~ C) using the diagonal action on C ~ C ).
2

Define VLnQZn) to be the botdism group of objeets (C,~), where ~ is a

nonsingular eyele of dimension n in

The augmentation

out that VLn(Z n)

P ~ Z induees homomorphisms VI..n(ZlT) --+- Ln(Zn). It turns

has about as ~ny uses as LnCZn), especially in produet

formular for surgery obstruetions.

THEOREM. There is a long exaet sequence

where

Za ID=O

I:mCZ) { Z2 ID=
} mod 4.O!

0 ID= 2

1L 2 ID= 3

REMARK. The definition of VLnQZ~) uses the fact that Zn is a

eommutative H~pf algebrß.

~ .Walfgang LtlCK. The transfer in Surgery theory

Given·afibration F~ E" ~ B of connected spaces with .. F an-dimensional

Poineare eom~lex, we define algebraie transfer hOIDomorphisms p*.

Lk<Z [lT.l (B)]) --+- Lk+nC!l [lT J (E)]) • If F is a mainfold and p a topologieal

bundle, P*. coineides with th~ geometrie transfer of Wall and Quinn assigning

·to the surgery obstruction of a surgery problem for B the obst'ruction of

the problem for E obtained by the pull-baek-construction with p.
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Tf F is the ~I(E)-fibre of the n](E)-fibration E--+ E~ B, the

equivariant transport along paths in B defines a homomorphism

u : trl(B) --+ [F,F]trJ(E)O Let S: C(F)n-* ~ C(F) be the chain map given

by Poincare duality. Because of S ~ Sn-* we can equip the ring [C(F),C(F)]Z[tr, (E)]

with an involution [fl ~[S 0 fn-*o S-J]. Then u yields a homomorphism of

rings with involution U ~ Z[n1(B)]--+ [C(F),C(F)~[nl(E)].

The transfer p* assigns to an element in Lo~[nl(B)],~) represented by an

E-quadratic non-singular form QZ[n
l

(B)]m,[A]) for A E Glm~[nl(B)]) the bord~,

class of the E-quadratic Poincare complex (a Cn-*,$ E S ($ Cn-*,E» in ~
m n m

Ln (z[1T
1
(E») t~) for

~o' e C(;)n-~--+ a
m eS m

C(F)~ Et
U(A) m

C(F)

and ~t o for t > o. The definition for L
J

--+ Ln+1 is similar.

We can compute P. 0 p* and p* 0 P* for orientable resp. untwisted fibrations.

If G --+ E~ B is an orientable fibration with a connected compact Lie

group as fibre and 1T
1

(P) an isomorphism, then p* vanishes.

T. tom DIECK. Darstellungsformen und Verschlingungszahlen.

Sei ein Produkt zyklischer Gruppen H.
1

ungerader Ordnung.

Es gibt eine glatte Operation von G auf einer Sphäre Sn(o) + n(l) + 1 = X

H. (')
mit Fixpunktmengen X 1 = Sn 1 n~i) unger:de > 5 mit den ~igenSchaften:""

(i) Die Verschlingungszahl von X 0 und X 1 in X kann eine vorgegebene

Zahl k im Kern des Swan-Homomorphismus sG :(z/IGI~ --+ KoCEG) sein.
H.

(ii) Die Einbettungen X 1 c X mit trivialem Normalenbündel können beliebig

vorgegeben werden. Man kann ein Beispiel f~r solche X finden, die· gerahmt­

bordant zu kS(V) = S(V) + ••• + S(V) k-mal, S(V) Einheitssphäre in einer

Darstellung V sind. (Gemeinsam mit P. Löffler.)
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Dieses Beispiel ist wichtig für die Untersuchung der Darstellungsformen.

Es gilt allgemein für abelsche Gruppen ungerader Ordnung und Darstellun8ßn

V = VI e ••• $ V
n

mit dim[ Vi > 3 Darstellungsformen XCV), die gerahmt­

bordant zu kS(V) sind, wobei k so gewählt werden muß, daß keine Endlich­

keitshindernisse auftreten.

Es wurde die prinzipielle Bedeutung dieser Ergebnisse für die Theorie-der

Darstellungsformen angedeutet.

Matthias KRECK. On the role of duality in the geometry of manifolds

Consider a manifold as a handle body M = DU Ul-handles U 2-handeles U .••

U (k+l)-handles U ••• U Dn • One way to study the role of duality in the geometry

of manifolds is to ask the following question: 'Take off the handles of index

~ (k+2), how many possibilities exist to close it by adding handles of

index ~ k+2? I have sketched a theory which can be used to attack this problem.

As in the classical surgery approach the,theory has to ingredients: A bordism

group and same L-group type obstruction groups. The surprising thing is that

even if we e~ntrol only weaker geometrie eonditions (instead of t~e ~~motopy

type we eontrol a (k+l)-skeleton for same k < n), the obstruetion groups are'
nordinary Wall groups as long as' k > 2 . The reason for this must be that the

geometry of manifolds eontains a very rieh duality structure.

I have demonstrated this theory and given same applieations.

For example in the ease of the symmetrie group Sk results of Taylor and

Williams imply that the image of elosed manifolds surgery. obstruetions in dimen-e sion 4m + 2 is at most X2 and detected by the. Arf-invariant •.. On the other

h~nd a computation of Kolster implies that the kerne1 of the map from minimal

to maximal form parameter groups has order equal tothe number of 2-regülar:

eonjugaey classes in Sk. Thus we have a subgroup of this order 'in, 'L~~+2(Sk)

whieh leads to fake(i. e. not homotopie to a diffeomorphism) homotopy self"

equivalenee of a (4m+I)-dimensional elosed oriented manifold M 'wi~h fun~amental

group Sk and SeM) '= Smax

perty exist.

One' ean easily show that manifolds wi th" th.is: .pro-
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Claudia TRAVING. Classificatin of some complete intersections

A complete intersection of complex dimension n is the transversal inter­

section of r nonsingular hyperplanes in ~ pn+r. If the hyperplanes

are given by polynomials of degree d1, ,dr , then it follows from a

remark of Thom, that the r-trupel (d1, ,d r ) and the complex dimension n

~etermine the diffeomorphism type of the complete intersection. We write Xn(d}=

Xn(d1, ••• ,dr ). (d1, ..• ,dr ) is called multidegree.

As it can occur that two complete intersections with different multidegrees

are diffeomorphic there is the following problem: Which invariants, computed

from the dimension and the multidegree determine the diffeomorphism class.

As an appI~cation of the classification program of M. Kreck, we can determine

the diffeomorphism typeof a camplete intersection Xn(d) satisfying the

condition (*) :

•
far all primes p ~ In + t + i

d.
1

where vp(d) denotes the exponent of

decomposition of the total degree d =

p
r
II

i=l

in the prime factor
v (d)

II P P
p

Theorem. Let be n ~ 3,· Xn (d) a complete intersection satisfying (*) •

Then the diffeomorphism type of Xn(d) is determined by

(i) Pi«((n,d» i = I, •.. ,[~] ,

(ii) d = ITdi '

(e = Eulercharacteristic)

where
d

1
~(n,d) := -(n + r + I) H mH e and H

denates the Hapfbundle. ~

The proof is given as an application of the program of M. Kreck involving

as one main argument the mod p Adams-filtration of Xn(d) which is given

by Yp(d)

The last step of the program, i.e. cancellatiun, is done" by using the results

of Libgober, Wood and Browder on the topological structur of complete inter­

sections.
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Andrew RANICKI. The algebraic L-~heory of generalized free products

The work of Waldhausen on the algebraic K-theory of generalized free products

can be extended to obtain algebraic proofs and extensions of Cappell's results

on the L-theory of generalized free products. The main ingredient in both

K- and L-theory is an existence theorem for "fundamental domains" of chain

complexes by an algebraic transversality technique (generalizing the Higman

linearization trick) abstracting the existence of fundamental domains for

covers of manifolds in which the group of covering translations is a genera-- lized free product.

Given a morphism of

Mr--+- f!M = S 8 R M

usual induction and

rings f:R --+ S let f,:«left)R-modules) ~'(S-modules);, . ,
f-:(S-modules) --+ (R-modules); N r-+ f-N = N be the

restrietion functors.

Given pure injectio~s of rings {~I:~ --+ A1,iZ:B --+ Az
1] ,1z:B ---+- A •

Let be the {

amalgamated free product

HNN extension

{

il(b)
ring with

i
1

(b)

iZ(b) E R

"-I
t i 2(b)t e: R

(b E B). D~note the inclusion by

el :A. --+ R,

]:A ~ R,

j2:AZ --+ R, k

K = ji]:B -4 R_

A fundamental domain f(D1,DZ) for a finite f.g. free R-module chain

LD
complex C is defined by finite f.g. free subcomplexes

such that

is a finite f.g. free B-module

chain complex, -wi th so that there

is defined a Mayer-Vietoris exact sequence of R-module chain complexes
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{

q(E) ~ D
1

EI DZ
with

q (E) eDEl tD

The existence of fundamental domains for chain complexes was the key step

in Waldhausen~s (first) proof of the exact sequence of K-groups

C~~) (jlj2)· C~)~) (jlj2)
K1(B) --+ KI~AI)mKl(A2) ---+ K1(A1*BAZ) + Ko(B)SNii ~:K~(AI)~Ko(A2) ------+

including the previous splitting theorems of Higman, Bass-Heller-Swan, Stallings,

Gersten, Casson, Farrell-Hsiang as special cases.

Similarly, the existence of fundamental domains for chain complexes with duality

is the key step in the algebraic proof of Cappell's exact sequence of L-groups

( ~1 0)
-1 0

~ L' (B)83UNil~ L (A ) mLn(A
Z

)
n n n 1

(i -i -0)
~ L' (B)iUNil I· Z t Ln(A)

n n

for an {amalgamate~ free product of rings with involution,

HNN· extens10n

including the previous splitting theorem of Browder, Wall, Shamson, Farrell­

Hsiang, Novikov and Ranicki as special cases. One advantage of the algebraic

approach is that it also applies to the symmetrie L-groups, which are not

topologically realizable.

Berichterstatter: Günter Habdank
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