MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsbericht 14/1985

Surgery and L-Theory

17.3. bis 23.3.1985

Die Tagung fand unter Leitung der Herren A. Bak (Bielgfglq), M. Kreck
(Mainz) und A. Ranicki (Edinburgh) statt. o ‘
Es wurden Anwendungen der Surgery-Theorie und der algebraiééhen
L-Theorie in verschiedenen Bereichen der Topolog;e behandelﬁ, wie
Klassifikation von Mannigfaltigkeiten und Poincaré-Riumen, G-Mannig-
faltigkeiten, die Theorie der htherdimensionalen Knoten, Gruppen—

operationen auf Sphiren.
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Vortragsausziige

Bruce WILLIAMS. Geometric Applicationsof Higher und Lower Algebraic
K-Theory

(joint work with Bill Dwyer and Larry Taylor)

Notation. h.f. (X —> Y) = homotopy fiber over the base point in Y

M® = closed topological manifold
S = hof. (6l VM Ll@n),  we

Top
. = simplical set of block, topological structure on
S(M) " " " fibered, " " "
h.fiber (BTop —> BS) over M, where

Top = simplical category of closed manifolds, and

S = simplical category of finite CW ~complexes.
Stabilize by crossing with R
S(M) — Sb(M*RI) = bounded, fibered structures on M xRt

L

3(“) —_ éb(Mmi) = " , block " " "

Theorem 1. Sb(MXRm) = §b(M><Rw).

Ideas of Hatcher, Anderson-Hsiang, and Madsen-Rothenberg yield the following

results:
Theorem 2.

(a) There exists a (homotopy) diagram )
Be) B oeR)) B> orl)

} } l

sy — PR’y — ... — SPwwl)

where Hb(MﬂRI) = Sb(MmlxI rel MXRIXO) = s. set of bounded h-bordisms on

(b) nﬂb(MXRi) ~ B iy
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(c) There exists an action of z/2' on T (Hb(MXkai'l)) such that the
*

following diagram commutes

. . 3 .
7 @ aerly) — m Parly) nj_l(ﬂb(Mle DY)
(b) 15 lxI

) i )
@oxpeiTly DT "oy @ xp® !

)

'I'I’j-I

where T = generator of Z/2.

(d) For j <i, wj(Hb(MxRi)) ~Wh, .. .(m).

1+j-1

(e) Consider the homotopy group exact couple for the tower of fibrations

in (a). Then the derived exact couple yields exact sequences
. — nj(ﬁ"(m“mi)) — nj(§b(u“xmi*')) — w™@/2, wn,_ (1)
(related to work of Anderson-Pedersen, Hambleton—Madsen);
Consider the commutative diagram

san 22, SPaeR™) = P aR™)

a \ /"B

S(M)
Conjecture h.f. (aB) o s A H(M)
thru the +ozn
Igusa stable
range

where H(M) = lim H(Mxlk) where H(M) becomes an ®-loop space H(M)
via HOO = o P 0eRY) = o' Lin B (x1omty

This conjecture can be broken into two parts:

High conjecture h.f.(a) o S: Ag/2 ﬂ_!)hlgh.
thru the -
Igusa stable
range

where ng!hlgh ¢ (-1) connected cover of H(M) = QWh(M) (in the sense
of Waldhausen). '

Low Theorem 3. h.f.(B) = S: A2 H(M)low
where
Honov - ﬂLﬁ)/H(M)high (as =-loop space)
o Wh(")/w_h(")high (Anderson-Hsiang Theory)

o &
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J.C. HAUSMANN. About surgery on Poincaré spaces

Let P be a Poincaré space of formal dimension n, with dP = 3 PU 3+P.

Let n(P,3,P) be the set of bordism classes of "normal map of degree one"

f: (i,a_i,a+§) — (P,9_P,3,P) such that £l3_P : 3_P — 9 _P is a homotopy
equivalence. (P a Poincaré 'space). The theory of surgery on manifolds can be

extended as follows:

Theorem A. There exists amap s : n(P,8+P) — Ln(h(P),ﬂ(3+P),mP) (the Wall
groups) such that

1) If 3+P =¢ or n>h, then s(a) =0 iff a contains a homotopy equival.
2) s 1is additive
3) if o is represented by a rlassical surgery problem f : M —> P, then

s(f) = o(a), the.Wall surgery obstruction for f.

Theorem B. If n > 6, the map s of Theorem A _is characterized by 1), 2) + 3).

This is a joint work with P. Vogel and will appear in a book: "The geometry of

Poincaré-spaces' .

Rainhard SCHULTZ. An infinite exact sequence in equivariant surgery

Let X be a compact manifold and Sk(x) the set of homotopy structures

on Dk xX that are standard on the boundary. The infinitely long exact
surgery sequence of Sullivan and Wall provides a means for understanding
Sk(x) in terms of two more accessible objects: The homotopy groups of the
space of continuous functions .from X U {pt.} to F/0 and the Wall surgery
obstruction groups L*(nlx). If a finite group acts smoothly on X then
one consider the corresponding set Sk(X;G) of G-equivariant homotopy
structures on X that are standard on the boundary. Under certain restric-—
tions, results of Dovermann and Rothenberg yield a corresponding exact
sequence involving Sk(x), suitably defined equivariant homotopy groups of
the function space, and equivariant surgery groups If(x) that are periodic
mod 4. However, this sequeﬁce stops after finitely many terms because of
the basic underlying restrictions. The principal result in this work is an

infinite extension of the Dovermann-Rothenberg sequence in some cases.
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Theorem. Let G be an odd order cyclic group. " Assume all fixed point sets

in X are l-connected. Then there is an infinite. long exact sequence exten-
d1ng the Dovermann—Rothenberg sequence, with a fxrst oder approxlmatxon

D S (X) replacing Sk(X) after the Dovermann-Rothenberg sequence terminates.

Related but more complicated results hold for arbitrary groups of odd order.

F. CLAUWENS K;oP of rings of power series and applicatiomsto L-theory

In my earlier work (see: Aarhus 1978 conference) a o(P) € LZP(Z[t][n,P])
popped up that determines.the surgery obstruction of idP x f from the
obstruction of f. So try to compute LnA[t] where A = Z[r,P] . Using
local/complete exact sequence one needs

1 e v s s . - 1
1) LnAT[t] which is isomorphic to L A3,

7\, h -
2) L A[t] where one can use LnA[l:] o LnA[t]/(Z) >

3) L A[t]—- where one splits 3[11 in matrix rings over divison rings D
and uses the fact that a symmetric element in the convergent power series

p{t} over D is equivalent to a polynomial.

But all this gives you LiA[t] with some funny decoration at best; so
understanding of KjAlt] is needed. )
Look at the case A =2[x] 7 abelian 2-group; then the loc/complete exact
sequence gives
KZA{t} — K A{c}(—)

1

KZA KZAf

K Alt]/K A = coker

In fact one only needs KéoPA{t} = lim K, e}/ 1nstead of K A{t}
Write R = A{t} . Let I = kernel of augmentation A — Z{t}.
To compute KZ(R,I) use Maasen/Shensha presentation

generators
a€I bER or a€R,bET
Telations <a br + <a b2> = <a,b *bz-ab b,>

<a b]b

<a, <a,b> = —-<b,a>

2> = <ab,,b,> + <ab2,b >

Problem that second relation nonlinear; to correct that use that .R is

a A-ring.

i.e.
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. . . j+h=1

A : R — R such that { Al(x+y) = universal polyn. in A~ (x),A~(y)
AMord@ = v " v (x)

There is a "universal”™ A ring U such that for any r € R there is unique

A ring map U —> R mapping s, to r. U=Z(s|,s2...)
Every element of U defines an operation on X rings.
e.g. adams operations F' Fi(r) = (—l)"-I Al (r)).h(—r)>
. j+h=1 .. .. .
FPr = 1P mod P . Ft ring homomorphism; Flord = F'd

If R has no Z torsion then F operations determine A~structure.
Define new operations %n(r) = % z Fh(rn/h) has meaning in U @ @
def & fin
but lies in U.
-1
@b) = = nta,a™*) B Bm); n'(a,b) = b
def &|m
24m

Furthermore there is F : QR — QR (Kahler differentials) such that
iF'6r = 6F'r F' additive F'(rw) = Fr(r)F (w).
Now define K;°P(R,I) — 125°P/s12

<a,b> — £:=l 3™ (a)F™ & )‘..m_l n"(a,b).
a€I,bER n=

That is well defined, and has very small kernel & cokernel in the cases

to which it is applied.

I. HAMBLETON. Surgery Obstructions on Closed Manifolds ) ‘

Let m be a finite group and w : ™ — Z/2 a homomorphism. 3f £y Br is a
1}
line bundle with W =W denote by Bn" the Thomspace of £. The problem of

, (£,5)
computing the surgery obstruction At —— ¥ € L:Wn.w) for any normal

map of closed topological manifolds, with nlN = m, wlN = w, is equivalent

to the evaluation of two sequences of natural homomorphisms:
s
Bi : H-i(n,z(z)) —_— Li¢ﬂ,w)(2)

K, Hi(n,Z/Z) — L§+2(Zn,w)(2).

Deutsche
DF Forschungsgemeinschaft © @



S~K1 Zu) ® {ina_t?} c I('l .m")-/ﬂ’ then it is known that ai =0 for i>0 and

is the ordinary signature.

In the talk we described how the Ki's are determined by another sequence of

homomorphisms
8, : 8_(Br";Z/2) — L7 ,@n,w)

I+/_] with

obtamed by product w1th the twisted Kervaire problem. Let R = Z[

‘ involution 12/5-—* ; E] , then there is a transfer map

trf.

. -

y If we evaluate instead in L’,mn,w) where ~/ denotes torsions allowed in

3%

L (Rﬂ’ w) — L' zmﬂ‘ w) where Y Im{SKI (Rm) © e {nab} — Kl (Rw)/(x1)}. ‘
|
|

Theorem 1. There is a natural factorization
Bn

. v \
ﬂn(Bn Z/2) Ln+2@ﬂ,w)

Y
Ln(RTI' SW)

We then showed how to compute the groups L:l‘(R'n,w) and the maps Bn and trf.

Theorem 2. There is a natural factorization of the maps K, through

Y
th,: ?..i(Rn,w) —+~Li+2(1n,w).

C. STARK. Surgery on Seifert fibered spaces over 3-orbifolds’

A conjecture sometimes attributed to A. Borel holds that any homotopy equivalence
M®* — N of closed, aspherical manifolds ought to be defomable to a homeo-
morphism, at least for large eﬁough n's.. This conjecture seems especially
probable for aspherical manifolds with a great deal of symmetry, and we know
(Cotmer-Raymond) a lot about such a manifold if it possesses an effective action
n ; Mn+2)

is an effectxve torus action on a closed aspherical manifold, then we know. that
Top(Mx D ,3) = 0 for n+k > 4 _(aM + ¢ has also been dgalt with), by work

of Farrell-Hsiang, Stark, and Nicas-Stark. This talk dealt with the codimen-
sion-3 problem, (Tn,Mn+3), for which Tn\Mn+3 is a 3-orbifold in the sense

of Thurston.

of_ a compact L1e group. This Lie group must be a torus ™; if (T

DF Deutsche
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n  n+3

Theorem. Suppose (T ,M ~) 1is an effective action on an orientable, closed

aspherical manifold such that all the isotropy groups T; have odd order and

either
3
3

(a) T"~M"
® 1~ .
(c) Tn\Mn+3 is a Haken orbifold made from hyperbolic and Seifert

is a Haken hyperbolic 3-orbifold,

is a Seifert fibered 3-orbifold, or

fibered subspaces. If n+k > 3 then STop(M ka,a) = 0.

The proof in case (a) relies on a root-closure proposition to see that

Cappell's UNil groups vanish here.

Jim DAVIS. Swan Modules and Swan Formations

Let 7 be a finite group. The Swan subgroup Tm(n) of anZﬂ) is defined
analogously to the Swan subgroup T(m) of QOCZﬂ). The point is that the

Swan subgroups of i—theory often play the same role in closed manifold problems

as the Swan subgroup of K-theory plays in the theory of finite complexes.
Tm(ﬂ) is the subgroup of Ln(ZH) represented by surgery obstructions of
degree one normal maps f:M —> X such that K,(f) & Z/|ﬂ| =0 and ™
‘acts trivially on Kg(f).

Two examples of the above philosophy are discussed: (1) free actions of
finite groups on spheres - here the k-invariant of a spherical space form
is relating to the vanishing of an element (depending on k) in Tg(n).

(2) Smooth semifree actions of m on S". Here the homoldgy of the fixed
set is related to the vanishing of an element in Tﬁ(n). (1) and (2) are

joint work with Shmuel Weinberger.

E. PEDERSEN. Finiteness obstruction of nilpotent spaces

Given a nilﬁotent group m, let N(m) < ioGZﬂ) be the set of finiteness
obstructions realized by nilpotent complexes. Mislin proves that N(m) = 0
if 7 is infinite and in gemeral Mislin-Naradarajan prove that N(w) ‘= D(w).
Consider w = xm_ a finite nilpotent group. Then Qmn decomposes

Qr = mnp x @n/e. Let Np(n) be the imagg of A
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. (p)
3
K, (Qﬂp) < Kl(ﬂﬂp) x K, (an/e) = K (Qm) —— R @m)

5(P)

where is associated with the square

Zn —— Z
Z.w—Qn .

1

° ; .
Then N(7w) = XNp(n) = T(w) + IZ Np(n) where T(w) 1is the image of the
) pl imi

®"

Swan homomorphism. This proves that N(n) is a group, and N(m) < D(m)
follows as .an easy corollary, thus giving a new proof of Misli_n—Naradarajan's
result.

.

S5ren ILLMAN. A product formula for equivariant Whitehead -torsiom.

Geometric applications.

Let G and P denote compact Lie groups, and let f: X — Y be a G-homotopy
equivalence between finite G-CW complexes and let h: X' — ' be a P-homotopy
equivalence between finite P-CW complexes. We give a formula for the equivariant

Whitehead torsion T(f Xh) € WthP(X xX') of the (G XP)-homotopy equivalence
fxh : XxX' — YxY'

in terms of the equivariant Whitehead torsions of f£ and h, and varlous Euler
. characteristics derived from the G-space X and the P—space X'

In the case of a finite group: G - we obtain .as a corollary of the product formula
the geometric result given below. We let V be anycomplex unitary .representa-
tion space of G, and by S(V) we denote the unit sphere in V, with:the induced

G-action.

Theorem. Let £:X —> Y be a G-homotopy equivalence between finiteé G-CW complexes,

R

where G is .a finite group. Then

£xid, oy: X XS(V) — ¥ xS(V)

s(V)

DF Deutsche
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is a simple (G xG)-homotopy equivaleqce, and hence also a simple G-homotopy -

equivalence when X xS(V) and Y xS(V) have diagonalAG—action.

This result does not hold for arbitrary compact Lie groups. We show in this
connection, by a simple example, that equivariant Whitehead torsion for compact

Lie groups is not determined by restricting to all finite subgroups.

Eva BAYER Stably hyperbolic e-hermitian forms

Let R be a commtative ring with 1, and let L be a R-module of finite .
type. Let h : L xL —> R be an e-hermitian form. We shall. say .that h

is unimodular if ad(h) : L — L* = HomR(L,R) is an isomorphism. %et

N be a reflexive R-module, then we associate to N the hyperbolic form H(N).
A form (L,h) is said to be stably hyperbolic if there existreflexive modules
N, and N, such that (L,h) ® H(N,) = H(N,). '

Theorem (E.B. - Neal Stoltzfus)

Let R be an S-order in a product of number fields with an involution r +* F.
Let (L,h) be a stably hyperbolic e-hermitian form, € = 1. Then (L,h) is

hyperbolic (except possibly in an excepticnal case of "rank" 2).

This theorem has the following application in knot theory:

Corollary (E.B. - Neal Stoltzfus)

Let zZq-lCSZq+l’ q>1, bea simplé knot such that the knoé module is annihi-
lated by a square free polynomial A. Assume that qu-l is stably doubly

sliced. Then qu-l
with R = Z[t,t_]]/(l)). On the other hand, there exist stably isomorphic

is doubly sliced (this is an application of the above

hyperbolic forms which are not isomorphic:

Proposition - .
Let E = Q(/d) with d a negative integer. Set (a+b7d) = a - b¥d.

Then there exists an order R of E and an invertible R-ideal I such that

H(I) @ H(D) =~ H(R) ® H(D) . (where D is the ring of integers of E) but

H(I) * H(R).. In fact, it is possible to choose I such that I @ I-l 4R @ R.

As a consequence of this, we obtain:
Corollary

For every integer n > 3, there exist knots Z?, Z;; and I™ such that .

ET #:" and 2; # I are isotopic but Z? and Z; are not isotopic.

Deutsche
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L. VASERSTEIN. Quadratic forms over rings of continuous functions

Let B =R (the reals) or € (the complex numbers), X a topological space,

A= Bx (the ring of continuous functions X — B), Sn A= {a=a*€ GLn A}.

Definition. a equivalent B if 3 y € GI.nA such that y*: ay = B.

Definition. a homotopic B if 3 d € SnB (X x [0,1]) such that

d a and d

X x {0} ~ xx 1y~ 8

Theorem 1. o homotopic B = a equivalent B8,

Theorem 2. a equivalent B8 = a stably homotopic B .

a o] B 0
(i.e. o (:I[) I, | homotopic o (]): 3 for some m).

m O . m 0
Remark. In general, "stably homotopic" in Theorem 2 cannot be replaced
by "homotopic".
Corollary. WX is a homotopy type invariant of X.
Theorem 3. WBX = Kol!x = WBg = KOBf: , where Bﬁ c Bxb is the subring of

bounded functions.

Open problem. SKIBX is a homotopy type invariant of X. (Dome for X = Rd

.with d = 1,2,3; the case d =3 jointly with Thurston).

Justin R. SMITH. Topological Realization of Chain Complexes

I study the question: Given a group m. and a projective Zm chain-
complex C,, does there exist a topological space with fundemental group T

whose equivariant chain complex is C, ?

I present anobstruction theory for the existence of the topological space
realizing C, - the obstruction .lie.in the cohomology of Cy. The
existence of this obstruction theory and basic facts about Eilenberg-MacLane

spaces imply that if C, is a finite dimensional Qu-projective chain

" complex then some suspension.of C, is reducible.

I focus upon the rational case and give a fairly complete solution. I develop

an equivariant theory of "minimal modules" for homotopy types.

o®
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Neal W. STOLTZFUS. Algebraic Approach to Diffeomorphisms of Surfaces -

An algebraic obstruction theory analog of higher dimensional surgery obstruc-
tion can be developed for the theory of diffeomorphisms of two-manifolds
(surfaces) using the Biderivations of Papakuriakopolous. Let F(g:1) be

a surface of genus g with one boundary circle, A = ZﬂI(F(g:l)) and

k = kernel of the augmentation ¢ : Zw, —> Z, the.foundamental ideal.

1
There is a pairing A : k x k — A satisfying:

i) A is Z-linear

ii)  A(aB,Y) = A(a,y)e(B) + ai(B,Y)
(Biderivation)

Ala,B)e(y) + A(a,Y)B

A(a,BY)

iii) Adjoint : k —> De:A(k,A) (unimodularity)

is an isomorphism
iv)  A(a,B) + A(B,a) = (a-e(a))(8-c(B))

v) A induces a pairing 1; : k/k2 x k/k2 — Ak =Z
which is the algebraic intersection pairing under the identification
K2 o H, (F,2). '

‘If f 1is a diffeomorphism of F(g:1), then f induces a "twisted isometry"
fy of A : A(fyx,f4y) = £4 M(x,y). For the first application, we prove that
(k,A,f4) can be used to give a faithful algebraic obstruction to the question
of whether a diffeomorphism extends to a diffeomorphism of some handlebody

(solid torus of dimension 3 ).

Theorem. (F,f) extends to a diffeomorphism f of some handlebody bounding

F <+ there is an ideal K< A satisfying:

i) AKK) €K ‘ .

ii) £,(K) <K
iii) The image of K in k/k2 is a subspace of rank g (= % rank k/kz)
and self-annihilating under the algebraic intersection pairing on k/kz.

As a second application we show that, under certain restrictions, we can

capture the isotopy class of £, using an easily computeable invariant

obtained as follows: Consider the following group extension derived from

e — B (Fi2/2)%(2/2)*® together

with the quotient biderivation X on Z[zzg]_ Using Thurston's classification

the universal spin cover F of F : Hl(ﬁ;z) —_— 3

of surface diffeomorphisms into '"geometric" pieces, we can show:

DF Deutsche
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. Theorem. If the pseudo-Anosov "pieces" of the Thruston decomposition of £
each leave a non-trivial one-form invariant (up .to a real factor > 1) then

f 1is isotopic to the identity e= f, is an inner auto. of Zg.

Frank CONNOLLY. Proper Actions of Virtually Torsion Free Groups

on Contractible Complexes

Let T be a group with virtual cohomological dimension finite ( vied(T) < =),

' ] (This means that for a subgroup I‘o of finite index in T, K(T,1) is a,
finite dimensional complex). Serre proved that there is a finite dimensional
I' cw-complex £T, on which 'P acts properly (i.e. all isotropy groups are
finite), such that (EI‘)H is contractible for each finite subgroup H in T.
€T is determined, up to T homotopy type, by this condition, and is‘a
familiar object to topologists. For example, if I is an arithmetically * -
defined group in the algebraic group G, then &I is G(R)/Max.Compact.Sub-
group; if T is chrystallographic, ET is the corresponding éuclideanvsp§cq;
if T is Qne of the Coxeter groups studied recently by M.:Davis, then €F;:g
is the spacé U(T,X) studied by Vinberg and later Davis.

Serre's lovely construction of ET leaves unsettled the conditions under
which &I can be chosen as a finite T cw-complex, when it is dominated by a

-~ finite T complex, and when the dimension of &T' and its fixed sets, wiil
coincide with the dimension which the_algebra would predict.’ Specificaily,~
it is conjectured (by C.T.C. Wall and K. Brown) that it is poss1b1e ‘to choose
ET  so that d1m(EP) ved N (H) for each f1n1te group H. .

It is the goal of the present work to answer these questxons.

. Theorem 1. £&I' is a finitely dominated T complex < for each finite
subgroup H in T, N(H) has type FP_ and also there are only finitely many
conjugacy classes of finite subgroups of T. 1In this case, ET can ﬁe éﬁoéen
as a finite T cw-complex e=» an obstruction #(r) in @ K GZN(H)/H) vanxshes.
The sum is over a complete set of representatives of conjugacy classes of flﬂlte
subgroups. (A group T “has type FP " iff K(r,1) can be chosen to have

finite skeleta).

In order to discuss the dimension conjecture we need notation. Let H be a
finite subgroup of T. JH(F) means the collection of finite subgrouﬁs of T
which properly contain H. JH(F) is a poset (via <) on which N(H)/H acts.
Its geometric realization is a T space whose homology and equivariant coho-

mology will be used.
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Theorem 2. ET  can be chosen so that .for each H finite, . R

ved N(H) 1if this is # 2 N
di.m(EI‘)lll = { if and only if the following two
3 if ved N(H) = 2

conditions hold for each finite subgroup H of T:

(a) Hy(@(n);z) = o

(b) There is a subgroup A of finite index in N(H)/H such that
ﬁg(JH(I‘);B) = o. Here d = ved N(H) or 3, as above.

Corollary. E&T' can be chosen as in Theorem 2 1in case T = SP(4,Z) .or GL(n,Z) ‘
(The latter case, an(z), is known from work of C. Sould and A. Asl]).

This result also has striking consequences for virtual Poincaréd duality groups).

The proof of Theorem 2 uses the following lemma on projective modules which

webelieve will be useful to topologists.

Lemma (Projective Module Criterion). Let T be a group. Let M be a
ZT module. Assume ved(T) < =, Then M is ZI projective > M is
projective over ZH for each finite subgroup H and M is ZA projective

for some subgroup A of finite index in T.

Michael WEISS Products in Surgery

Let A be a ring with involution. The symmetric L-groups of Mishehako-
Ranicki are defined to be the algebraic bordism groups of n-dimensional
algebraic Poincaré complexes (C,p), where C is a finitely generated left
projective A-module chain complex graded over Z, and ¢ is an n-dimensional
cycle in .

Hontl-zz](w,c 8, © : .

satisfying a nonsingularity condition. Here W is a projection resolution
of Z over z[zz]. The cycle ¢, or its homotopy class )

[9] € n‘“az; C OA C), should be regarded. as a nonsingular symmetric form on
the dual chain complex C-*.

Difficulties in computing Ln(A) suggested the following modification.
Suppose that A is a group ring Zm with the w~-twisted involution for

some w : 7 —»zz. Insted of using

Homz[zzl(w, C Gz"(-:) ~Z °zn(“°mz[zz](“’ c Oz c)),

Deutsche © @
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use

P sz (Honhlzz](W, c oz C)):

where P is a projective resolution of Z over Zu. (To make sense of this,

let Zn act on l-lomz[z ]'(W, C Ql C) using the diagonal action on C Oz Cc).

Define VL"(®@Zm) to be the bordism group of objects (C,9), where ¢ is a

nonsingular cycle of dimension n in

P °znﬂ°%[zzl(w’ C 8y ).

The augmentation P —> Z "induces homomorphisms VLn(Zn) — Ln(Z'rr). It turns
out that v1.“(z 1) has about as many uses as Ln(Zn), especially in product

formular for surgery obstructions.

THEOREM. There is a long exact sequence

ceo — L @M — Lt @n) — [ ® Bn-m(n;f.“‘(z))] —L_ @n — ...

|
|
mEZL
where
28 m=0
n 22 m=1
1"@) ~ { }mod 4.
0] =
Zz =

REMARK. The defiﬁition of VL“(Z&) uses the fact that Zn 1is a

commutative Hopf algebra.

. .Wolfgang LUCK. The transfer in Surgery theory

Given-a fibration F — E~ L B of connected spaces with..F a n-dimensional
Poincaré complex, we define algebraic transfer homomorphisms p*. »
Lkmlﬂl(B)]) _— Lk+n@['ﬂl(E)]). If F is a mainfold and p a topological
bundle, p* coincides with the geometric transfer of Wall and Quinn assigning
to the surgery obstruction of a surgery problem for B the obstruction of

the problem for E obtained by the pull-back-construction with p.
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If F 1is the rl(E)-fibre of the ﬂl(E)—fibration E—E N B, the

equivariant transport along paths in B defines a homomorphism

u : tr](B) — [F,F] Let S: c(f‘)“—* = C(i‘) be the chain map given

™ (E)°

—-%
by Poincaré duality. Because of S = st

we can equip the ring [C(F)’C(F)]Z[HI(E)]
. . ) !

with an involution [£] >[S o £ o § ). Then u yields a homomorphism of

rings with involution U Z[nl(B)]—> [C(F)’C(F)]Z[nl(E)]'

The transfer p* assigns to an element in Lom[ul(B)],e) represented by an
e-quadratic non-singular form m[ﬂ](B) 1™,[A]) for A€ Glm%[ﬂl(B)]) the bordii@o‘

class of the s—quadratic Poincaré complex (@ cn—*,é € Sn( ® cn-*,e)) in
m m
L @[ (E)],e) for

o, 8 c(ﬁ)“"'—» ® C(F) — 8 C(F)
©" m @S m U(A) m

and ¢ =0 for t > 0. The definition for LI — Ln+] is similar.

We can compute Py O p* and p* o pyx for orientable resp. untwisted fibrations.

iIf G —E _p_) B is an orientable fibration with a connected compact Lie

group as fibre and ﬂ](p) an isomorphism, then p* vanishes.

T. tom DIECK. Darstellungsformen und Verschlingungszahlen.

Sei G = HO XH] ein Produkt zyklischer Gruppen Hi ungerader Ordnung.
n(o) + n(l) + 1

Es gibt eine glatte Operation von G auf einer Sphdre S =X
H, .
mit Fixpunktmengen X e Sn(l), n(i) ungerade > 5 mit den Eigenschaften: .
H H - : '

(i) Die Verschlingungszahl von X ° und ){l in X kann eine vorgegebene
geg

Zahl k 1im Kern des Swan-Homomorphismus S¢ (z/|G — IEOMG) sein.
H, ’
(ii) Die Einbettungen X ! ©X mit trivialem Normalenbiindel kdnnen beliebig

vorgegeben werden. Man kann ein Beispiel fiir solche X finden, die gerahmt-
bordant zu kS(V) = S(V) + ... + S(V) k-mal, S(V) Einheitssphdre in einer

Darstellung V sind. (Gemeinsam mit P. L&ffler.)
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Dieses Beispiel ist wichtig fiir die Untefsuchung der Datstellungsformén.

Es gilt allgemein fiir abelsche Gruppen ungerader Ordnung und Darstellungen
V=Y, 0 ...8V mit dimm v, 2 3 Darstellungsformen X(V), die gerahmt-
bordant zu kS(V) sind, wobei k so gewdhlt werden muB, daB keine Endlich-

keitshindernisse auftreten.

Es wurde die prinzipielle Bedeutung dieser Ergebnisse fiir die Theorie der

Darstellungsformen angedeutet.

Matthias KRECK. On the role of duality in the geometry of manifolds

Consider a manifold as a handle body M = D" Ul-handles U 2-handeles U ...

U (k+1)-handles U ... U D". One way to study the role of duality in the geometry
of manifolds is to ask the following question: ‘Take off the handles of index

> (k+2), how many possibilities exist to close it by adding handles of

index > k+2 ? I have sketched a theory which can be used to attack this problem.
As in the classical surgery approach the theory has to ingredients: A bordism
group and some L-group type obstruction groups. The surprising thing is that
even if we control only weaker geometric conditions (instead of the homotopy

type we control a (k+l)-skeleton for some k < n), the obstruction groups are’
ordinary Wall groups as long as' k > % . The reason for this must be that the

geometry of manifolds contains a very rich duality structure.

I have demonstrated this theory and given some applications.

k
Williams imply that the image of closed manifolds surgery obstructions in dimen-—

For example in the case of the symmetric group S, results of Taylor and

sion 4m + 2 is at most z, and detected by the Arf-invariant. .. On the other

hand a computation of Kolster implies that the kernel of the map from minimal

to maximal form parameter groups has order equal to the number of 2-regulat

. S (8)
k 4m+2 "k
which leads to fake(i.e. not homotopic to a diffeomorphism) homotopy self:

conjugacy classes in S Thus we have a subgroup of this order in 'L

equivalence of a (4m+l1)-dimensional closed oriented manifold M -with fundamental

group Sk and S(M) = smax' One' can easily show that manifolds with this pro-

perty exist.

o®
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Claudia TRAVING. Classificatin of some complete intersections

A complete intersection of complex dimension n 1is the transversal inter-
section of r nonsingular hyperplanes in € P, 1f the hyperplanes

are given by polynomials of degree dl""’dr’ then it follows from a

remark of Thom, that the r-trupel (dl"“’dr) and the complex dimension n
determine the diffeomorphism type of the complete intersection. We write Xn(d)=
Xn(dl""’dr)' (dl""'dr) is called multidegree.

As it can occur that two complete intersections with different multidegrees

are diffeomorphic there is the following problem: Which invariants, computed

from the dimension and the multidegree determine the diffeomorphism class.

As an application of the classification program of M. Kreck, wé can determine
the diffeomorphism type of a complete intersection Xn(d) satisfying the

condition (%) :

2n + 1

(*) vp(d) 23y t 1 forall primes p < /n + 3 + % :

Sl

where v _(d) denotes the exponent of p in the prime factor
P v@

r
decomposition of the total degree d = I P

d. =
i=1

I
P
Theorem. Let be n > 3, Xn(d) a complete intersection satisfying (*).

Then the diffeomorphism type of Xn(d) is determined by

) p;(E(m,d)) is= 1,...,[3] .

(ii) d = IIdi s

(iii) e(Xn(d)) (e = Eulercharacteristic)

d
where £&(n,d) := -(n +Tr +1) H® H

denotes the Hopfbundle.

d

e ...0H" €R@ and H

The proof is given as an application of the program of M. Kreck involving
as one main argument the mod p Adams-filtration of Xn(d) which is given
b d

y Yp()
The last step of the program, i.e. cancellation, is done by using the results
of Libgober, Wood and Browder on the topological structur of complete inter-

sections.
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Andrew RANIGKI. The algebraic L-theory of generalized free products

The work of Waldhausen on the algebraic K-theory of generalized free products

can be extended to obtain algebraic proofs and extensions of Cappell's results

on the L-theory of generalized free products. The main ingredient in both
K- and L-theory is an existence theorem for "fundamental domains" of chain
complexes by an algebraic transversality technique (generalizing the Higman
linearization trick) abstracting the existence of fundamental domains for

covers of manifolds in which the group of covering translations is a genera-

lized free product.

Given a morphism of rings f:R —> S let f,:((left)R-modules) — - (S-modules);

M+— f!

usual induction and restriction functors.
Given pure injections of rings il:B —_ AI,iZ:B — A,

il,iZ:B — A .

amalgamated free product
-1 be the { -
A* {t,t ] HNN extension

il(b) = iz(b) €R
- (b €B). Denote the inclusion by

ring with { 1

i) =t iz(b)t_ €R
{j]:Al — R, jz:A2 —> R, k = jlil = jziZ:B — R

j:tA — R, K= jil:B — R.

A fundamental domain {(DI’D2) for a finite f.g. free R-module chain ’

D

complex C is defined by finite f.g. free subcomplexes

! .
D, <j; C, D] C AL LA
{ ! ' 2 2 (over { 1772 ) such that
D cjC A
{E =D, no, is a finite f.g. free B-module
E =D NtD

chain complex, with {RD] + RD2 = C, so that there
RD = C

is defined a Mayer-Vietoris exact sequence of R-module chain complexes

Forschungsgemeinschaft
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n
(=]

— kB —%> D) 8 j, D) —> C —>0 - {q(E)— 1 80D,
w1l

—+K,Ei>j,n —C~—0

Q(E) <D @ tD

The existence of fundamental domains for chain complexes was the key step
in Waldhausen's (first) proof of the exact sequence of K-groups

1 110

-i, Gyiyp ’ \-i,0/ G
K (B) —> K, (A)8K, (4,) —= K (A *z4,) > K (B)@Nil —=K_(A)8K _(4,)

KO (A] *BAZ) .

i-i j - ~ (i-i,-0) j .
K, (B) 432 K (A) — K, (Axple,t ) —K (B) 8 Nil -tz K () — K (Asglt,t )

including the previous splitting theorems of Higman, Bass-Heller-Swan, Stallings,

Gersten, Casson, Farrell-Hsiang as special cases.

Similarly, the existence of fundamental domains for chain complexes with duality

is the key step in the algebraic proof of Cappell's exact sequence of L-groups

| il o
| - N\ip o C_Gy3p . .
| = L (B)BUNil ——— 1 (A|) @ L _(A)) ——=— L (A;#zA,) —> L;_(B) ® UNil — ...
. (i,-i,-0) g . ,
— : .
L} (B)OUNil ——=— L (&) ———— L (A4 l¢,¢ ’ D —1L_ (B8Nl — ...

for an {a.malgam.ated free product of rings with involution,

HNN- extension : .

including the previous splitting theorem of Browder, Wall, Shamson, Farrell-
Hsiang, Novikov and Ranicki as special cases. One advantage of the algebraic
approach is that it also applies to the symmetric L-groups, which are not

topologically realizable.

Berichterstatter: Giinter Habdank
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