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Tagungsbericht 19/1985

Unendlichdimensionale Lie-Algebren und G;uppen

21.4. bis 27.4.1985

An der unter der Leitung von V. Kac (Cambridge, MA) und P. Slodowy (Bonn)
stattfindenden Tagung nahmen 48 Mathematiker und Physiker .aus 14 Landern teil.
Inhaltlich lassen sich die 24 gehaltenen Vortrage grob den foléénden Thémen=

bereichen zuordnen: - - L e

1) Theorie der den Kac—Moody—Algebren zugeordneten Gruppen und ihrer homo—:
genen Riume ’ T

2) Klassifikation graddiérter Liealgebren und ihrer Automoipﬁiémen

3) Beziehungen zur algebraischen Geometrie und zur Theorie’der Singularis -
taten ’ : B LT e

4) Konstruktion und Untersuchung fundamentaler Darstellungen der affinen
Kac-Moody-Algebren, der Virasoro-Algebra und anderer Liealgebren von '
Abbildungen

5) Beziehungen zu physikalischen Modellen (Quantenfeldtheorle, stat Physxk)

6) Beziehungen zur Theorie der einfachen endlichen Gruppen : -

7) Vollstandlg integrable Hamilton' sche Systeme.

Dabe1 stehen diese Berelche keineswegs dLSJunkt da, sondern es glbt d1e o
starksten Wechselwirkungen (z. B. “zwischen 1) und 3),_1) und 7), vor allem'>
aber zwischen den Gebleten 4), 5), 6), 7)). Gerade dxese Wechselw1rkungen
diarften verantwortlxch seln far das in den letzten Jahren stark anqestxegene
Interesse an dem ganzen Themenkomplex sowze auch fir das Interesse, auf aas
diese Tagung stieB. Wahrend dle meisten Vortrage uber neuere Resultate berlch-
teten, wurden von e1n1gen Sprechern Uberbllcke gegeben Gber dxe wesentlxchen
Entwicklungen in einigen der genannten Themenberelche. Fiar Elnzelhexten ver-

gleiche man die Vortragsauszige.
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Vortragsauszige

V. G. KAC:

Introduction to infinite-dimensional groups

This talk gives an introduction to Kac-Moody groups. Their construction is

explained via integrable representations of Kac-Moody Lie algebras. among

other things, the generalized Pliicker relations and the connection to

Kdv-type equations are mentioned. Finally a proof is given of our theorem

(joint work with D. Peterson) about the closure of the orbit of a highest

weight vector. From this we deduce our result about conjugacy of Cartan sub- .

algebras in a Kac-Moody algebra.

C. B. THORN:

Introduction to Dual String Models

The classical and quantum dynamics of the relativistic stz;ing was reviewed. .
The role of the Virasoro algebra in the covariant operator formalism was
explained. The potential problem of "ghosts" was described, and the No-ghost
Theorem of Goddard and Thorn was proved. It v::as further shown how the ghost
elimination mechanism in dual models provides a new derivation of the Kac

formula for the determinant of the contravariant form.

I. DOLGACHEV:

Infinite Weyl groups in algebraic geometry

The root systems of type En(n > 6) can be realized in the space of 2-homo-
logy of certain algebraic surfaces. The group of automorphisms of some of
these surfaces can be represented in the Weyl group of the corresponding .
system. For example, n = 7,8,9,10 correspond to surfaces obtained by blowing
up 7 (resp. 8 , resp. 9, resp. 10 ) points in the projective plane :IP2 .
If, moreover, these points are realized as a complete intersection of two
cubics (n = 9) or ten nodes of a rational sextic (n. = 10) , the automor-
phism group is isomorphic to the level-2-congruence subgroup W(2) of W
(under certain assumptions on general position of the points). The latter
group is the smallest normal‘subgroup containing the element

W, EW(EG) ¢ W(E,) ,.n = 9,10 .

Deutsche . - © @
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K. SAITO:

Regular systems of Qeights and associated root systems

Let us consider the rational function
W e= TP (et (S -1 () (-1
associated to a system of integers (called the weights) h,a,b,c with
h > a,b,c > O . This system is calléd regular if x(T) does not have a pole

except at the origin. Then there exist Y := (h-a)(h-b) (h-c)/abc integers
=:m <my < ... < LY < m, = h-g , called exponents (here € := a+b+c-h)

H m .
‘ such that X(T) = 2 T . The system of weights a,b,c/h is regular iff.

there exists a welghted homogeneous polynomial f(x,y.2) in three variables
of degree h with deg x =a ., deg y = b, deg z = ¢ , such that the hyper-
surface X < m3 defined by £ = 0 has an isolated singular point at O .-
It is well known that x_ - (o} is a quotient of ©° - {0} by a finite sub-
grodp of su(2,f) for € =1, a quotient of 1!:2 by a Heisenberg group for
€ =0, and a guotient of " = {(uv € c? | Im(u/v) > o} by a “binafy“
Fuchsian group of the first kind for € < O . The set R of van:.shmq cycles
in the middle hcmology group H (XI'Z) of the Milnor fiber x1 = £ (1)
sat:.sf:.es a system of axioms for a "generalized" root system with respect to
the intersection form I on H (xl,z) In case € =1 , I is negative
definite so that R is finite of type 2 ' DR, , or ESL . Incase € =0,
I is negative semi-definite and R is an extended affine root system of
type ° E(l 1) for & =6,7,8 . For the first 14 cases of e=-1,1I is
indefinite with two-dimensional maximal positive subspaces: For those cases
one can defiﬁe a Dynkin diagram for the root system. Let ¢ be a product of

the reflections ‘corresponding to the vertices of the Dynkin diagram (such

follow each
other in the product). We call c a Coxeter element One of the most remarka-

ble features of these root systems is the following:

B

1) A Coxeter element c is of finite order h ; the elgenvalues of c

are given by exp(Z'm/-_l m./h) R N A

2) i.et @ (X) be the cyclotonuc polynom:.al for the h—th primitive roots

of un :.tx. Then RN Image o () = P for E=1 or €= -1 (if one of
the 14 first Acases) and RN :I'.mage(c-l) =g for € =0 . -
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3). For € =0, let W be the central extension of the Weyl group W

(generated by the reflections of R ) defined via a hyperbolic extension.

Then the hyperbolic Coxeter element ¢& (defined similarly as c¢ but in

the hyperbolic extension) is quasi-unipotent and Eh generates the center

of the extension W .

These properties of Coxeter elementé will be used stfongly for the construc-

tion of flat invariants for the Weyl group.

D. PETERSON:

Heisenberg groups and basic representations

We generalize results of Lepowsky-Wilson, Kac-Kazhdan-Lepowsky~Wilson and
Frenkel-Kac on the action of the so-called "homogeneous" and “principal®
Heisenberg subalgebras on the basic module V .

Let g be A finite-dimensional simple Lie algebra over T and let G be the
corresponding connected simply-connected algebraic group. Let G = Map (C*,G)

and § = Map(T*,g) be the corresponding loop group and loop algebra, and let
0:8+G and do : § + g Dbe the corresponding central Kac-Moody extensions.
Let T be the variety of Cartan subalgebras of g and s € Map(r*,H) . Put

S={x€d]|x(e) €s(t) for all t er* , §= (do)-l(é) » 8, = center($) ,
S={g€&|glt) Eexps(t) forall tec* , §=01(5) , and '
S°={g€SlAd(g)=id on §°}.

Theorem (V. Kac, D. Peterson): Let g be of type A, D or E . Then the

basic module is irreducible under the algebra of operators generated by §

and § .

Two new methods play a key role in the proof: use of the asymptotics of V ,

§ and s , and a commutator formula for elements of §° . Using the theorem,

we construct vertex operators specifying the action of § on V .
Two problems pose themselves for further study:
1. Find the commutation relations in § .

2. Explain my observation that the number of conjugacy classes of the Weyl
group satisfying det(I-w) = det A , where A is the Cartan matrix of g
of type A, D or E , equals the number of orbits of Aut(D) on the set

of vertices of @ where P is the extended Dynkin diagram of g .
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K. MISRA:

Constructions of higher level representations of affine Lie aigebras

One of the main features of the representation theory of affine Lie algebras
is the existence of explicit constructions of some nontrivial representations.
A representation of an affine Lie algebra is said to be of level k € T i__f'
the central element (normalized suitably) acts as multiplication by k -. Level
one representations of affine Lie algebras h_ave been studied by several re-
searchers including Frenkel, Kac, Kazhdan, Lepowsky, Misra, Peterson,~ Segal

and Wilson.

In this talk we will be mostly interested about constructions of higher level
representations of some affine Lie algebras. In 1981, Lepowsky and Wilson “in-
troduced a new family of algebras associated with the representations of

affine Lie algebras. They used these algebras to construct some higher level

(1)
1

representations of A . In 1984, Misra used these algebras to give ‘the

constructions of some higher level representations of Ar(x”

also gave explicit constructions of the level one representations of scme -

(n>1) . Misra

symplectic affine Lie algebras. More recently, Lepowsky and Wilson-have given

explicit constructions of all irreducible representations of integral.level

(1)
1

of the affine Lie algebra A in the principal picture. Also Lepowsky.and

(1)
1

Primc have given constructions of these representations of A "in the: .

homogeneous picture. : ‘ .- e

J. TITS: o : . . - -

Kac-Moody groups over rings

Let 4 = (A (a;),
of finite rank, (ai)
in the Z-dual A* of A , indexed by the same finite set™ {1,:..,8}-% If

<i<g (hi)l <i< JL) , where A is a free abelian group
35 -1z

system of points in A and (hi) a system of points

A= (cl.j(hi)) is a Cartan matrix, the system ¥ determines a reductive group
G over € (here, A is the character group of a maximal torus .of " G ,. (ai)

a basis of the corresponding ‘root system and hi the coroot associated -with

di ) = and all reductive groups over € are obtained once in that way. More

generally to such an ' is associated a Chevalley group-scheme over  Z:,:

hence a group functor ?H. over the category ‘Q of all rings, ‘the.above
group G being %y(c) . In this lecture (an updated version of a- lecture
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held onthesame topic at the OW-Tagung n® 26 in 1982) was considered the pro- v
blem of associating a group-functor S ¢ over R to any data %,
assuming only that A is a generalized Cartan Matrix. Four ways of approach-

cont( M‘{'R) ’
where o 5 is a suitable topological Hopf algebra and R is given the

ing the question have been discussed. (I) Define °3-3(R) as Hom

discrete topology. A likely candidate for "K,S was described but several

properties remain to be checked. (II) Define o S(R) by generators and re-
lations. This works well when R is a field (one gets OS‘S(R) as amalgam-
ated product of suitably defined "minimal"” parabolic subgroups containing a

given Borel subgroup, and the normalizer of a "maximal torus" Hom(A,R*) ),

and 03.! is then easily extended to principal ideal domains (PID) , but

the method does not seem to be well applicable to more general rings.

(III) Relate 03'3’ to more classical objects. So far, this has been done
only in the affine case. Assume A irreducible and semi-definite. For sim-
plicity, assume further that A* is generated by the hi's and that

A®Q = 2 @a; . Then, one can define a group-scheme G ,.over Z [t,t-1]
such that, for a PID R , the functor 05‘3 obtained by method (II) is given
by OS,(R) =G S(R((t))) . (For more details about this and further referen-
ces, see Springer Lecture Notes Nr. 1111, pp. 191 - 223, in particular
appendix 2.) (IV) This last equality was proved by using a suitable axiam
system which can also be used to define Cﬁ.g , at least in the affine case.
Remark. Both methods (I) and (II) require the choice of a suitable Z- form
of the universal enveloping algebra of the Kac-Moody Lie algebra over T
associated to 4 ; there is a natural choice for that Z-form (already used

by H. Garland in the affine case) but it may not be unique.

O. MATHIEU:

Classification of simple graded Lie algebras

In 1968 V. Kac showed that any complex simple graded Lie algebra g = @ 9

of finite growth, which is generated by 9., ®9, ® g, and such that the
go-module 9. is simple,_ is isomorphic to either a simple finite-dimen-
sional Lie algebra, or an affine Lie algebra, or a Lie algebra of Cartan type.
More general, Kac conjectured that any simple graded Lie algebra of finite
growth is isomorphic to one of the algebras just mentioned or to the algebra

W or W1 . The speaker recently proved a part of this conjecture:

Deutsche - .
Forschungsgemeinschaft . ©
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Theorem: Let g be a simple graded Lie algebra of.growth <1 . Then g

is isomorphic to either a simple finite—-dimensional Lie algebra, or an affine

Lie algebra, or W , or w1 .

B. GRIESS:

Finite Subgroups of EB(E) ; Code Loops

I. Arjeh Cohen and I have begun to classify finite subgroups of G = ES(C) .
Such a classification exists for a number of proper Lie subgroups of G . We
have some preliminary results about G . For example, the alternating group
of degree n lies in G if and only if n < 10 . The situation is not un-
derstood even for the family Lz(p) , p a prime! If Lz(p) embeds in G ,
p < 61 . The case p = 61 is especially interesting because of Kostant's
theory about elements of certain finite orders in simple Lie groups. We have
a great deal of information about a possible L2(61) subgroup of G épd

we hope to decide whether ,L2(61) is a subgroup of G . - .

II. A code loop is a finite Moufang loop &£ with a subgroup 3 = Z, of
the center such that there exists an isomorphism o : Z, = i./a_ +C-, Ca

doubly even binary code, with the properties

2

= Zlam|e) :
o ey = Fla@| + i la@ |« ke | €]
-1 \ 1 [ pemimis ' ’
(xy*z) (xe°yz) = 2 Z—la(1x+3y+kz)| € . .
i,j,k E‘Fz h

A basic theory of code loops is discussed (see my paper "Code Loops", to
appear in.J. Alg.). A special case of this was constructed by Richard Parker
(for C the éoléy code) and that loop was used by John Conway to give an
efficient construction of the monster and its nonassociative algebra. Further
applications of code loops to studies of nonassociative algebras seem likely.

A. MEURMAN:

A moonshine module for the monster

Let F1 be the Fischer-Griess "monster" group. Conway and Norton have con-

jectured that there'is a sequence of representations of Fl , (wn)n > -1 7

Forschungsgemeinschaft
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such that, if for m € F we set =

1

2mit
Tm(q)= 2 trom qn,q=el , ImT >0 .
n

n > -1

then Tm generates a genus O function field corresponding to a discrete

group I'm containing I‘o(N) where N = lmlh and h|(lm|,24) . In par-

ticular

T (@) = q'1 + 0 + 196884g +... = j(q) - 744 ,
the modular invariant. In joint work with Frenkel and Lepowsky, I have con-
structed a natural representation 6; Vn of 15‘1 with many of the pfo- .
perties of ‘ D w , for examplerl - }-:1 (dim Vn)qn = j(q) - 744 . This con-

n > -1 n
struction is based on the vertex operator representation of affine Lie alge-

bras of ADE-type obtained by Lepowsky, Wilson, Frenkel, Kac. To state our
main result, let B be the commutative nonassociative algebra of dimension
196884 used by Griess to construct F, = Aut(B) . Define an "affinization"
B-Becit,tlloecc by (xe@th(yeth =xye " + <x,y>m28 c,

- - m+n,o
cB=Bec=0, x,y€EBmn €Z.

Theorem: There is a sequence (V) of F,-modules, and for

n > -1

v = @ Vo2 linear map ‘7 : B > End(V) such that
n > -1 "

(i) the action of Fl and B on V are compatible

(ii) T is a "representation" of B in the sense that

n-l) 1

(@) Tx e thiy e th) = % (lrix & &),y ® ¢ +

-1

nty ® ) ,1ix @ 271 ]

(b) w(x ® t%) is homogeneous of degree n . .

(c) m(c) =1

(iii) we have )  (dim v))q" = j(@) - 744 .
n > -1

DF Deutsche . )
Forschungsgereinschaf ©




oF

Deutsche

D. OLIVE:

Fermion representations of Virasoro and Kac-Moody algebras

The Virasoro algebra occure naturally in tw'o di.mehsiokxal physical systema ‘
which are local and scale inyarian}:. The critical indices describing phase
transitions are essentially weights -of the'algebra and are controlled‘f)y .
the value of its central term which either exceeds um.ty or equals

1 - n_l(n%lT , m € Z . Any highest weight representatlon of a Kac-Moody al-.
gebra yields a um.tary representation of the Virasoro algehra w:.th rat:.onal
but typlcally non—1ntegra1 central temm. A coset variant of th:.s con- '
struction involving symplectlc groups ylelds the above dxscrete ser:.es. Re-
presentations of the Kac-Moody algebra bilinear in fernuon f:.elds were con-
sidered and the necessary and suff1c1ent cond.lt:.on that the constructeci
Virasoro algebra generators collapse to a form quadratic in femxons was -
established. The criterion involved symmetric spaces and guaranteed the -

finite reducibility of the Kac-Moody algebra.representation.

A. PRESSLEY:

A geometric approach to representations of loop groups

The irreducible highest weJ.ght representatlons of the Lie group ° LG of
smooth maps 51 + G , G a compact Lie group, are reallzed on the space of
sections of holomorphic line bundles on LG/T . The latter space ‘is ‘an in-
finite dimensional complex manifold which has many interesting geametrical
properties. All non-trivial such representations are projective, more pre-
cisely, they are representations of central extensions iG of LG by the
circle. The extensions themselves are constructed by differential geometric
methods. The complex line bundles on LG/T. are classified by the characters
A of the torus T =8' xT c& , i.e. by the weights of T , and each has
a unique holemorphic structu._re. The space I‘(L)\) of holomorphxc sect:J.ons :Ls
non-zero iff -\ is dominant, and then I‘(L)‘) is the representatxon ‘of LG
of lowest weight A . The proof uses the geametry of LG/T. and some (finite
dimensional) complex analysls, but requires no detailed knowledge of the
structure of the Lie algebra of LG . (Much of the work described is due to
Graeme Segal.) :

Forschungsgemeinschaft
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A. McDANIEL:

Representations of sl(n,T) and the Toda lattice

The Toda lattice equations may be written as a Lax equation g% = [a,B]
where A,B € sl1(n,C) ® E[h,h_l] . When A and B are represented as matri-
ces by using the classical representation of sl(n,C) , a linearization
recipe of van Moerbeke and Mumford linearizes the Toda lattice flow on the
Jacobi variety of the representation dependent spectral curve of A . This
linearization recipe can be extended to the matrix Lax equations obtained
using any finite dimensional representation of sl(n,E) . Then the line-
arization of the Toda lattice flow is independent of the representation in
the following sense. The various spectral curves are relétgd by algebraic
correspondences inducing homomorphisms between their respective Jacobi va-
rieties. The flow obtained using any higher dimensional representation is
the homomorphic image of the linear flow on the Jacobi variety comingvfram
the classical representation. So the various linearizations all lead to

essentially the same flow on the same abelian variety.

T. MIWA:

Infinite dimensional Lie algebras and Soliton equations - a survey of

work by Date, Jimbo, Kashiwara, Miwa

Consider Hirota's bilinear equation P(D)T(x) * T(x) = O , where

X = (xl,xz,...) , D= (Dl,D2,...) , P an even polynamial, e. g. P(D) =

= D4 + 302 - 4p,D, for the KP-equation. Soliton solutions are of the form

1 2 173
T(x) = 2 ng , where &, =c. +n.°*°x , P(n,) =0 and
3 {1,...,n} 3 33 3
P(n.-n.,)
& = z & - . L P(n:..+n,)
JET j.3' € 3,3 <3 i3t

Complete integrability for the KP-equation means that for all N E€ N a
T 1like above is a solution. For arbitrary P(D) , N = 0,1,2 only give
solutions. Complete integrability also implies the existence of infinitely

many equations Pi(D)T(x)° T(x) = O solved by the above N-soliton. For the

5y 3 1 log c;x(p.qy)
KP-equation n5 = (pj-qj,pj—qj,...) and T(x) = e <1,
where the vertex oﬁerator X(p,q) 1is given by




|
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Lp €@ e-E‘(s.p-l) +E@3,aH

X({p,q) =

with £(x,k) = x"x_ . The X(p,9) span a Lie algebra. This can be
L n

n= )
explained as the coincidende of the following two bilinear identities

(1) ) b lv s Yr|v = o
n €2
dk
(2) $ s wixOwE k) = 0,
where (1) characterizes the orbit of highest weight vectors of gl(®) and
. (2) characterizes the KP-hierarchy.
M. JIMBO:

A q;difference analogue of U(%) and the Yang:Bakter équation )

The Yang-Baxter equation is one for the unknown matrix R(u) € End(V ® v):
(¥B) R2WrP e = RPPwrPwwr'?(w)  in  Endive ve

where Rlz(u) = R(u) ® I , etc. This equation is important in the quantum
theory of integrable systems. One is interested in solutions containing a

parameter 41 such that

(cL) R(u41) = 1 +4hr(u) + ... . . as- 41+ 0 .
The term r(u) now satisfies the "classical® ‘YB_ "equation

(cyB) (et2qu), B sy ] + (23 ) ,e23 @] + .[rlz(u),r23(v)]> = o .

Now r(u) in this form can be regarded as taking its value in & 8 oy ,

. o being an abstract Lie algebra. If oy is simple, finite dimensional

over [ , solutions to (CYB) have been classified by Belavin-Drinfel'd.

Problem: Given r(u) , construct R(u) satisfying (YB) and (CL) !

It is shown that by introducing a q-difference analogue of U(¢&) , (YB)
reduces to a linear equation for R(u) . <For 03 = s1(2) the algebra looks
like this: SR

sinh (2#h)

(*) [(n,e] =2 , [h,£}]=-22 , [e,£f] = Sinh(om) .

In this simplest case, the solution R(u) is constructed exélicitely with
the aid of (*) . '

Deutsche
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G. ROUSSEAU:

Automorphisms of finite order of affine Kac-Moody algebras

and affine symmetric spaces

The classification of affine symmetric spaces of non-trivial type (given
by M. Berger in 1957) is equivalent to that of pairs of cammuting involu-
tions of a simple Lie algebra §_ . If we try more generally to classify
pairs (G,%) of automorphisms of finite order of § modulo conjugation,
a first step is the classification (modulo conjugation) of (some) automor-

phisms T of finite order and of first kind (i.e. stabilizing each con-

| jugacy class of Borel subalgebras) of the affine Kac-Moody algebra

‘ g = f.(§_,c°!) . This classification (initiated by Levstein for involutions)

| has been almost finished by Jean Bausch. The results look like those of

i Kac for automorphisms of §_ except that there is still no straightforward

| way to compute g_T . The key point is the structure of gT : its center 2z
is one dimensional, its derived algebra (g‘r)' one codimensional and

(g_T) '/z is the product of a finite number of affine adjoint Kac-Moody al-

gebras and an algebra with only imaginary roots (which gives all the

| troubles) .

A. FIALOWSKI:

Classification of graded Lie algebras on two generators

Let g = i§1 g; be a graded Lie algebra over a field k of characteristic
| O . Assume dim g; = 1 for all i(g; = kei) and that g 1is generated by
| two generators (the minimal possible number under. this condition). Three
! examples are well known: 1) L, the Lie algebra of polynomial vector fields
1_ on the line vanishing at the origin as well as their first derivatives,
} 2) n, (Alu)) +3) n, '(Aéz)) , where Al(l) and Aéz) are the rank-2 affine .
Kac-Moody Lie algebras. We define two other algebras:

]

e,y for i>1 and [ei,ej] =0

m, - determined by [el,ei]
for i,j > 1,

m, - determined by [ei,ej] o for i,j > 2 and [ei,ej] =e

i+j
for i=1,2,3>4i .

DF Deutsche -
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Theorem 1: Let g_ be a Lie algebra as above generated by e 5 -

Then

and e

1

we

a) if [el,e4]_#0,then g=1L or 15122,

b) if [e,,e;] =0, then 9_55+(A2(2)) or g =my ,

c) if [e,,e,] =0, then g =m , or g is isomorphic to a Lie

. 1 .
algebra of the next family 9-()‘8')‘12'>‘16"") , where )\45_ € P (k) .

In g(ig,A 1g'-++) we have [ei,ej] =0 if either i and j are

12'A
even and # 2 or i is even, i # 2 , and j is odd. Furthermore,
[el'et}k—l] = oyl [e2,e4k_2] = B4ke4k for k = 3,4,5,... , ‘wr;le.re
(u4k,8 4k) are the homogeneous coordinates of >‘4k . The remaining commu-
tators can be uniquely calculated from these formulas.

(1) (2), L !
Theorem 2: The algebras I.1 ’ r_x.._(A1 ) g+(A2 ) , and m, have two

relations of weights 5 and 7 ; the algebra m, has independent rela-

tions of weight 2k+1 , k > 2 ; in 9-()‘8’)\12"") there are relations

between the generators of weights 2k+1 , k >2 , and 4k , k > 2 .

Corollary: Consider the relations of weight 5 and 7 in an arbitra_rx'

mentioned graded Lie algebra g . For most of ‘the relations . g -

is finite dimensional or dim g; grows exponentially with - i . The "

exceptional cases are the ones mentioned above.

J. MICKELSSON:

Step algebras and their applications.

Let g be a complex Lie algebra and k a reductive subalgebra in g .
pefine s'(g,k) = {u €WUlg) _Ik+uc u(g_)l_c+} for a fixed triangular deccmpo-
sition k =k_®h @ k  corresponding to a choice h of a Cartan subal-
gebra in k and a choice ¢*ec ¢ of positive roots for the pair, .(h,k) .-
set s(g,k) = S'(g,k)/S'n W (g)k, . The step algebra is a subalgebra
So(g_,i) < s(g,k) generated by h and elements Sy1Syr-a- which are of

first order in a basis {tl,t } of g @k and are represented by

reoo
vectors of minimal possible dzgree in W(g) . Let At e h* be the set of
dominant integral weights and fix the lexicographical ordering in A+ with
respect to <A,a1>,...,<)‘,az> (“1""'%, simple roots), A € At a1
irreducible k-finite g-modules V can be characterized by the action of

So(g_.lt_)-]l on the minimal k-type V;: cvi={ve v kv = o} . Application
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to Kac-Moody algebras: Let g = A1 ’ é ='A:1‘) . 'I‘he. g-finite irreducible
g-modules can be classified by the following data, when dim(A) > 3 for
the minimal g-type A : 1) the minimal g-type A , 2) an irreducible
representation of an infinite dimensional Heisenberg algebra acting on
V;" (this algebra arises from the action of Sc‘(i,g)}l on V{ i heg
Cartan subalgebra).
References: J. Mickelsson', J. Math. Phys. 26 (1985), Rep. Math. Phys. 4
(1973), 307; Math. Scand. 41 (1977), 63; vanden Hombergh, Indag. Math. 37,

(1975), 42; D. P. Zhelobenko, Soviet Math. Dokl. 28 (1983), 696, 777.

B. KUPERSHMIDT:

Differential Lie algebras and KdV-type equations

Let 3 : K > K be a differential ring, D(K) the Lie algebra of "vector

fields” on K : [X,Y¥] = XY'-X'Y , where (°*)' = 9(*) . The natural Hamilto-
(n)]

nian matrix B on Cu = K[u associated to D(K)* is defined as

xB(Y) = u[X,¥] (mod Im 3). Thus B = ud + du . Let w(X,¥) = xv(_3)
(')(k) = Bk(') . Then ® is a (generalized) 2-cocycle on D(K) . Let

b = bm such that wa(Y), = ©(X,Y) (mod Im 3) . Then 32 = ud + du - 33/2.

, where

is a Hamiltonian matrix, i.e. the associated Poisson bracket

{a,r} = g—z B(g—ﬁ-) satisfies the Jacobi identity mod Im 3 . The KdV-equation

is connected with D(K) in this way: u_ = Bz((SHl/(S\J) = B1 (6H2/6u) ’
Hy = u2 ¢  Hy = u3’ + ui B B1 = 9/2 being the b\’ for the trivial 2-cocycle
V(X,¥) = 5 x¥! This bi-Hamiltonian definition B’(8H /8w = B'(SH /6w ,
B1 (GHO/Gu) = 0 can be iterated to the whole Kdv-hierarchy. The procedure
can be applied to other differential Lie algebras and superalgebras, in par-

ticular to the following Lie superalgebra §_ :

Let K =K_® K _ Dbe a differential commutative superalgebra, g a finite

o 1
dimensional Lie algebra over k = Ker 9}K . Consider

e®
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X1 X2
fl @ a, 52 ® a, ~
Y, ® b1 Yo ® b2
(’.1 N 02
. L - L] -
xlxz xlxz 20.10.2

- 1 -
£,£,8 [al,az]+ X £58a,+Y,0,8by X,£18a, -v,a, 8b,

1
(X, Y5+ 5 X{Y,) @by + £,Y,8 [al,b2]+ fla,8a, - (1 +2)

(Xlaé - ;— Xiaz) - (1% 2)

where xi'fi € K6 ’ Yi’ai € KT . ai'bi € g . There is a 2-cocycle

w,(1,2) = X]X,+ daja, on g ; if g has an invariant form (,) , there

is another one w2(1,2) = fifz(al,az) + ... . If (, ) 1is nondegenerate

the’ corresponding super KdV-system is bi-superhamiltonian and integrable:

2 t t
u = 3(3u u +tpR+to g+ 300 )
p. = 2up - [g,0] + 20,0
g, = wg+2ug, + 2[p,g] - 20.p
o, = 3eu +6up - do . -2(R,3D .

here u,p € ® K are even, 0 € ® K , ¢ are odd. For 0,9 = O , the
REg 5 gcg T 9.

remaining even part loses the interaction.

K. UENO / H. YAMADA:

The super-GraBmann-hierarchy, the super-KP-hierarchy, and gl(®|®)

The ordinay KP-hierarchy is naturally interpreted, through the GraSmann
equation, as a dynamical system on the "Universal GraBmann Manifold” (UGM),
first introduced by M. Sato'. Motivated by this framework, we introduce a
supersymmetric extension of the KP-hierarchy (SKP for short).

Let S be a superalgebra of superfields, which is a tensor product of the
Berezin algebra K of infinitely many variables, say x,tz,t4.... ;o

Si1SysSyrenn s and the constant GraBmann algebra A . Let 8 = as + s'ax B

6 =2 +

24-1 6

S,y _49 ' . =9 . These are super-deriva-
Ip5-1 k=1 Tl tyguok-2 | B By :
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tions -acting on S . Further, §j(6_1)) and s[8] are the super-analogues
of the ring of micro-differential operators and the ring of differential
operators. Then the SKP is, by definition, the following system of nonlinear
super-differential equations:

-jo _ko
(-)76,.B (-)"9., B . + [sz,sz

2582k ~ 2kB23 l=o0

34 _p* =
OakBas-1 + (705 4Box * (Bpy iBoBaiBay1) = ©

(%8 N

* *
2k-1825-1 ¥ Bok-1B25-1 * B23-1B2k-1 ¥ 2By (g4x-1)

where # is the canonical involution on §((9_1)) , and the Bj are in
§16](j)m°nlc

P _ 2 23
equation: Let ¢ = exp(sA + xA” + 2 tzjr + X st—lr

. The SKP-hierarchy is integrated through the su§er-Graﬁmann-

23-1) , where A is a

shift matrix of size %Z and I 1is a canonical matrix which anti-commutes

with A . Let & be a (z, nio)-frame over the constant GraBmann algebra A ,
which is thought of as a point of the super UGM, and-let Eo be the reference

point. We regard the following super-Grafmann-equation:
Conentiy oy vy o DERE = 0
Ttrrt32rt1 /20 o °

For a generic &£ , this equation actually can be solved. For a solution, we
-
= =J . PPN
put W = 2 w./ze . Then W satisfies
j=o J
5. w = (I - we2d
ezjw = (=) (szw we"-)

. _ _j-l
ezj_lw =(=" (B

w - weg237t

2§-1 )

which just corresponds to the linearization for SKP. In fact, taking the
integrability condition, one gets the SKP. The SKP is a nonlinear super
evolution equation, and its super time evolution is interpreted as a dynami-

cal motion on the super UGM : § ©» OF .

Finally, we mention a super-symmetric extension of gl(®) , which is denoted
by gl(®j®) . This Lie superalgebra contains many important Lie supersubal-
gebras, e.g. the Neveu-Schwarz algebra, the Ramond algebra, which are the
super ahalogues of the celebrated Virasoro algebra, and it also contains the
super Kac-Moody algebras. We hope that the link between gl{(®/) and SKP

will be revealed in the near future.
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W. NAHM:

Euclidean Kac-Moody algebras in quantum .field theory

Euclidean Kac-Moody algebras appear naturally in quantum field theories
describing maps from a two-dimensional space to symmetric spaces or tori,
if these theories are conformally invariant. This also applies to string
theories.

The siuplest example is a scalar field ¢ : si > Tk , ™ =-1Rk/A , (for

fixed time) with action [ (#%- o'Y)axat . If the ©, are the Fourier
coefficients of ¢ , the eigenstates of the Hamiltonian are given by .
p(to )‘l’ , where p is a polynomial in the @, and
(xy

¥ = 2 exp(-—ltpl ) . Let (T.9)(g) v ¥(g+f) . Then ve o =
o n;>'o £

= exp(z > tp+n )Tf yields two commut:.ng families of vertex operators for
£(x) la(x-x ) , AEA, x, € S . One finds the w:l.lson operator product
expansion correspondmg to the conformal dimension A /2 for such an
operator. The scale of A is given by Planck's constant. If Tk is a Ccar-
tan subgroup of an ADE-type Lie group one obtaines the corresponding Kac-

Moody algebra as

: -1 . R T
V)‘(x)vu(y) N (x-y) v)‘+u(X) if )u'u = -1 ., etc.

For 'Az =1 , the V)‘ are Fermion fields, for ‘)\2 = 4 .on the Leech torus
one obtains the Norton algebra by choosing the leading non-trivial operator
on the right-hand-side of the operator product expansion
A%/2-u%/24a, Do
V)V () “'12‘ (x-y) o) .
The Z-algebras used to construct higher level representations qf K.ac-Moody

algebras can be interpreted in an analogous way.

H. JAKOBSEN:

A new class ov unitary highest weight representations of su(n,l)x- N

We present here joint work with V. Kac. Let’' A 'be an aff:.ne root system and

7= {a 'a1""'°‘9,} a standard set of simple roots such that m {al,...,az}

defines a simple finite.dimensional Lie algebra g_ over T . Theze is a

natural definition of a set of positive roots At (GEA ,BEA .c+ BGA) =>

e
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=>a+BEAY, and o or -a but not both belong to AY , for all aea .

The Borel subalgebra B(AY) of A* is then B(ah) = % + ﬂ? (g
a€aty {o} =

the affine Lie algebra corresponding to A ). Furthermore, there are natural

definitions of parabolics, of campatible anti-linear anti-involutions o ,
and of generalized highest weight modules M()\) . We classify the set of
wx {#1} - conjugacy classes of At's . They are parametrized by the subsets
of T . Further, besides the integrable case, M(\) is unitarizable only
if: a) (Elementary) g =g ® c[t,t-l] ® Tc , g corresponds to a hermitian
symmetric space, ¢ > 0 , and M(\) is constructed from a finite number of

unitarizable modules of g , b) (Exceptional) g = su(n,1) , ¢c >0, and
2T

A(a ® h) = -f a(8)dd for a € m[t,t_l] , d0 a finite measure on S1
o

and n=1; for n > 1 there is a similar construction. Also, this gener-

’

alizes to the group of maps X + su(n,1) for X compact Hausdorff and for
Radon measures on X .

M. WAKIMOTO:

Hermitian representations of extended affine Lie algebras

The concept of extended affine root systems was introduced by K. Saito in
close connection to elliptic singularities, and it naturally posed the pro-
blem of existence and construction of corresponding Lie algebras. In this
talk I describe a method to realize such Lie algebras and to count the mul-

tiplicities of their imaginary roots. I also give a series of Hermitian re-
. (1,1) (1,1)* (1,1)
1 Al , and Az
analogy with the Jakobsen-Kac discrete series representations of the affine
(1)
1

presentations for the Lie algebra A in

’

Lie algebra A

P. SLODOWY :

An_adjoint quotient for Kac-Moody groups and singularities

In this talk we give a survey of the relations between deformations of
certain isolated surface singulariﬁies (simple, simply elliptic, cusps) and
corresponding Kac-Moody groups. This correspondence is established via the
second homology lattice of the Milnor fiber of the singularity, which also
serves as the coroot lattice of the corresponding group. To realize a semi-

universal deformation of the singularity one has to construct a satisfactory

adjoint quotient for the corresponding group G . We sketch the construction
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of a conjugation invariant map X : G * "l‘\/w_ of G onto a "partial com-
pactification” f/w_ of the quotient T/W of a maximal Torus T of G
by the Weyl group. In an analytic setting (restricting T to a subdomain
3 of T ) this space had been constructed by Looijenga, and he had also
identified it-with the base space U of a semiuniversal deformation

X * U of the corresponding singularity. The analysis of the fibers of ¥
reveals that a big part of th; total space X can be embedded into G ,
in such a way that

cammutes.

Berichterstatter: P. Slodowy

Deutsche .
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