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Tag u n g s b e r ich t

Unendlichdimensionale Lie-Algebren und ~ruppen

21.4. bis 27.4.1985

An der unter der Leitung von V. Kac (cambridge, MA) und P. Slodowy (Bonn)

stattfindenden Tag~g nahmen 48 Mathematiker und Physiker ,aus 14 Ländern teil.

Inhaltlich lassen sich die 24 gehaltenen vorträge grob deQ folgenden Themen­

bereichen zuordnen:

1) Theorie der den Kac-Moody-Algebren zugeordneten Gruppen' Und ihrer' homo"':"'

g"enen Räume

2) Klassifikation graduierter Liealgebren und ihrer Automorphismen ',~

3) Beziehungen zur algebraischen Geometrie "und zur Theor{e~ d~r' Siriguiari':'

täten

4) Konstruktion und Untersuchung fundamentaler Da~stellungen der affinen

Kac-Moody-Algebren, der Virasoro-Algebra und anderer Liealgebren von"

Abbildungen

5)

6)

7)

Beziehungen zu physikalischen Modellen (Quantenfeldtheorie, stat~'Physik)

Beziehungen zur Th~orie der einfachen endlichen Gruppen

Vollständig integrable Hamilton' sche Systeme'.

~abei' stepen diese Bereiche ~eine~wegs disjunkt ~~, son~e~~ e~ gibt die. . .

stärksten Wechselwirkungen (z. B." zwischen 1) und 3r, 1) und 7), vo~..:allem

aber zwischen den Gebieten 4), S}.' 6}, 7» '. Gerade d~ese wechselw~7~~g.er:

dürften verantwortlich sein für das in den letzten Jahren stark ang~stiege~e
.. .....J,. ~

Interesse an dem ganzen Themenkompl~x sowie auch für. das In~eresse, auf ~~~1 7.

diese Tag.ung stieß~ Währ~~d die,m~isten vor~r~ge über ~euere Resu~tate ~~~~~h­

teten, wurden von einigen Sprechern Oberblicke g~~~ben über die wesentl~c~e~

Entwicklungen in einigen der genannten Themenbereiche. Für Einzelh~~~en ver­

gleiche man die Vortragsauszüge.
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Vortrag sausziige

v. G. KAC:

Introduction to infinite-dimensional groups

This talk gives an introduction to Kac-Moody groups. Thei~ construction is

explained via integrable representations of Kac-Moody Lie algebras. Among

other things, the generalized Pliicker relations and the connection to

KdV-type equations are mentioned. Finally a proef is given of our theorem

(joint werk with D. Peterson) about the closure·of the orbit of a highest

weight vector. Fram this we deduce our result about conjugacy of Cartan sub­

algebras ~n a Kac-Moody algebra.

C. B. THORN:

Introduction to Dual String Models

The elas5ical and quantum dynamics of the relativistic string was reviewed.

The role of the Virasoro algebra in the covariant operator formalism was

explained. The potential problem of "ghosts" was deseribed, and the No-ghost

Theorem of Goddard and Thorn was proved. It was further shown how the ghost

elimination meehanism in dual models provides a new derivation of the Kae

formula for the determinant of the contravariant form.

I. DOLGACHEV:

Infinite Weyl ~roups in algebraie geametry

The root systems of type E
n

(n ~ 6) can be realized in the spaee of 2-homo­

logy of certain algebraic surfaces. The group of automorphisms of same of

these surfaees ean be represented in the Weyl group of the corresponding

system. For example, n ~ 7,S,9,10 correspond to surfaces obtained by blowing

up 7 (resp. 8, resp. 9, resp. 10) points in the projective plane ]p2.

rf, moreover, these points are realized as a complete intersection of two

cubics (n = 9) or ten nodes of a rational sextie (n. = 10) , the automor­

phism group is isomorphie to the level-2-eongruence subgroup W(2) of W

(under certain assumptions on general position of the points). The latter

g~oup i5 the smallest normal 5ubgroup containing the element

Wo E W(ES) ~ W(En ) , n = 9,10 -

                                   
                                                                                                       ©



.....

- 3 -

K. SAITO:

Regular systems ef weiqhts and associated roet systems

Let us consider the rational function

other in the .product). We.call c a Coxeter eleme~t. One of the most remarka­

ble features of these root systems is the following:

associated to a system of integers (called the weights) h,a,b,c with

h > a,b,c > 0 . This system is called regular if X(T) does not have a pole

except at the erigin. Then there exist ~ := (h-a) (h:b) (h-c)/abc integers

€ =: mt < rn2 ~ ••• ~ m~_l < ~ := h-€ , called exponents (here E:= a+b+c-h)

11 mi
such that X(T) = i~1 T The system of weights a,b,c,h is regula~ iff·

there exists a weighted hamogeneous polynomial f(x,y,z) in three yariables

of degree h with deg x =,a , deg y = b , d~ z = c 0' such that the hyp~r­

surface X c ~3 defined by f = 0 has, an isolated singular point at 0.'
o

It is weIl known that X {al is a quotient of ~2 {O} by a finite sub-
o

group of SU(2,(C) for E: a quotient of 11:
2 by a Heisenberg group for

E = 0 , and a quotient of ii { (u
o

' v) E c2 I Im (u/v) > ol by' a "binary"

Fuchsian group of the first kind for E < 0 . The set R of vanishing cycles
. -1

in the middle homology group H2 (Xl' 7l ) of the Milner' fiber Xl = f (1 )

sa~~sfies a sys~em ofaxioms fox:: a "generalizedn root system withOrespect to

the intersection form' I on H2(Xl'~). In case € = 1 , I is negative

definite so that R is finite of type At ,'D~ , or E~. In case € = 0 ,

I is negative semi-definite and R is an extended affine root system of

type 'E(1,1) for' ~ = 6,7,8 . For the fi~st 14 cases of € = -1 , I is
~

indefinite with two-ditnensienal maximal positive subspaces.; For these cases

one can define a Dynkin diagram for the reot system. Let c be a product of

~he reflec~ions corresponding to the vertices of the Dynkin diagram (such

e

e that reflections belonging to vertices conn~cted like. fellow each

the eigenvalues of c
1) A Coxeter element c 1s of finite order h

are given by exp{21T1=i mi/h) , 'i = 0 1 , ... ,~

2) Let cI>h (X) be the cycletoD1ic polYnomial for the h-th primitive roots

of uni~y. ~ R ~ Ima~e cI>h(c). = tJ ,for ~E: 2!:. € = -1 (if' one of

the 14 first .cases) .an~.. R n image(c~l) o~ 0 for € = 0
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3) For e: = 0 , let W be the central extension of the Weyl group W

(generated by the reflections of R) defined via a hyperbolic extension.

Then the hyperbolic Coxeter element e (defined similarly as c ~

the hyperbolic extension) is quasi-unipotent and eh generates the center

of the extension W.

These properties of Coxeter elements will be used strongly for the construc­

tion of flat invariants for the Weyl group.

D. PETERSON:

Heisenberg graUES and basic representations

We generalize results of Lepowsky-Wi-lson, Kac-Kazhdan-Lepowsky-Wilson and

Frenkel-Kac on the action of the so-called "homogeneous" and "principaln

Heisenberg subalg~bras on the basic module V •.

Let .2. be a fini te-dimensional simple Lie algebra over Ir and let G be the

corresponding connected simply-connected algebraic group. Let G = Map(~*,G)

and i = Map(lt* ,9) be the corresponding loop g.roup and loop algebra, and let

a : a ~ G and da: i ~ i be the corresponding central Kac-Moody extensions.

Let lH be the variety of cartan subalgebras of 2.. and s E Map(<<::Jf' ,lH) • Put

s = '{x E il x(t) E set) for all t E ~*} , 5 = (da>-l(g) , 5 center (5)
- - -0 -

5 = {g E GI g(t) E exp set) for all t E ~*} , S = 0-
1(5) , and

S = {g E SI Ad(g) = id on s} .o -0

Theorem (V. KaC, D. Peterson): Let ~ be of type A, D or E • Then the

basic module is irreducible under the algebra of operators generated by S

and ~.

Two new methods playa key role in the proof: use of the asymptotics of V,

5 and 5, and a commutator formula for elements of s . crsing the theorem,
o

2.. on V ..we construct vertex operators specifying the action of

Two problems pose themselves for further study:

1 • Find the cOIIUllu.tation relations in s.
2.. Explain my observation that the number of conjugacy classes of the Weyl

group satisfying det(I~w) = det A , where A is the Cartan matrix of ~

of type A, D or E, equals the number of orbits of Aut(D) on the set

of vertices of 3) where p is the extended Oynkin diagram of 2...
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K. MISRA:

Constructions of higher level representations of affine Lie' algebras

•

One of the main features of the representation theory of affine Lie algebras

is the existence of explicit constructions of same nontrivial representati9ns.

A rep~esentation of an affine Lie algebra is said to be of level' k E ~ ~f

the central element (normalized suitably) acts as multiplication by k •. Leyel

one representations of affine Lie algebras have been studied by several ~e­

searchers including Frenkel, Kac, Kazhdan, Lepowsky, Misr~, Peterson, Segal

and Wilson •

In this talk we will be mostly interested about constructions of higher level

representations of same affine Lie algebras. In 1981, Lepowsky and Wilson-in­

troduced a new family of algebras associated with the represent~ti~ns of

affine Lie algebras. They used these algebras to construct same higher level

representations of A~l) • In 1984, Misra used these algebras to give·the

constructions of same higher level representations of A (1) (n > 1) • Misra
n

also gave explicit constructions of the level one representations of'sorne .,

symplectic affine Lie algebras. More recently, Lepowsky and.Wilson·~ave g~ven

explicit constructions of all irreducible representations of· int~gral.~level

of the affine Lie algebra A~ 1> in the principal picture •. Also Lepowsky.. and

Prime have given constructions of these r'epresentations of A~l) . in~the.~ ....

hamogeneous picture.

J. TITS:

•
Kac-Moody groups over rings

Let '1 = (A, (Cl'i) 1 < i< R, , (hi >1 < i< R,) , where A is a free abelian 'group

of finite rank, (a;> -a system oi p;ints in A and (hi ) a system of points

in the 7l - dual A* of A, indexe~ by the sam~ f in!te set" (i', ~ . ". , R, }:>~. -I'f<

beingGgroup

A = (aj(hi » is a cartan matrix, thesystem 1 determines a reductive' group

G over cc' (here, A is the character group of a maximal .torus .of . G,. (ai)

a basis of the corresponding'root system and hi the coroot associated·~~th

ai ) ~ and all reductive groups over ~ are obtained ·once· in" that way: More

generally to such an :f i5 associated a Cheval1.ey group-scheme" over· 7l:~:

hence a group functor '3:f over the category iSt of al-I "rings, .:the·.abov~

~1(!C) .. In ·this lect.ure (an updated version of a·· lecture
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held on the .same topic at the OW-Tagung n° '26 in 1982) was considered the pro­

blem of associating a group-functor ~ "1 over t"R, to any data 1
assuming only that A is a generalized Cartan Matrix. Four ways of approach­

ing the question have been discussed. (I) Define eY:\"1 (R) as Homcont ( 1at-S,R) ,

where }.e-j is a suitable topological Hopf algebra and R is given the

discrete topology. A likely candidate for .)t~ was described but several

properties remain to be cheeked. (11) Define ~1(R) by generators and re­

lations. This works weIl when R is a field (one gets ~1(R) as amalgam­

ated product of suitably defined "minimal" parabolie subgroups eontaining a

given Borel subgroup, and the nonnalizer of a "maximal torus" Hom(A,Rx) ),

and ~1 is then easily extended to principal ideal domains (PIO) , but

the methOd does not seem to be weIl applicable to more general rings.

(III) Relate ~1 to more classical objects. So far, this has been done

only in the affine case. Assume A irreducible and semi-definite. For sim­

plicity, assume further that A* is generated by the hits and that

A S Q? = L ~cti • Then, one ean define a group-seheme .si j ·over 11; [t,t-1 ]

such that, for a PIO R, the functor ~ l' obtained by method (11) is given

by ~i(R) = ~ i(R«t») • (For more details about this and further referen­

ces, see Springer Lecture Notes Nr. 1111, pp. 191 - 223, in particular

appendix 2.) (IV) Thislast equality was proved' by using a suitable axicm

system which ean also be used to define ~ i ' at least in the affine case.

Remark. Both methods (I) and (11) require the choiee of a suitable 11;- form

of the universal enveloping algebra of the Kac-Moody Lie algebra over ~

assoeiated to i i there is a natural choice for that 11; - fonn (already used

by H. Garland in the affine case) but it may not be unique.

o. MATHIEU:

Classification of simple graded Lie algebras

In 1968 V. Kac showed that any eomplex simple graded Lie algebra ~ = m 9:n
of finite growth, which is generated by .cl-l lB go EB 9:1 and sueh that the

~o - module 2-1 is simple, is isomorphie to either a simple finite-dimen­

sional Lie algebra, or an affine Lie algebra, or a Lie' algebra of Cartan type.

More general, Kac eonjectured that any simple graded Lie algebra of finite

growth is isomorphie to one of the algebras just mentioned or to the algebra

W or W1 • The speaker recently proved apart of this conjecture:
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Theorem: Let 9:. be a simple graded Lie algebra of growth ~ 1 • Then ~

is isomorphic to either a simple finite-dimensional Lie algebra, or an affine

Lie algebra, or W , ~ W1 •

B. GRIESS:

Finite Subgroups of E8(~) ; Code Loops

I. Arjeh Cohen and I have begun to classify finite subgroups of G = E8(~) .

Such a classification exists for a number of proper Lie subgroups of G. We

have same preliminary results about G. Por example, the alternating group

of degree n lies in G if and only if n ~ 10 . Tbe situation is not un­

derstood even for the family L
2

(p) , P a prime! If L
2

(p) embeds in G,

P ~ 61 . The case p = 61 is especially interesting because 'of Kostant's

theory about elements of certain finite orders in simple Lie groups..• We have

a great deal of information about a possible L
2

(61) subgroup of G a~d

we hope to decide whether _L
2

(61) is a subgroup of G.

Ir. A code loop is a finite Moufang loops.- with a subgroup } - ~ 2 of

the center such that there exists an isomorphism a: I = ~ IJ -+- c~ ,.. C a

doubly even binary code, with the properties

2 1 Io.(x) I E Jx 4"
-1 1 Ia.(x) I 1

la(y) I +
1 Ia.(·x+y) I E 3(yx) (xy) 4" + 4" 4"

-1 L 1
la(ix+jy+kz) I E 3(xy·z) (x·yz) 4"

i,j ,k E·JF
2

A basic theory of code loops is discussed (see my paper "Code Loops", to

appear in. J. Alg.) .. A special case of this was constructed by Richard Parker

(for C the Golay code) and that loop was used by John Conway to give an

efficient construction of the monster and its nonassociative algebra. Further

applications of code loops to studies of nonassociative algebras seem likely.

A. MEURMAN:

A moonshine module for the monster

Let F
1

be the Fischer~riess "monster" group. Conway and Norton have con­

jectured that there is a sequence of representations of F1 I (Wn)n > -1 '
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such that, if for m E F 1 we set

n
q q

2rriT
e Im T > 0

then Tm generates a genus 0 function field corresponding to a discrete

group rm containing fo(N) where N = \m\h and h\(\ml,24) . In par­

ticular

Tl (q) q-1 + 0 + 196884q + .•. j(q) - 744

the modular invariant. In joint work with Frenkel and Lepowsky, I have con­

structed a natural representation E9 V of F
1

with many of the pro­
n > -1 n

perties of €9 W, for example - 2 (dirn Vn)qn = j(q) - 744 . This con-
n > -1 n n

struction is ~sed on the vertex operator representation of affine Li~ alge-

bras of ADE-type obtained by Lepowsky, Wilson, Frenkel, Kac. To state our

main result, let B be the cammutative nonassociative algebra of d~ension

196884 used by Griess to construct F
1

= Aut(B) • Define an n a ffinization l1

B B 9 CC[t,t-1 ] EI) Itc by (x. 0' tm)(y 0' t n ) = xy ~ t m+n + <x,y>m2ö c,
rn+n,o

c B B c = 0 , x,y E B,m,n E ~ .

Theorem: There is a sequence (Vn)n > -1 of F 1-modules, and for

V = $ V
n

, a linear map . rr : B -+-End (V) such that
n ~ -1

(i) the action of F
1

and B on V are campatible

(ii) Tr is a nrepresentationl1 of B in the sense that

(a)

(b) rr(x 0 t n ) is hamogeneous of degree n

(c) n(e) = 1

(iii) I (dirn V )qn
n > -1 n

j(q) - 744 •

-------~-----~-----------------
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D. OLIVE:

Fermion representations of Virasoro and Kac-Moody algebras

The Virasoro algebra oceurs naturally in two dimensional physieal systems

whieh are local and seale ~nvariant. The eritical indices describing phase

transitions are essentially weights ·of the algebra and are eontrolled by

the value of its central term which either exeeeds unity or equals

1 - m(;+1) , m E 7L • Any highest weight representation of a KaC-Moody al­

gebra yields a unitary representation of the Virasoro algebra with rationäl

but typically non-integral central term. A eoset variant of this'con~

struction involving symplectic groups yields the above discrete series. Re-

presentations of the Kae-Moody algebra bilinear in fermion fields were con­

sidered and the neeessary and suffi~ient eondition that the eonstructed

Virasoro algebra generators collapse to a form quadratie in fermions wäs'

established. The eriterion involved symmetrie spaees and guaranteed the

finite redueibility of the Kae-Moody algebra,representation.

A. PRESSLEY:

A geometrie approach to representations· of loop groups

The irreducible highest weight represeJ:}tations of the Lie ~roup . LG of

smooth maps 51 ~ G , G a compact Lie group, are realized on the' space 'of

sections of hoiomorphic line bundles on LG/T .' The latter spaee "is "an in-'

finite dtmensional camplex manifold which has many interesting geametrical

properties. All non-trivial such representations are.projective, ·more pre­

eisely, they are representations of central extensions LG of LG by the

circle. The extensions themselves are construeted by differential geometrie

methods. Th~ complex line"bundles on LG/T. are classified by the eharacters

X of the torus T = 51 x T c LG , i.e. by the weight~ 'of T, and each has

a uniCll:le holom~rphic structure. The space r(LA) of holomorphic sect~ons is

non-zero iff -X is dominant, and then r (LX) is the represe~tatio~'Öf" LG

of lowest weight A • The proof uses the geometry of LG/T, and same (finite

dimensional) camplex analysis, but requires no detailed kno~ledge of the

structure of the Lie algebra of LG. (Much of the work described is due to

Graeme Segal.)
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A.. McOANIEL:

Representations of sl(n,«::) and the Toda lattice

dA
The Toda lattice equations may be written as a Lax equation dt = [A,B]

where A,B E sI (Tl.,Ie) ,0 a:[h,h-1] .. When A and Bare represented as matri­

ces by using the classical representation of sI (n.,ce) , a linearization

recipe of van Moerbeke and Mumford linearizes the Toda lattice flow on the

Jacobi variety of the representation dependent spectral curve of A.. This

linearization recipe can be extended to the matrix Lax equations obtained

using any finite dimensional representation cf sl(n,CC) .. Then the line­

arization of the Toda lattice flow is independent of the representation in

the following sense .. The various spectral curves are relat~d by algebraic

correspondences inducing homomorphisms between their respective Jacobi va­

rieties .. The flow obtained using any higher dimensional representation is

the homamorphic ~ge of the linear flow on the Jacobi variety coming fram

the classical representation. So the various linearizations all lead to

essentially the same flow on the same abelian variety.

T. MIWA:

Infinite dimensional Lie algebras and Soliton equations - a survey of

work by Date, Jimbo, Kashiwara, Miwa

Consider Hirota' s bilinear equation P (0) l' (x) • T (x) = 0 , where

x = (xl ,x
2

' ••• ) , D = (01 ,°2 , •• ,,) , P an even polynomial, e. g. p(O) =

4 2
0

1
+ 30

2
- 401D

3
for 'the KP-equation. Soliton solutions are of the form

T(X) L e~J , where ~. = c. + nj • x , p(n
j

) 0 and
J {l, ••• ,N} J J

~J 1: ~j L
p(n

j
-n

j
.) •jEJ j, j' E J ,j < j' , p(nj+n

j
.)

Camplete integrability for.the KP-equation means that for all N E m a

T like above is a solution. For arbitrary P(D) , N = 0,1,2 only give

solutions. Complete integrability also implies the existence of infinitely

KP-equation n: = (p.-q.,P~-q~, .... ) and T(X)
) . ) ) J )

where the vertex operator X(p,q) is given by

= e

many equations P. (0) T (x) • T (x) = 0
1.

solved by the above N-soliton. Por the
I log c.X(p.,q.)

) ) ) • 1 ,
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.- -1 . - -1
e~(x,p)-f;(x,q) • e -~(a,p ) + E;(Cl"q )

with ~ (x, k) I knx The X(p, q) span a Lie algebra. This can be
n=1 n .

explained as the coinci~ende of the following two bilinear identities

where.(1) characterizes the orbit of highest weight vectors of gl (00) and

(2) characterizes the KP-hierarchy.•
(1 )

(2)

L lIJn I v> 3 tP~ I v>
nE~

,I.. dk
't' 2'ITi . w(x,k)w*(x· ,k) o

o

M. JIMBO:

A q~difference analogue of U ( u:. ) and the Yang-BaXter equation

The Ya!1g-Baxter equation is one for the unknown matrix R(u) E End(V 0 V) :

(YB)
, 23' 13' 12 .
~ (v)R (u+v)R (u) in ' End(V 0 V 0 V)

where R
12 (u) = R(U) 0 I , etc. This equation is important in the quantum

theory of integrable systems. One is interested in solutions containing a

parameter ~ such that

(CL) R(u,,-tf) 1 + .f'1r(u) ~ •.• aso ~+O

The tenn r(u) now satisfies the IIclassicalfl YB equation

(CYB)
12 13 . 13 . 23 12 23

[r '(u),r (u+v)] + [r' (u+v),r '(v)] + .[r (u) ,r (v)] O' •

Now r(u) in this form can be regardeq as taking its value in "~6 ~ ,

~ be~ng an abstract' Lie algebra. If ~ i5 simple, finite dimensional

over ~, solutions to (CYB) have been classified by Belavin-D~infelrd.

Problem: Given r(u) , construct R(u) satisfying (YB) and (CL) !

It is shown that by introducing a q-difference" analogue of U( ~)., (YB.>'

reduces to a linear equation for R(U' . For ~ = sl(2)" the algebra looks

like this:

(*) [h,e] = 2e [h,f] = -2f [ f] = sinh(2~)
e, sinh(2i'I)

In this simplest case, the solution R(u) is constructed explicitely with

the aid of (*) .
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G. ROUSSEAU:

Autamorphisms of finite order of affine Kac-Moody algebras

and affine symmetrie spaces

The classification of affine symmetrie spaces of non-trivial type (given

by M. Berger in 1957) is equivalent to that of pairs of cammuting involu­

tions of a simple Lie algebra ~. If we try more generally to classify

pairs (a,i) of automorphisms of finite order of i module conjugation,

a first step is the classifieation (modulo conjugation) of (sorne) autamor­

phisms T of finite order and of first kind (i.e. stabilizing each con­

jugacy class of Borel subalgebras) of the affine Kac-Moody al~ebra

~ = L(i,ö) . This classification (initiated by Levstein for involutions)

has been almest finished by Jean Bausch. The results look like those ef

Kac for autamorphisms of i exeept that there is still no straightforward

to compute T The key point is the structure of T its centerway ~ 5l. : ~

is one dimensional, its derived algebra (9,.T) , one codimensional and

(9,.L)./~ is the produet of a finite number of affine adjoint Kae-Moody al­

gebras and an" algebra with only imaginary roots (which gives all the

troubles).

A. FIALOWSKI:

Classification of graded Lie algebras on two generators

00
a field k of characteristicLet 9:.= i~h 9.i be a graded Lie algebra over

0 Asswne dim 9:.. = 1 for all i(~i = kei) and that 9:- is generated by
:1.

two genera~ors (the minimal possible number under· this condition). Three

•

examples are weIl known: 1) Ll the Lie algebra of polynamial "vector fields

on the line vanishing at the origin as weIl as their first derivatives, •
(1) . (2) (1) (2)

2) !!+ (Al ) , 3) !!.+ (A2 ) , where Al and A2 are the rank-2 affine

Kac-Moody Lie algebras. We define two other algebras:

!!!.l determined by [el ,ei] = e i +1 for i > 1 and [ei,ej ] 0

for i,j > 1 ,

!!2 detennined by [ei,e j ] 0 for i,j > 2 and [ei,e j ] e i +j
for i = 1,2,j > i
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Theorem 1: Let 9. be a Lie algebra as above' generated by e 1 and e'2 •

Then

a)

b)

if

if

[e1 ,e4 ],;' 0

[e
2
,e

3
] = 0

then

then

~ - L 1 or ~;;!!!.2

~ ;; !!..+ (~2) ) or 9 ;; m
- -1

c) if [e1,e4 ], = 0 then 9. ~ ~1 ' or ~ is isomorphie to a Lie

algebra of the next family 9..(AS,A12,A16' ••• ) , where A4i E ]pl (k)

In ~(A8,A12,A16'•.• ) we have [ei,e j ] = 0 if either i and are

even and # 2 or i is even, i F 2 , and is odd. Furthermore,

• [e1,e4k- 1 ] = Q4ke4k ' [e2 ,e4k- 2 ] ß4ke4k for k = 3,'4,5, ••. , .wl:lere

(a4k ,ß4k) are the hamogeneous coordinates of A4k • The remaining cammu­

tators can be uniquely calculated fran these formulas.

(1) (2)'
Theorem 2: The algebras L1 ' ~+(Al ) , ~+(A2 ) , and ~2 have"two

relations of weights" 5 and 7; the algebra ~1 has'independent rela-

tions of weight 2k+l , k ~ 2 ; in ~(A8,A12' .•. ) there are relations

between the generators of weights 2k+l , k ~ 2 , and 4k L k ~ 2 • ." '

Corollary: Consider the relations of weight 5 and 7 in an ärbitrary

Ilentioned graded Lie algebra g .. For most of 'the' relations , ~"

is finite dimensional or dim ~i grows exponentially with i,.. The""··

except10nal cases are·the ones mentioned above~

J. MICKELSSON:

Step algebras and their applications·

Let ~ be a camplex Lie algebra and" ~ a reductive subalgebra in ~.

Define S' (~,~) = {u EU(9.,>.1k+U C t{(s.>~+l for a fixed triangular decompo­

sition ~ = ~_ ~ ~ ~ ~+ corresponding to a ch9ice h of a cartan subal-,

gebra in k and a choice cfI+ C ~ of positive roots for the pair~ . (!:!,/~)

Set S(9..'~) = S' (~,~)/S,'(\ "V(~)~+ • The step algebra is a subalgebra

50 (9..'~) c S (~,~)' generated by !!. and elements 51 ,s2' . . . which are of

first order in a basis {t1,t2 , •.• } of ~ e ~ and are represented by

vectors of minimal possible degree in 1Jt (9..) '. Let . A+ c!!,* be the set of

dominant integral weights and fix the lexicographical ordering in A+ with

respect to <A,a1>, ••• ,<A,a
t

> (a1, ••. ,a
t

simple roots), A E A+·. All

irreducible ~-finite ~-modules V can be characterized by the action of

50(2.l~)!!. on the minimal ~-type V~ c v+ =. {v E V I ~+v = ol • Application
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A . (1)
to Kac-Moody algebras: Let ~ = At ' ~ ; Al • The ~-finite irreducible

i4modules can be classified by the following data, when dim(A) ~ 3 for

the minimal ~-type A : 1) the minimal ~-type A , 2) an irreducible

~epresentation of an infinite dimensional Heisenberg algebra acting on
+ A h +VA (this algebra arises fram the action of 5

0
(9,.,,9:.)- on VA; ~c 9:-

Cartan subalgebra) .

References: J. Mickelsson, J. Math. Phys. ~ (1985), Rep. Math. Phys. !
(1973), 307; Math. Scand. !!.. (1977), 63; vanden Hombergh, Indag. Math. E,
(1975), 42; D. P. Zhelobenko, Soviet Math. Dokl. 28 ·(1983), 696, 777.

B. KUPERSHMIDT:

Differential Lie algebras and Kdv~type equations

Let a : K -+ K be a differential ring, D(K) the Lie algebra of nvec~or

fields" on K: [X,Y] = XY'-X1y , where (e)' d(-). The natural Hamilto­

nian matrix B on C = K[U(n)] associated to D(K)* is defined as
u

XB(Y) == u[X, y] (mod Im d). Thus B = Ud + dU • Let w(X,Y). = XY (~)" , where

(.) (k) = dk ( _) .• Then w is a (generalized) 2-cocycle on D(K) • Let

b = bw such that Xbw(Y). == w{X, Y). (mod Im d) • Then B
2

= Ud + dU - a3/2.

is a Hamiltonian matrix, i.e. the associated Poisson bracket

{H F} = oF B(ÖH) satisfies the Jacobi identity mod Im a • The KdV-equation
, öu ou 2 1

is connected with D(K) in this way: u t = B (ÖHt/ÖU) = B (OH2/ÖU) ,
2 3- . 2 1

H = u , H = u + Ux ' B = a/2 being the b for the trivial 2-cocycle
1 1 2 V 2 1

v(X,Y) = 2 XY! This bi-Hamiltonian definition B (ÖHn/OU) .B (ÖHn+1/Ou) ,

B1 (OH /ou) = 0 can be iterated to the whole KdV-hierarchy. The procedureo .
can be applied to other differential Lie algebras and superalgebras, in par-

ticular to the following Lie superalgebra i:
Let K = K e K be a differential cammutative superalgebra, 9.. a finite

o T
dimensional Lie algebra over k = Ker a,K . Consider

•
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•
XIXi - Xi X2 - 2nl C12

f l f 2 a [al ,a2 ] + Xl fi a a 2 + Y1CX2 8 b l - X2f i 0 a l - Y2C11 0 b2

(XIYi + t Xi Y2) 0 b2 + f l Y2 c:J [al ,b2 ] + fi CX2 0 a l - (1 ~ 2)

(X
I

CX
2
' - ~ X'cx ) - (1 ~ 2)

2 1 2

where Xi,fi E K
ö

' yi,o.i E Kr ' ai,bi E 9- • There is a 2-cocycle

00
1

(1 ,2) ;:; Xl X
2

+ 40.1C1
2

on i; if 2.. has an invariant form (,.) , there

is another one 00
2

(1,2) = fif2(a1,a2) + •••• If (.,) is nondegenerate

the' corresponding super Kdv-system is bi-superhamiltonian.and integrable:

U
t

d (3u2 - U + E.,tE,. + ata' + 3qxp )xx - -x x

~ 2u;e, - [2:.'2:.] + 2<PxQ.

~
u a + 2u~ + 2 [E." g:.J - 2<PxE.x-

<Pt 3<PUx + 6ucpx - 4q>xxx - 2(E.,Q.>x

here u,E. E .9:. 0 K_ are even, 5!. E ~ 0 Kr ' tp are odd. For Q..,q> 0, the
o.

remaining even part loses the interaction.

K. UENO / H. YAMADA:

The super-Graßmann-hierarchy, the super-KP-hierarchy., and 91 (co tco)

The ordinay KP-hierarchy is naturally interpreted, through the Graftmann

equation, as a dynamical system on the "Universal Graßmann Manifold" (UGM),

first introduced by M. Sato. Motivated by this framework, we introduce a

supersymmetrie extension of the KP-hierarchy (SKP for short).

Let ~ be a superalgebra of superfields, which is a tensor product of the

Berezin algebra K of infinitely many variables, say x,t2 ,t4 ,···

5,5
1

,5
3

, ••. , and the constant GraBmann algebra ~. Let a = as : s·ax
CD •

+ L
k=l

5 a
2k-l t2j+2k-2

a . These are' super~eriva-
t

2j

                                   
                                                                                                       ©



- .16 -

tions'acting on ~. Further, ~(e8-1» and ~[8] are the super-analogues'

of the ring of miero-differential operators and the ring of differential

operators. Then the SKP is, by definition, the following system of nonlinear

super-differential equations:

o

oj - k·(-) 8
2j

B2k - (-) 8
2k

B
2j

+ [B
2k

,B
2j

]

k- j-
(-) 82kB2j_1 + (-) 82j_lB2k + (B2j_1B2k-B~kB2j_1)

j-l- " k·
(-) 82j-lB2k-1 - (-) 82k-1B2j-1 + B~k_1B2j_1 + B;j-1 B2k_l + 2B2 (j+k_1) = 0

where * is the eanonical involution on ~«e-1}) , and the B. are in •
. J

~[e]ej)monic • The SKP-hierarchy is integrated through the super-Graßmann-
2 \ 2j \ 2j-1

equation: Let ~ = exp(sA + ,XA + L t 2j f + L S2j_lr ), where A is a

shift matrix of size ~ and r is a canonical matrix whieh anti-eammutes

with A. Let 1; be a (~, mOl -frame over the 'constant GraBmann algebra A,

which is thought of as a point of the super UGM, and·let ~o be the reference

point. We regard the following super-GraBmann-equation:

o

For a generic 1;, this equation actually can be solved. For a solution, we

put W = L Wjj2S-j . Then W satisfies
j::::o

(->jeB2jW - W8
2j

)

(_)j-l(B . W _ w*e 2j - 1 )
2)-1

which just eorresponds to the linearization for SKP. In fact, taking the

integrability condition, one gets the SKP. The SKP is a nonlinear super

evolution equation, and its super time evolution is interpreted as a dynami­

cal motion on the super UGM: 1; ~ ~~ •

Finally, we mention a super-symmetrie extension of gl(OO} , which is denoted

by g1(00100) . This Lie superalgebra eontains many important Lie supersubal­

gebras, e.g. the Neveu-Schwarz algebra, the Harnond algebra, which are the

super analogues of the ee1ebrated Virasoro algebra, and it also contains the

super Kac-Moody algebras. We hope that the link between gl(oojoo} and SKP

will be revealed in the near future.
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w. NAHM:

Euclidean Kac-Moody ~lgebras in quantmn field theory

Eucli~ean Kac-Moody algebras appear naturally in quant~ field theories

deseribing maps fram a two-dimensional spaee to symmetrie spaces or tori,

if these theories are conformally invariant. This also applies to string

theories.

The s:L~plest example is a scalar field q> 51 .. Tk Tk
=" JR.k/ A (for

fixed time) with action f (~2_ ~.2)dxdt • If the q>n are the Fourier

eoefficients of q>, the eigenstates of the Hamiltonian ar~ given by

'i' = p(q> ) 'i' , where p is a polynomial in the <P
n

and

~ = ~n :xP(- -2n Iq> 12) • Let (Tf~)(<P) ~ 'i'(q>+f) • Then V(±) =
o n;:>o n f.

= exp<t ~ <P±nf±n')Tf yields two commuting families of vertex operators,.for

fex) ~nAe(X~X ) , A E A , Xo E 51 • One finds the Wilson" operator product
o 2'

expansion eorresponding to the conformal dimension A /2. for such an
operator. The scale of A is given'by Pl~ck's" constant. If Tk is a Car­

tan subgroup of an ADE-type Lie group one obtaines"the"corresponding Kac­

Moody algebra as

VA (x) V
ll

(y) 'V (x-y) -1VA+
ll

(x) if "A • lJ -1 e·tc.

For 'A2 = 1 , the VA are Fermion fields, for . A2 = 4 . on the" Leech,"t6rus

one obtains the Norton algebra by choosing the' leading non-trivial operator

on the right-hand-side of the operator product" expansion

.-A2/2~1l2/2+dk
VA(X)Vll(y) 'V L (x,-y) 0k(~)

k

The Z-algebras used to construct higher level representations of Kac-Moody

algebras can be interpreted in an analogous way.

H. JAKOBSEN:

A new class OV unitary highest weight representations of su(n,l)~"

We present here joint work with V. Kac. Let' 6 'be an affine root'system and

1T = {ao ,a1 , •.• ,a~} . a standard set cf' simple roots such that 1T =" {~~:·."'.:.,at}

defines a simple finite. dimensional Lie algeb~a i over ~ • ~h~~~ is'~'

natural definition' of"a set of positive roots 6+ ': (a·E'6+,'i~EA+,ö.+:ß~E·6·) =>
; • " ~ ;'J '.
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=> a. + ßE /:i+ , and Cl or -Cl but not both belong to /:i+ , for all Cl E /j

The Borel subalgebra B(/j+} of /1+ is then B(/1+} ~ a. (~- 9
- a /:i+ U {a} -

the affine Lie algebra corresponding to /j ). Furthermore, there are natural

definitions of parabolics, of campatible anti-linear anti-involutions w,

and of generalized highest weight modules M(A) • We classify the set of

WX {±1} - conjugacy classes of /1+'s . They are parametrized by the subsets

of ~. Further, besides the integrable case, M(A} is unitarizable only

if: a) (Elementary) ~ = ~ 0 ~[t,t-1] ~ ~c , ~ eorresponds to a hermitian

symmetrie space, c ~ 0 , and M(A) is constructed fram a finite number of

unitarizable modules of 9:.' b) (Exceptional) 9:. = su(n, 1) , c ~ 0 , and
2rr

A(a 0 h) -f a(8)d8 for a E ~[t,t-l] , da a finite measure on 51 ,
o

and n ; for n > there is a similar construction. Also, this gener-

alizes to the group of maps X -+ suCh,!} for X compact Hausdorff and for

Radon measures on X.

M. WAKIMOTO:

Hermitian representations of extended affine Lie algebras

The.concept of extended affine root systems was introduced by K. saito in

close eonnection to elliptic singularities, and it naturally posed the" pro­

blem of existenee and construction of eorresponding Lie algebras. In this

talk I describe a method to realize such Lie algebras and to count the mul­

tiplicities of their imaginary roots. I also give aseries of Hermitian re-

Presentations for the Lie algebra A(I,1) A(1,1)* and A(1,1) in
1 ' 1 ' 2

analogy with the Jakobsen-Kae discrete series representations of the affine

Lie algebra A~l) .

P. SLODOWY:

An adjoint ~otient for Kac-Moody groups and singularities

In this talk we give a survey of the relations between deformations of

certain isolated surface singularities (simple, simply elliptic, cusps) and

corresponding Kac-Moody groups. This eorrespondence is established via the

second homology lattiee of the Milnor fiber of the singularity, which also

serves as the coroot lattice of the"corresponding group. ~o realize a semi­

universal deformation of the singularity one has to construct a satisfactory

adjoint quotient for the corresponding group G • We sketch the construction
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of a conjugation invariant map X: G 4- T/W. of G onto a "partial cc::m­

pactification l1 T/W. of the quotient T/W. of a maximal Torus T of G

by the Weyl group. In an analytic setting (restricting T to a subdamain

T of T) this space had been constructed by Looijenga, and he had also

identified it'with the base space U of a semiUniversal deformation

X ~ U of the corresponding singularity. The analysis of the fibers of X

reveals that a big part of the total space X can be embedded into G,

in such a way that

X - -4- G

1 1
U - T/W C T/W

commutes.

Berichterstatter: P. Slodowy
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