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Kommutative Algebra. und algebraische Geometrie

12.5. bis 18.5.1985

Die Tagung stand "unter der Leitung von E~ Kunz (Regensburg) ,

H. -J." Nastold (Münster) und L." Szpiro (Paris).

Es war das Ziel der Tagung, Probleme und neuere Ergebnisse aus

dem Bereich der kommutativen Alge~ra und algebraischen GeometrLe"

darzustellen~ Mit Vorrang sollten Fragen diskutiert we~d~n,: ~i~.

beiden Gebieten gemeinsam entspringen.

Folgende Themen fanden besondere Aufmerksa~keit:

Schnittmultiplizitäten über lokalen Ringen, Bi~bertfunktio?, ve~~

torbündel projektiver Varietäten,' Kurvensingularitäten.

Das Interesse an der Tagung zeigt sich nicht zuletzt in der gro-

ß e n Za h laus 1 ä n dis ehe r Gäste. U. a. k a'me n 6 Te i 1 ne h merau s Fra n k'':'" "~

reich~ 13 aus Nord- und Südamerika und je 2 aus E~gland.und Ita- ~

lien.

Vortragsauszüge

M. BRODMANN

Bounds for cohomölogy of project~ve varieties ~ . . (~.. _.

Let X = Proj (A) d-.. lP~ = Prej eS) be a projective sc:~e"~e.:-.?y~.:;_. -'>_

an algebraically closed f ie ld k,. A = k d> A1- ~ .•. b~ipg :":a' .gr.age 9

homomorphic image of S k[Zo, ... ,zd]. Let ~ -·be~.a coherep.~., ".~!

                                   
                                                                                                       ©



- 2 -

sheaf over x. Our goal is to give bounds on the cohomo1ogica1

Hilbert functions n t-+ h
i Ct (n) )

Let L S Al be a k-space of positive dimension. For f E L ~ {O} we

write Hf for the hyperp1ace sec~ion Proj(A!fA) defined by f and

consider the linear system 1( = {Hflf E L - {Oll. dirn L - 1 is the

dimension dirn 'ac of ~. We want to assume that .de. is general with

res p e c t to !J e • 9 • t ha t A ~ 5 Cf) n Hf = ~ f 0 r all Hf E df..

Putting r 1 ,n)

si{n)

max{ dirn ker [f ;' Hi ('i' (n) )

ma,x{dim ~oker[f

Bi (.f"{n+l»] If E L {Oll

Proposition 1.

and denoting least. integral parts by [&-1 we have

(i) ri(n) < hi(n) -a- h i CnY-h i en+l) ~ rien) _[, ~im H o.
r (n) +1

Ci) si(n) < h i (n+1) ~ h i {n+l)_h i (n) ~ si(n) _~~im H ~.
s1.(n)+1

Put $ ; = {s ; 2Z ~ 2Z }. For a function s E ~ we def ine the define
~o

the 1eft - resp. the right-vanishing order by v(s) ;= inf{n E 2Z1

s{n+l) 4= ol, lJ(s) sup {n E 2Z1 s(n-l) * ol. Moreover we put

1S- {s E1> I v (s ) > -co}, .b+ = {s E BIII (s) < co}, j)0 = .:B- n .~+ an d

+ {o, if ri = + ~
c , f or c E JR U { + co}.

max{o,c} otherwise

T
Now, for· N E 2Z we define two opera tors 1 + --2!... ~ +, J

~o

by Tns(n) ;=[ m~n s(m)-(v(s)-n)+N]+, (s E .1+). uNs(n)

[m~n s(m)·- (n-~(s) +l)+N]+, (s E ~-).

Proposition 2. (a) Le t i > 0, s E'A +, h i -1 er ('B (n» ~ s (n) , VnE 2Z , VH E ac.
i

Then h (~(n» ~ Tdim(~,s(n), 'In E 2Z.

(b) Let i ~ 0 I s, h
i

. E J,- I h i (3 tH (n) ) .:5. s (n) , 'In E 2Z, VB E ~.

Then hi(~(n» ~ Udim~),s(n).
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In the sequel let ~ be a locally free sheaf of rank r > 0 over

d
IP k •

By (2) we may prove

Proposition 3. Let i, j ,p,q E 2Z~o such that 1 ~ P ~ q ~ d,O <

j ~ i ~ j + d - q. Let lPP = p c ]pd and assume that there is a

~ q,

function s E:1 such that for each 'IP
q d

Q '=. lP wi th P ~ Q i t

holds h
j (t ~Q (n» ~ s (n) (n E ZZ) • Then it holds

h i (e (n» ~ Td _ P _lOTd _ p _ 2 0 ••• 0 T d ~ P _ i + j 0 Ud _ P _ i + j -1 0 ••• 0 Uq _ p s (n) ,

L ./ '-- ."'v ~(nE~)

i-j factors d-q- (i-j') factors

whenever one of the followi'ng four hypotheses is satisfied:

a) p<q and sE$o, b). i = j and s E~

sE :ß +, d ) s e O.

c) i = j +' d - q'and

Now, let (al' ... ,ar) E 2Z.
r

be the generic splitting type of f,
let 0 = a

1
- a

r
be the first two' ehern classes

Ud . 1 0 ••• 0 U
1

, s ," (n).
~cl/c2'o

d-i-1 factors

o < iProposition 4.

of t. . If cl = 2 the Riemann-Roch theorem for bundles asserts the existence

of a function s' _ '(n) E l> 0 . (depending on the parameter)c
1

,c
2

,o

Cl' c 2' 0 (a nd r) s u c h t hat h 1 (& (n» < s - () - (n E 2Z) •, - c
1

,c
2

,o n

Thereby the graph of s has the shape sketched belo~:,

c 1 I C 2 10 ~quadratic

Now, using (3) one gets in the general case hine~r-\,-_' _

< d ~ hi(~(n» < Td_2 0 •.. 0 T
d

-
i

0

'----------' ./

i-I' fac,to'r 5

e-

This improves a simi lar- type of bounds' 9 iven (for' f ixed) n by'

Elencwajg-Fbrster in 1980.

From now on, let X be integral of dimension> 1· and put

tex)

e(X)

where

mi n{ t > l' -I H t «(?7X ) :f: 0; Vx Ex, cl 0 s e d}
"""'X x . ,.x

1 #

1: h
4Mu

(eJ ) '( <CO).I
xEX r··A. X X t x

HiCIOSj~note~ local cohomology in x and h~ its length. Then
~X.x X,X
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Proposition 5. n <o~ e(X) < h 1 (G (n» < max{e(X),h 1 (6 )+n(t(X}+1}}
X - X

Corollary 6. Let X be a complete irreducible variety of dimen-

sion > 1 and let ~ be a very ample invertible sheaf on X. Then

1
h 1 (.t n) = e (X) f 0 r Vn _< ~. _ h (G;X ) - e (X) ~

t(X)-1

Corollary 7. Let X be a complete normal surface and let;r... be

o .
slo,l?e: -h (.f.) +1

only 1.s ample?

h tl}+h (
h Ö (i)-1

What holds if LQuestion 8.

a very ample invertible sheaf over X. Then hl(~ n) < s(n), where

s (n) E -1> 0 i s of

1-s

w. BRUNS

Length formulas for the loeal cohomology of exterior powers

(joint work with U. Vetter)

We report on joint work with Udo Vetter concerning problems re-

lated to the following theorem of Angeniol and Giusti: Let R be

a local ring, f : R
m

-+ Rn an injective map, grade I = n - m + 1, Where

I = I (f), and Ä(R/I} < ~ (A = length), then C = eoker f* and R/I
m

have the same length. Let M = Coker f, r = rank M (= n-m). Then

a complex J}k 1s built by splieing complexes t k and er _
k

* via a

k r-k .p
duality A M ~ (A M)·, ~k resolving ~ M if grade I ~ k (Lebelt).

It turns out that .the Euler-Poincare characteristic X~k) vanishes

for r ~ d = dim R. We of course assume h(R/I) < ~. In ca se

r = d grade I this can be translated ·into length formulas of
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the type A(H~k(~ M» = A(H~k+l(~ M», or, dually, the cor.re-

sponding formulas for .Ext. Specializing M to the mqdule of

differentials of a eomplete intersection with lsolated singularity,

we obtain length fo~mulas of Greuel~ Naruki. In the ease, in'which

I has its maximal possible grade, that is grade I = n - m + 1, all

d 2 d 0 d d~ 1
the modules A M, Rf!, C, S (C), ... , S CC) ,H~ CA M), .. "., H~(M)

Ext 1 CM,R), ... ,Extd(~ M,R) have the same length~

R.-O. BUCHWEITZ

Maximal Cohen-Macanlay modules over Gorenstein rings

Reeently mueh attention"has been focused on the search'of locäl

rings whieh have only finitely many isomorphism classes of in-

decomposable maximal Cohen-~acaulay modules (MCM's for sho~t)".

[An'R-module M is maximal Cohen-Macaulay iff depthmM = 'di~ R;

Ql ~ R ,the maximal ideal].

This talk adressed the following questions:

- Why should one study MCM's?

- How to deeide for a given one whether it contains a free--summand

and what the number of non-free indeeomposable summands "is.

- What is the minimal rank of an indecomposable non-free"MCM?'

Theorem 1. Let R be a loeal Gorenstein ring. "Then the fbllowing

eategories are equivalent:

(i) AFC(R) the homotopy eategory of aeyclie free complex~s" of

R-modules

MCM(R) the Auslander-Reiten category of MeMls whose"öbjects

are all MCMls and whose morphisms are given "ny HomRCM1,M;) ',"... :.
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Horn (M ,M ) over a free module}
R 1 2 1{~:Ml~M2/~ faetor

(iii) ob (R) lob (R): the derived eategory of R-modules modulo
perf

the subeategory of perfeet eomplexes.

Corollary. - As (i) and (iii) are naturally triangulated eategories

MCM(R) is triangulated.

- Every R-module M admits a presentation

o ~ U ~ M ~ N ~ 0

with U of finite proj. dimension

and M an MCM (U & Mare uniquely determined up.to isomorphism.

As a eonsequenee ot theorem 1 ane might define stahle Ext-modules

as

HomDb(R)/Db
perf(R)

(X· ,Ti,y"'), i E 2Z", x,y E obeR).

~x@.mplel Let R P/f' P a regular loeal ring eantaining the

,.., m
Ext~(k,k)[a

- .
field k = P

/ro
V = Im~· Then ExtR

(k,k) = ] , where
/ .

~p

2
0- is the unique generator in Ext

R
(k ,k) . It follows that

Ext; (k, k ) = T· ( (ID I Öl 2) *) QI) k k [ 0"] [0" ], wh er e ~: V'* ~ k isth e

.(VxQDVX-~(v*>a) (v*EID/;>
ID

(w. l.o.g.

quadratie form defined by the elass of

f E m
2
).

f in m
2 1 3

m

In particular Exto(k,k)
--R

of the quadratic form ~.

. +C11ff (QT)' the even Clifford-algebra

Theorem 2.

As an application one obtains the following result on ranks of

non-free MeM's over a Gorenstein ring of multiplicity 2:

Let 1 be the index of Qf. Then 2
1

-
2

1 rk M for every

non-free MCM M.

Remarks. 1. Theorem 1 holds also for non-commutative, loeal Go-
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renstein rings. For R = A·V, the exterior algebra, it is due to

Bernstein-J2ilinson-;(;e:'l.=f.and ,-Gelfand . In this case MCM (R) is also

equivalent to D
b

(lP (V·»

on projective space.

~he derived category of coherent sheaves

2. The methods :draw heavily on work of M. Auslander (with Bridger

and I. Reiten).

3. In case of a eomplete loeal ring over ~ , Theorem 2 is a con-

sequence of H. Knötrers periodieity theorem fo~ MCM's over·hyper-

surfaees.

4. Theorem 2 ean be sharpened by studying the Clifford-algebra

more explici tely (whose' structure is weIl known, of course,)

Theor~m 2 i~ best possib~e for k ~.

E.D. DAVIS

Projective embeddings of eertain rational surfaees .

(with A.V. Geramita)

Fix Z, a redueed o-dimensional ·subseheme of ~ = w2 (k), k = K,

and let S be the smooth rational surface obta~ned by blbwing up

lP with center Z. Let I(Z) be the homogeneous ideal of Z. For·

d > a = min{tII(Z)t + O}, let Sd = prOj(k[I(Z)~]) and let

!d : 5 ~ 5 d be the rational.eorrespondence indueed by inelusion

of function fields. WeIl known: If Z is the seheme-theoretie

base locus of I(Z)d' then ~d i~ a mo~phism and ~d+1 i8 an iso-

morphism; I(Z) is generated by forms of degree ~ T + 1, where

T is the least degree for whieh requirlng passage through Z

imposes card(Z) ,independent linear conditions on the linear system

of curves ·in lP of that degree. 50 11 d is an isomorphism for d > T + 1.
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A special case of the considerations in § 4 of our paper with

P. Maroscia [Bull.Sc.Math. (2) 108 (1984) 143-t8Sl shows that for

any O-dimensional subscheme X of lP : dimkl(X)d - dim k l(X)d_1 =

d Q either some line in lP contains a subscheme of X of degree

d + 1, er l(X) is generated by. forms cf degree ~ d. Applying this

result to X = Z + {p}, pES - appropriately, interpreted as a

O-dimensional subscheme of lP - we prove:

Theorem. n
T

+
1

is a~ isomorphism ~ no line contains more then T

points of Z.

And specializing to the case d = T + 1 gives:

Corollary. Suppose: card(Z) d{d+l)/2; no curve of d~gree d - 1

contains Z; no line contains d points of Z. Then TI d embeds S

in lP
d

wi th degree d (d-1) /2.

Remark. Putting d = 3 in this result gives the weIl known fact

that blowing up a general set of 6 points of lP produces the

rational cubic surface in lP
3

• Putting d = 4 generalizes the weIl

known fact that blowing up a general set of 10 points of lP pro

duces a "Bordiga Surface" in lP
4

Question. Does this result give all cases in which TI
d

is an iso-

morphism? (Yes, if dimkI(Z)d ~ 5). What about this question for

"general" z? e

w. DECKER

On the uniqueness of the Horrocks-Mumford-bundle

(joint with F.O. Schreyer)

We prove the

Theorem. Let )" be a stable rank-2 vector bundle on lP 4 lP (V)
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(over <1:) with Chern-classes cl = -1, c
2

= 4. As~ume H
2

(lP 4 ,j:'C-l» o.

Then there exists T E lP GL(V) with ~ ';: T*~ .HM.,..
Here J

HM
is the Horrocks-Mumford-bundle. This bundle, discovered

in 1973, is still essentially. the only known indecomposable. rank-2

vectorbundle on IP 4 .

The proof of the theorem' is based on a detailed study of·the variety

S of uns table planes for '"f. This can be de ser ibed as fo l-lows'.

Via monads 'f "corresponds ll to a 5 x 2-matrix A with ent'ries in

A 2v 'satisfying certain conditi·ons. Then S = (G A X). where G is

the Grassmanian G = G(2,V*) c IP (A
2

V*) and X the determinantal

variety X = {.<a > EIP (A 2v ) I rank (a (a ij » ~ 1 l', (a ij) =: A. For

the Horroeks-Mumford-burid~eBarth - Hulek - Moore have shown tha t

SHM is just a copy of .Shioda's modular surface for ellipt~c cu~ves

with level 5-structure.

E.G. EVANS

Remarks on Syzygies of finite projective dimension

Let R be ~.regular loeal ring containing a ~ield.· B~ mimit~ng

Gröbner' s proof of Hilbert's syzygy theorem and' using Griffith's

constr.uction of Cohen Macaulay modules of. the expeeted proj,ec'live

dimension we showed:

Theorem. Let M be a k-th syzygy, In EM - *"l-l and

I = {f{m) If E Hom(M,R)}. Then the height ~f I i~ at le~st .k.

-+ •••

Proof. Suppose not. Then
n

k
(a .. ) n

k
_.

1R ~R

~M/

eIl--..;.
m

one has
n

R 0 -+ N -+ 0 exact.
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Let m be the firs't generator of M. Thus the entries of the

be 1 < k.II. Let the height ofare in(a
ij

)

Let H be a Cohen Maeau1ay module over R/I wi th pdRH =. 1. (This

is possible by Griffith.) Then Tork(H,N) = 0 by projeetive dimen-

first row of

sion of H, hut TorkCH,Nl + 0 from the resolution of N sinee
n k _ l n k + 1HeR e

1
~ 0 in Rand cannot eome from R ~ H since

~H :1= H.

Remark. In the non regular ease if M (and henee N) have finite

projective dimension, Griffith gives that Tor
j

(H,I) = 0 if

pd I <. ~ and j > 1.

Corollary 1. Let R be a Ioeal ring eontaining a field and

M a "k-th syzygy of rank < k. Then M is free.

Corollary 2. Let R be a Ioeal rin~ containing a fi~ld and M

oe a k-th syzygy of rank k and M not-free. Then M is an

image of the minimal k~th syzygy of Ext n - 1 (M*,R).

H. FLENNER

Babylon~ari tower theorems on the punctur~d speet~um

We prove the following

Theorem. ...... R
o

be a tower of Ioeal

rings, whieh are regular; i.e. R
n

_
1

Rn/tnR n for seme t
R

+ 0 in

R . Suppese we are given vector bundles e on the punetured speetrum
n n

X
n

of R
n

sueh that f
n extends tn-l' i.e.t Ix r;;: { 1. Then {'

n n-l n- n

is trivial for all n.

This solves a conjecture of Borrocks. In special_cases this re-

sult has been show~ by Horrocks and Evans-Griffiths. In the pro-
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jective case the corresponding question was previously known by

the work of Barth-Vande Ven, E. Saito, Tyurin. The main idea.

consists in applying formal deformation theory. A similar re-

sult holds for loc~lly complete intersections instead of bundles.

eH. FLENNER·

The infinitesimal Torelli problem for zero sets of sections of

vector bundles

The classical Torelli theorem for curves says that a smooth

compact curve ~ of genus ~ 1 is uniquely determined by its

Jacobian. The Jacobian is given by the position of the integral

lattice ~n Hl(X,~) which has a Hodge decomposition BI~ ) $ 8 0 (n ).
c c

More generally, for a projective manifold X of higher dimension

one has the BOdge decomposition of H*(X,~) and there arises "the

question whether for a given class ~ of manifolds which admits

a module space, the map from ~ inte the space ot Bodge structures

is injective. In this talk we consider the problem whether it is

at least lecally injective. By a result cf Griffiths this hold~

if the canonical map." 1 a (BPq ,HP - 1 ,Q+l)B (X, e x ) ---+ $ Bomq:p,Q

is an injection where HPq
= H

q (ni>· We will say "then, that. the·

infinitesimal Torelli theorem holds for X. We have shown

Suppose -there is an exact sequence 6 ~ ~ ~ ~ ~ ni ~ 0

and that the. following ·two conditions are satisfied for so~e

p in the range 1 ~ p ~ d:

(al The pairing HO(Sd-l~VGDWx) GD HO(Sd-P~VGDWx) -+ HO(Sd-P~VGDW~)

is surjective.
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a j + 1 (Sd~_ d-1-j ry -1ö-" GDWx ) = 0 tor 0 ~ ~ d - 2.

Then a above is injective.

As an application we obtain the infinitesimal Torelli theorem

tor arbitrary smooth complete intersections in ~n with the only

exception of surfaces of degree 3 in w3
and intersection of two

quadrics of dimension ~ 2. For the case Wx ~ 0 resp. hypersurfaces

this has been shown by Peters and Usni resp.Griffiths. Moreover ~

we get that for a sufficiently ample bundle ~ on a projective

man;i.fold and for a section s E B~ (b.) the infini tesimal Torell·i

theorem holds tor X := {s = o}. This generalizes.a result of

M. Green.

8.-B. FOXBY

Algebras of finite flat dimension

Let ~ : A ~ B be a morphism of Iocal rings, and assume that B

has propoerty ~. Does A have property ~? (~= regular, Goren-

In general, let fd denote flat (Tor) dimension.

stein, CH = Cohen-Macaulay, ... ). if B is flat as-an A-module

finite projective, then the answer is known to be yes for some~.

the answer 1s yes tor many Cf . If B A/ot. where OL is an ideal of

•Theorem. (i) if fdAB < ~ and B is Gorenstein, then A 1s

dirn A (and this 1s the case if A

Gorenstein.

a~ if M 1s a f.g. B-module w1th fdAM < ~, and if there exists

an A-module C with depthAC

contains a fieldi Hochster) , then dimAA - d~pthAA ~ dimBM - depth M.

ww If M is a f.g. Cohen-Macaulay B-module of dimension n and
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fdAM < ~ and if A is Cohen-Macaulay of dimension d, then

1J~ (A) divides 1J~ (M) (Bass n':lmbers)"

(i v) if fdAB < ~ , then

emdim A - depthAA ~ emdim B - depthBB where emdim is the em~edding

dimension"

The number dim A - depthAA is the Cohen-Macaulay defec~, while

emdim A - depthAA is a regularity defect.

This is joint work with L" Avramov [K~benhavns Universitets Mate-

maticke Institut, Preprint Series No. 2, 1985]. There are a few

results in the other direction: A has ~ ~ B has ~ ; L. Avramov

and S. Halperin [ibid].

w. FULTON

Characteristic classes of direct image bundles

(joint with R. MacPherson)

Far a covering f : X ~ Y (finite, unramified) of algebraic varieties

ar topological spaces, and a vector bundle E. on X, w~ giv~ a

formula for Chern classes of f.E ~n term of Chern clas~es .af E

and the geometry af f. Spec ial cas.es were known i~ .. tC?P~lo'!r,

particularly, when f i5 the covering B
G
~ BGI corre 7Ponding to

a subgroup G of finite index in GI.

2 kth52 = cl - 2c 2' .... ,sn i5 the Newton polynomial, then

[~l
where L

k
i5 the product cf all primes that divide L/k! n p-l

'E-

If ~k i5 defined by
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TI
(p-1)/k

1+ord k
P P

and E is a bundle on X such that ~~nf*E = 0 for all k, then

Mkcnf.E = Q for all k. (In characteristic p, the prime p can

be omitted from L
k

and M
k

).

The general formula involves multiplicative transfers

Af : A*X ~ A*Y, which can be described on a general cycle. z on

X by (locaIly) intersecting the n image of z, n = deg(f). In •
the topological setting, the formula appears in eR. Acad. Sci.

(1984) •

A. v·. GERAMITA

Bilbert funktions of Q-dimensional subschemes of ~2 and the

geometry of rational surfaces

(joint work with E. D. Davis and also on .recent work of B. Har-

bourne)

- '2
Let X = {p1 ' .- ...,ps} ~ JP be s dis tinc t poin t sand. 1 e t P i -Ho g i C

R

I

k[ x 0 ' xl' x 2 ]. If 0 1 ' . · . , 0 5 ar e non ~ ne9 a ti v eint e g er s ,

a· Os R
~ In ... n ~s and A = /1 = $ Ai' the problem 15 to find

we know2

o. (a. +1)
1. 1.Since for t »6,' H(A,t) = e(A) and e(A) = I:

the Uexpectedll Hilbert function, H(A,t) = dimkA
t

, of A. (WeIl •

known if all the o. = 1).
1.

the eventual value of the Hilbert function. If we let T(A) denote

the least integer t for which H(A,t) = e(A), then

Proposition 1. '[ (A) ~ (I: 0i) - 1; equa~ity ~ {P
1

' .... ,PJ lie on a line

(This is also true' in ]pn).

Proposition 2. [D-G-Queen's Papers in Pure and Applied Math.,

Val. 67 - uThe Curves seminars at Queenlß - Vol. 111 11
]. It is
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possible to completely describe the Bilbert fu~ction when Pt~·"'Ps

lie on a line, 0
1

,,,,, .,a s are arbitrary. The Bilbert function is

ind e p ende n t 0 f t h e pos i t ion 0 f P 1 ' " " " ,. Ps 0 n t hel i n e .•

Proposition 3. (B. Barbourne). There is an algorithm for finding

the Bilbert function of A as above when P
1
,."",Pn lie on an irre-

ducible cone. Again, the Hilbert function is independent of ·the

position of the points chosen on the cone"

Theapproach to 1) and 2) by [DG] is through an analysis of the

ring structure qn A, while the approach by Harbourne consists of

identifying dimkl
d

with ~o(X,J..; (Fd » where X is the rational

surface obtained by blowing up F
2

at {P1,,, .. ,p
s

} and F d is the

d iviso r d E - La. E ( E. (i > 0) t he pr e i ma 9 es 0 f P i und er t h e
o . i=l). ).

blow-up and Eo the proper transform of a general line. The work

of Harbourne Will appear in Proc. of Vancouver Conference in Alg.

Geo" (1984)"

G,,-M .. GREUEL

Simple singularities and maximal Cohen-Macaulay modules

(Report on joint work with R"-O,, Buchweitz, F.-O. Schreyer)

After Arnold, a convergent power series f E <1:{x o ·' "',, . ,x
n

} is called

simple if for any F E <!:{x o '"'' " ,xn ,tl'··'" tpl such that F0= f

the set of isomorphism classes of <!:{xo, ... ,xn}/f t is finite for

t E 4;P, sufficiently near to 0, (here f
t

(x·) = F (x,.t).>. Arnold

showed that the simple singularities are exactly the so-called

A-D-E singularities (up to isomorphism) in the case of isolated

singularities. For arbitrary f, allowing higher dimensional sin-

gularities, his classification shows that there are two more sin-
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gularities, namely A~ : f(x o ' ... ,X n ) = x~ + ... + x~, D~ : f(xo' ... 'x n )

2 2 2
x o x 1 + x

2
+ ... +ox

n
. Recently it was discovered that these singu-

larities have - besides many other characterizations - characteri-

sations through the set M(a{x}/f) = {isomorph classes of inde-

composable finitely generated max. Cohen Macaulay modules over

~{x}/f}. In dimension 2 (i.e. n = 2) this follows from work of

Herzog, Artin, Verdier and in dimension 1 it was proved by Greuel ~

and Knörrer. Knörrer mareover showed among ether things that in any

dimension M(~{x}/f) is a finite set for f simple, with an iso-

lated s~ngularity. The aim cf the talk was"tc give a hint to the

proof of the converse. Together with Knörrersresult we get.

R = a{xo, ... ,xn}/(f}, f E m
2

, n = dim R > 1.

a) M(R) finite - R (resp. f) has an isclated A-D-E singularity.

b) M(R) countably infinite - f of type A~ er D~ ~

c) The following are equivalent:

i) f simple

ii) f of type A-D-E (including A~, D~)

iii) each maximal Coh~n Macaulay madule M is.simple (1.e.)

for any deform cf M ove~'a fini~e dimensionalobase,:there

are only fini,tely ma'ny isomorphy classes of maximal COh_

Macaulay modules)

iv) M(R) is finite or ccuntably infinitely.

(H(R) = set cf isemo~phy classes nf indecomposable infinitely

generated maximal Cohen-Macaulay modules over R)
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R. HARTSHORNE

3'
Possible spectra of stable rank 2 vector bundles on ~

(joint work with A.P. Raa)

Let t be a stable rank 2 vector bundle ~n ~3 with cl = 0

and c
2

given. We recall the spectrum X = {~~.••~kc }, k i E ~

. . 2
of ~ , first introduced by Barth and Elencwajg. It has the following

_ properties ) where )t denotes the sheaf c& (!llP 1 (k i) on lP ')

1. For each l< -1, h 1 <t(l» ho(]pl ,2(~+1»

2 . Fa r e ach 1 > - 3, h 2 (e (l) ) h' <lP 1 ,"JJ 1 + 1 ) )

3 . Xis s ymm e tri c ab ou t 0 , i. e. {-k i} = f k i}

4. It has no gaps, i.e. every integer between min{k
i

}

max{k
i

} occurs (at least once) in the spe~trum

5. if 1 < k
o

< k = max{k
i

} is such th~t k o occurs only

once in X, then every k o ~ k
i
~ k occur orily once.

and

Problem·l. Which sequences of integers k 1 ~~ .. ~ k c satisfying
. 2

conditions 3. - 5. above can actually occur as the spectrum of

a stable rank 2 bundie with the given c 2 ? (We expect the above

conditions will not be sufficient.)

This problem was studied by Barth in his paper "same exper,lme:n'-t'a:l

da ta ..• n wherehe li 5 ted po s s i b lein v a r i an t s 0 f 'bu nd 1 e s', b u t d i d

.' .
not always settle the question of' existence .. Furthermore ;' 'i'f we "

1 e t Mt = <b 8 1 ( t (l) ), con s i der e das a f i n i tel ~ n 9t 11 ~. ,9 raci ~ d S -
~~ ,

module, 5 = k[ x
o

,x
1

,x
2

,x
3
],. then Barth' s. tables were con~'tr'uc'te'd

under ,the "hypoth-es is 11 tha t M 'should always 'be gei:i'era ted 'b~

elements of degree < -1, which was true in' all the ·cases :h'e k,ne·w.
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The origin of the present work was to decide whether Barth's

hypothesis was always true, and to complete his work by considering

also the question of existence. The result is a complete classifi-

cation of possible spectra and "possible degrees of generators for

which is the first ca se where there is a case in which M needs

all bundles with c 2 ~ 8. We give here the table only for c 2 = 7,

a generator in degree ~ 0:

stable rank 2 bundl·es on ]p3 wi th c 1 0, c2~ •
Spectrum

0
7

-1,0 5 ,1

_1 3 ,0,1 3

-2,-1,0 3 ,1,2

-2,-1
2

,0,1
2

,2

-3, - 2, -1 ,0, 1 , 2 ,3

Generators for M
_ll

_ 2., -1 3

_2,_1 4

_2 2

_2 2 ,_1

._2 2 ,_1 2

_2 3
,0

_3,_1 2

-3

-3,-2

-4

Existence

t <1) ~8 skefr: lines

t (2) +T E
4

U E8 (Ed
ellipti"c

't,< 2) ~ E 3
U E

8
curve degd)

t (2) +T E
3

U E4
U E 7

t: (2) +T E 3
U E

3
U ES

(more complicated)

(*)

Y(2,2,4,4)

Y(1,4,4,7)

There are four kinds of constructions

tU
Y

I. nSerren" to construct t. from a curve Y C:]p3 with

(!Jy"(l) for same 1. (First 5 curves of table)

II. Apply I. to a disjoint union of curves· obtained as sections

of vector bundles previously constructed. Cases ) in table

Bundle associated to a principal module M111.

where. e.
1.

S/(f
1
,f

2
,f

3
,f

4
)

= deg f i and e 1 ~ e 2 ~ e 3 ~ e 4 and e 1 + e 4 = e 2 + e
3

.

This is explained in Raols paper J. Algebra 86 (1984) 23-34. De-

noted y in table.
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IV. "Ferrand 11. This is used to construct the new bundle (*).

be a rational quartic curve in' ]p3 . Take a surjective map

•

U : j ~ w (2) ~ o. Then ker u;~ defines a multiplicity 2
x x y

structure Y on X, with U
y

I">; ~y(-2). Then apply . I to get (*).

It is the fact that BI (:J. (1» k which gives the generator of
x

. Mt. in degree o.

M. HOCHSTER

Intersection theory and multiplicities: easy answers and hard

questions

The first part of the talk gave a very short proof of a lemma in

arecent paper of Angeniol and Giu'sti which ass~rts the following:

If (R,~) is a Cohen-Macaulay local ring of dimension r - s + 1,

X = (x
ij

) is a matrix of size r x s over R, r ~ s, such that

the ideal I s (X) of s x s minors of Xis·'U(. -pr imary, and M ; Co-

ker X, then l(M) ; ~(R/Is(X», where 1 denotes "length. The idea

M aso arising by applying R ~" to generic set-

up over a regular 'ring T. Then l(R/Is(X» - I(H) can be reinter-

preted as an intersection multiplicity over T of R with a"

module N of dimension dirn T - dim R - 1, so tha~ by Serre'resuLts,

the"multiplicity must vanish. This proof is intended as a demon-

stration of the power of multiplicity theory.

The second'part of the' talk dealt with arecent result of W. Smoke

which asserts the following: Le't R be a" Noetherian ring,; M an

R":'module wi th m generators. Suppose xl' ... ' x'r is an R-'sequence,

r > 2, and (X 1 ' .•. ,X r ) M = rr. Then there is an exakt seq~ence
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(r-I) generators if m > rand MI is

A corollary is that for any Cohen-Macaulay ring R, the Grothen-

dieck group A&(R) of modules of.finite length and finite projec-

tive dimension is generated by th~ classes [R/J] of cyclic R-mo-

dules of finite projective dimension. In particular, if M is

a modul~ with five generat~rs over R ; K~x,y,u,vO/(xu-yv) such

that pd M = 3, X (M,R/(x,y» = -1 (and I(M) = 15) and x 1 ,x 2 ,x 3 is

any system of parameters for R contained in AnnRM, one may ex

tend M first by R/(x I ,.x 2 ,x 3 ) and then by R/ (xi ,X~,X;) to obtain

a cyclic module M1 of finite projective dimension such that

X (M
1

,R/(X,y» =-1. (see Dutta-Hochster-McLaughlin, Inventiones

Math., 1985 for" the construction of M). The third part of the

talk dealt with the question, for which local rings (R,~) 1s it

true that whenever I,J are primary to~, then TorI (R/I,R/J), i.e.

I n J/IJ, is not zero? This is easily seen to be true if R is

regular' (but using rigidity) and less easily if R is a hyper-

surface (w. Brown~ s. Dutta). The 5est apparently is not known

even for R = T/f,g) where T is regular and f,g 1s a regular se-

•

quence. It was .pointed out that the result is false for one di

mensional Gorenstein domains (e.g. C. Hunecke observes one may 4It
take R = k[t9,t11,t13,t15,t17,t19,t21,t25], I = (t13,t15,t19),

J = (t9 , t 11 , t 1 7 , t 21 , t 23): I n J = IJ, I + J = /J'Uo', 1 2 c IJ.

The question was raised, if R 1s n-dimensional regular, must

Tor
1

(R/I,R/J) have at least n generators? This would imply the

result ~or R = T/{f
1

, ... ,f
m

) 1f T is regular, dirn T· = n, m < n,

whether f 1 , ... ,f
m

is a regular sequence or not.
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G. BORROCKS

Unstable invariants of bundles on the punetured speetrum cf a

lceal ring

Define algebraie equivalence for X-bundles, X the pun~tu~~d . I

speetrum of a regular loeal ring, to bethe ~q~ivalene~'r~lat~on

generated by eonfluenee. A confluenee is obta~ned by embeddirig;e X as a hyperplane section cf a punctured -spectrum-- Y -- 'and takfilg

on Y . a sheaf loeally free exeept on al-dim~ensional 'subsehem-"e'

(as a subseheme of the elosed speetrum). The restriefion'of thi~

sheaf to X is said to be a eonflu~nce of,"its loealisati·ons· ...at.

the components of the exeeptional subscheme. The~e ar~ nö sfable

(i. e. presented by taking direet sum wi th a, trivial bun-dle) in-

variants for this equivalenee. The simple.st unstabl~ invar~a~..t

oceur for bundles whose rank 'equals d-1, d :being ·the dim~ns~on

the Riemann-Roeh Theorem and then multiplied by (d- ~).! (the form.al

eharaeteristie exists only in ~). For arbitrary' X-bundles tqi.~;.ean

of the defining Ioeal ring for A. In the ease when ~ .i~ ~h~

residue-eI8ss- field this is the eharaeteristic map .'1 E ~2d_2(~(d-1"»

2Z / (d-l)! In the general ease this ean· be def ined in terms. ~.f.~-;

ehern elass on ~ pd-1 for bund~s whieh lift f~om p~ojeetiy~ ~~aee.

•
It is the formal Euler eharaeteristic ea~eulated on t pd fro~.

cokernel of the matrix

be defined by extending over the blown up elosed poin~ ~s~ng~~t~e

faet that we are assuming rank is d - '1. The resulting group under

aigebraie equivalence is cyelie. Provided it ean be shown that the

d-l
(x 1 ' x 2 ' .. • , x d ) is a rank d - ~ ·bun~l~.;al-

gebraically equivalent to' the trivial bundle the order i~ (d~~~!

The invariant n/2 has an alternative diseription when'4~s .9qd~;
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viz as the length mod 2 of the cohomology group H(d-l) /2 (X,A (d-l)/2E).

C. HUNEKE

Aigebras with small divisor class group

(joint work with,B. Ulrich)

5ay anormal loeal Cohen-Maeaulay ring (R,m) has small divisor •class group if el(R) lR [WR] where (,')R = canonical module of R.

Then we first recall a theorem:

Theorem.I.Let 5 = k[Xo ' ... '~n] 1= S homogeneous, R 5/1 C-M

and normal with minimal homog. resolution,
n. n.

0 ~ i S(-n . ) ~
l. S(-n,i) ~ S ~ R ~ 0... cf)

i=1 ql.. i=1

min {n- . } (q-l j max{n,i} ~
1\

1f > and if is rigid, then R (and hence
ql.

R) has small divisor class group.

We apply this to the case if R is the linkage class of a complete

intersection.

Theorem 2. Let S,R be as in Theorem 1, and further assume R is

in the linkage class of a complete intersection. Then

max {n .} > (q - 1) mi n { n , i } .
ql.

Corollary. 1f Rand WR are generat~d by forms ~f the same

degree in the situation of Theorem 2 then R has small divisor

class group.

B. ULRICH

The singular locus of algebras in the linkage class of a complete

intersection.

(joint work with C. Huneke)

Theorem. 5/1. Assume that I
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is in the linkage elass of a eomplete interseetion, but not a

eomplete interseetion.

a) If R is Gorenstein, then R is smoothable in eodimen-

sion 6, but not in eodimension 7.

b) If R is not Gorenstein, then R is smoothable in eo-

dimension 3, but not in 60dimension 4.

• For the: proof we introduee the'notion of nuniversal lin~agell to

reduee the problem to ideals doubly linked to regular ideals.

F. ISCBEBECK

The behavior of Pie, K
o

' ete. under su6in~egral ring extensions

Let A eBbe a subintegral extensions of redueed rings, then

the following propositions hold.

1. FA ~ FB 1s surjeetive, where F 15 any one of the funetors

K
O

' 'Pie, NKo ' NPie (ete.)

2. The map {C ring / A ~ C C B} ~ {subgroups of FA}·C ~ Ker(FA ~ Fe)

is injeet1ve for F

same holds for F

NK and F = N Pie. If further UA = UB the
o

K and F = Pie.
o

3. If B/A (quotient of additive groups) is an S-torsion group

(S C 2Z multiplieative),' so is Ker (FA -+ FB) for F = NK
o

' and F

4. If B/A has no S-torsion, so has not Ker (N Pie A' ~. N pie B) .

K.S. KIYEK

Simple 6urve singularities in arbitr~ry eharaeteristici

(Work done with G. Steinke)

Let k = k be of arbitrary eharaeteristie; F E k[[X,y]] defines a

N Pie.
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simple curve singularity if F has no multiple factors,

2 < O(F) < 3 and for the reduced total quadratic transform F

of F also 2 ~ O(F') < 3.

Theorem 1. F has one of the f~llowing forms:

•
o or

o or

2G

y2 + x 2m + 1 + G, where G ; 0 if Ch(k) + 2, G

Xym+i, 1 <.i < rn-I, if Ch(k)

A y2 + YXm,m >
2m-1

D
2m

Xy2 + YXm m ~ 2,

D
2m

+
1

X(y2+x2m-l) + G, where G ;.0 if Ch(k) 4 2, G

m+i
G = XY , < i < rn-I, if Ch{k) = 2

E
6

y3 + x4
in every characteristic, "in addition

y3 x4 "2
Ch(k) 2,+ + X y

y3 + x4
+ x 2 y 2 Ch(k) 3,

E 7
y (y2+ x 3) , in addition

y (y2+x 3) + X 2 y
2

Ch(k) 3

Ea
y3 + x

5
;

in Ch(k) 3 also

in Ch(k) = 5 also

y3 + x 5 + Xny.

In Ch(k) = 0 Greuel und Knörrer showed, that simple curve singularities are •
characterized by the fact that the isamorphism classes of indecorn~osable tors~on

free A-moduls," A = k [X,Y)]/(F) reduced curve singul~rity are finite. This

is true in the general case also.

Furthermore the Auslander-Reiten quiver of simple curve singulari-

ties can be calculated fol~owing Dieterich and Wiedem~nn.

If eh (k) 2 + 2, the surface singularity in a doub~e cover of

the plane of a simple curve singularity is a rational double point
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B. LINDEL

•
Unimodular elements in projective modules ·over Laurent polyno~

mial extensions

We show the following theorem answering a que~tion of Bass and

Murthy. (Joint work with S.M. Bhatwadekar and R.A. Rao)

A 1 s noe ther ian of -f 1ni te

Let P be projective module over a Laurent extensio~~

± 1 ± 1]
R = A [X' 1 ' . • • , Xn ' Y 1 , ••• , Ym ,.whe·r e

Krull dimension d and rank (P) > d + 1. Th~n P has a unimo-

dular element.

As a main tool serves a Critenon for the" existence of uni~o~ular

elements in modules over positively graded rings:

a positively graded ring Roverbe a f.g. moduleM ..$.'"~ R .•
i>o ~

Assume there exists a q E M that is·unimodular in M
1

+
J

.and M
1

: R+,

Let

I the Quille? ideal of M in R . Then M contains a unimodu.lar
o

split automorphism for'patching of unimodular elements ove~ locali-

The ca~e d = 1, rank P is treated separately;by means of~thiß'~

theorem. "In case when rank P ~~ax(3;d+l) the proof'uses" deeply•
element. -. ~.;.. .' ~ ..

sations and, moreover, a result of Suslin ..
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W.. LtlTKEBOHMERT

Uniformization of abelian varieties

Let K. be a field with a non-trivial, non-Archimedean valuation

assumed to be complete and algebraically closed .. Let cfK be a

smooth curve, projective, genus of C. = 9 i ~/K be an abelian

variety of dimension g.

Stable Reduction Theorem .. There exists a formal analytic structure •n : C ~ C, such that C has at most ordinary double points as sin-

gularities ..

Semi-Abelian Reduction Theorem. There exists an open analytic.

subgroup A c A with the following properties

(a) A is a connect.ed formal analytic group wi th· semi-abelian

reduction.

(b) A is an extension of a proper formal analytic group B

having abelian reduction, by an affinoid torus T.

o
(c) If x is a formal analytic, K-smooth variety and if

~ : X ~ A is a rigid morphism, such t~at ~(X) n A + 0, then

Uniformization Th~orem. ·Let T be the affine torus extending

•
K) •

o
is connected (K = valu~tion ring of

(a)

<,p(X) c 'A, if . X

T and containing T as subgroup of units. Then

i := T x ~/{ (s-1,s);s € T} exists as an analytic quotient;

A
A is an extension of B = AlT by the affine torus T.

(b) The open immersion A~ A extends uniquely to a surjective

A
covering map p : A ~ A ..

"(e) r = ker p is a discrete subgroup in A, it is free of

rank equal to the dimension of the to~us part T of A.

(d)
1 A

H . (A,2Z)
rJ..g

= 0, H
1

. (A,2Z)
rl.g

= 0, = . 2Z rank T
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The uniformization of. abelian varieties was first attacked by

Raynaud (Niee 1970) where the valuation of the ground field is

diserete. This 1s a joint work with s. Boseh (Münster) (cf. Math.

Ann. 270 (1985) and Inventiones math. 78 (1984). M. van der Put

gave also a proof of the Sta~le Red. Theorem •

L. MORET-BAILLY

A purity theorem for families of curves

Theorem. Let S be a regular locally Noetherian ~eheme, U c S
f uan open subset sueh that codims(S-U) > 2. Let X

U
--+ U be a U-eurve

(i.e. a proper smooth morphism whose fibres are geometrically

eonnected eurves of genus ~ 1). Then· there ex-ists" a unique (up

to unique isomorphism) S-eurve xL Sextending Xu·.

The ~enus 1 ease i5 treated separately. For genus ~ 2 one .first

reduees to the ease where S = spee R, R loeal eomplete regular

of dimension 2 with algebraically closed residue field. Then there

exists a finite sequenee of blowing ups of points S ~ S, and an

S-eurve X extending Xu' a~d orie finally shows that X is "con

stant lt on the exceptional divisor, using in partieular the fact

that a generically smooth stable eurve of genus> 2 over ~1 with

~ 2 singular fibr~s is eonstant. Cf. C.R. "Aead. Sei. Paris 300,

n° 14 (1985), .pp. 489-492.

C. PESKINE

5pl itting of the normal bundle "-of' a smooth proj ective "curve

Theorem. (Ellingsütd, Gruson", - ). Let 5 be a smooth
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surfaee in n
lPd: ' and c a eurve on s.

(i) If the normal bundle of C in S is a direet summand

of the normal bundle of e in ~n , then some multiple of the di-

visor e on S is numerieally equivalent to ~ hypersurfaee

seetion of s.

There is a constant do (depending only of the embedding

in pn) such that the eonverse of (i) holds when dOe

eorollary. •> d .
o

the followinginsFor a smooth eonneeted surfaee

s

(ii)

of

eonditions are equivalent:

(i) Pie S = Num Sand a hyperplane see'tion is not divisible

in Pie S.

(ii) . Any eurve C on S such that the normal bundle of e

is a direet summand of the normal bundle of C in ]pn '~s linear ly

equivalent to a hypersurfaee seetion of S.

Remain. eomplete interseetion surfaees and their projections

(isomorphic) as weIl as rational surfaces containing a line verify

the tondi tions of the 'corollary.

pie 52 .... Num 5 are isomorphie and torsion free.

square of the idea 1 of 5. Then (i) the image of Pic' 52 in Num S

is 2Z. (ii) the eokernels of the maps Pie 52 .... Pic Sand

Key Lemma. Let 52 denote the dimension 2 scheme defined by the

•Recall. Theorem (Griffths, Harris,. Hulek) ~ . If S 1s a. complete

intersect10n with non-negative canonical line bundle then a curve

C on 5 is a section of 5 by a hypersurface if and only if

any first order deformation of S contains a first order defor-

mation of c.

Theorem (Flexor). Let A be a Itreasonable" Iocal Gorenstein
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ring of dirn 3 with an isolated singularity (eontaining ~). If an

effeetive divisor 0 ean be lifted to any,lst order deformation

of A, then 0 is set theoretieally defjned by one ~quatiq~.

P. ROBERTS

Interseetion multiplieities over loeal rings-

Let M and N be finitely generated modules over a loeal r~ng

A, and suppose that M e A N is an A-module of finite lenqth. S~rre

defined the interseetion multiplieity X(M,N}

(Tor. (M,N))
~

if A

I:
i>o

is a regular loeal ring, and if

length

A is also

equieharaeteristie, he showed that

I . If dim M +.dim N < dirn A, then X(M,N} o

2. If dim M + dim N dirn A, then X(M,N) > 0

•

He eonjeetured that this i~ true for any, regular .loeal ·ring., Since

then, it has been asked, whether these two .statemen'ts ..holdfor an

arbitrary loeal ring, if M has finite projeetive dimension,., One

attempt t<!l p~ove t;.his was to eonstructing a ·sequenee of invari:ants

of F. wh~re F. is a finite free resolution of M, say eh{(~~} I

and a sequenee of invariants of a module N, say Ti(N} I s~,t~at

Ti (N) = 0 for i > dim N and I: eh' F.} Ti (N) . = X (F. e N)' -= X eH ,N) .

If it is also true that eh. (F)
~

o for i.< eod~m M, the .van~shin9

statement (I.) would hold. The loeal ehern eharacters Df :Baum-

Ful ton-MacPherson do sa tisfy .the first of these condi tions,· ;.bu t

Dutta I Hochster and MacPherson constructed an example '_where. .:M

has codimension 3 but ch 2 (F.} + O. Nevertheless, th~ las~ cQndit10n

holds if A 1s regular,proving the first part:of the conje~ture of
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Serre and somewhat longer arguments, using the multiplicativity

and commutativity of the local ehern characters, show that this

holds also if ~ is a 'complete intersection of if the singular

torus has dimension ~ 1. These two properties can be prov~n by

blowing up to reduce to the case where the complex F. is replaced

by one with a filtration of complexes of the sort ~y{-D)~~y'

where D is a Cartier divisor on a not necessarily affin~ scheme

Y; in this case they can be shown by fairly simple computations.

with divisors.

J. SALLY

Local sandwiches

Let (R,~) be a 2-dimensional regular Ioeal ring and let (S,n)

be a 2-dimensional no~mal local ring which birationally domi

nates R. It follows from zariskits Main Theorem and a result

of Lipman that

•

(*) S is a spot over R i.e., S is the localization at a prime

ideal of a finitely generated ring over· R.

[(*.) is also a Corollary of a result of Heinzer, Huneke, Sally

which gives criteria in a more general situation for one loeal

ring to be a spot over another.]

Since S is a spot over R, Lipman has proved that S is a

rational singularity. The aim here is to try to understand these

rati9nal singularities by applying algebraic techniques. Here are

two such results pr~ved by using facts about the analytic spread

of the ideal ~S.

( 1 ) If 5 1s a UFD, then 5 is regular.
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is infinite. Then 3 a finite quadratic

e (I1 ' .•. ,Xd)

transform of R which dominates S.

R.Y. SBARP

Lengths of' certain generaliz'ed" fractions

• Let (A,...c) be a Ioeal ring o~ dimension'd > O. Let I1' ..• 'X d be

a fixed system of parameters (s.o.p.) for A. Set

Ud +1 = { (u 1 ' ..• , ud' 1 ) U 1 ' .•. , ud t 0 rm a S .'0 • p. f 0 r A},

a triangular subset of A
d +1

. The ~odule .of generalized fractions

-d-l n 1 n d
U

d
+

1
Ais' the union of its cyclic submodules A(I/(I

1
, ... ,Id ,1»

(wher e n
1

, ••• , n d E :m) , a 11 0 f wh ich ha v e f in i t e" 1 eng t h; als 0

u~~~l A ': H~A). Furthermore, H~(A) may be viewed as a direct
d n i

limit of the modules A/(~i=l AI i ). Lech's limit formula for the

multiplicity e(I
1

, .•• ,Id )

1im
{min nl, ... ,nd}~ n1···nd

This talk was concerned with the fo11owing two questions.

Question 1. Does ·there exist 9 E ~[X 1 ' ••• , Xd ], o~ tota 1 degree

d, having homogeneous component of degree d equal to

e (Xl' ••• ,Xd )X 1 , ~ .• ,Xd ., 'such that, fo~ all su:tfieienti y large
d n.

~ 1 ' ••• , n d , 1 (A /1: i=.1 AI i 1.) =' 9 ( n 1 ' •• • , n d ) ?

Question 2. Does' there exist h E ~[Xl' ... ,X
d

] such that, for all
n

1
na

suffieiently large n
1
,· •• ,nd' 1 (A(Xi , ••. ,.rd "i}» h(n

1
,·:· ,nd)?

Al~hough Question.l has an afflrma~ive answer in the special case

when A is a generalize~ Cohen-Macaulay Ioeal ~in9, it does not

have an affirmative answer in general: a 2-dimensional counter-
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example was given. Question 2 has an affirmative answer in the

eases where d = 1, d = 2, or A is a generalized Cohen-Macaulay

loeal ring, but 1s open in general.

A. SIM1S

Multiplicities of almost"pe'rf"ect" ide"als "

This work is·a natural continuation of the work by Peskine-Szpiro

(1974), Herzog-Kühl (1984), Buneke-Miller (1984) in which one

looks ~or "closed formulae" for the multiplicity o~ a ring s/r

(5 := k(X1, ... ,Xnl, I : homog. ideal). Let

b p b 1o ~ $ S(-d
k

) ~ ... ~ & S(-d
lk

) ~ s ~ 5/1 ~ 0
kp=l P P k

1
=1 1

be a minimal (homogeneous) resolution oe 5/1 on S-module. Let

9 : = ht (I). Then p - 9 1s the pe"rfection- d"evia tion of 5/1. We

prove

•

Propos;i:.tion. Assume the resolution of 5/1 is "almost-~lre", i.e.,

d
ll

= d
i2 = ... = d

ik
(=; d

i
) for i 2, ~ .. , p.

i
If 5/1 has perfect deviation then

'1
p P

e (5/1') = ( n -d. I: n (d
i
-d

lk
) •

(p--l) ! i=2 J.. k;::l i=2

Remark. This formul~ yields some (lax) bounds for v(1)

(. generators of I).

One of the interests of 'such formulae i5 in tha tone could try to

find reasonable bounds for the degrees of the generators of I

in ter~s of the multiplicity.

There are various examples of curves in ~3 (even reduced & irre-

ducible) that obey the above format.
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J. STROOKER

On a criterion of Bourbaki

I t iss'h ow n t hat t h e f iv e co nd i t ion s in B 0 u rbak i 's Cr i te r e ,d e ,s

suites compl~tement s~cantes are equivalent for a mo~ule which ..

is complete in the topology defined by the ideaL ~~ qu~st~on

(Bourbaki, Alg~gre Homologique). This felLow frem OU~ results. ~n

a talk on this Tagung in 1983. Since Bourbak~i's w~a~.est o,cp.t:l,~i ~i.on

1s seen to coincide with our "pre-regular~. Bo~rbaki's result

then follows from our approach. Connections with Cohen-Macaul~y-

ness on the monomial conjecture are sketched. To end with a r

Theo·rem. Let A be a Iocal Noetherian ring, the f9~lowi~g ,are

equ1valent:

1) There 1s a balanced big Cohen-Macaulay-modul~ f9r A·

2)' E - dh M + T - cod h M = dim A for ~9me A-m9~u~e M

o i
(Here E - dh M = i~f (ExtA(k,M) + 0, T - cod h M

k = residue class field of A.)

inf Tor~(k,M) + 0,
i :,1 . -,

3) For some system e~ parameters x, B.{x,A) has the pr~perty

c..) below.

4) For some ~ystem o~ parameters x there exiats an x-p~~-

regular module.

property (*): The Korsul homology looks as f?llow$: 4= 0,0,., .... 0.'.
or *, ... ,'. ,0, +0. _ ,

In the proof, Bourbaki's Criterion 15 exploited as well,.as cer~

tain homoloqical identities and i~equali~ies.
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G. VALLA

On the depth of the' symm"e't'r'ie a"lgebra of a loeal ring

Let (A,~) be a regular loeal ring, 1 ~n2 an ideal such that

R = All is a loeal ring of depth. d and m~ximal ideal"'W'\. = "'n/l.

If SR (I'W\). denotes thesymmetrie algebra of the R-module "h-l-, then

d e pth SR (~ will be t h e 9 rad e 0 f t he irr eIev a n t i d e a 1 0 f 5 R (-,..,..a •

We assume further that R 1s Cohen-Maeaulay and then we know

that depth SR (~ ~ d + 1.

By functional properties of symmetrie algebras we have

t t-l .
SR (~ ~ <b """ Il'J"'V • Further the kernel of the "downgrading"

t>o
homomorph'ism A : . SR (-n-v) t ~ SR (?y\), is Ker A =, g~(1) (-2) (here I is

eoincidered as a filtered module over the ring A with the ~-adLe-

filtration) .

If k ~ min(d,depth gr-n,(I» then we ean find a set of elements

Xl ~l,···,xk = ~k E R sueh that

1) Yt' ..• 'Y
k

1s part of a regular system of parameters in A

2) Y1 4. ~ •• , Yk is a regular, sequence mod 1

3) Yl' ..• 'Yk is a r~gular sequence on gryJI)

2
(here Y! = ~ i ' E'l'\. !rt'- ) ·

We say that the elements x
1

, ... ,x
k

with the above properties

from a "niee" regular sequenee in R.

Now we can prove that if x
1

, ••• ,x
k

is a nice regular sequence

R then Xl,x2-xl, ••• ,xk-xk_l' is a r~gular sequerice in SR(~

in

(here if x Etl'Y'V, x denotes the eorresponding element in

U~ing this faet we can prove the (ollowing result

The"orem. a)

b)

depth csr~I) ~ d + 1

If depth '(J"rtlt ) :5. d, then depth r-"Y\..(l) depth SR(?'V\..)

                                   
                                                                                                       ©



- 35 -

e) depth SR ('t11l = d + 1 if and only if depth 'r"1'\... (I) = d + 1 and

there exist a ni ce regular sequenee in R, say x
1

, ... ,xd such that

R/{X
1

, •.. ,x
d

) has d-strong soele

(here we say, for a positive integer t, that the loeal ring

CA/Ol, -"h /00 has t-strong soele if Q.. t : CL' ~ ClL. ). As a consequence

of this- result we get the following estimates for depth SR{~)·

Theorem. a) If I iS.generated by a inter regular sequ~nce

we have

1 ) d ~ depth SR (~ ~ d + 1
r

2) depth SR(~ = d + if and only if d > 1: 'V. - r + 2
i=2 1.

b) 11; I has a linear resolution then de.pth. SR ('»1) d + :1. '.

c) If. I. is .an· homogeneous ideal in k[x 1·,··.· •• i·X!).] genera ted' by

elements of the same degree, A' =' k [. x , ~ .. , je 11 an d ·1 .= . J A t he n
. r n . ~. ". .

d ~ depth SR (~ d + I,•.Moreover # .if d = 1, then depth SR~ = 2

if and.only if I has a linear resolution."

e·

d) Let J be a p~~fect codimension 2 ideal. If M

(r+l) x r matrix given by the minimal resolution 0
'V . 'V. +1

we let 'V d = m~n'V (a
ij

), ii = (~ij E '11.. J /'l1" J ) and M2

Then we have

1 ) I f rank ~ = r then: d ~ depth S ("»1\ ~ d + 1

(a .. ) is an
1.J

~ Ar~ An~ I ~ 0,

2) If d = 1 the following conditions are equivalent

a) d e p t h SR ('n'l) . = 2

ß) rank M2 = r

Y) I has a linear resolution.
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W.V. VASCONCELOS

Normal Ries-algebras

1. We address the question: Given an ideal r = (f
1

, •.. ,f
n

) of

R = ~[x1, ... ,xn]' how to decide ~ffectively whether the Ries

algebra of I, A = R[It] 1s normal? The approach used is through

the ideal of relations ot the algebra A:

:e.t.
~

i5 accessed through a pack~ge that runs withi~ the Macsyma com-

puter algebra system. (Obtained by the implementation of an al-

gor 1 thm of Buchberger l'or constructing Gröbner hases. The package

use d is still quite primitive, but others are in the offing).

Normality is checked by the following version of Serre's interion.

A is normal ~ (a) (I,J) - is an unm;ixed ide'al of

R[T
1

, ... ,T
n

] a,nd eb) for each prime l? of (I,J) the image of J

in P/p? has rank = ht(P) - 1. Decid~n9 (b) - via, the Jacobiart

criterlon -. i5 often possible. (a) is qui te tucky si.,nce i t is

equivalent to: Given a module lby ~ts gen~ and relations) over a

polyno~ial ri~9, to decide whether it ~s torsion free. [This i5

p05sible to c~rry out if a proj. resolution is known and some

program$ to this e~fect are emerging.l

One c~se that is quite nice to deal 'with is when J is generated

by linear forms in the Tj's. Then if condition (a) is known to

be v~lid - (b) has a nice and fa,st ~ormulation outstde of

Macsyma, entirely. Many examples of prime ideals with normal/or

non norm~l Rees a,lgebra,s have been faund by th;is method.
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G. WOSTHOLZ

Problems in al9&bra~c ~&o.etyy arisin~ fr6m'tr~nscendence

In the lecture we explained the use of alg~braic geometry in the

theory of transcendenta~ numbers. To do th~s we started by ex-

plaining the general. principles of a transc~ndence proof bY'pi6~~ng

the following

Theorem. (Gelfond~Schneider) I f a, ß E l ,~. }~.. f:" 1, ß ( 't 'th'e'ri' "

e In makinq the proof of this as general as pOssl.ble we· discuss·ed·'···

the following pr~oblem which appears, there: Let ~X 'C lP N be .proj ~~~.

tive, smooth, defined over an algebraically closed ~ield K of

char. O. Then for an affine open set X· c X denote by R, the

coordinate ring of X·, by D the module of derivation which is

supposed to be free and by 0\. c 1) a ~ree ·s~u.~.in~dule of ra'nk'"

a ~ rank ~ . For an ide~l I c Rand for a fixed set of ge~era~ors

A1 , ... ,Aa of' aL let

peIl rank [~iP mOdIli=l, ... ,a
P ("I)"

P (0'\.) min rank I pEI
I

Then we asked the following problem.

Problem. SupPQse that ~ 15 involut~ve,~ C R
t t a

~(T) = <r E R';Ajl ••• A a r E~,>

a maximal ideal,
.. ,

D

o ~ t 1 < ••. < t
a

< T

tor integers T > 0, where < > denotes the ~d~al generat~d by the

elements in par~ntheses. Then if F E """",,(T) "ha's degree D and if

T P (0\--»>

thenF = o.

We can prove this conjecture if corank ~'= 1 or in general i~

x· = G is the projective closure of an algeb:i'a'ic grou~. "In 'thi's
..... "..

situations we can even take more general ideals.-H1,. of rank n = dim G.
-,

Berichterstatter: R. Waldi

                                   
                                                                                                       ©



- .38 -

Liste der Tagungsteilnehmer

Berger, R.

Bingener, J.

Boutot, J.F.

Brodmann, M.

Bruns, w.

Buchweitz, R.-O.

Collino, A.

Davis, E.D.

Decker, w.

Universität Saarbrücken, Fachbereich 9
(Mathematik), Bau 27, 6600 Saarbrücken 11

Universität Regensburg, Naturwissenschaftlich~

Fakultät I - Mathematik, Universitätsst~. 31,
8400 Regensburg

Departement de Mathematiques, Universite de
Strasbourg, Rue Rene Descartes, 67 Strasbourg
(France)

Mathematisches Institut, Universität Zü~ich,

8032 Zürich (Schweiz)

Abteilung Vechta der Universität Osnabrück,
Fach - Mathematik im FB Naturwissenschaften/
Mathematik, Driverstr. 22, 2848 Vechta

Institut für Mathematik, Universität Hannover,
Welfengarten 1, 3000 Hannover 1

Dipartimento di Matematica, Universita di
Torino, Via Carlo Alberto 10, 10123 Torino (Italien)

Department of Mathematics, State University
of New York, Albany N.Y. 12203 (U.S.A.)

Universität Kaiserslautern, Fachbereich Mathe
matik, Erwin-Schrödinger-Str., 6750 Kaisers
lautern

Deschamps-Martin, M'. Ecole Normale Superieure, 45, Rue d'Ulm,
F-75230 Paris-Cedex 05 (France)

Evans, E.G.

Flenner, H.

Flexor, M.

FOSSUDl, R.

Foxby, H.-B.

Fulton, w.

Geramita, A.

Department of-Mathematics, University of
Illinois, Urbana, Ill~ 61801- _(U.S.A.)

Universität Göttingen, Fachbereich Mathematik,
Bunsenstr. 3-5, 3490 Göttingen

Departement de M~th~matiques, Universite de
Paris-Sud, Orsay (France)

Dep~rtment of Mathemat~cs, University of
Illinois, Urbana, 111. 61801 (U.S.A.)

Kooenhavns Universitets Matem~tisk Institut,
Universitetsparken 5, 2100 Kobenhavn (Dänemark)

Department of Mathematics, Brown University
Providence, Rhode Island 02912 (U.S.A.)

Department of Mathematics, Queen's Univer~ity

Kingston, Ontario (Kanada)

                                   
                                                                                                       ©



- 39 -

Gotzmann, G. Mathematis~hes Institut der Universität,
Roxeler Str. 64, 4400 Münster

Greuel, G.-M. Universität Kaiserslautern, Pachbereich Mathe
matik, Pfaffenbergstr. 95, 6750 Kaiserslautern

Bartshorne, R. oepartment of Mathematics, University of
California, Berkeley, California 94720 lU.S.A.)

Herrmann, M. Mathematisches Institut der Universität Köln,
Weyertal 86-90, 5000 Köln 41

Herzog, J. Universität Essen, Fachbereich 6 - Mathematik,
Universitätsstr. 2, 4300 Essen

Sochster, M. Department of Mathem~tics, University of
Michigan, Ann Arbor, Michigan 48109 (U'-S.A.)

Horrocks, G. University of Newcastle, Department of Mathe
matics,.Newcastle-upon-Tyne NEl 7RU (Great
Britain)

Hunecke, C. Department of Mathematics, Purdue University,
Lafayette, Indiana 47907 (U.S.A.)

Ischebeck, F. Mathematisches Institut der Universität,
Roxeler Str. 64, 4400 Münster

Kiyek, K. Gesamthochschul~ Paderborn, Fachbereich 17 
Mathematik, Warburger str. 100, 4790 Paderborn

Kunz, E. Fachbereich Mathematik, Universität Regensburg,
Universitä~sstraße 31, 8400 RegensburgO .

Lindel, 8. Mathematisches Institut der Universität,
·Roxeler Str. 64, 4400 Münster

Lütkebohmert, W. Mathematisches Institut der Universität,
Roxeler Str. 64, 4400 Münster

M~tsumura, H. Department of Mathematlcs, Nagoya University,
Chikusa-Ku, Nagoya 464 (Japan)

Moret-Bailly, L. Universit~ Paris-Sud, Departement de Mathe
matiques, F-9t400 Orsay (France)

Nastold, H.-J. Mathematisches Institut,' Universität Münster,
Einsteinstraße 62, 4400 Münster

Peskine, C. Universite de Paris 6, 4-Place Jussieu,
F-75230 Paris-Cedex 05 (France)

Roberts, P. Department of Mathematics, university of Utah,
Salt Lake City, Utah 84112 (U.S.A.)

Rotthaus, C. Mathematisches Institut der Univ~rsität,

Roxeler Str. 64, 4400 Münster

                                   
                                                                                                       ©



Sa11y, J.

Scheja, G.

Sharp, R.Y.

Simis, A.

Storch, U.

- 40 -

Department of Mathematics, Northwestern
University, Evanston, 111. 60201 (U.S.A.)

Universität TÜbingen, Fachbereich Mathematik,
Auf der Morgenstel1e 10, 7400 Tübingen

Department of Mathematics, University of
Sheffield, England (U.S.A.)

Departamento de Matemätica, Universidade
Federal de Pernambuco, 50.000 Recife, Pernam-'
buco (Brazi1)

Universität Bochum, Abteilung für Mathematik,
Universitätsstr. 150, Geh. NA, 4630 Bochum
Querenburg

Strooker, J. Mathematisch Instituut, Rijks-Universiteit
. Utrecht, Budapest1aan 6, de Uithof, 3508 TA

Utrecht (Niederlande)

Sundararaman, D. Department of Mathematics, Centro de 1nvesti
gacion y de Estudios Auanzados, Mexico City,
14, D.F. (Mexico)

Szpiro, L.

Trautmann, G.

Ulrich, B.

Valla, G.

Vasconselos, w.

vetter, U.

Waldi, R.

Wüstholz, G.

Ecole Normale Superieure, 45, Rue d'Ulm
F-75005 Paris (France)

Universität Kaiserslautern, Fachbereich
Mathematik, Erwin-Schrödinger-Str. 6750 Kai
serslautern

Department.of Mathematics, Mic·higan .State
univer~it~~ East Larsing, Michigan 48824 (U.S.A.)

Istituto di Matemat1ca, University di Genova,
Via L.B. Alberti, 4, 1-16132 Genova (Italien)

Department of Mathematics, Rutg~rs, The State
University, New Brunswick, New Jersey 08903
(U.S.A. )

Abteilung Vechta der Universität Osnabrück,
Fach M~thematik, Driver~tr. 22, 2848 Vechta

Universität Regensburg, "Fachbereich Mathematik,
Universitätsstr. 3.1, 8400 Regensburg

Max-P1anck-1nstitut für Mathematik, Gottf~ied

C1aren-Str. 26, 5300 Bonn 3

                                   
                                                                                                       ©


