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; Tagungsberichdt 22/1985 B

Kommutative Algebra und algebraische Geometrie

12.5. bis 18.5.1985

Die Tagung stand unter der Leitung von E. Kunz (Regensburg),

| H.-J. Nastold (Minster) und L. Szpiro (Paris).

Es war das Ziel der Tagung, Probleme und neuere Ergebnisse aus
dem Bereich der kommutativen Algebra und algebraischen Geometrie-
darzustellen. Mit Vorrang sollten Fragen diskutiert werden,, die.

beiden Gebieten gemeinsam entspringen.

Folgende Themen fanden besondere Aufmerksamkeit:

Schnittmultiplizitdten Gber lokalen Ringen, Hilbertfunktion, Vek-

Das Interesse an der Tagung zeigt sich nicht zuletzt in der gro-
Ben Zahl ausldndischer Géaste. U.a. kamen 6 Teilnehmer aus Frank— °

\

|

|

' torbiindel projektiver Varietdten, Kurvensingularitidten.
|

i reich, 13 aus Nord- und Sitdamerika und je 2 aus Ehglandvund<1ta-~i
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M. BRODMANN ) . S R
Bounds for cohomology of projective varieties . woeen s
Let X = Proj(A) <z, P: = Proj(S) be a projective scheme;oyetr
an algebraically closed field k , A =k & A, & -+-- being:a graded

homomorphic image of S := k[zo,...,zd]. Let F " he. a coherent. - :,

+
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sheaf over X. Our goal is to give bounds on the cohomological

HAilbert functions n hiC,T(n)) 1= c‘!imk Hi (F(n)) = v:iimk Hi (X, F(n)) =hi(n)

|
Let L c Al be a k-space of positive dimension. For £ € L = {6} we ‘
write Hf for the hyperplgce section Proj(A/fA) défined by f and |
consider the linear system?f = (Hflf € L - {0}}. dim L - 1 is the

dimension dim J of . We want to assume that JF is general with .‘

€.

respect to ¥ e.g. that ass (F) n H, = ¢ for all He

Putting ri(n) = max{dim ker[f : B (F(n)) » B  @F(n+1))11f € L - {0}}
si(n) = max{dim coker[f : gt (Fn)) o Hi(i?-(n+1)')]if €L - {0}}

and denoting least integral parts by [ we have

Proposition 1. (i) r'(n) < h'(n) w n¥(ay-nt(n+1) < ri(ny -p E2E g,
- r (n)+1

(1) st () < ntn+1) = ni(neny-ntin) < st(my -pERE g,
sl(n)+1

the left - resp. the right-vanishing order by v(s) := inf{n € Z|

s(n+1) # 0}, u(s) := sup {n € Z| s(n-1) ¥ O}. Moreover we put

{s € BIv(s) > -=}, " = {s € Blu(s) <w}, 3° = & n 3" ana
+ { 0, if ¢ = + o

B

c , for ¢ € RU { + o},

max{0,c} otherwise .

|

|

Put B := {s : Z Z>o }. For a function s € 3 we define the define
+ TN + - N -
Now, for N € Z>° we define two operators3 —— 3 , 3 — 3

by T_s(n) :=[ _T_ s(m)-(v(s)-m *n1t, (s € 3%). ugs(n) =

(25, stm) - (n-p(s) +17N1%, (s € B).

Proposition 2. (a) Let i > o, s €’ hi-l(?rﬂ(n)) < s(n),vn€ zZ,VHE €.

Then h' @ (n)) <T ,s(n), Vn € = .

dim (30
(b) Let i > o, s,hl.€$-, h"('frﬂ(n)) = < s(n),¥yn€z, VH € ¥.

i v
Then h™ (¥F(n)) < UdimG()'S(n)'
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In the sequel let € be a locally free sheaf of rank r > o over

d
mk.

By (2) we may prove

Proposition 3. Let i,j,p,q € Z»_  such that 1 < p<q<d,0<3J<q,

j «£i<3j +d-~- qg. Let IPP= l'-‘g_lli‘d and assume that there is a

function s €  such that for each »? =g c r? with p cQ it
‘ holds h? (EPQ(n)) < s(n)(n € z) . Then it holds
0...0U _ s
o o o q-p (n),

i . ou.’
h*(€(n)) < T Tasp-i+j ©Va-p-i+j-1

i-j factors . d-q-(i-j) factors

a-p-1°Ta-p-2

whenever one of the following four hypotheses is satisfied:
a) p<gq and s€$°, b) i = 3 and s € , ¢c) i = 3 +£a - q and

s€3+,d)sao. : -

Now, let (ai,...,ar) € Z° be the generic splitting'type of E,

-

let o = a1 - ar and let cl,c

of E . If cl= 2 the Riemann-Roch theorem for bundles asserts the existence

P € Z be the first two Chern classes

of a function S ’ c. .o (n) 630'(depending on the parameter)’
17727
. 1
Cyr€qys o.(and r) such that h™ (£(n)) < sclllcz,d(n) (n€ zZ2) .
Thereby the graph of s has the shape sketched below:.

€1:€519 cquadratic

Now, using (3) one gets in the general case --lineé;r- .

.‘ . ) i
Proposition 4. 0 < i <d = h (E(n)) < Ty , ©--:0 Tg_, ©
-~ p’\h———_J
wscfcz'a(n) . i-1 factors

d-i-1 factors
This improves a similar type of bounds given (for fixed) n by-

Elencwajg-Forster in 1980.

From now on, let X be integral of dimension > 1 and put

t(X) := min{t> 1| H® (@, ) % 0; Vx € x, closed}
“‘X,x XX
1

e(Xx) := I h (@, ) (<o),

XEX X . x  X,x !

jclosed o i
where H denotes local cohomology in x and hm its length. Then

Xi X . X,x

E)F: Deutsche .
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Proposition 5. n <0= e(X) < hi(cx(n)) < max(e(x),hl(ﬁx)+n(t(X)*1)}

Corollary 6. Let X be a compléte irreducible variety of dimen-
sion > 1 and let £ be a very ample invertible sheaf on X. Then

1
h (Gx)-e(x) i

1 n, _ _
n'(I™) = e(x) for Vn <[ ot

Corollary 7. Let X be a complete normal surface and let L be

a very ample invertible sheaf over X. Then hl(.,_f n) < s(n), where

s (n) €3° is of the followin

s

slope: -h°(£)+1

| 12en-1) (V)
|
! ) | | nl )26 2
A ‘ v !
S i hh(fé;'l_ll T 141 - v

Question 8. What holds if £ only is ample?

W. BRUNS

Length formulas for the local cohomology of exterior powers

(joint work with U. Vetter)

We report on joint work with Udo Vetter concerning problems re-'

lated to the following theorem of Angeniocl and Giusti: Let R be

a local ring, £ : rR® o Rn an injective map, grade I = n-m+1, wher.
I = Im('f), and A(R/I) < o (A = length), then C = Coker f£* and R/I

have the same length. Let M = Coker £, r = rank M (= n-m). Then

a complex ‘Ok is built by splicing complexes fk and ‘Cr_k* via a
duality k Mo (FAF M) *, fk resolving Km it grade I > k (Lebelt).

It turns out that .the Euler-Poincaré characteristic x(Dk) vanishes

for r > d = dim R. We of course assume A(R/I) < . In case

r =4d grade I this can be translated -into length formulas of

Deutsche R
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r-k+1

A(H%¢ (k M)), or, dually, the corre-

-k k
the type X(Hib (A M)) =
sponding formulas for Ext. Specializing M to the module of
differentials of a complete intersection with isolateéd singularity,

we obtain length formulas of Greuel, Naruki. In the case, in which

I has its maximal possible grade, that is grade I = n-m+ 1, all
4 2 5l o .4 d-1

the modules A M, R/I, C, s°(C),...,S (C)'Hﬂv(A M),..;,HM¢ (M)

Extl(M,R),...,Extd(g M,R) have the same length;

R.-0. BUCHWEITZ

Maximal Cohen-Macanlay modules over Gorenstein rings

Recently much attention has been focused on the search of local
rings which have only finitely many isomorphism classes of in-
decomposable maximal Cohen-Macaulay modules (MCM's for short).
[An- R-module M .is maximal Cohen-Macaulay iff depthmM =-dim ﬁ}
m < R .the maximal ideal]. '
This talk adressed the following guestions:
- Why should one study MCM's?

- How to decide for a given one whether it contains a free summand
and what the number of non-free indecomposable summands is.

- What is the minimal rank of an indecomposable non-free MCM?'
Theorem 1. Let R be a local Gorenstein ring. Then the folloWing
categories are equivalent: S e e

(i) AFC(R): the homotopy category of acyclic free cdmpleiéé‘of

R-modules Co ’ LT
(i) MCM(R): the Auslander-Reiten category of MCM's whose dbjeécts

are all MCM's and whose morphisms are given By HomR(Ml,Méf'

o
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HomR(Ml,M over a free module}

2)/{w:M1+M2/w factor
b
@) D (R) , b :
/Dperf(n)
the subcategory of perfect complexes.

the derived category of R-modules modulo

Corollary. -As (i) and (il are naturally triangulated categories
MCM(R) is triangulated.
- Every R-module M admits a presentation
O-»U->M>N->0
with U of finite proj. dimension
and M an MCM (U & M are uniquely determined up.to isomorphism.

As a consequence of theorem 1 one might define stable Ext-modules

as
Exth (X",¥") := Hom x .ty 1€ = € Db(R)
=Xtp 4 : Db(R)/ b . ' , 1 y X, ¥ .
‘ perf (R)
Example: Let R = P/f, P a regular local ring containing the
~ . . -t
field k = v = ®/p2. Then Ext; (k,k) = Ext_(k,k)[c” ], where

P
/,xap -
o is the unique generator in Extg (k,k). It follows that

Ext: (k,k) = T (("/.2)%) ®, k[o][c-.], where QF - v* - k is the

vFevi-gzw*)o) W *em/m’;)

quadratic form defined by the class of f in mz/m3 = Szv
(w.l.o0.g. f € mz).

In particular Ezig(k,k) = Cliff+(Qf), the even Clifford-algebra
of the quadratic form QT' ‘

As an application one oﬁtains the following result on ranks of
non-free MCM'E over a Gorenstein ring of multiplicity 2:

Theorem 2. Let 1 be the index of Q?. Then 21-2|rk M for every

non-free MCM M.

Remarks. 1. Theorem 1 holds also for non-commutative, local Go-

Deutsche
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renstein rings. For R = A"V, the exterior algebra, it is due to
Bernstein-geilinson-Gelf.and.-Gelfand. In this case MCM(R) is also
equivalent to Db(n>(v*)). ‘the derived category of coherent sheaves
on pr;jective space.
2. The methods ‘draw heavily on work of M. Auslander (with Bridger
and I. Reiten).

‘ 3. In case of a complete local ring over ¢ , Theorem 2 is a con-
sequence of H. Kndrrers periodicity theorem for MCM's ovér'hyper-

surfaces.
more explicitely (whose structure is well known, of course).

Theorem 2 is best possible for k = X.

E.D. DAVIS

Projective embeddings of certain rational surfaces

4. Theorem 2 can be sharpened by studying the Clifford-algebra

|

| (with A.V. Geramita)

\ .

|

‘ Fix 2, a reduced ®-dimensional subscheme of P = Ez (k), k = &k,

and let S  be the smooth rational surface obtained by'blbwing'up'
IP with center Z. Let I(2) be the homogeneous idéal'of Z. For

| . a > a = minlt|I(z), % 0}, let s = proj (kl1(2)4]) ana let’

4a

“d : S = sd be the rational correspondence induced by inclusion

of function fields. Well known: If 2 1is the scheme-theoretic

is a morphism and 1 is an iso-

Y 1
base locus of I(Z)d, then ! a+1

d
morphism; I(Z) is generated by forms of degree < T + 1, where
T 1is the least degree for which requiring péssage through 2
imposes card(z)_independent linear conditions on the liheqr system

of curves in P of that degree. So 7. is an isomorphism for d> T + 1.

d
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A special case of the considerations in § 4 of our paper with

P. Maroscia [Bull.Sc.Math.(2) 108 (1984) 143-185] shows that for
any O-dimensional subscheme X of IP : dimkI(X)d - dimkI(x)d_1 =
d = either some line in P contains a sub;cheme‘of X of degree
d + 1, or I(X) is generated by forms of degree < d. Applying this
result to X = 2 + {p}, p € S - appropriately, interpreted as a
O-dimensional subscheme of P - we prove:

Theorem. ﬂ1+1 is an isomorphism ¢ no line contains more then T

points of 2Z.

And specializing to the case d = t + 1 gives:
Corollary. Suppose: card(2Z) = d(d+1)/2; no curve of degree 4 - 1

contains Z; no line contains d points of 2. Then Ta embeds S

in Pd with degree d(d-1)/2.

Remark. Putting d = 3 in this result gives the well known fact
that blowing up a general set of 6 points ofvP produces the
rationél cubic»surface in E3 . Putting 4 = 4 generalizes the well
known fact that blowing up a general set of 10 points of IP pro-
duces a "Bordiga Surface" in m4.

Question. Does this result give all cases in which Ta is an iso-

morphism? (Yes, if dimkI(Z)d < 5). What about this question for

"general" 2Z?

W. DECKER

On _the uniqueness of the Horrocks-Mumford-bundle

(joint with F.0. Schreyer)
We prove the

Theorem. Let F be a stable rank-2 vector bundle on B, = B(V)

DF Deutsche
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(over ¢) with Chern-classes c, = -1, ¢, = 4. Assume HZ(IP4 ,?(-})) = 0.

Then there exists T € TP GL(V) with ¥ = T*F, , -
Here ?HH is the Horrocks-Mumford-bundle. This bundle, discovered
in 1973, is still essentially. the only known indecomposable rank-2
vectorbundle on IP4 .
The proof of the theorem is based on a detailed study of the variety
‘ S of unstable p_lanes for ¥. This can be described as follows.
via monads ¥  “corresponds" to a 5 x 2-matrix A with entries in
A2v satisfying certain conditions. Then S = (G A X) where G is
the Grassmanian G = G(2,V*) c P (sz*) and X the determinantal
variety X = {<a > € (sz ) | rank (a (aij)) < 1%, (aij) = A. For
the Horrocks-Mumford-bundle Barth-Hulek - Moore have shown that
SHM is just a copy of Shioda's modular surface for elliptic curves

with level 5-structure.

E.G. EVANS

Remarks on Syzygies of finite projective dimension

|

‘ Let R be a regular local ring containing a field. By mimicing

i . Grdbner's proof of Hilbert's syzygy theorem é.nd' using Griffith's
construction of Cohen Macaulay modules of. the expected projective
dimension we showed: : . ’ S
Theorem. Let M be a k-th syzygy, m € M - M and '
I = {f(m)|f € Hom(M,R)}. Then the height of I is at least k.

Proof. Suppose not. Then one has : o :
n (ai )] n

n
e Rk‘———le-l-» —oRo—oN-)o exact. = - YT ook

ST
| S~

1 DF Deutsche .
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Let m be the first generator of M. Thus the entries of the
first row of (aij) are in I. Let the height of I be 1 < k.
Let H be a Cohen Macaulay module over R/I with deH = 1. (This
is possible by Griffith.) Then Tork(H,N) = O by projective dimen-

sion of H, but Tork(H,N) 4 O from the resolution of N since

fx-1 P41
H & R e1 — o0 in R and cannot come from R ‘® H since

wH + H. .

Remark. In the non regular case if M (and hence N) have finite
projective dimension, Griffith gives that Torj(H,I) = 0 if

pd I < and j > 1.

Corollary 1. Let R be a local ring containing a field and

M a k-th syzygy of rank < k. Then M is free.

Corqllarz 2. Let R be a local ring conﬁaining a field and M
be a k-th syzygy of rank = k and M not free. Then M is an

image of the minimal k~-th syzygy of Extn-l(M*,R).

H. FLENNER

Babylonian tower theorems on the punctured spectrum

We prove the following ' ’ .
Theorem. Let ... - R + R = ... 2 R be a tower of local

e n+1 n o

rings, which are regular; i.e. Rn-l = Rn/tnRn for some tR ¥ O in

Rn' Suppose we are given vector bundles En on the punctured spectrum
X, of R such that En extends €n_1, i.e.fern_l = F;-l' Then f;
is trivial for all n.

This solves a conjecture of Horrocks. In special.cases this re-

sult has been shown by Horrocks and Evans-Griffiths. In the pro-

Deutsche @
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jective case the corresponding question was previously known by
the work of Barth-Vande Ven, E. Saito, Tyurin. The main idea.
consists in applying formal deformation theory. A similar re-

sult holds for locélly complete intersections instead of bundles.

. H. FLENNER-

The infinitesimal Torelli problem for zero sets of sections of

vector bundles

The classical Torelli theorem for curves says that a smooth
compact curve ¢ of genus > 1 is uniquely determined by its
Jacobian. The Jacobian is given by the position'of the integral
lattice in Hl(x,¢) which has a Hodge decomposition Hl(GC) & Ho(nc).
More generally, for a projective manifold X of higher dimension
one has the Hodge decomposition of B*(X,{) and there arises the
question whether for a given class ¥ of manifolds which admits

a module space, tpe map from ¥ into the space 6f Hodde structures
is injecﬁive. In this talk we consider the problem whether it is

at least locally injective. By a result of Griffiths this holds

if the canonical map

" al(x,ex) 2, % Hom¢' (gPq,gP~1-a%t, -
is an injection where HPY = Hq(ngi. We will say then, that the
infinitesimal Torelli theﬁrem holds for X. We have shown
Theorem. Suppose there is an exact sequence 0 — g - ¥ ﬂ; - o
and that the. following two conditions are satisfied for some
p in the range 1 < p < 4:

(a) - The pairing H°(sd’lgvcmx) ® Ho(sd-p%vc@x) - H°(sd-p€you§)

is surjective.

DF Deutsche
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(b) Bj+1(Sd§w d/-\l-j'f @m;l) = o for O <J<d - 2.
Then ¢« above is injective.

As an application we obtain the infinitesimal Torelli theorem

for arbitrary smooth complete il_\tersections in ®" with the only
exception of surfaces of degree 3 in l'P3 and intersection of two
quadrics of dimension > 2. For the case Gy > O resp. hypersurfaces
this has been shown by Peters and Usni resp.Griffiths. Moreover .
we get that for a sufficiently ample bundle & on a proﬁective
manifold and for a section s ¢ H?(E) the infinitesimal Torelli

theorem holds for X := (s = o}. This generalizes a result of

M. Green.

H.-B. FOXBY

Algebras of finite flat dimension

Let @ : A » B be a morphism of local rings, and assume that B

has propoerty 9 . Does A have property}@ 2 (()’= regular, Goren-
stein, CM = Cohen-Macaulay,...). if B is flat as.an A-module

the answer is yes for many? . 1f B = A/ot where Ot is an ideal of
finite projective, then the answer is known to Be yes for some ?
In gene;al, let fd denote flat (Tor) dimensio;'l. .
Theorem. (i) if fdAB < ® and B is Gorenstein, then A is
Gorenstein. V

[(§1] if M is a f.g. B-module with fdAM < o, and if there exists
an A-module C with depthAC = dim A (and this is the case if A
contains a field; Hochster), then dimAA - dgpthAA < dimBM - depth M.

Gi) if M is a f.g. Cohen-Macaulay B-module of dimension n and

Deutsche . . @
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fdAM < ® and if A is Cohen-Macaulay of dimension d, then

HS(A) divides uj (M) (Bass numbers).

Gvw if £d4,B < ® , then

emdim A - depth,A < emdim B -AdepthBB where emdim is the emégdding
dimension. B

The number dim A - depthAA is the Cohen-Macaulay defect, wh%le
emdim A - depthAA is a reqgularity defect.

This is joint work with L. Avramov [Kﬁbenhayps Universitet; Mate-
maticke Inst}tut, Preprint Series No. 2, 1985]. There ére a few

results in the other direction: A has ® = B has 4 ; L. Avramov

and S. Halperin [ibid].

W. FULTON

Characteristic classes of direct image bundles

(joint with R. MacPherson)

For a covering £ : X » Y (finite, unramified) of algebraic varieties

or topological spaces, and a vector bundle E on X, we give a

formula for Chern classes of f_E in term of Chern‘clasges,of E
and the geometry of f. Special cases were known in topology,
particularly, when f is the covering BG d BG, corresponding to

a subgroup G' of finite index in G'.

2 th B
If sy f Cyr S, = €y = 2c2,”.,sn1§the k New;on‘po;yp??}al,jthen
Lk(sn(fxE)-fySnE) = 0, - oo [ k.]
p-1

k

<

where L, is the product of all primes that divide L/k! UP

If Mk is defined by

Forschungsgemeinschaft . © @
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M, = n
ko (e-1)/x

and E is a bundle on X such that NH(cnf*E = 0 for all k, then

l+ord_k
P P

Mkcnf*E = O for all k. (In characteristic p, the prime p can

be omitted from Lk and Mk)'
The general formula involves multiplicative transfers

Ac : A*X - A*Y, which can be described on a general cycle. z on .

X by (locally) intersecting the n image of z, n = deg(f). In
the topological setting, the formula appears in CR. Acad. Sci.

(1984).

A. V.. GERAMITA

Hilbert funktions of O-dimensional subschemes of IP2 and the

geometry of rational surfaces

(joint work with E. D. Davis and also on recent work of B. Har-
bourne)

— . )
Let X ={P1.....,Ps} C P be s distinct points and let P,v g, €

R = k{xo'xl'le' If ®,s...,0  are non-negative integers,

s

. [+
1 =p%n ...np° ana a = Ryl - e A,, the problem is to find

the "expected" Hilbert function, H(A,t) = dimkAt’ of A. (Well .
known if all the a, = 1).
i .
) Gi(ui+1)
Since for t >0, H(A,t) = e(A) and e(A) = I — 3 we know

the eventual value of the Hilbert function. If we let T (A) denote
the least integer t for which H(A,t) = e(A), theq

Proposition 1. 1(1‘\) < (X ai) - 1; equality a{pl,..,.,Ps} lie on a line
(This is also true in B").

P;ogésition 2. [D-G-Queen's Papers in Pure and Applied Math.,

Vol. 67 - "The Curves seminars at Queen's - Vol. III"]. It is

o®
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possible to completely describe the Hilbert function when P u~-.Ps

1
lie on a 1line, ul,...,as are arbitrary. The Hilbert function is
independent of the position of Pl,...,.Ps on the line, N

Proposition 3. (B. Harbourne). There is an algorithm for finding

the Hilbert function of A as above when Pl""'Pn lie on an irre-
ducible cone. Again; the Hilbert function is independent of -the
position of the points chosen on the cone.

The approach to 1) and 2) by [DG] is through an analysis of the

ring structure on A, while the approach by Harbourne consists of

identifying dim with iP(X,J«(Fd)) where X 1is the ratipnal

xta

surface obtained by blowing up PZ at {Pl,...,P'] and Fd is the

divisor dEo -z aiE (Ei(i.>o) the preimages of Pi under the

i=1
blow-up and Eo the proper transform of a general line. The work
of Harbourne will appear in Proc. of Vancouver Conference in Alg.

Geo. (1984).

G.-M. GREUEL

Simple singularities and maximal Cohen-Macaulay modules

(Report on joint work with R.-0. Buchweitz, F.-0. Schreyer)
After Arnold, a convergent power series f € ¢{x°7;..,xn} is called

simple if for any F € ¢{xo,...,xn,t

1,...,tp} such that F°= £

the set of isomorphism classes of ¢{xo,...,xn}/ft is finite fpr
t € ¢p, sufficiently near to O, (here ft(x) = F(x(t)). Arnold
showed that the simple singularities are exactly the so-called
A-D-E singularities (up to isomorphism) in the case of isolated
singularities. For arbitrary f, allowing higher d;mensional4sin-

gularities, his classification shows that there are two more sin-

o ®



s _ U2 2 A _
gularities, namely A : f(xo,...,xn) = x1 +...+ X D, *: f(xo,...,xn) =
2 2

o1t %)

larities have - besides many other characterizations - characteri-

i b +...+-xi. Recently it was discovered that.these singu-
sations through the set M(¢{x}/f) = {isomorph classes of inde-
composable finitely generated max. Cohen Macaulay modules over
¢{x}/£}. In dimension 2 (i.e. n = 2) this follows from work of
Herzog, Artin, Verdier and in dimension 1 it was proved by Greuel .
and Kndérrer. Kndrrer mareover showed among other things that in any
dimension M(¢{x}/f) is a finite set for f simple, with an iso-
lated singularity. The aim of the talk was to give a hint to the
proof of the converse. Together with Kndrrers result we get.
Theorem. R = ¢{xo,...,xn}/(f), f € mz, n = dim R > 1.

a) M(R) finite ® R (resp. f£f) has an isolated A-D-E singularity.

b) M(R) countably infinite « f of type A_ or D

.

@

c) The following are equivalent:
i) £f simple

)

ii) f of type A-D-E (includiné A, D
iii) eaéh maximal Cohen Macaulaf maedule M is.simple (i.e.)
vfor any deform of M over-a finite dimensional>base,?th§re
are oniy finitely many isomorphy classes of maximal Cohegg
Macaulay modules) .
iv) M(R) is finite or countably infinitely.
(M(R) = set of isomorphy classes of indecomposable infinitely

generated maximal Cohen-Macaulay modules over R)
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R. HARTSHORNE

Possible spectra of stable rank 2 vector bundles on P3

(joint work with A.P. Rao)
Let i. be a stable rank 2 vector bundlevon m3 Qitﬁjcl = o
and c, given. We reéall the spectrum X = ﬂﬁ 5...§k;2}’ ki”€ Zz
of Z., first introduéed by Barth and Elencwajg.‘Iﬁ has the follo;
properties )where X denotes the sheaf e @Pl.(ki) on P;i -
1. For each 1 < -1, hl(g(1)) = n®(®! ,1e1))

2. For each 1 > -3, h2(£(1)) = h' (B’ ,¥(1+1))

3. X is symmetric about O, i.e. (-ki} = {ki}

4. It has no gaps, i.e. every inteﬁer betwe;n min{ki} and
max{ki} occurs (at least once) in theAspectrum

5. if 1 < ko < k = max{ki} is such thgt ko occurs only

once in X, then every ko < k, < k occur only once.

i
Problem ‘1. Which sequences of integers k1 < .. kc satisfyihg
—_— . > 5.

conditions 3. - 5. above can actually occur as the spectrum of

a stable rank 2 bundle with the given c2? (We expect the above

conditions will not be sufficignt.)

This problem was studied by Barth in his paper "some égperiméﬁtgl
data..." where he listed possible invariants of bundles, but did
not always settle the question of'existence.'Furtﬁéfmofe;”iwa;”

let M£ = e Hl(f(l)), considered as a finite léndﬁﬁf'gradéd S-
1€E )
module, S = k[xo,x

X ,x3],.then Barth's tables were constructed

172

under the "hypothesis" that M 'should always be geﬂerated;bf

elements of degree < -1, which was true in all the .cases he knew.
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The origin of the present work was to decide whether Barth's
hypothesis was always true, and to complete his work by considering
also the question of existence. The result is a complete classifi-
cation of possible spectra and possible degrees of generators for
all bundles with c, < 8. We give here the table only for ¢, = 7.

which is the first case where there is a case in which M needs

a generator in degree > O: ) .
stable rank 2 bundles on 1'1?3 with c1 =0, €, = 7.
Sgectrum' Generators for M Existence
o’ -rt £(1) + 8 skew lines
-1,0%,1 -2,-13 € (2) <+ E, UEy (E; elliptic
. _2'_14 t(2) +E, UE curve degd)
2 3 .2 2 -3 8
-1%,07,1 2-2 £(2) »E5; VE, UE,
-2%,-1 £(2) vE, UE_, UE
2 2 3 3 5
-2",-1 (more complicated)
-13,0,13 -23,0 (*)
-2,-1,03,1,2 -3,-12 ( )
-2,—12,0,12,2 -3 Y(2,2,4,4)
-3,-2 ( )
-3,-2,-1,0,1,2,3 -4 Y(1,4,4,7)
Constructions. There are four kinds of constructions
I. "Serre" to construct E from a curve Y c l'P3 with
~my = @y(l) for some 1. (First 5 curves of table) .

II. Apply I. to a disjoint union of curves obtained as sections

of vector bundles previously constructed. Cases ( ) in table
III. Bundle associated to a principal module M = s/(fl'fZ'f3'f4)
whete.ei = deg fi and e, 2e, < e, < €, and e, + ey e, + e3-

This is explained in Rao's paper J. Algebra 86 (1984) 23-34. De-

noted Yy in table.

Deutsche .
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IV. "Ferrand". This is used to construct the new bundle (*).
Let X be a rational gquartic curve in P3 . Take a surjective map

u 3x ~+ @ _(2) = 0. Then ker u ='3Y defines a multiplicity 2

(24

structure Y on X, with oy Dy(-Z). Then apply "I to get (*).
It is the fact that H1(3x(1)) = k which gives the generator of

.M in degree O.

13

M. HOCHSTER

Intersection theory and multipiicities: easy answers and hard
questions »

The first part of the talk gave a very short prqof of a lemma in
a recent paper of Angéniol and Giusti which asserts the following:
If (R,#) is a Cohen-Macaulay local ring of dim;hsion r - s + 1,

X = (xij) is a matrix of size r x s over R, r > s, such that

the ideal IS(X) of s x s minors of X is Wu-priﬁary, and M = Co-
ker X, then 1(M) = }(R/IS(X)), where 1 denbtes‘length. The idea
is to view IS(X), M as. arising By applying R ® to generic set-

up over a regular ring T. Then 1(R/I_(X)) - 1(M) can be reinter-

. preted as an intersection multiplicity over T of R with a’

oF

module N of dimension dim T - dim R - 1, so that by Serre'results,

the‘multipiicity must vanish. This proof is intended as a demon-
stration of the power of multiplicity theory.

The second part of the talk dealt with a recent result of W. Smoke
which asserts the following: Let R be a Noetherian ring,” M ‘an

R-module with m generators. Suppose X, ,... X, is an R-sequence,

1

r > 2, and (xl""’xr) M = D. Then there is an exakt sequence

O -+M M, » R/ - 0

1 (xl""'xr)
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where M1 has at most m - (r-1) generators if m > r and M1 is
cyclic if 2 < m-1 <r.

A corollary is that for any Cohen-Macaulay ring R, the Grothen-
dieck group AE(R) of modules of finite length and finite projec-
tive dimension is generated by the classes [R/J] of cyclic R-mo-
dules of finite projective dimension. In particular, if M 1is

a module with five generators over R = KDx,y,u,vﬂ/(xu-&v) such
that pd M = 3, X (M,R/(x,y)) = -1 (and 1(M) = 15) and X Xy Xy is
any system of parameters for R - contained in AnnRM, one may ex-
tend M first by R/(xlkxz,x3) and then by R/(xf,xi,xg) to obtain
a cyclic module Ml of finite projective.dimension such that
x(Ml,R/(x,y)) =-~1. (see Dutta-Hochster-McLaughlin, Inventiones
Math., 1985 for the construction of M). The third part of the
talk dealt with the question, for which local ;ings (R,ﬁuo_is it
trué that whenever 1,J are primary to -, then Torl(R/I,R/J), i.e.
I N J/IJ, is not zero? This is easily seen to be true if‘ R is
regular (but using rigidity) and less easily if R is a hyper-
surface (W. érown; S. Dutta). The rest apparently is not known
even for R = T/f,g) where T 1is regular and f£,g is a regular se-
quence. It was pointed out that the result is false for one di-
mensional Gorenstein domains (e.g. C. Hunecke observes one may

take R = k[tg,t“,t13.t15,t17,t19,t21,t25] t13,t15.t19

9,tjl,t17,t21,t23): inNng=1IJ, I +J =M, 12 c IJ.

I = ),
J = (t
The question was raised, if R is n~-dimensional regular, must

Torl(R/I,R/J) have at least n generaters? This would imply the

result for R = T/(fl""'fm) if T is regular, dim T = n, m < n,

whether fl""'fm is a regular sequence or not.
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G. HORROCKS

Unstable invariants of bundles on the punctured spectrum of a

local ring
Define algebraic equivalence for X-bundles, X the punctured - -
spectrum of a regular local ring, to be the equivalence relation
generated by confluence. A confluence is obtained by embedding -
. X as a hyperplane section of a punctured spectrum- Y ‘and taking
on Y a sheaf locally free except on a l1-dimensional -subscheme’
(as a subscheme of the closed specttuﬁ). The restriction-of this
sheaf to X is said to be a confluence of.its localisations at
the components of the exceptional subsaheme. There are no stable
(i.e. presented by taking direct sum with a trivial bundle) in-

variants for this equivalence. The simplest unstable invariant

occur for bundles whose rank equals d-1, d being.the dimension

of the defining local ring for A. In the case when ¢ .is the,

~

residue-class- field this is the characteristic map .n €3f2d_2QNd—U) =
‘ Z /(d-1)! In the general case this can. be defined in terms of .-
! Cherp class on ¢ Pd-l for bundles which 1lift from projective space.
1 It is the formal Euler characteristic calculated on ¢ Pd from .
! . the Riemann-Roch Theorem and then multipliedby (d-1)! (the' formal
characteristic exists only in ¢). For arbitrary X-bundles this can
be defined by extending over the blown up closed point using. the

fact that we are assuming rank is d - 1. The resulting group under

algebraic equivalence is cyclic. Provided it can be shown that the

da-1

cokernel of the matrix (xl,xz,....xd

) is a rank 4 - 1 -bundle:al-
gebraically equivalent to the trivial bundle the order is (d4-1)!
The invariant n/2 has an alternative discription when-dis odd.;

S
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viz as the length mod 2 of the cohomology group

C. HUNEKE

Algebras with small divisor class group

(joint work with B. Ulrich)
Say a normal local Cohen-Macaulay ring (R,m) has small divisor
class group if cl(R) = nz[mR] where wR = canonical module of R.
Then we first recall a theorem:
Theorem.l.Let § = k[xo,...,xn] 1 € S homogeneous, R = S/I C-M
and normal with minimal homog. resolution, ' '

n

n. .
0> & s(-n ) e $ s(-n,i) » S+ R =0
i=1 at. i=1

If min(ndi} > (q-1) max{n,i} andif.ﬁ is rigid, then ﬁ (and hence
R) has small divisor class group.

We apply this to the case if R ié the linkage class of a complete
intersection.

Theorem 2. Let S,R be as in Theorem 1, and further assume R |is
in the linkage class of a complete intersection. Then "
max{nqi} > (q;l) min{n,i}.

Corollary. If R and mR are generated by forms of the same

degree in the situation of Theorem 2 then R has small divisor

class group.

B. ULRICH

The singular locus of algebras in the linkage class of a complete

intersection.
(joint work with C. Huneke)

Theorem. Let S = k[X,,...,x 0, I €5, R =5/I. Assume that I

Deutsche
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is in the linkage class of a complete intersection, but not a
complete intersection.

a) If R is Gorenstein,‘then R is smoothable in codimen-
sion 6, but not in codimension 7.

b) If R is not Gorenstein, then R is smoothable in co-
dimension 3, but not in c¢odimension 4.
For the proof we introduce the notion of "universal linkgge“ to

reduce the problem to ideals doubly linked to regular ideals.

F. ISCHEBECK

The behavior of Pic, K , etc. under subintegral ring extensions
o

Let A © B be a subintegral extensions of reduced rings, then

the following propositions hold.

1. FA - FB is surjective, where F is any one of the functors

K , Pic, NK _, NPic (etc.) .

2. The map {cC ring / Ac C¢c B} -+ {subgroups of FA} C b Ker (FA *.FC)
is injective for F = NK° and F = NPic. If further UA = UB tge

same holds for F = Ko and F = Pic. v

3. If B/A (quotient'of additive groups) is an S-torsion group

(S € Z multiplicative), so is Ker (FA - FB) for F = NK_~and F = NPic.

4, If B/A has no S-torsion, so has not Ker (NPicA = NPic B).

K.H. KIYEK

Simple curve singularities in arbitréry characteristic

(Work done with G. Steinke)

Let k = kK be of drbitrary characteristic. F € k[[x,Y]] defines a

Forschungsgemeinschaft . © @
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simple curve singularity if F has no multiple factors,
2 < O(F) < 3 and for the reduced total guadratic transform
of F also 2 < O(F') < 3.

Theorem 1. F has one of the following forms:

2 m
>
A, 4 Y 4+ ¥x',m >1
A, v? + x?™*! 4 G, where G = 0 if Ch(k) # 2, G = O or
6= xy™%, 1 <1 <m-1, if Ch(k) = 2
D, xy2 + ¥x® m > 2,
. >
D x(v2+x%™ Yy 4 G, wn G =0 if Ch(k) 4 2, G = ©
2m+1 ) + Where =. r = or
6 = x¥™, 1 <4 <m-1, if ch(k) = 2
EG Y3 + X4 in every characteristic, in addition
y3 + x4 + x2 Y Cch(k) = 2,
v3 o+ x? 4 x%? Ch(k) = 3,
2..3 . e
E7 Y(Y"+X7), in addition
) .
Y(Y2+X3) + xzy Ch(k) = 3
Eg ¥3 o+ x3;

in ch(k) = 3 also

Y3 + XS + X2Y2, Y3 + Xs + X3Y2

in ch(k) = 5 also

3+ x° + xPy.

In Ch(k) = O Greuel und Kndrrer showed, that simple curve singularities are
characterized by the fact that the isomorphism classes of indecomposable torsion

free A-moduls, A = k [X,¥]]/(F) reduced curve singularity are finite. This

is true in the general case also.

Furthermore the Auslander-Reiten quiver of simple curve singulari-

ties can be calculated following Dieterich and Wiedemann.

If Ch(k) 2 % 2, the surface singularity in a double cover of

the plane of a simple curve singularity is a rational double point

Deutsche
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_of type An""'EB'

H. LINDEL

Unimodular elements in projective modules over Laurent polyno-

mial extensions . . oL

We show the following theorem answering a question of Bass an
Murthy. (Joint work with S.M. Bhatwadekar and R.A. Rao) :

Let P be projective module over a Laurent extension -

+1
1

Krull dimension d and rank (P) >d + 1. Then P has a unimo-

+
R = A[xl,...,xn,v ,...,lel,_where A is noetherian of finite
dular element.
As a main tool serves a Critenon for the existence of unimodular

elements in modules over positively graded rings:

Let M be a f.g. module over a pésitively graded ring R = - R, .
. ) i>o
Assume there exists a ¢ € M that is unimodular in M1+J,and L

I the Quillep ideal 6f M in Ro' Then M contains a unimodular
element. : ' .

The case d = 1, rank P is treated separately:by means qfﬂthiﬁy
theorem. In case when rank P thax(3;d+1) the proof uses deeply
split automorphism for'patchipg of unimodular elementé over locali-

sations and, moreover, a result of Suslin..
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W. LUTKEBOHMERT

Uniformization of abelian varieties

Let K. be a field with a non-trivial, non-Archimedean valuation
assumed to be complete and algebraically closed. Let C/K be a
smooth curve, projective, genus of C_'= g; A/K be an abelian
variety of dimension g.

stable Reduction Theorem. There exists a formal analytic structure '

~

m: C - C, such that C has ét most ordinary double points as sin-
gularities.

Semi-Abelian Reduction Theorem. There exists an open analytic,

subgroup 2 € A with the followiﬁg properties

(a) X is a connected formal analytic group with semi-abelian
reduction.

(b) & is an extension of a proper formal analytic group B
having abelian reduction, by an affinoid torus T.

(c) If X is a formal analytic, %—smooth variety and if
@ : X » A is a rigid morphism, such that @(X) N 2 + ¢, then

- [}
@(X) <« &, if "X 1is connected (K = valuation ring of K).

Uniformization Theorem. ©Let T be'the affine torus extending

\

T and containing T as subgroup of units. Then ‘

A - i -
(a) A :=T x Ba/{(s l,s);s € T} exists as an analytic quotient; .

Q is an extension of B = K/? by the affine torus T.

(b) The open immersion A“— A extends uniquely to a surjective
covering map p : Q - A.

(c) I' = ker p is a discrete subgroué in g, it is free of

rank equal to the dimension of the torus part T of A&.

1 A _ 1 = _ 1 _ ., rank T
(a) Hrig(A,E) = 0, Hriq(A,z) = 0, Hrig(A,Z) = Z .
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The uniformization of. abelian varieties was first attacked by
Raynaud (Nice 1970) where the valuation of the ground field is
discrete. This is a joint work with S. Bosch (Minster) (cf. Math.
Ann. 270 (1985) and Inventiones math. 78 (1984). M. van der Put

gave also a proof of the Stable Red. Theorem.

L. MORET-BAILLY

A purity theorem for families of curves

Theorem. Let S be a regular locally Noetherian scheme, U € S

an open subset such that codims(S-U) > 2.‘Let xu—fgﬂ U be a U-curve
(i.el a proper smooth morphism whose fibres are geometrically
connected curves of genus > 1). Then there exists a unique (up

to unique isomorphism) S-curve x—£* S extending qu .
The genus 1 case is treated separately. For genus > 2 one .first
reduces to the case whefe S = spec R, R 1local complete regular

of dimeﬁsion 2 with algebraically closed residue field. Then there

exists a finite sequence of blowing ups of points S - S, and an

E-curve ; .extending xu, aﬁd one finally shows that X is "con-
stant" on the exceptional divisor, using in particular the fact
that a generically smooth stable curve of genus > 2 over Pl with
< 2 singular fibres is constant. Cf. C.R. Acad. Sci. Paris 300,

n® 14 (1985), pp. 489-492.

C. PESKINE

Splitting of the normal bundieuof a smooth projective . curve

Theorem. (Ellingsu¢¥d, Gruson., -, ). Let S be a smooth
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surface in Eéﬂ and C a curve on S.
(i) If the normal bundle of C in S is a direct summand
of the normal bundle of C in ", then some multiple of the di-
visor C on S is numerically equivalent to a hypersurface
section of sS.
(ii) There is a constant 4, (deéending only of the embeddipg
of S in P") such that the converse of (i) holds when a®c 2 d,- '
Corollary. For a smooth connected surface § in P: , the following
conditions are equivalent:
(i) Pic S = Num S and a hyperplane section is not divisible
in Pic s.
(ii) _Any curve C on S such that the normal bundle of C
is a direct summand of the normal bundle of C in r" ‘is linearly
equivalent to a hypérsurface section of S.
Remain. Complete intersection surfaces and their projections
(isomorphic) as well as rational surfaces confaining a line verify
the ¢onditions of the corollary.
Key Lemma. Let S2 denote the dimension 2 scheme defined by the

square of the ideal of S. Then (i) the image of Pic S, in Num S

2
is Z . (ii) the cokernels of the maps Pic 82 - Pic S and

Pic S, » Num S are isomorphic and torsion free. .

2
Recall. Theorem (Griffths, Harris, Bulek).. If S 1is a complete
intersection with non-negative canonical line bundle then a curve
C on S is a section of S by a hypersurface if and only if
any first order deformation of S contains a first o;der défor-

mation of C.

Theorem (FleXxor). Let A be a "reasonable" local Gorenstein
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ring of dim 3 with an isolated singularity (containing ¢). If an
effective divisor D can be lifted to anyAlSt order deformation

of A, then O is set theoretically defined by one equation.

P. ROBERTS

Intersection multiplicities over local rings:

Let M and N be finitely generated modules over a local ring

A, and suppose that M ®, N is an A-module of finite length. Serre

A
defined the intersection multiplicity x(M,N) = I length

(Tori(M,N)) if A 1is a regular local ring, andl%z A is also
equicharacteristic, he showed that

1. If dim M + dim N < dim A, then x(M,N) =0

2. If dim M + dim N = dim A, then x(M,N) > O
He conjectured that this is true for anyAregglar.local-ring.,Since
then, it has been asked, whether these two statements . hold for an
arbitrary local ring, if M has finite projective dimension.. One
attempt te prove this was to constructing a sequence of invariants
of F. where F. is a finite free resolution of M, say chi(ﬂﬂ),
and a sequence of invariants of a module N, say ti(N), so-that
ri(N) = O for i > dim N and ¥ ch F.)Ti(N)_= X(F. ® N) = x(M,N).
If it is also true that chi(F) = 0 for i.< codim M, the,vanishing
statement (1.) would hold. The local Chern characters of;ﬁaum—
Fulton-MacPherson do satisfy the first of these conditions, .but
Dutta, Hochster and MacPherson constructed an examplg-yhergv;n
has codimension 3 but chz(F-) + 0. Nevertheless, the last-condition

holds if A is regular,proving the first part of the conjecture of
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Serre and somewhat longer arguments, using the multiplicativity
and commutativity of the local Chern characters, show that this
holds also if A is a complete intersection of if the singular
torus has dimension < 1. These two properties can be proven by
blowing up to reduce to the case where the complex F. is replaced
by one with a filtration of complexes of the sort 0&(-D)“§6}.
where D 1is a Cartier divisor on a not nece§sarily affine scheme
Y; in this case they can be shown by fairly éimple comﬁutations.

with divisors.

J. SALLY

Local sandwiches

Let (R,m) be a 2-dimensional regular local ring and let (Sm)

be a 2-dimensional normal local ring which birationally domi-
nates R. It follows from Zariski's Main Theorem and a result

of Lipman that

(*) S 1is a spot over R i.e., S is the localization at a prime
ideal of a fihitely generated ring over R.

[(*) is also a Corollary of a result of Heinzer, Huneke, Sally
which gives criteria in a more general situation for one local
ring to be a spot over another.]

Since S 1is a spot over R, Lipman has proved that S 1is a
rational singularity. The aim heie is to try to understand these
rational singularities by applying algebraic techniques. Here are
two such results proved by using facts about the analytic spread
of the ideal mmS. .

(1) If S is a UFD, then S is regular.
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(2) Assume R/w is infinite. Then 3 a finite quadratic

transform of R which dominates S.

R.Y. SHARP

Lengths of certain generalized fractions

. Let (A, be a local ring of dimension d > O. Let X,,...,X  be
a fixed system of parameters (s.o.p.) for A. Set

= {(“1""'“d'1) AP form a s.o.p. for A},
+
a triangular subset of Ad 1. The module of generalized fractions
oy "a
A is' the union of its cyclic submodules A(i/(I1 ""'Id 1))

Uas1

-a-1
Ug+1

{where nl,...,n

U;EII a = HgJA). Furthermore, H.(A) may be viewed as a direct
n,

limit of the modules A/(Ii=1 Alil). Lech's limit formula for the
multiplicity e(Il,...,xd) states that a n,
. CL(A/E]_AX_T)
< i=1" i
) = lim .

{min n, fye--

,...,nd}-«'° 1 d
This talk was concerned with the following two questions.

a € IN) , all of which have finite length; also

e(Il,...,xd

Question 1. Does there exist g € Q[xl""'xd]' of total degree

d, having homogeneous component of degree d -equal to

‘ e(xl""'xd)xl'-'"'xd' ‘such that, for all sufficientiy large
- X
: d i
- ?
nl,...,nd, 1(A/Zi=J Azi ) g(nl,...,nd). B
Question 2. Does there exist h € Q[xl,...,xd] such that, for all

. n n
. 1
sufflciently large nl,...,nd. l(A(x1 ,...,xdé,J))) = h(nl,.:.,nd)?

Although Question 1 has an affirmative answer in the special case

when A is a generalized Cohen-Macaulay local ring, it does not

have an affirmative answer in general: a 2-dimensional counter-
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example was given. Question 2 has an affirmative answer in the
cases where d = 1, d = 2, or A 1is a generalized Cohen-Macaulay

local ring, but is open in general.

A, SIMIs

Multiplicities of almost perfect ideals. .
This work is a natural continuation of the work by Peskine-Szpiro
(1974), Herzog-Kihl (1984), Huneke-Miller (1984) in which one

looks for "closed formulae" for the multiplicity of a ring S/I

(s := k[Xy,...,X ], I : homog. ideal). Let
by -~ by
o-»os(-dk)-»...-» °S(—d1k)"s"s/1'*°
k=1 Xy k,=1 1

be a minimal (homogeneous) resolution of S/I on S-module. Let

g := ht(I). Then p - g is the perfection deviation of S/I. We

prove

Proposition. Assume the resolution of s/I is "almost-puxe", i.e.,

dil = di2 = ... = diki (=; di) for i = 2,...,p.
If S/I has perfect deviation 1 then
S P P
e(s/r) = ——— (1 -di - X n (di-dlk).
(p=1)1 i=2 k=1 i=2 . .
Remark. This formula yields some (lax) bounds for v(I) :

(# generators of 1I). -

One of the interests 6f 'such formuiaeis in that one coula try to
find reasonable bounds for the degrees of the generators of I
in terms of the multiplicity.

: . 3 : ;
There are various examples of curves in P (even reduced & irre-

ducible) that obey the above format.
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J. STROOKER

On a criterion of Bourbaki

It is shown that the five conditions in Bourbaki's Critére des
suites complétement sécantes are equivalent for a module which .
is complete in the topology defined by the ideal in question

(Bourbaki, Algégre Homologique). This follow from our  results in

is seen to coincide with our "pre-regulérﬂ. Bourbaki's result
then follows from our approach. Connections with cohen;Macaulgy-
ness on the monomial conjecture are sketched. To end with a
Theorem. Let A be a local Noetherian'ring, the fo;loying,aré
equivalent: B :

1) There is a balanced big Cohen-Macaulay-module fpr_.A;.

2)) E~-~dh M + T - cod h M = dim A for some A-module M .
(Here E -~ dh M = igf (Ext;(k,M) # 0, T-cod hM fviQf T?;:(kfy)
k = residue class field of A.) »

a talk on this Tagung in 1983. Since Bourbaki's weakest.condition

¥ o,

3) For some system of parameters x, H,(x,A) has the property

(*) below.

4) For some system of parxameters x there exists an x-pre-

. regular module.

Property (*): The Korsul homology looks as follows: + O,0,%,...,%

or *,...,%,0,%0.
In the proof, Bourbaki's Criterion is exploited as well -as cer-

tain homological identities and inequalities.
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G. VALLA

on the depth of the symmetric algebra of a local ring

Let (A,N) be a regular local ring, I C_le an ideal such that

R = A/I is a local ring of depth. 4 and maximal ideal m =n/I.

1f SRM denotes the symmetric algebra of the R-module “h, then

depth SRM will be the grade of the llrrelevant ideal of SRM.

We assume further that R 1is Cohen-Macaulay and then we know .
that deptf,h SR(‘M) <d + 1. - .

By functional properties of symmetric algebras we have

SR(-M) = e m't/];'h}"-l. Further the kernel of the "downgrading"
t>o0 .
homomorphism A :.SR('wv)t - SR('M)- is Ker A = g-;\‘(I) (-2) (here I 1is

coincidered as a filtered module over the ring A with the m-adie-
filtration).

If k < min(d,depth gr, (I)) then we can find a set of elements

x1 = Y.l""'xk = y.k € R such that

1) Yyreeor¥y is part of a reéular system of parameters in A

©2) ylg__...,yk is a regular sequence mod I

3) Yyreeor¥y is a regular sequence on gr,n_(I)
2
(here y% = ?i'e'n/,n,).
We say that the elements XyoeonoXy with the above properties .

from a "nice" regular sequence in R.

Now we can prove that if xl,...,xk is a nice regular sequence in
R then xl,xz—xl,...,xk-xk_l, is a regular sequence in SR(M
(here if x €™, X denotes the corresponding element in
SR(’VV.\.)1= .

Using this fact we can prove the following result

Theorem., a) deptﬁ WI) <d +1

b) If depth t%('t) < @, then depth Tr.n(I) = depth SR('W\-)
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c) depth Sp (m =d + 1 if and only if depth %tx(l) =4 + 1 and

there exist a nice regular sequence in R, say xl,...,xd such that

R/(xl,...,xd) has d-strong socle

(here we say, for a positive integer t, that the local ring

t

(A/cr, m /00 has t-strong socle if a : L € & ). As a consequence

of this result we get the following estimates for depth SR(ww).

. Theorem. a) If I 1is generated by a inter regular sequence
fl""'fn such that vl = Vn(fl) > v2 = vn(fz) >..0> v2 = Yn(fr)
we have

1)d < depth S (m < d + 1
. r
2) depth SR(MO =4 + 1 if and only if d > I VvV, -r + 2
i=2
b) If I has a linear resolution then depth.sR(Mﬂ =4 +.1.°

c) If .I. is .an. homogeneous ideal in k[xljw..rxh] generated by

elements of the same degree, A‘=jkﬂx ,...,x 1l and I JA then

d < depth SR(md = d + im.Moreover..iE d =1, then depth S Gwo = 2
if and only if I has a linear resolution.
d) Let I be a perfect codimension 2 ideal. If M = (aij) is an
. ) s : : rM _n+l
(r+1) x r matrix given by the m1n1mal resolution 0 - A”> A — I = O,
. j \)J+1 . 2

= mi = (3. EM = (3 "
we let vy = minv(a, ), i (‘a_iJ /m ) and M, @5 €A -
Then we have

. 1) If rank ¥ = r then: 4 < depth S(m < d + 1

2) If d = 1 the following conditions are equivalent
a) depth SRhw‘= 2
8) rank M, = r

Y) I has a linear resolution.
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W.V. VASCONCELOS

Normal Ries-algebras

1. We address the question: Given an ideal I = (fl""’fn) of

R = Q[xl,...,xn], how to decide effectively whether the Ries
algebra of I, A = R[1t] is normal? The approach used is through
the ideal of relations of the algebga A:

O -+ T = Rle,...,Tm] - A -0, T,

i fit'

is accessed through a package that runs within the Macsyma com-
éuter algebra system. (Obtained by the implementation of an al-
gorithm of Buchberger for constructing Grdbner bases. The package
used is still quite‘primitive, but others are in the offing).
Normality is checked by the following version of Serre's interion.
Proposition. A is normal & (a) (I,J) is an unmixed ideal of
R[Tl....,Tn] ;-md (b) for each prime P of (I,J)A the image of J
in P/P?_has rank = ht(P) - 1. Deciding (b) -~ via the Jacobian
criterion - is often éossible.(a) is quite éucky since.it is
equivalent to:; Given a module (by its gens and relations) dver a
polynomial ring, to decide whether it is torsion free. tThis is
possible to carry out if a proj. résolution is known and some
programs to this effect_are eme:ging.]

One case that is quite nice to deal with is when J is generated
by linear forms in the Tj's. Then if condition (a) is known to

be valid - (p) has a nice and fast formulation outside of .

Macsyma entirely. Many examples of prime ideals with normal/or

non normal Rees algebras have been found by this method.
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Problems in algebraic geometry arising from transcendence

In the lecture we explained the use of algebraic geometry in thg
theory of transéendental’numbers. To do this we started by ex-
plaining the general principles of a transcendence proof by proving
the following
Theorem. (Gelfond-Schneider) " If a,B € §{Aﬁ.¥ 1, B € 0 then
vy =af ¢ 3. o

. In making the proof of this as general as b'oss_'ible we discussed
the following problem which appears, thér..'e:- Let X '© ]PN be .projgp-:_
tive, smooth, defined over an algebraical;y closed field K of
char. 0. Then for an affine opeh set X' € X denote by R. ;he
coordinate ring of X', by D) the modulé.of derivation which is
supposed ;o be free and by ocd a free Eyﬁméduleof rank -

<

a ® rank d . For an ideal I ¢ R and for a fixgd'set of generators

Ai""’Aa of Ol 1let

p(I) = rank [AiP ruo<iI‘Ii=1,””a , . ; . T
_ (1)
plov = m;n rank I PEI .

Then we asked the following problem.

Problem. Suppose that gL is involutive, M © R a maximal ideal,

t
t a
= ;a1
am(T) <r € R,AJ c..A a F €M, >

0O<t, €< ...<t <T ' ST
'I. . = "1 = - "a e

for integers T > O, where < > denotes the ideal generated by the

elements in parantheses. Then if F EIWJT)‘hds degree D and if

Tp(wv)» D . . :

then P = O.

We can brove this conjecture if corank ©t '= 1 or in general if

X" = G is the projective closure of an algebraic group. In this

situations we can even take more general ideals #n of rank n = dim G.

4 :

Berichterstatter: R. Waldi
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