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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWQLFACH

Tag u n g 5 b e r ich t 3/1986

Kombinatorik

16.1. bis 25.1.1986

Die Tagung fand unter der Leitung von Herrn D~up~r (Bielefeld),

Herrn Jungnickel (Giessen) und Herrn Jackson (Waterloo) statt.

Sie hatte zum Ziel einen Uberblick über das Gesat:ntgebiet.c?-~~ Kpm~

binatorik zu geben, die sich in der Gefahr p~find~t, "in ei~e'~zahl

spezialisierter Einzeldisziplinen zu zerfa·lleri:.: "Die'Te'finefuner~'~'bll­

ten daher insbesondere dazu Gelegenheit hapen, sic.h ·üb~r .die A~beit

von Kollegen auf verwandten Spezialgebieten zu informieren und im
. ,.

Gespräch Probleme zu diskutieren.

Zu diesem Zweck wurde ein international ausgewoge~e~ Teilnehrner~;
.......

kreis eingeladen. Wesentliche Gebiete der Kombinatorik (mit Aus-

nahme der reinen Graphentheorie) waren vertreten:' ..

- Codierungstheorie

- Designtheorie

Kombinatorische Optimierung

- Kombinatorische Polytope

Matroidtheorie

Ramsey- und Partitionstheorie

- Zähltheorie.

Auch zu den Anwendungen wurden enge BezUge hergestellt~ Die 'Vor~:
- - I"

träge ·wurden bewußt nicht zu Teilgebieten zusammengefaßt, um einen

möglichst breiten Gedankenaustausch zu ermöglichen, der auch weit-

gehend erreicht wurde. "
,-

Die Vorträge und die angeregten informellen Gespräche wie die Resonanz

die die Problemsitzung gefunden hat, zeigen, daß das Ziel der Tagung er.
füllt werden konnte. Zu erwähnen sind neben dem allgemein ansprechen-
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den Niveau der Vorträge einige länger ausstehende theoretische

Fortschritte, die vorgestellt wurden. Ein Proceedings-Band,

der als Sondernummer von ItDiscrete Mathematics" erscheinen

wird, soll einen g~oßen Teil dieser Ergebnisse enthalten.

Diese Arbeiten sollen bis zum 1. September 1986 bei'einem der

Veranstalter eingereicht werden.

Vortragsauszüge

R. AHLSWEDE: The maximal sizes of code p~ with specified

Hamming distance

The pair (A,B);A,Bc{1,2, •.. ,a}n; is called an {n,ö)-system

(or constant distance code pair with parameters n,ö) , if for

the Hamming Distance Function d ,

( 1 ) d(a,b) 6 for all aEA,bEB

Let Sa{n,ö) denote the set of those systems. We consider

the function

( 2 ) Mo (n, ö) ~ max { I A I I BI: (A, B) E So (n , ö) }

and conjecture the following:

M2 {n,6)

For

Ca)

n=1,2, ... ,O<6<n
d n-2d

(2! 2) 1 ( 1)
d 2 •(b) M3 {n,Ö) max (3!3).e. (n-3.e.)2d

2i:+d2=Ö d

(c) Ma(n,Ö) ~~d1 n-d d 2.max ( d 1)
d1+d 2=6

2 2 . (0-1 )2

for all a > 4

Presently we have a proof in the cases a = 2,4,5.
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M. AIGNER:
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Vertex-Sets that Mset all Maximal Cliques

Let G be a graph on n vertices without isolated points.

s c V is called a cut-set if S nontrivially meets all maximal

cliques. Let f(G) = min(!SI: S cut-set), f(n) max f(G}. The talk
G

addresses the function f(G} and in particular, the class of graphs

e for which
n

f(G} ~ 2 . Sampie results:

(1) n - Cvn log n ~ f(n) ~ n-yn (n large)

n"
(2) G triangulated ~ f(G) ~-2 (conjectured by T. Gallai)

n
(3) G cotriangulated ~ f(G) ~ '2

(4) G bipartite or cobipartite
n

~ f(G) .:5. '2

(5) G comparability graph n
~f(G)~'2

("6) Perfect graphs G do "not satisfy in ,general' f(G) .:5. ~

nProblem: Do incomparability graphs G satisfy 'f~G) ~ 2 ?

A. ANDREWS: Partition Problems: Zeilberger, Propp, Carter, Sagan,

et ale

(1) D. Zeilberger asked at the Colloque de Combinatoire tnumerative

- V.Q.A.M. 1985 for a proof of the Rogers-Ramanujan identitiese without use of Jacobi's triple product identity. We give such a

defined by

proof as follows: Let D
1

be the sequence of polynomials

D 1 d D = D + n-1 D for1 = , an n n-1 q n-2

Let

n
o<j<n

j == 1 ,4 (modS )

n> 1 •

Clearly Pn = 0n/Gn "is a polynomial in q, and

is equivalent to the first Rogers-Ramanujan identity. We show

                                   
                                                                                                       ©



- 4 ~

how to combine Schur's representation of D with Watsonls
n

q-analog of Whipplels theorem to obtain explicit formulae

for the P
n

. These formulae clearly reveal that the desired

limit holds.

(2) J. Propp (U. of Cal.-Berkeley) has recently extended the

concept of Ferrers graphs to other lattices besides the

rectangular latticee In many instances the analog of the

ordinary partition function has a modular form as generating

function. For example, if the hexagonal lattice H is .used:
.• ".e • I

Yf
the related generating function found by Propp is

3 6 101-q-q +q +q - ....

(3) B. Sagan communicated the following problem of R. Carter to me:

Prove

~ 'J-l)i+j (x+l)!2

i,j=O (x+l-d+i)!(x+l-d+j)!

~in(i,j) [(i+j-k)!]2

k= (i-k)!(j-k)!
max(i+j-d,O)

(
X+i+j-d) (z-x XZ-i-j+k,

k . i+j-k \d-i-j+k.

The surn on k is a balanced 4F) hypergeometrie series. A

transformation of Whippie yielding a new inner sum as a· 4F)

reduces all three summations to classical sums yielding the

desired product of binomial coefficients.

                                   
                                                                                                       ©



J. BECK:

- 5 -

Combinatorial game theory

•

Gur object is to study a large class of combinatorial games

including the well-known particular games tic-tac-toe, five-in-a-row

and Shannon' s switching game., We shall investigat~. a mysterious., and
..

exciting analogy betwen the "Evolution ll of some random structures

and some combinatorial games. Most of the proofs are based on the

so-called "Weight Function Method".

. ,.-& •

L.T. BILLERA: Piecewise polynomial functions on simplicial complexes

For a d-dimensional simplicial complex ß emd, we define the set

of er piecewise polynomials on ß to be

F has continuous partial derivati~es of all orders ~r}

The main problem considered is to find the dimension and a basis for

the m-vectar space

First, viewing Cr(~) 15 anm-algebra (with pointwise multip~ic~tion)

•
we show that

A , when n =

to proof that

CO(ß)~ A where A is the face ri.n... g,~, ofA/<X1+ .•• +xn _ 1> . 6

i Aal = f o and ~i' = set of i~.faces of . A • This leads

CO(A) is a free R-module, .R =lR[Yl',~~,.'Yd] , an

easy const~uction for a basis from shellable . A and a proof that

d
L f.(m~l) , f). = IA).) • By con~i~ering ~qqalizations

j=O) J

and making use of t~e Quallen-Suslin"Theorem, w~ show for d~2 that

Ca (A) is free 1ff A is a 2 -manifold and C1 (~) is free 1f ,'.: A···-is a

2-rnanifold .. Using homological 'methods, we show; finally;·that-there is
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the vertex coordinates of 6 and p (x,y) 1: 0 then

dirn C~(8) = (m:z)f2-2(m+1)f~+3f~ for a 2-disk ß , so suggested by

Sturm, and conversely we conjecture p F 0" is a .polynomial.

A. BJöRNER: Combinatorics of f-vectors and Betti numbers

Let ß = (ß
O

,ß 1 , ..• ) and f = (f
O
,f

1
, ••• ) be two ultimately vanish-

ing sequences of nonnegative integers. We show that the fo~lowing ~

are equivalent:

(a) ß is the Betti sequence (i.e., ß i =dimkHi,(C ,k» and f is

the f-vector (i.e., face-count vector) of same finite

simplicial complex,

(b) • let

(i)

. j-k
Xk-l = L (-1) (f·-ß .),k~Oi then

j~k J J

X-1 =. 1 , (Euler-Poincare formula)

Above, ak(n) denotes the number of k-element subsets of the in

reverse lexicographic order n first {k+ll-subsets of JN , for which

there is a wellknown explicit formula (cascade form). Also, we show

that the following are equivalent:

{al ß is the Betti sequence of some simplicial complex on at

most n+l vertices,

(b) ß is the f-vector of a Sperner family (antichain) in the

Boolean algebra Bn-{~} · .

In beth results, Betti numbers could be computed over a field of

arbitrary characteristic.

(Joint werk with Gil Kalai, Jerusalem).

•
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D.M. BRESSOUD: Problems and Results on Tournamented Statistics

Let M(a" •.. ,a~) be the set of words in an n-letter alphabet with

a i appearances ot the letter i. For w€ M(a" ... ,an ), we define

z(w) = L MAJ(Wij ) , ~ij the 2-letter subword in i and j.
i<j

This z-statistic has the same generating function"as the inversion

number or the major index. Can this fact be proven biject:ively?

I~ we specify a permutat~on o ES and restrict our words to those
n

where the subword consisting of the last occurrence of each letter

is a, then the restricted generating function is

(.1 ) q

i~j a j x( (i,j) e: I o ) (q) a,+ ... +a
n

1
~-:-----~---n. .
(q) a,-1. -.. ~q) ~n-1 .ao (1 ) +. · :f-aa (i)

1-q

Can M(a" .•• ,a
n

) be partitioned in same natural way into subs~ts

indexed by aESn such that (1) is the generating function for the

inversion number restricted to the ap~ropriate subset? A solution to

theorem te ether roet systems •

this problem would be useful in extending the proof of the q-Dyson

• Given a tournament

MAJT(W)

followed by i.

T , we define

L MAJij(wij)' where an inversion is j
(i,j)ET

The generpting function for MAJT · is [
a,+ ... +an ] FT a, an -

(q , ••• ,q )
a 1 ' • • • an

where FT(X,) , and

( n )ET xl.' FT_r(X"···'~r,·~·,Xn) ·r,i

Some properties of FT are given. What more can be said about it?
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w. DEUBER: Reeent aspects of Ramsey Theory

Starting from Ramsey's theorem in Graph theory we introduce'~rap~ic

systems on projective and affine spaces over GF(qP~ It has been

shown reeently by Frankl, 'Graham and Rödl after preliminary work

by Deuber, Prömel, Rothschild, Voigt that there is a full q-analog

of Ramsey"tiEory for graphs.

For several years partitions with arbitrary many classes were"studie~

in Ramsey.tteory. In fact Prömel and Voigt gave an axiomatic treatment,

incorporating the present state of the art. Some highlights are in-

dicated here.

M. DEZA (joint work ~ith K. Fukuda): On bouquets of MatJ:oids and Orientatioll

The notion of squashed geometry introduced by Deza and Frankl· is a

common generalization of matroids and permutation geometries. We

study different axiomatizations for squashed geometries.. Some new

classes of squashed geometries, including bouquets of graphie matroids

are given. We introduce a notion of orientability of squashed geo-

metries, which arises natural1y in our examples. Finally, some

future research problems are discussed.

P. FRANKL (joint work with Voj tech Rödl): Euclidean Ramsey Theory

For a finite set Ac Rd and n > d one defines the (infinite)

lAI-uniform hypergraph H(A,n) as the collection of those lAI-element

subsets A c Rn , such that A and Aare congruent (isometrie).

A set A is called Ramsey if the chromatic number of H(A,n)

(denoted by x(H(A,n» tends to infinity as n-+ co •

·1
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Equivalently, for every r there exists . n no(A,r} ," so that ..

if the points. of Rn are partitioned into r classes, then~ one ' ;.

of the classes contains a subset A congruent to A .

The first open question was obtuse tri~ngles.

In 1972 Erdös, Graham, Montgomery, Rothschild, Spencerand Straus

Rarnsey then it is spherical (can be embedded,into a sphere).

proved that the vertex set of every brick i~ Ramsey and i~ A 'is

is a non-degenerate simplex, i.e., a setATheorem Suppose that."

of d+1 affinely independent' points in Rd • Then for same

e=e(A»O wehave x(H(A,n}»(1+t)n

A similar result is obtained for bricks. The proofs, use extremal' .. :-;

set theory.
.. ...:.~\ .....:. _. .:.. ..; ..... E~

C.D. GODSIL: Distance Spaces
:.:.: ... } .... -

A distance space (0 , p) consists of a set 0 and areal function
.. :- ' •• -L .:":-,

p on OxO such that·

(a) tj(x,y)

(b) p(y,z)

p(y,x)

p (x,x) iff y=z .

is. The real vector space spanned by

qx(y) .= q(p (x,y»

•
Given a polynomial q on ~ and x

polynomial qx by setting

We cal1 qx linear if q

in 0 , we define the zonal

for all y in n •

all products of at most r zonal polynomials is denoted by";, -~'!':<~

Pol (0 ,r) ; we also set Pol (rz) equalto U pdi'(sr,-r) I ~
r>O

then p (eil)' : = {p (x, y) Ix, y . in 0 ; x~y}

-,

finite subset of 0 then, for q and h in polen)

~.: : -: ::.

(q,h) ~ := I:q (u) h (u) (uE4» while (q, h) is the average value of
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qh on G, with respect to a suitable measure if n is infinite.

We call ~ at-design if (1,q)~ = (1,q)n

pol(n,t) . Gur two basic results are

for all q in

A if Ip(~) I = d then I$I~ dirn pol(n,d)

B if ~ is at-design then I~I ~ dirn pOl(n,L~J)

(Minor rnodifications of these results generalize such things as the

Frankl-Wilson bounds and the Ray Chaudhuri-Wilson bounas) .

C•. GREENE: Balanced Shift~d Tableaux
.'

We consider tableaux of shifted (but unimodal) shape whose entries

are balanced, in a sense introduced earlier by the author and

P. Edelman ("Balanced Tableaux u
, to appear in Advances in Mathematics) .

This rneans that the rank of each element in its hook is equal to the

height of the hook. If e denotes a shifted shape (i.e. a unimod~l

composition of N), let be denote the number of balanced tableaux

of shape e .

The main result (proved by a rather complicated but nonetheless

bijective argument) is that be. = fe~*' where f denotes the

nurnber of standard tableaux of shape A and e** denotes the par­

tition obtained by arranging the parts of 'e in nonincreasing order.

M. GRöTSCHEL: Cembinatorial Problems in Data Analysis

Many problems in data analysis can be phrased as follows: Given k

binary relations on an n-set, find within a specified cla$ l of

binary relations on this set one binary relation which represents

the given relation (in a sense that can be made precise) best. We

determine the ·computational complexity of ~his problem for a natural

class of linear and quadratic objective functions and for all these
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elasses l of binary relations whieh are defined by choosing any

subset of the following properties: reflexive, symmetriq, anti~

symmetrie, total and transitive. 1t turns out that all - for praetieal

purposes - interesting problem~ arising this way.are NP-hard. We

have investigated (one of the most imp~rtant, NP-hard ~peeial eases

of this elass of problems) the so-called clustering problem from

the viewpoint of polyhedral eombinatorics and determined large classes

of facets of the associated polytape. These results (joint work· with

Yoshiko Wakabayashi) and their use in a cutting plane algorithm will

also be reported .• A. HAJNAL: Aremark on partition relations for infinite ordinals

with an application to a finite problem

This i5 a joint w~rk of J. Baumgartner and the leeturer.

The details will appear in the Proceedings of the 1985 Are·ata

conference 'Application of Mathematical Logic to Finite Combinatorics".
2 2Th. CH~1 -f (w,-w,4)

Th. 2 (w tU>, 3,3) 2 - :

H. HARBORTH: "Steinhaus triangles"

•

coroliary: (Folkrnan) There is a finite graph G with K4 ~ G and
2

G -+ (K3 ) 2

1111101
o 0 0 0 1 1
00010

o 0 1 1
010

1 1
o

ASteinhaus triangle has a binary ward of length n as its first row,

and then under each pair of 'equalar opposite digits we write 0 or 1,

respectively. In 1,972 I have proved that for n == 0 or 3 (mod4)

t~ere exist first rows, such that as much zeros as ones occur in the
. '

triangle. - If now for m ~ 3 Steinhaus triangles mod mare con-

sidered, then we have tö distinguish two eases:

Under.each pair either their SUfi (mod m), or th~ absolute difference

(mod m) is writ~en. - Together with M. Bartsch we he~e give in both

cases partial results to the following questions:

1) How often ean a fixed digit occur in maximum? 2). what is the

maximum number of digits f O? 3) 15 it possible, that the number

of zeros equals the number of non-zero digits? 4) Is it po~sible,

that all m digits occur in the same number?
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W. IMRICH (joint work with N. Seifter) :

On grouEs and graphs with linear growth

A finitely generated infinite group has linear growth if the number

f(n) of group elements representable by a word of at most length

n in the generators is bounded by a linear polynomial in n. It is

known that such a "group has a subgroup isomorphie to Z 'of finite

index. 'In partieular, Wilkie and van den Dries showed that the

existenee of a k> 0 with f(k) - f(k-1) ~ k implies linear growth

and that, setting e = f(k) - f(k-1) , there always is a subgroup

c
4

•isomorphie to Z of index < 2 We show that the. sha:p bound is .

c •

The proof uses properties of groups and graphs with two ends.

D.M. JACKSON: Counting cydes in permutations by group characters,

with an applieation to a topological problem

Let y be an (integer) partition. We write y = <~> if y

has parts of size i , i=1,2, .•. , where ß = (ai,a2 , •.. ) ·

Let b denote. the conjugacy class of SN eonsisting of all.
l

permutations of eyele type y • Let e~ be the number of permutations

in SN which have k eyeles, and which may be expressed in the form

(12 ••• N)o for same 0 E b
y

(y a partition of N). We show that

z T i i i }{(1+z) -z }u w
i

.

The special case <~> = (2n ) , ~orresponding to the conjugac~ class

of fixed point· free involutions, arises in connexion with a topolo-

gical problem. The map~ing is defined by The

result is obtained by using combinatorial properties of the 'group

algebra' a:.s'N cf SN over et, and properties of the characters of

SN •
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The above equation can be given a purely combinatorial interpretation.

The righthand side involves cycles whose elements can be d~stin~uished

Since [xm]q> zn = number of ordered partit.ions of an n-set into rriz

non-empty sets, the left hand side involves ordered partitions of
. ..... .... ..

't_ •

cycles of permutations. The above equation states:: that these sets are

of the same size. It would be of interest to obtaina~-bi.jec:tive,proof

• of this.fact. ., ." i

. :. .~' '..',

D. JUNGNICKEL (join~ work with S.A.Vanstone): On aseries of

'resolvable 3-designs

We show that the necessary condition v == 0 mod 4 for the existence
• - . .: J ~ -.. ". •

.of aresolvable 3-design S3(3,4iV) is also sufficient. The proof

uses 1-factorizations of complete graphs. This result yields the

first triple (t,k,A) with t>3 for which the necessary conditions

for resolvable t-design are known to be sufficient. (Ta appear in

J .Comb.Th. (A».

D.J. KLEITMAN .(joint work with R. Fellows).: Radius and Diameter in Euclidean

Lattice's

Let a1~ ..• ,an be integers, with . 1 ~ a i for all i, and.consider

the i~teger coordinate points in n dimensional space: .that·.. !l.ie...

in the range O<x<a.,, .
- - 1.

• We measure distance between. two such points· in .the . 1.IManhatten I'.. sense,

as the sum of their coordinate distances. Erdös' a'skea: : for,- what.' ...

values of r 1s the set of such. points' within~radius.' r; of·~some.

integer coordinate. 'origin

point sets of diameter 2r.

point x, of maximum cardinali"ty.. :among

The answer for the n-cube (all a·{=..1) is knöwn, and .the -'conditiö,n is:
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2 r < L [(a i +1 ) /2 ]

We believe that this is necessary, when all

E. KÖHLER: Komplizierte Graphen

a. are odd ..
1

•
Sei ~ := die Menge (von Isomorphieklassen) aller endlicher Graphen.

Für 1< c a; definiere man: ]I{ < .:(1; : ~ A 1\ (K-e) E]{ •
K E lK eEK

Sei nun 1« a; fest gewählt, und man habe für nEJN

Kn := {KEJK11~1 = n} schon in r(n)-viele Klassen

die Menge

(n) (n)
R1 , .•• ,Rr(n)

eingeteilt. Dann definiere man r(n)q> : Kn + 1 -+ {O,1,2, ... ,n+1} .

vermöge q>(K) := (k 1 , .... ,kr (n» mit k .. = I{K-el eEK , (K-e)ER~n)}1i . . 1

und für K,K I E K
n

+1 gelte K...., K ' : ~q>(K) = q>(K ' ) . Nun setze man

fest:

und K*ER ~n+1)
J

i< J. K E R ~n+1 )
, 1

und
r (n+1) (n+1)

K =: U R. , wobei für
n+'/...., :i=1 1

genau dann richtig sei, wenn

k 1+·· .+kr(n) . für c.p(K) kleiner als k 1+ •.. +kr(n) für c.p(K*) ist,

und im Falle ·der Gleichheit beider Summen c.p(K) lexikographisch

größer als <'p(K*) ist.

Damit ist in "jedem l« a; (insbesondere also auch im Falle ](=(b) •

eine Itve~nünftige" lineare Ordnung auf lK definiert, und die Elemente

von R;~i) heißen dann die "komplizierten" Graphen von ]K •

Für lK = Menge der Isomorphieklassen von Wäldern bestehen dann z.B.

(7)
Rr (7) aus dem Graphen I. , und für lK· = (b besteht R(7)

r(7)

aus dem Graphen~ und seinem Komplement.
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B. KORTE (joint work with ~. Lovasz): Convex hulls of convex geornetries

Matroids behave "nicely" with linear objective functions in two

respects: It is easy to optirnize a linear objective function (by

the greedy algorithrn) over matroids a~d there exists an elegant

characterization of the convex hull of all.feasible sets of a

matroid by linear inequalities.

~ Although greedoids can be considered as straightforward ·.relaxations

of matroids, they do not enjoy these nice linear properties in.

general. It is NP-hard to optimize ~ linear objecfive function over

-'the bases of an arbitrary greedoid given by a feasibility.oracle.

Thus, there-is no :hope to obta~n a'nice characterization of

the convex hull of the feasible sets of a greedoid.

However, we are able to obtain non-trivial linear character~zations

of the polytope of feasible sets for certa~n classes of convex

geometries. In one case we got a surprising r~sult: The cone of

feasible sets has an easy linear characterization, but a merohership

test for the associated polytope is already NP-compl~te.

H. LENZ (joint work with D. Jungnickel) : Minimal linear spaces

• A decent linear space DLS (k,v) i5 a "finite inci'dence "5tructure of

v points and b> 1 liries, with 'maximal'line'size k, such that no

lines of size 2 occur.

Problem 1: Which pairs (k,v) are possible, in particular which 'i5

the smallest p05sible v=Vk for given k?

Problem 2: Which 1s the minimal line number b=bk for given k?
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Result

k 2n-1 6n-2 6n-4 6 6n (n>1)

------- ---" -- --------_._-,._-
12n+4

2I 18n +9n-125

1512n-4

18n2-15n+1

v k 4n-1 12n-2
_.~._----+------

bk 2n?-n+1 I 18n2-7n+1

Moreover, a DLS(v,k) with b=b
k

has v=v
k

•
The proofs use elernentary counting and factorizations of graphs.

P. LEROUX (joint workwith G. Viennot) : 'Th.e combitlatorial method of - •

separation of variables

Classicaly, the differential equation J' = g(J)f(t) is solved by

separating the variables: writing (1/g(y»dy = f(t)dt and integrating

on both sides, the solution is given by ~- ~<-1>(J~f(X)dX) , where

~<-1> is the inverse function of ~(y) = J(1/g(y)dy .

This method can be given a combinatorial interpretation and then .

extended to differential equations of the form y' ~'rjGj(Y)Fj(t) .

The combinatorial approach is that of "L-species", that is of ·types

of structures that can be constructed on linearly ordered sets. The

connection with analysis is via the exponential generating function

A(t) =

of an L-species A, where IA[n]1 is the number of A-structures

on any linearly ordered n-element set. It is then possible to lift •differential and integral calculus, including differential equations,

to the combinatorial level~ and to give enplicit solutions 'using

standard bijective methods.
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H.J. PRÖMEL: Asyrnptotic enumeration and 0-1 lows in graph·theory '.

It is obvious that every graph wpich contains atclique·of size·

1+1 is not I-colorable, and hence has c~rom~tic number.at least.

1+1 • Also it is weIl known that there are K
I

+1 · - free graphs ..af>'

arbitrary large chromatic number. In contrast to this we .show,that

•almost all 1 labeled . KI + 1 ~ free graphs are I-colorable for ·any:: I.

~ 1~2, that is to say that"if LI(n) "denotes the number of ·I-colo­

rable graphs on {0, .•. ,n-1} and S..e.(n) 'denotes the.num.ber ....of;,·

Ki +1 - free graphs on {O, •.• ,n-1} , then fi~I]b (Li(n) /Si(nJ), =, 1· •

In addition to this we derive detailed information about the. :str.ucture

of almost all Ki + 1 - free graphs. We use this to prove first:-:order

0-1 laws for the classes Sei) of Kl +
1

~ free gra~hs. This' turns

out to be the final step in proving that any infinite .class '." '.', ;

of finite labeled undirected graphs having amalgamsand ,being ~closed

under· induced subgraphs and isomorphisms has a first order ',O~lL ·law.

These results are from Ph.G. Kolaitis, H.J. PrÖmel, ··.B.L. Rothschild,

Bull.Amer. Soc. (NS) 13(1985) 160-162. The correspop.ding results' 'for

•
unlabeled graphs can be obtained.by using the theorem that whenever

C is an infinite class of finite labeled graphs closed l'under ·.sub-
2

graphs and isomorphisms and C (0) ~ 2dn for some d > 0 and all

sufficiently large n (where C (0) denote's' the number' of ele'ments ;io

C on n· vertices), then the average size of the automorphism groups

of graphs in C is asymptotic~lly equal to 1 .

J _'
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A. RECSKI: Duality of graphs and what the engineers think about it

There are two classical engineering applications of graphs and matroids

in statics and in electric network theory.

Electric engineers have developed a voltage-current syrnmetry,

called duality, about 80-100 years ago. Most people (engineers and

mathematicians alike) believe that this duality and the mathematical

one (with orthogonal vector spaces, matroid theory etc) are essentia~

the same, apart from differences in terminology. Masao IRI (Uni-.

versity of Tokyo) and the pres~nt author have shown that this is

not the casei hence there are. two different voltage-current.symme-

tries, bot related to the duality of planar graphs {"What does duality

really mean?", Internat. Journal Circuit Theory & Applications 8

( , 9"80 ) 3 17- 324) .

Civil engineers have also developed a "duality" between static and

dynamic properties about 12q-150 years ago. However, the exact

relation between this "duality" and the mathematical one does not

seem to be fully clarified.

In the p~esent talk some observations towards this direction are

presented.

I. RIVAL: 15 there a diagrarn invariant?

There are nO:'known examples of a nontrivial , ordertheoretical

•
'diagram invar~ant". Thus, while many familiar order-theoretical

properties such as length, width, order dimension,jump number,

fixed point property are preserved among all orientations of a

given comparability graph, none at all of these need be preserved

among all ·orientatious of a given covering graph (cf an ordered set).
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Indeed, there is some evidence to support the bold conjecture

that there is no such invariant at all!

THEOREM (M. Pozet and I. Rival) Let (*) be a property about non-

empty, finite, ordered sets. If (*) is a diagram invariant which is

closed under order retract and direct products then either (i) (*)

holds for all finite ordered sets or, (ii) (*) holds just for all

connected, finite ordered sets or, (iii) (*) .holds just for all

finite antichains or, (iv) (*) holds just for singletons.

R.W. ROBINSON:Counting labeled degree-restricted digraphs

Counting labeled digraphs on p vertices having a specified set·of

in-degrees, or having all indegrees exceed a fixed lower bound, is

easy. The same is true for out-degrees in place of in-degrees. Howe-

ver, when in-degrees and out-degrees are both restricted, counting

is harder and seems to necessitate some form of'inversion~

Labeled digraphs with every in- and out-degree ~ 6 are counted

by direct applications of inclusion-exclusion for 6 = 1 and 2.

The result~ng expressions require O(~4) and Q(p8) arithmetic

operations to calculate the numbers on up to p vertices. It is

shown how to transform these expressions so as to accomplish the

calculations in time O{p2) and 'O(p5) , respectively.

In joint work with R.C.Read, labeled pseudodigraphs with given in-

and out-degrees are counted by an intransitive extension to the

classical Redfie~d-Read superposition theorem~ A suitable linear

transformation of variables perforrns an inversion which.yields the

corresponding numbers of digraphs (without loops). This method is

polynomial when all degrees are < d for fixed d; however the

computational complexity increases rapidly as ~ function of d.
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A. SCHRlJVER: Disjoint paths in planar graphs

We discuss the following theorem (conjectured by K. Mehlhor~, and

proved with C.van Hoesch): Let G={V,E) be a planar graph,

embedded in m2
, let 0 be its outer face, let I be some fixed

inner face, and let C" •.. 'Ch be curve5 in m2'{IUO) , each

connecting two points of G on the bcundary of I U 0 , so that for

each point vor G having r

as end point) is even. Then there exists pairwise edge-disjoint

paths P1, ••• ,Ph in G so that Pi is homotopic with Ci in

lR
2

....... {lUO) , for i=1, ... ,h i.f and.only if for ~ach dual path Q from

lUO to lUO one has number of edges intersected by Q ~

h
i~1 (number of curves Ci necessarily intersected by Q).

The proof yields a polynomial-time algorithm.

J ~ SPENCER (j..oint work with L. Lovasi, K". Vesztergombi): Descrepancy, linear

discrepancy, hereditary discrepancy

The discrepancy of a family Q =Zn is a measure of how weIl n

rnay be" Red-Blue-colored so that every A E Q has nearly IAI/2

the restrietion of Q to any gl cO . Linear discrepancy measures

red points. Hereditary discrepancy is the maximum discrepancy of

how weIl, given weights PxE [0,1] for each x E g , Q may be •Red-Blue colored so that every A E Q has nearly L p r"ed points.
xE Q x

These notions extend naturally to matrices and simultaneous round off

problems.

                                   
                                                                                                       ©



- 21 -

D. STANTON: t-designs and classical association schemes

Given a" finite ranked poset P and a level L of
n

P , a

classical t-design Y is a subset of' L
n such that

I {y E Y : acy} I is independent of a, rank{a) = t • There is also·

a notion of at-design for a Q-polynomial association scheme due

to DeIsarte. For the eight infinite families of association schemes

~ X there are associated posets P. An equivalence-of these two

definitions is shown. "All that is necessary is the known decomposition

of the permutation representation of the automorphism group of" P .

These harmonics are the eigenspaces of the association scheme X·-~.

v. STREHL: Jacobi polynomials: A rational approximation of

Jacobi l s generating function

A combinatorial model for the Jacobi-polynomials has been "introdJced

by Foata / Leroux (Proe. AMS 1983) in order to give a purel.Y combi­

natorial proof of Jacobi l s generating function. The combinatorial"

operations "reduction lt and "c;:ompression" lead to the notion of"';

"ordern for these Jacobi-configurations. Tl:le (expo"nential) genera:ting

function for Jacobi-configurations of bounded order is given, w~~ch

4It turns out to be a rational function involving matching polynornials

(indeed: variant~ of the Tschebycheff-polynomials). The essential

step in the (inductive) proof consists in doubling matchi"ng configu-

rations combinatorially.
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J.H. VAN LINT: Neighbourhood regular graphs

A neighbourhood regular graph (or r-6-regular graph) is a graph g

such that for every vertex x the induced subgraph on the

neighbours rex) resp. the non-neighbours 6(x) is regular.

This idea was suggested by Seidel and in 1979 Godsil and McKay

(Proe. Australian Comb. Conf. Newcastle 1979, Springer Verlag)

found several properties of r-6-regular graphs and a num?~r of

non-existence results. What about examples? By excluding strongly

-regular graphs and graphs G" for which G or Gare disconnected

the "non-trivial" cases are left to study. The only examples known

so far were a graph on 4 vertices, one on 8, two on 28, and two

on 32 vertices.

May student A. Kloks has recently found an infinite sequence of

.r-6-regular graphs. The construction is a follows. First, a

symmetic conference matrix C of size p2+ 1 is constructed via

a net in the affine plane of order p. With the aid of a regular

subgraph of the corresponding strongly regular graph, C is

switched to a regular symmetic conferenc~ matrix C

Let P -= (1+C I-~) Q :==
( 1+C -1+2'\ Then

\1-C I+C \-I+C 1+0)

N (p
-~) •.=

\Q
is a Hadamard matrix with the property

that N -= N - (I 0\ is the (0., ± 1) adjacency matrix
\0 -I)

of a r-6-regular graph of order
2 .

4 (p +1) •
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S .• A.' VANSTONE (joint -work with D. Jungnickel) : Hyperfactorizations and

._ t-designs

A hyperfactorization of index A and order 2n i5 a collection f

of l-factOJ;s. of .K2n with the property that any two disjoint

edges are ~ontained in precisely A members of F. When A =

these .a~e the 2-(2,2n) partition 5ystemsof . P ~Camer.on. Hyper-

fact;.9~i.zations seem difficult to construct.. Apart freim" trivial

;:'~xamples ~here is only one infinite cla5s known and two sporadie
\- -J

.,examples. :~hey'are of interest because they can be used to

'cbns"truct 5:-designs.
'" ~

~ G. Y~~NNO~' (joi'nt work with M. nesainte-catherine): Bijections for Young

tableaux enumeration

. We conside.r ... the number an,k of Young tableaux, strictly increasing

in rows, weakly inereasing in columns, with entries in {1,2, ... ,n} ,

having at most 2k rows, and each column has an even number of cells.

We prove that

i+j+2k
i+j

,. .. ~{. l,... \ a

. '. .... The 'proof ~s in steps:

'. ,.1.·)... ·Bije·ction between Young tableaux and certain ~onfiguration of

At: ..:'_.,:. ;~~.. points using Burge' s version of Knuth.' sextension of Robinson­

.. . schenst'ed algorithm.

2} Bijection with configurations of Dyck paths using Viennot's

geometrie versi6~'of Robinson-Schensted with the "shadows".

3) Applying Gessel-Viennot methodology with determinants and
- ..

non-crossing configurations of paths.
#.' •

4) Apply{n(f· the combinatorial theory of orthogonal polynomials and

the quotient-difference algorithm (in Pade approximants theory)

with weighted Dyck pathS.

The numbers ar,k also enumerate perfect matching~ of graphs

formed with pentagons and hexagons - in relation with Pfaffians

and Ising, model -. This solves Myriam Desaint~-Catherine·'s

conjecture (Ste. Croix-aux-Mines 1983).

----------~------------------~---~~--~~-
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B. VOIGT: On discrepancies of 0·1 sequence5

Let A be a probability and let

infinite 0-1 sequence. We put A

o = (0 (0) ,0 ( 1 ) , ••• ) be an

A( 1 ), (1 - A) = A (0) and-

for longer (finite) sequences (ao , ... ,as -
1

) we put

A(ao ,···,aS _ 1 ) = nA(ai) , i.e., we take the product probability.

The s-discrepancy of 0 is defined by

D
5 (A,a) .= MAX Limsup NI # a-subsequ. in 01 N - A(ä) I

aE{0,11 s
N (N)

S

In arecent article, Kirschenhofer and Tichy (J.Number Theory 1985)

showed that I~F. s~p D(AO) = ~ • They also put the question to

deterrnine D(A) I~F D(AO) explicitly.

We can show that

Result: For irrational A> 1/2 it follows that

DS (A) = (s) (A 5-1 _ A5) + ~ As-1
2 2

R. WILLE: A·construction rnethod for finite distributive lattices

A complete tolerance ,relation e on a complete lattice L yields

a decornposition of L understandable as an atlas of subinterval~

which themselves form a cornplete lattice L/e .
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For a finite distributive lattice Lo with a ranked ordered set

of join-irreducible elements, a specific sequence of tolerance

Li := Li _,/8 i - 1 (1~i~n)

L : this starts witho

relations 8 i - 1 of Li - 1 with

rise to a construction method for

gives

iteratively builds up Ln - 1 , Ln - 2 , ... ,L 1 ,Lo according to the

ranking of the join-irreducible elements of Lo . The method can

be demonrnrated by constructing the free distributive lattices over

n generators (n~5). For counting elements the following formula

is useful (8 tolerance relation of a finite lattice Land S c 'L):

G.M~ ZIEGLER: Branchings in rooted graphs and the diameter of

greedoids

Greedoids are finite accessible set systems satisfying the matroid

exchange axiom. We study the complexity of exchange rules on the

bases of 2-connected greedoids, as measured by the diameter of the

basis graph. We show that this diameter (depending on the rank r)

is bounded by 2r -1 for 2-connected greedoids, by r 2-r+1 (r > 0)

for 2-connected branching greedoids, which are the collection of

rooted trees in a 2-connected graph ("branchings U
).

This particularly answers a question by L~ Lovasz on the

maximal number of exchahges of leaves required to trans form a

spanning tree of a 2-connected rooted graph or digraph into a given

second one.

Berichterstatter: M. Leclerc
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