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Die Tagung fand unter der Leitung von Herrﬂ Dghbér (Bielefeld),
Herrn Jungnickel (Giessen) und Herrn Jackson (Waterloo) statt.

Sie hatte zum Ziel einen Uberblick iiber das Gesamtgebiet der Kom-
binatorik zu geben, die sich in der Gefahr béfindét,iiﬁ eiﬁe’Ahzéhl
spezialisierter Einzeldisziplinen zu zerfallen. Die Teilnehmer §611-
ten daher insbesondere dazu Gelegenheit haben, siqhvﬁber die Arbeit
von Kollegen auf verwandten Spezialgebieten zu informieren und im
Gesprdch Probleme zu diskutieren. a ' o o -
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Zu diesem Zweck wurde ein international ausgewogener Tellnehmer-
kreis einhgeladen. Wesentliche Gebiete der Kombinatorik (mlt Aus-

Tt

nahme der reinen Graphentheorie) waren vertreten:' R
- Codierungstheorie ' L

- Designtheorie

- Kombinatorische Optimierung

- Kombinatorische Polytope

- Matroidtheorie

- Ramsey- und Partitionstheorie
- Zdhltheorie.

Auch zu den Anwendungen wurden enge Bezﬁge.hergestellt: Die 'Vor='

trdge wurden bewuBt nicht zu Teilgebieten iusaﬁmengefaﬂt, um einen
méglichst breiten Gedankenaustausch zu ermogllchen, der auch welt-
gehend erreicht wurde. ) B e

Die Vortrdge und die angeregten informellen éespiécﬁe Qiévaié—ﬁésonanz
die die Problemsitzung gefunden hat, zeigen, dag das Ziel der Tagung era
fiillt werden konnte. 2Zu erwdhnen sind neben dem allgemein ansprechen-

Deutsche
Forschungsgemeinschaft ©




oF

- - 2 -

den Niveau der Vortrdge einige l&nger ausstehende theoretische
Fortschritte, die vorgestellt wurden. Ein Proceedings-Band,
der als Sondernummer von "Discrete Mathematics" erscheinen
wird, soll einen grofSen Teil dieser Ergebnisse enthalten.

Diese Arbeiten sollen bis zum 1. September 1986 bei einem der

Veranstalter eingereicht werden.

Vortragsausziige

R. AHLSWEDE: The maximal sizes of code pairs with specified
Hamming distance ’

The pair (A,B);A,Bc{1,2,...,a}"; is called an (n,6)-sys£em
(or cohstant distance code pair with parameters n,8), if for
the Hamming Distance Function 4 ,

(i) d(a,b) = 6 for all a€A,beB .

Let Sa(n,é) denote the set of those systems. We consider
the function '
(2) My (n,8) & max{IAlIIBI: (A,B)€ s, (n,8)}
and conjecture the following:

For n=1,2,...,0 <6< n

4, n-2q,
(a) Mz(n,é) = max (212) ( a )
d,+d,=6 2
) Mym,8) = max (3:3f (34
20+d,=6
94 p-a a

(c) Ma(n,é) max &%jlg-‘) 2

d1+d2=6

(a,) (a-1)

for all a >4 .

Presently we have a proof in the cases a = 2,4,5.‘
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M. AIGNER: Vertex-Sets that M=zet all Maximal Cliques

Let G be a graph on n vertices without isolated points.

S ¢ V is called a cut-set if S nontrivially meets all maximal

cliques. Let £(G) = min(ISl: S cut-set), £(n) = max £(G). The talk
G

addresses the function £(G) and in particular, the class of graphs

. for which £(G) 5_% . Sample results:

(1) n - cym log‘n < f(n) < h—Vﬁ' (n large)

(2) triangulated = f(G) < (conjectured by T. Gallai)

A NIB

[N]}=]

(4)
(5)

G

(3) G cotriangulated = £(G)
G bipartite or cobipartite = f(G) < %
G

comparability graph = £(G) <

[S)=]

(6) Perfect graphs G do not satisfy in general: £(G) < %

Problem: Do incomparability graphs G satisfy £(G) < % ?

=

A. ANDREWS: Partition Problems: Zeilberger, Propp, Carter, Sagan,
et al.

(1) D. Zeilberger asked at the Collogue de Combinatoire Enumérative

~ V.Q.A.M. 1985 for a proof of the Rogers-Ramanujan identities

. without use of Jacobi's triple product identity. We give such a

proof as follows: Let D1 be the sequence of polynomials

defined by DO = D1 =1, and Dn = Dn-1 + g Dn-Z- for n>1 .
Let
G, = 1 (1-ghH)71 ..
o<j<n
j=1,4 (mod5)

Clearly P, =D/ /G

, 1is a polynomial in q , and lim P =1

n-—«co

is equivalent to the first Rogers-Ramanujan identity. We show
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how to combine Schur's representation of Dn with Watson's
g-analog of Whipple's theorem to obtain explicit formulae
for the P . These formulae clearly reveal that the desired
limit holds.

(2) J. Propp (U. of Cal.-Berkeley) has recently extended the
concept of Ferrers graphs to other lattices besides the
rectangular lattice. In many instances the analog of the
ordinary partition function has a modular form as.generating

function. For example, if the hexagonal lattice H is used:
: 1

A
e e
¢ v .

the related generating function found by Propp is

-]

= (+g?™h 1
n=1 (1-q2n) 1-q-q3+q6+q10—....

n-1

(3) B. Sagan communicated the following problem of R. Carter to me:

Prove

g (-t e? min(hd) f(ieg0? (x+.i+j-d) (z->_< 2-i-j+k
,3=0 (x#1-d#i)!(x+1-d+j)! k= (i-k)1(j-k)! k +j-k/\d-1-J+k
max(i+j-d,0)

-

2, %y x+1y,2+1
= (@) CHE -
The sum on k is a balanced 4F3 hypergeometric series. A
transformation of Whipple yielding a new inner sum as a"4F3
reduces all three summations to classical sums yielding the

desired product of binomial coefficients.
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J. BECK: Combinatorial game theory

Our object is to study a large class of combinatorial games-
including the well-known particular games tic-tac-toe, five-in;a—r'ow
and Shannon's switching game.  We shall 1nvest1gate a myster:.ous and
exciting analogy betwen the "Evolution" of some random structures
and some combinatorial games. Most of the proofs are based on the

. so-called "Weight Function Method".

L.T. BILLERA: Piecewise polynomial functions on simplicial complexes

For a d-dimensional simplicial complex A CIRd , we define the set

of cF piecewise polynomials on A to be

c*(a) = F:8-R| Fl €RIy,,...,y4], Vmaximal oe€a , a
F has continuous partial derivatives of all orders <r}

The main problem considered is to find the dimension and a basis for

the R-vector space C;(A) = {FeC¥(a) | deg Fio' <mV o}

First, viewing ct (A} is an R-algebra (with pointwise multipljication)

‘we show that C°(A)~ A where l-\A ].S the face r:.ng of

A/<x.l+...+xn 1> N
A , when n = IAO-I~ = fo and Ai- = set of 1-faces of A . Th].s leads
. to proof that c®(a) is a free R-module, R =]R[y1,.,.,yd] , an

easy construction for a basis from shellable = A and a proof that

d
: o - _ . . 1s .
deR Cm(A) = JT_ fJ( 3 ) ’ fj = IAjl . By considering localizations

and making use of the Quallen-Suslin Theorem, we show for d=2 that
c®(a) is free iff A is a 2-manifold and C1 (A) is free if A---is a
2-manifold. .Using homological ‘methods, we show, finally; that .there is

a polynomial p(x1 DAY CYERRTES

n,yn) so that if vy = (xi,yi) are .
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the vertex coordinates of A and p(x,y) # O then . -

dim C;(A) = (m:z)fz-Z(m+1)f?+3fg for a 2-disk A , so suggested by

Sturm, and conversely we conjecture p # O* is a polynomial.

A. BJORNER: Combinatorics of f-vectors and Betti numbers

Let B = (50,51,...) and f = (fo,f1,...) be two ultimately vanish-
ing sequences of nonnegative integers. We show that the following .
are equivalent:
(a) B is the Betti sequence (i.e., B;=dimH,(C,k)) and £ is
the f-vector (i.e., face-count vector) of some finite
simplicial complex,
(b) . let x,_, = = (—1)j-k(fj-ﬁj),kzp; then
REDS
(i)‘ Xxop =1 (Euler-Poincaré formula)

(ii) ak(xk + Bk) < Xp—q ¢ all k> 1 .

Above, ak(n) denotes the number of k-element subsets of the in
reverse lexicographic order n first (k+1)-subsets of W , for which
there is a wellknown explicit formula (cascade form) . Also, we show
that the following are equivalent:

(a) B 1is the Betti sequence of some simplicial complex on at

most n+1 vertices, .
(b) B is the f-vectér of a Sperner family (antichain) in the
Boolean algebra B _-{@} .
In both results, Betti numbers could be computed over a field of
arbitrary characteristic.

(Joint work with Gil Kalai, Jerusalem).
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D.M. BRESSOUD: Problems and Results on Tournamented Statistics

Let M(a1,...,ah) be the set of words in an n-letter alphabet with

a, appearances ot the letter 1 . For wE€ M(a1,...,an), we define

z{w) = ¥ MAJ(w..) , w,. the 2-letter subword in i and J.

L ij ij -
i<j -

This z-statistic has the same generating function as the inversion

. number or the major index. Can this fact be proven bijectively?

If we specify a permutation o €Sn and restrict our words to those
where the subword consisting of the last occurrence of each letter
is o , then the restricted generating function is

i%j 23 x((1,3) € 1.) (q)a1+...+an

(1) q .
o (q)a1_1...(q§§

1
_Aa0(1)+..ia0(i)'

-1
n
Can M(a1,...,an) be pargitioned in some natural way into subsets
indexed by oesn such that (1) is the generating function for the
inversion number restricted to the appropriate subset? A solution to

this problem would be useful in extending the proof of the g-Dyson

theorem to other root systems.

. Given a tournament T , we define

MAJ(w) = I MAJ. .(w..) , where an inversion is j
T (i,)er 8
followed by i .

a1+...+a a a

The generating function for MAJ, ' is [ n] PG 1,...,q oy

a1,...§n
where_ FT(x1) = FT(x1,x2)x= 1 and

(1-xr) . : A .
FT(x1,...,xn) = ?m (r?i)ET xi FT_r(X.l',...,Xr,.-.,Xn) .

Some properties of Fp are given. What more can be said about it?
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W. DEUBER: Recent aspects of Ramsey Theory

Starting from Ramsey's theorem in Graph theory we introduce "Graphic
systems on projective and affine spaces over GF(g)" It has‘been

shown recently by Frankl, .Graham and R6dl after preliminary work

by Deuber, Promel, Rothschild, Voigt that there is a full g-analog

of Ramsey tteory for graphs.

For several years partitions with arbitrary many classes were'studie.
in Ramseyt}e.ory. In fact Promel and Voigt gave an axiomatic treatment,
incorporating the present state of the art. Some highlights are in-

dicated here.

M. DEZA (joint work with K. Fukuda): on bouquets of Matroids and Orientation

The notion of squashed geometry introduced by Deza.and Frankl is a
common generalization of matroids and permutation geometries. We
study different axiomatizations for squashed geometries. Some new
classes of squashed geometries, ihcluding bouquets of graphic matroids
are given. We introduce a notion of oriéntability of sqguashed geo-
metries, which arises naturally in our examples. Finally, some
future research problems are discussed.

.,

P. FRANKL ( joint work with Vojtéch R&dl): Euclidean Ramsey Theory

For a finite set Ac Rd and n > d one defines the (infinite)

|A|-uniform hypergraph H(A,n) as the collection of those |A|-element
subsets AcR® , such that A and & are congruent (isometric).
A set A 1is called Ramsey if the chromatic number of H(A,n)

(denoted by x(H(A,n)) tends to infinity as n-o .

Deutsche
Forschungsgemeinschaft ©




Equivalently, for every r there exists . n = no(A,r)‘,'so that

if the points of R" are partitioned into r <classes, then one: ..
of the classes contains a subset ry congruent to A . R
In 1972 Erdés, Graham, Montgomery, Rothschild, Spencer and Straus
proved that the vertex set of every brick is Ramsey and if A is
Ramsey then it is spherical (can be embeqded,into q‘spherg). Py

The first open question was obtuse triangles. . i . .-

s PR

" Theorem Suppose that A is a non-degenerate simplex, i.e., a set

UF

of d+1 affirely independent points in rd . Then for some

e=¢(A) >0 we have x(H(A,n)) > (1+e)™ .-

A similar result is obtained for bricks. The proofs. use extremal .~

set theory.

. P R P e S

C.D. GODSIL: Distance Spaces : o S

Tmeege T

A distance space (2,p) consists of a set @ and a real fpn_qf:igg

p on qx such that o i CiLoa. o LoLItt Zasi.
(@ §(x,y) = ply,x) oot

T s

() ply.2z) = plx,x) iff y=z . .

Given a polynomial g on R and x in @ , we define the zonal _

polynomial qx by setting qx(y) := gl(p(x,y)) for all y in @ .

. We call 9, linear if g is. The real vector sp.éé‘e spéﬁned by o

all products of at most r =zonal polynomials is denoted by-«-; -/r:y

Pol(n,r) : we also set Pol(g) equal to u Pol(n,®) .
’ r>0 .

If o¢c then p(¢) := {p(x,y)ix,y -in @ ; x#y} . If ¢

finite subset of @ then, for g and h in Pol(a) ,

-

(q,h)‘b := 2q(u)h(u) (ue9d) while (q,h)” is the avé;'ragéA value of

Deutsche
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gh on @, with respect to a suitable measuré if @ is infinite.
We call ¢ a t-design if (1,q)‘1> = (1,q)n for all q in
Pol(f,t) . Our two basic results are

A

if v]p(¢)| =d then |[¢lg dim Pol(q,d)

B : if ¢ is a t-design then o] > dim Pol(ﬂ,[%]) ]
(Minor modifications of these results generalize such things as the

Frankl-Wilson bounds and the Ray Chaudhuri-Wilson bounds) .

C. GREENE: Balanced Shifted Tableaux

We consider tableaux of shifted (but unimodal) shape whose entries
are balanced, in a sense introduced earlier by the author and

P. Edelman ("Balanced Tableaux", to appear in Advances in Maﬁhematics).
This means that the rank of each element in its hook is equal to the
height of the hook. If & denotes a shifted shape (i.e. a unimodal
composition of N), let be denote the number of balanced tableaux
of shape 6 . ) .
The main result (proved by a rather complicated but nonetheles
bijective argument) is that by = feii, where f denotes the
number of standard tableaux of shape A and ©0** denotes the par-
tition obtained by arranging the parts of '8 in nonincreasing order.

M. GROTSCHEL: Combinatorial Problems in Data Analysis

Many problems in data analysis can be phrased as follows: Given k
binary relations on an n-set, find within a specified class £ of
binary relations on this set one binary relation which represents
the given relation (in a sense that can be made precise) best. We
determine the ‘computational complexity of this problem for a natural
class of linear and quadratic objective functions and for all those

Deutsche
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classes £ of binary relations which are defined by choosing any
subset of the following properties: reflexive, symmetric, anti-
symmetric, total and transitive. It turns out that all ~ for practical
purposes - interesting problems arising this wa&»are NP-hard. We

have investigated (one of the most important, NP-hard special cases

of this class of problems) the so-called clustering problem from

the viewpoint of polyhedral combinatorics and determined large classes
of facets of the associated polytape. These results (joint work with
Yoshiko Wakabayashi) and their use in a cutting plane algorithm will
also be reported.

A. HAJNAL: A remark on partition relations for infinite ordinals

with an application to a finite problem

This is a joint work of J. Baumgartner and the lecturer.

The details will appear in the Proceedings of the 1985 Arcata
conference'hpplication of Mathematical Logic to Finite Combinatorics".
Th. 1 CHsw? # (00,42 .

Th. 2 W s (0,0,3,3)7%]
Corollary: (Folkman) There is a finite graph G with K, & G and
2
G--»(K3)2 .
H. HARBORTH: "Steinhaus triangles" 1111101
000O0 11
00010
00 11
010
11
o

. A Steinhaus triangle has a binary word of length n as its first row,

oF

and then under each pair of equal ar opposite digits we write O or 1,
respectively. In 1972 I have proved that for n=0 or 3 (mod4)

there exist first rows, such that as much zeros as ones occur in the
triéngle; - If now for m > 3 Steinhaus triangles mod m are con-
sidered, then we have to'diStinguish two cases:

Under .each pair either their sum (mod m), or their absolute difference
(mod m) is written. - Together with M. Bartsch we here give in both
cases partial results to the following questioné:

1) How often can a fixed digit occur in maximum? 2) what is the
maximum number of digits # 0? 3) Is it possible, that the number

of zeros equals the number of non-zero digits? 4) Is it possible,

that all m digits occur in the same number?

Deutsche
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W. IMRICH (joint work with N.Seifter):

On groups and graphs with linear growth

A finitely generated infinite group has linear érowth if the number
£f(n) of group elements representable by a word of at most length

n in the generatars is bounded by a linear polynomial in n . It is
known that such a group has a subgroup isomorphic to Z -of finite
index. In particular, Wilkie and van den Dries showed that the

existence of a k>0 with f£(k) - £(k-1) < k implies linear growth

and that, setting c¢ = f(k) - f£(k-1) , there always is a subgroup
isomorphic to 2Z of index < 2—4 . We show that the.shap bound is .
c .

The proof uses properties of groups and graphs with two ends.

D.M. JACKSON: Counting cydes in permutations by group characters,

with an application to a topological problem’

Let Y be an (integer)partition. We write y = <a> if y

has ay; ‘parts of size 1i , i=1,2,..., where a = (ai,az,...) .

Let b¥ ~denote the conjugacy class of SN consisting of all.
permutationé of cycle type <y . Let ei be the number of permutations
in SN which have k cycles, and which may be expressed in the form
(12...N)o for some o€ bY (y a partition of N). We show that

z + x z ek ~ W ﬁ' ® zkéz exp{ X % {(1+z)i-zi}uiwi}.
k,N>1 <a>FN 7. SNz i>1

.’

The special case <a> = (2n) ’ qorresponding to the conjugacy class
of fixed point free involutions, arises in connexién with a topolo-
gical problem. The mapping $, is defined by @z(;) = zk . The
result is obtained by using combinatorial properties of the ‘group
algebra - ¢$N of SN over & , and properties of the characters of

SN .

o




The above equation can be given a purely combinatorial interpretation:

The righthand side involves cycles whose elements can be dlStlngUlshed

Since [xm]tpz z" = number of ordered partltlons of an n-set into m

non-empty sets, the left hand side involves ordered partltlons of
cycles of permutations. The above éequation states: &nt these sets are

of the same size. It would be of interest to obtain a.bijective proof

. of this . fact. ) : R

S P e
o et

D. JUNGNICKEL (joint work with S.A.Vanstone): On a series of
‘resolvable 3-desigﬁs

We show that the necessary condition v=0 mod 4. for the exéstence
-0of a resolvable 3-design s (3,4;v) is also suff1c1ent The proof
uses 1-factorizations of complete graphs. Thls result ylelds the
first trlple (t,k,x) with t>3 for which the necessary cond;t;ons
for resolvable t-design are known to be sufficiene. (To appeer ie

J.Comb.Th. (A)).

D.J. KLEITMAN (joint work with R. Fellows): Radius and Dlameter 1n Euclldean

Lattices v
Let a1,'...,an be integers, with -1 < a; for all i~! and.consider
the integer coordinate points in n dimensional space: that.lie.,
in the range O<x<a, . :
. We measure distance )setween.two such points- in the-"Manhatten". sense,
as the sum of their coordinate distances. ErdGS'asﬁed:iforuWhatjq
values of r is the set of such.points withinlradius: r. effsome.
integer coordinate. 'origin point x , of maximum cardinality..among
point sets of diameter 2r .. ' . o L

The answer for the n-cube (all ai=J) is knéwn, and the-condition is:

Deutsche
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2r <z [(ai+1)/2]

We believe that this is necessary, when all a; are odd.

E. KOHLER: Komplizierte Graphen

Sei @ := die Menge (von Isomorphieklassen) aller endlicher Graphen.

Fir XKc G definiere man: X<:B :e /\ /\ (K-e) €K .
KEIK e€K . .

Sei nun K< ¢ fest gewdhlt, und man habe fiir n€N die Menge
(n)

,...,Rr(n)

Kn := {KE€EX]|K| = n} schon in r(n)-viele Klassen

(n)
R
eingeteilt. Dann definiere man ¢ : Koe1~ 10.1,2,. ..,n+1}r(n)

vermége ©(K) := (ky, ...,k () mit k; := I{K-el e€k , (k-e)er{™}1 ,

und fir K,K'EKn gelte K~ K' :e@(K) = ¢@(K') . Nun setze man

+1
fest: .

Ko+t (n+1)

r(n+1) :=| . N

/.l und K =: R

, wobei fir
1,7 A

{(n+1) und K*GRgnH) genau dann richtig sei, wenn

l<j,K€Ri 3

o . " * .
k1+"'+kr(n) . fir ¢(K) kleiner als k1+"'+kr(n) fiir ¢@(K*) ist,
und im Falle der Gleichheit beider Summen ¢(K) lexikographisch

groBer als ¢@(K*) ist.

Damit ist in jedem K< G (insbesondere also auch im Falle XKX=G) '

eine "verninftige” lineare Ordnung auf X definiert, und die Elemente
(1) '

von Rr(i)

heiBen dann die "komplizierten" Graphen von X .

Fiir X = Menge der Isomorphieklassen von Wdldern bestehen dann z.B.

(7) X Z - _ (7)
Rr(?) aus dem Graphen N und fiir X = & besteht Rr(7)

aus dem Graphen v—@ und seinem Komplement.

Deutsche i
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B. KORTE (joint work with L. Lovasz): Convex hulls of convex geometries

Matroids behave "nicely" with linear objective functions in two
respects: It is easy to optimize a 1ineéf objective function (by

the greedy Algorithm) over matroids‘and there exists an elegant
characterization of the convex hull of all,feasible sets of a
matroid by linear inequalities.

Although greedoids can be considered as straightforward  relaxations
of matroids, they do not enjoy these nice linear properties in

general. It is NP-hard to optimize a linear objective function over

‘the bases of an arbitrary greedoid given by a feasibility oracle.

Thus, there is no hope to obtain a nice characterization of

the convex hull of the feasible sets of a greedoid.

However, we are able to 6btain non-trivial linear characterizations
of the polytope of feasible sets for certain classes of convex
geometries. In one case we got a surprising result: The cone of
feasible sets has an easy linear characterization; but a membership

test for the associated polytope is already NP-complete.

H. LENZ (joint work with D. Jungnickel): Minimal linear spaces

A decent linear space DLS(k,v) is a finite incidence "structure of

v points and b> 1 lines, with maximal line size k , such that no
lines of size 2 occur.’

Problem 1: Which pairs (k,v) are possible, in particular which is
the smallest possible =Vy for given k?
Problem 2: Which is the minimal line number b=b, for given k?

o
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Result ' .
k | 2n-1 6n-2 6n-4 6 én (n>1)

v, | 4n-1 12n-2 12n-4 15 | 12n+4

by 2n2-n+1 | 18n%-7n+1 | 18n%-15n+1 25 | 18n2+9n-1

Moreover, a DLS(v,k) with b=bg has v=v, .
The proofs use elementary counting and factorizations of graphs.

P. LEROUX (joint work with G.Viennot): The combinatorial method of .
separation of variables

Classicaly, the differential equation J' = g(J)f(t) is solved by
separating the variables: writing (1/g(y))dy = f(t)dt and integrating

<=1>

on both sides, the solution is given by J =0 (jgf(x)dx) , where

o<1 is the inverse function of @(y) = j(1/g(y)dy .

This method can be given a combinatorial interpretation and then
extended to differential eguations of the form y' ='ZjGj(y)Fj(t) .
The combinatorial approach is that of "L-species", that is of types

of structures that can be constructed on linearly ordered sets. The

- connection with analysis is via the exponential generating function

A(t) = =z |A[n]] t%/n !

n>0
of an L-species A , where |A[n]| 4is the number of A-structures

on any linearly ordered n-element set. It is then possible to lift ‘

differential and integral calculus, including differential equations,
to the combinatorial level, and to give enplicit solutions 'using

standard bijective methods.

o®
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H.J. PROMEL: Asymptotic enumeration and O-1 lows in graph- theory ..

It is obvious that every graph which contains a ,clique of size.

£+1 1is not {-colorable, and hence has chromatic number.at least.

£+1 . Also it is well known that there are K£+1.- free graphs.of.
arbitrary large chromatic number. In contrast-to this we .show- that
'‘almost all' labeled ‘K£+1 - free graphs are f-colorable for -any::

232 , that is to say that if Lz(n) -denotes the number of -£-colo-
rable graphs on {0,...,n-1} and sz(n) - denotes the. number. of:. -

K1 = free graphs on {o,...,n=-1} , then %ig;(Lz(n)/Sz(n))v=-1-.

In addition to this we derive detailed information about the. structure
of almost all K£+1 ~ free graphs. We use this to prove first-order

0-1 laws for the classes S(£) of K - free graphs. This turns

£+1
out to be the final step in proving that any infinite .class .-'-..;
of finite labeled undirected graphs having amalgamé and being :closed
under- induced subgraphs and isomorphisms has a first order 10+1ﬂlaw.
These results are from Pph.G. Kolaitis, H.J. Prémel,wB.L. Rothschild,
Bull.Amer. Soc. (NS)13(1985) 160-162. The corresponding results for
unlabeled graphs can be obtained by using the theorem that whenever

C is an infinite class of finite labeled graphs closed under -sub-
graphs and isomorphisms and C(n) > 2dn2 for some d>0 and all
sufficiently large n (where C(n) denotes the number of eleménts in
C on n vertices), then the average size of the automorphism groups

- . Y

of graphs in C is asymptotically equal to 1 .

Deutsche
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A. RECSKI: Duality of graphs and what the engineers think about it ...’

There are two classical engineering applications of g;aphs and matroids
in statics and in electric network theory.

Electric engineers have developed a voltage-current symmetry,

called duality, about 80-100 years ago. Most people (engineers andﬁ
mathematicians alike) believe that this duality and the mathematical‘

one (with orthogonal vector spaces, matroid theory etc) are essentia‘

the same, apart from differences in terminology. Masao IRI (Uni-
versity of Tokyo) and the present author have shown that this is

not the case; hence there are. two different voltage-current. symme-
tries, bot related to the duality of planar graphs ("What does duality
really mean?", Internat. Journal Circuit Theory & Applications 8
(1980) 317-324).

Civil engineers have also éeveIOped a "duality" between static and
dynamic properties about 120-150 years ago. However, the exact
relation between this "duality" and the mathematicai one does not

seem to be fully clarified.

In the present talk some observations towards this direction are

presented.

I. RIVAL: Is there a diagram invariant?

There are noknown examples of a nontrivial, ordertheoretical
‘diagram invariant". Thus, while many familiar order-theoretical

properties such as length, width, order dimension, jump number,

fixed point property are preserved among all orientations of a

given comparability graph, none at all of these need be preserved

among all orientatious of a given covering graph (of an ordered set).

Deutsche .
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Indeed, there is some evidence to support the bold conjecture

that there is no such invariant at all!

THEOREM (M. Pozet and I. Rival) Let (*) be a proPeity about non-
empty, finite, ordered sets. If (*) is a diagram invarian£ which is
closed under order retract and direct products then either (i) (*)
holds for all finite ordered sets or, (ii) (*) holds just forvall
. connected, finite ordered sets or, (iii) (*) holds just; 'for all V

finite antichains or, (iv) (*i holds just for singletons.

R.W. ROBINSON:Counting labeled degree-restricted digraphs

Counting labeled digraphs on p vertices having a specified set of
in-degrees, or having all indegrees exceed a fixed lower bound, is
easy. The same is true for out-degrees in place of in-degrees. Howe-
ver, when in-degrees and out-degrees are both restricted, counting
is harder and seems to necessitate some form 6f'inversion.
Labeled digraphs with every in- and out-degree > & are counted
by direct-applications of ihclu#ion—exclusion‘for 6.; 1 ﬁand ; .
The resulting expressions require 0(54) and O(pa) ‘arithmetié
operations to calculate the numbers on up to p vertices. It is
‘ shown how to transform these expressions so as _to accomplish the
calculations-in £ime O(pz) and .O(ps) , respectivély. -
In joint work with R.é.Read, labeled pseudoéigraphs with éiven‘in—
and out-degreeé are counéed by an intransitive extension to the
classical Redfield-Read superposition theorem. A suitable 1inear‘
transformation of variables performs an inversion which. yields the
corresponding numbers of digraphs (without loops). This method is
polynomial when all degrees are < d for fixed d; however the

computational complexity increases rapidly as a function of 4 .

DF Deutsche
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A. SCHRIJVER: Disjoint paths in planar graphs

We discuss the following theorem (conjectured by K. Mehlhorn, and
proved with C.van Hoesch): Let G=(V,E) be a planar graph,

embedded in IR2 , let O be ité outer face, let I be some fixed

inner face, and let C1,...,Ch be curves in ]Rz\(IUO) , each
connecting two points of G on the baundary of IUO , so that for
each point vor G we have: degG(r)+(number of curves’ Ci having r ‘
as end point) is even. Then there exists pairwise edge-disjoint

paths P.,...,Py in G so that P; is homotopic with C; in
1R2\(IU0) , for i=1,...,h if and.only if for each dual path Q  from
IV0O to IUO one has number of edges intersected by Q > 4

1_21 (number of curves Ci necessarily intérsected by Q).

The proof yields a polynomial-time algorithm.

J. SPENCER (joint work with L. Lovasz, K.Vesztergombi): Descrepancy, linear

discrepancy, hereditary discrepancy
The discrepancy of a family Q < ZQ is a measure of how well Q

may be Red-Blue-colored so that every A €Q has nearly I[Al/2
red points. Hereditary discrepancy is the maximum discrepancy of

the restriction of Q to any @'<cQ . Linear discrepancy measures

how well, given weights pxe [0,1] for each x€9Q , Q may be ‘

Red-Blue colored so that every A€ Q has nearly z Py red points.
XEQ '

These notions extend naturally to matrices and simultaneous round off

problems.

o®
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D. STANTON: t-designs and classical association schemes

Given a finite ranked poset P and a level Ln of P, a

classical t-design Y is a subset of " L, , such that

I{y €Y : acy}| is independent of a, rank(a) = t . There is also-

a notion of a t-design for a Q-polynomial association scheme due

to Délsarte. For the eight infinite families of association scﬂéﬁes
. X there are associated posets P . An equivalence -of thesé two

definitions is shown. All that is necessary is the known decomposition

of the permutation representation of the automorphism'group of P .

These harmonics are the eigenspaces of the association scheme XJ.

V. STREHL: Jacobi polynomials: A rational approximation of

Jacobi's generating function

A combinatorial model for the Jacobi-polynomials ﬁas been ‘introduced
by Foata / Leroux (Proc. AMS 1983) in order to give a burehicombi-
natorial proof of Jacobi's generating fuﬁdtion. The combinatorial
operations "reduction" and “compréssion" lead to the notion of'nf
"order" for these Jacobi—configurafions. The (expohential) genéféting
function for Jacobi-configurations of bounded order is given, wh;ch
. turns out to be a rational fdnction involving matching polynomials
(indeed: variants of the Tschebycheff-polynomials). The essential
step in the (inductive) proof consists in doubling matching configu-

N

rations combinatorially.

' DF Deutsche
Forschungsgemeinschaft ©




oF

- 22 -

J.H. VAN LINT: Neighbourhood regular graphs

A neighbourhood regular graph (or T'-A-regular graph) is a graph g
such that for every vertex x the induced subgraph on the
neighbours rkx) resp. the non-neighbours A(x) is regular.

This idea was suggested by Seidel and in 1979 Godsil and McKay
(Proc. Australian Comb. Cbnf. Newcastle 1979, Springer Verlag)

found several properties of Tr-A-regular graphs and a number of

non-existence results. What about examples? By excluding strongly
regular graphs and graphs G for which G or G are disconnecﬁed
the "non-trivial" cases are left to study. The only examples known
so far were a graph on 4 vertices, one on 8, two on 28, and two

on 32 vertices.

May student A. Kloks has recently found an infinite sequence of

.T-A-reqgular graphs. The construction is a follows. First, a
symmetic conference matrix C of size p2+1 is constructed via
a net in the affine plane of order p . With the aid of a regular
subgraph of the corresponding strongly regular graph, C is

switched to a regular symmetic conference matrix c .

Let P := (I+E I-E) :A Q := { 1+C . -1+C) .  Then
\I-€ 1+C g e/
N := (P Q) is a Hadamard matrix with the property
Q -P/- .
that N := N - (I 0) is the (O, t 1) - adjacency matrix
o -I

of a TI'-A-regular graph of order 4(p2+1) .

Deutsche M
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i S.A. VANSTONE (joint .work with D, Jungnickel): Hyperfactorlzatlons and
| A hyperfactorization of index ) and order 2n is a collection F

of l1-factors of K2n with the property that any two disjoint
edges are pﬁntained in precisely A members of F . When i =1
”Tthese:é:e:ihe 2-(2,2n) partition systéms of _ P.Cameron. Hyper-— -
factorizations seem difficult to construét, Apart from trivial
‘ examples there is only one infinite class known and two sporadlc

. examples. They are of 1nterest because they can be used to

"construct 5-designs.

G. VIENNOT (joint work with M. Desainté-Catherine): Bijections for Young

tableaux enumeration

" We considei«the number a, of Young tableaux, strictly increasing
- ’ .
in rows, weakly increasing in columns, with entries in {1,2,...,n} ,
having at most 2k rows, and each column has an even number of cells.

We prove that

.\l--. e e e e ’ . i+3+2k
R an g = n &E%,__ .
LT 1=i<izn )

- The - proof is in steps:
i) Bijéction between Young tableaux and certain configuration of
;. ., .cpoints using Burge's version of Knuth's extension of Robinson-
. Schensted algorithm.
2) Bijection with conflgurations of Dyck paths using Viennot's
geometric veréibﬁ'of Robinson-Schensted with the "shadows".
3) Applying Gessel-Viennot methodology with determlnants and
non-crossing configurations of patbhs.
A)AApplylng the combinatorial theory of orthogonal polynomialsand
" the quotient-difference algorithm (in Padé approximants theory)
with weighted Dyck paths.

The numbers ar,k also enumerate perfect matchings of graphs
formed with pentagons and hexagons - in relation with Pfaffians
and Ising, model -. This solves Myriam Desainte-Catherine's

conjecture (Ste. Croix-aux-Mines 1983).

DF Deutsche
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B. VOIGT: On_discrepancies of O0-<1 sequences

Let A be a probability and let a = (u(O);a(1),...) be an
infinite O0-1 sequence. We put A = A(1), (1-1) = A(0) and -
for longer (finite) sequences (ao,...,as_1) we put
A(ao,...,as_1) = nx(ai) , i.e., we take the product probability.

The s-discrepancy of a, is defined by

- (@ .

- .
p°(A,a) := |  MAX_ Limsup Nt a's“bzeq“' in oIN
€0, 11° N )

In a recent article, Kirschenhofer and Tichy (J.Number Theory 1985)

showed that IgF.SEP D(xa) = % . They also put the guestion to

determine D(A) = IgF D(Aax) éxplicitly.

Result: For irrational A>1/2 it follows that

s=1 _ 2S) o+ ; 3 s-1 .

S - S
D7 (A) = (2)(A

R. WILLE: A construction method for finite distributive lattices

°

A complete tolerance relation © on a complete lattice L yields
a decomposition of L understandable as an atlas of subintervals

which themselves form a complete lattice L/o .

We can show that
|
Deutsche
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For a finite distributive lattice Lo with a ranked ordered set [
of join-irreducible elements, a specific sequence of tolerance
relations o, , of L,_q with L, :=1L. ,/0; 4 (12i<n) gives

rise to a construction method for Lo : this starts with Ln and

iteratively builds up L Ln—2""’L1'Lo according to the

n-1’'

ranking of the join-irreducible elements of Lo . The method can

be demonstrated by constructing the free distributive lattices over

n generators (n<5). For counting elements the following formula .

is useful (0 tolerance relation of a finite lattice L and S E'L):

Is| = T ' Mo (T1eIp) 1SN NI 1 .
I1,<I, in L/e :

G.M. ZIEGLER: Branchings in rooted graphs and the diameter of
greedoids

Greedoids are finite accessible set systems satisfying the matroid
exchange axiom. We study the complexity of exchange rules on the

bases of 2-connected greedoids, as measured by ﬁhe diameter of the
basis graph. We show that this diameter (depending on the rank r)

is bounded by 2¥-1  for 2-connected greedoids, by r2-r+1(r:>0)

for 2-connected branching greedoids, which are the collection of .
rooted trees in a 2-connected graph (fbranchings“).

‘ This particularly aﬁswers a question by L. Lovasz on the

‘ maximal number of exchanges of leaves required to transform a

spanning tree of a 2-connected rooted graph or digraph into a given

second one.

Berichterstatter: M. Leclerc

DF Deutsche
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