oF

Deutsche

Forschungsgemeinschaft

. Math. Forschungsinstitut
Oberwolfach

E 20 I@Z_@q 7

MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsbericht 10/1986

Mathematische Stochastik

9.3. bis 15.3.1986

An der diesjahrigen Friihjahrstagung "Mathematische Stochastik"
nahmen 43 Teilnehmer aus 13 L&ndern teil, darunter 6 aus USA,
ébensoviele aus den Niederlanden, je drei aus Ungarn und Frank-
reich, zwei aus der Sowjetunion und je einer aus Indien, Bulgarien,
GroBbritannién , Israel, Belgien und 8sterreich. In der Natur der
gemeinsamen Frilhjahrstagung Mathematische Stochastik = Wahrschein-
lichkeitstheorie und Statistik liegt es, daB das Vortragsspektrum
relativ breit gestreut ist. Dennoch gab es eine gewisse Schwer-
punktsetzung. Diese betraf vor allem die Bereiche: prizise Ent-
wicklungen fiir die Wahrscheinlichkeiten groBer Abweichungen, An-
wendungen groBer Abweichungen in dér Statistik, Selbstiiberschnei-
dungen der Brown'schen Beweqgung, Statistik stochastischer Prozesse,
nichtregulére Fdlle, stochastische Prozesse in der Statistik.

Am Abend des zweiten Tages fand ein Workshop zum Thema "Perkola-
tionstheorie" statt, der' von den Herren van den Berg (Delft) und
Grimmett (Bristol) geleitet wurde. Diese Veranstaltung fand groBes
Interesse, auch bei den vornehmlich an Statistik interessierten
Teilnehmern.

Tagungsleitung: E.Bolthausen (Berlin), G.Pflug (GieBen) "
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Vortragsausziige

R. AHLSWEDE

Identification codes for the discrete memoryless channel (DMC)
are studied.  The key observation is that N=exp{exp{R'n}} (double
. exponentially many!) objeéts can be identified in blocklength n
with arbitrarily small error brobability via a DMC, if randomi-
sation can be used for the encoding procedure. L L
Moreover, we present a novel (second order) Coding -Theorem, which

determines the second order ' identification capacity of the DMC

as a function of its transmission matrix. Surprisingly this iden-
tification capacity is a well-known quantity: it equals Shannon's
transmission capacity for the DMC. S
This is joint work with Guenter Dueck, submitted to IEEE Inf. -
Theory. T

L. ARNOLD

Unique ergodiciﬁy fdr&égéﬁeféfé:diffﬁéiéﬁs
We investigate the invariant probabilities of a possibly degenerate
. diffusion process on a manifold. Using the support theorems of
Stroock, Varadhan and Kunita, the possible candidates for -supports
of invariant probabilities can be characterized as the invériaht
control sets of the corresponding control system. There rgméins.
the problem of how many invariant probabilities can coexist on one
invariant control set C. Uniqueness of C is proved unde; the
assumption that the Lie algebra generated by the drift and diffusion
vector fields is full at one point in C. This generalizes the known
results obtained by PDE methods. Several versions of the ergodic
theorem are given.

DFG Deutsche
Forschungsgemeinschaft ©
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L. BIRGE

Some properties of the Grenander estimator

-Suppose f is a decreasing density on [0,+®[, with c.d.f. F, Fn is
" the corresponding empirical distribution (n.i.i.d. variables) and

F the Grenander estimator with derivai:ive E (f‘ is the concave
envelope of F ) . There exists some expllcn.t funct:.onal L(f,z),
z >0 which can serve to bound the risk of F in this way

El£, - £],) < 2 L(£,kn" 172) K < 1.13 - ‘
and asymptotically
1/
-2 , +o e 3
lim z /3 L(f,z) = 3/2 | |f(x£f (x)l ax .
z>0 : o

Apart from a multiplicat‘ive ‘factor of K, this is in accordance with
the asymptotic results of P. Groeneboom. This extends in a straight-
forward way to unimodal densities with known mode or decreasing den-
sities an [a,+=°[ with "a" unknown, but also through some minimum
distance device to unimodal densities with unknown mode at the

price of an extra facta 5/vii. This estimator is also easily proved
to be robust: if g is a decreasing regulation of £, only an extra
l|f-g||,I appears in the bound.

A.A. BOROVKOV ' .

Large Deviations for some classes of functionals and their
Applications

Let a,(8),a,(6)... be i.i.d. random fields, 6 € rK, ' ‘
S )
gn(e) =} ai(e), 0 €OcR
i=1 =

Two main types of functionals of Tht important in statistics,
are considered

G(;)=sup;(e)-supc(e)
Tom pco, " 0€0,

Gpleg) = In [ exp(e;(0))py (01d0-1n [ exp s, (0))p, ()40

&
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where eiCZG, 010 o, = ¢, p; are densities on @,, i=1,2. The
asymptotic behaviour of the probabilities of large deviations
(full spectrum) of Gi' i=1,2, is found.

If XyreeosX is a sample from distribution.Pg,8€ © these

results allow ?1) to find theorems describing large deviations
of the maximum likelihood extimator (ai(9)= In pg(x,),pg = 75?),
(2) to discribe the asymptotic of errors of the first and second
kind for testing the hypothesis H1'={e€o1}, H%=(9€02} when

the distance between 0, and 0, is not small (527=_ ) and when we
) E ’

use the Bayesian or ratio likelihood tests. The results are ob-
tained in collaboration with A.A. Mogulskii.

I. CSISZAR

On the probabilistic‘background'of’the’maximum'entropy principle

Let Q be a probability measure originally assigned to a given
measurable space. The"probability kinematics" problem is the'fqllowing
(philosophical) one: how to "update" Q if new evidehce suggests that
the true distribution actually belongs to a set of measures H not
containing Q. Typically, H={P:ffidP2 ai,i=1,...,k} for some func-
tions fi and constants oy The maximum entropy principle says that

the "proper updating" is the I-projection of Q on I ,i.e., that

P* ¢ T which minimizes the Kullback-Leibler informational divergence
D(P|Q) subject to PeNl (if such P* exists and is unique). The following
conditional limit theorem supports this principle. Theorem (Csiszar
1984): Let x1,x2,...
Q, let ﬁn be the empirical distribution of (X;,...,X ) and let
PﬁTA be the conditional joint distribution of-(x1,...,xm) under
the condition ﬁne M. Then, if .1 isvconvex and satisfies minor

be an i.i.d. sequence with common distribution

additional regularity hypothesis, we have 1lim ~ D(p{P)|p*n) =0,
. noew nm,n

and consequently lim D(Pém;"p*m)= 0 for evéry fixed m.
n-+>v ’

o
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This theorem is partially extended to the case when X1,X2,...
is a finite state Markov chain with transition probablllty matrix W,
Let P(Z) denote the second order empirical distribution, i.e.,
the emplrlcal distribution of ((x X ),(Xz,X ),...,(X Xn+1)) and
let H( ) be a given set of two—dlmen51ona1 dlstrlbutlons. Then
(under some regularity hypothesis) lim Pr{xz-xz,...,x =X |X —x ’
m-1 n->co

p{Pem= 1 Prx |x.) where P*¢ 12) ninimizes
n i=1 i+1174

D(P|W) = ]} P(x,y) log g(y :) subject to P€ “(2) and P=P where .
P and P are the two marginals of P and P(y|x) = P(x,y) /B(x).

.

Corollary: .

Lin (Pr{X,=x, ..., X x_[B\%)

en}—pr{x1a<1|f> en} n P*(x,
nre

i [%g)) =0

Thus the limiting conditional distribution corresponds to a Markov
¢hain minimizing Kullback-Leibler divergence rate;. however the
initial distribution of this limiting Markov chain, i.e. the limit

of P {X = |P(2)€ m} remains to be determined. In general, it
differs from the stationary distribution of the Markov chain deter-
mined by P*(- +). This result was jointly obtained with Cover and
Choi. '

D. DACUNHA-CASTELLE

Statistics of diffusions .

Let dxt==b(xt,e)dt + oz(xt)dwt be aD.S.E.To estimate € it is physically
impossible to follow the trajectory because it is too irneguiar;so we have
to choose some discretization. For such observation, we study

the loss of information. For special problems, only the crossings

of the equilibrium 1levels are observable, specifically if their
distance is not too small. We study the estimation of 6 for this

kind of observation, in the ergodic case and for different asympto-
tics. The keys are a special representation of the transition,

Tauberian theorems and some aspects of Sturm-Liouville

representation of the Lévy measure of the reciprocalprocess of local

time.

Deutsche
Forschungsgemeinschaft ©
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R. DAHLHAUS

Finite sample effects 'in time series analysis

Many estimates in time series analysis which are asymptotically

efficient, -can have bad finite sample behaviour. This is true for
parametric estimates (e.g. for Yule Walker estimates with roots:
close to the unit circle) as well as for nonparametric estimates

_(the nonparametric periodogram is often bad due to the leakage

effect).

A mathematical model is presented to describe such effects. As

an application the relation between maximum 1ikelih06d and approxi-
mate maximum likelihood estimation is discussed. It is proved

that the use of data tapers can improve a great number of esti-
mates. To illustrate the results simulation examples are pfesented.

G. DIKTA

Bootstrap approximations of nearest neighbor regression function

estimates

Let us assume that (X1,Y]9,...,(xn,Yn) is an i.i.d.. sample in the
plane with distribution function H. If the first moment of Y
exists, m(x):=IE(le) the conditional expectation of Y given X

is defined. In order to estimate the regression function
m(xo):=IE(Y|X=i ) at the point x, we use a nearest neighbor esti-
§1¥1K(En(x°:AAEn(Xi)), where K is a kerhel

=1 n

o
9
nan

mate mn(xo):=

function and (an)nelN a sequence of bandwidths.

We show that the bootstrap approximation to the distribution of
(nan)1/2(mn(xo)-m(xo)) is valid and we make a small sigulation
study to compare confidence intervals for m(x,) constructed by

normal approximation and by bootstrap approximation.

o
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H. DINGES

Wiener germs

Def. A Wiener germ of order m with center x* is a family of densities
on Uc RY of the form

£_(x)ax=[2ne]"9/2 exp(—%K(x))exp(So(x)+ES1(x)+...+em-1

J £_(x)dx = 1-0(e™ ‘ - .

sj is (m-j)-times continuously .differentiable

S 4 (x) +0 (™) )dx

K(x) is (m+2)-times continuously differentiable

K (x) positive definite, K(x*)=0, K(x) >0 for x #x* '

Theorem (Daniels 1954)
Y1 ,Y2,...,i.i.d. with integrable charact. function
Y(e) :=‘1n £ exp(0Y) < fox;‘ 6 near 0

x). 2 ly +.4v)=: X for e-=
n 1 n €.

Bl=

Another, rather trivial, way to construct Wiener germs is as follows
{WE:E €IR*} Wiener process W_=x* a.s. To(w') diffeomorphism,
m-times cont. diff. T. (w) (m-3j)-times cont diff.

T(e,0) = Tg(w) + €T () +eo+ eMn_ (@) +0 (™)

X 1= T(E,WE) , .

{E(XE) :£>0} is a Wiener germ of order m,

Theorem (on the tails of onedimensional Wiener germs)

{£(X€):e-> 0} onedimensional Wiener germ, center x*.
Then there exists functions Ao(x) , A1 (x),.. .,Am('X),
Aj (x) (m~j)-times cont. diff. s. that

VEF (Pr(Xe <)) =A_(x) + €A, (x) + +-e +e™A_(x) + 0T, x)
-s§’1(Pr(x 2x)) =B (X) 4 €BA (K ¥ ol ve " (x) 40" (e,x)

(m+1/2)[ (TAO( ) |

0t (e,x)=¢ )17V R (e, %)

Deutsche
Forschungsgemeinschaft . © @
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V. FABIAN

Finite sample behavior of some locally asymptotically minimax

estimates

Possibility of numerical investigation of the behavior of the
LAM estimate proposed by the author and J. Hannan (ZW, 82) is
discussed and results are given of such an investigation for
the (i) location parameter case of Cauchy distribution and for
(ii) the estimation of p,\ on basis of independent observations
of X+ Y with X binomial (n,p) and Y Poisson (A), indepéndent

of X.

P.D. FEIGIN

Semimartingale = Models ‘and Estimating Equations

The modern setting for both parametric and nonparametric in-
ference for stochastic processes is that of semimartingale models.
Although the theory of these models has become quite well-known,
many statisticians find it quite formidable. On the other hand, -
the essence of this theory can be made quite transparent using

a heuristic approach.

We illustrate these heuristics for the estimation equation
approach due to Godambe and applied by Thavaneswaran and Thompson,
and, Hutton and Nelson. The optimumveqﬁation is readily recognized
and we are able to consider asymptotic theory very much as in M-

estimation.

Another example of these heuristics deals with the deviation
of the Aalen estimator in the nonparametric multiplicative
intensity counting process model.

o
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F. GUTZE

Distribution of sums 'ove‘f ‘finite ‘i:a‘n‘ge‘ lattice random fields

Consider a strictly stationary m-dependent random field xjgjezd
which is defined by

. d a . . '
Xj=h(Yk:k€J+{0,...,m} ), Yk,kEZ i.i.d.

\

We lnvestlgate the limit dlstrlbutlon of S = X1+ ces t+ XN
1

if EIX I <« and g Var(Sy ) > 6250 we obtaln necessary and sufficient

condltlons such that normal approximations (lattice/nonlattice) hol
up to an error of order o(n‘1/2) . If Sy€Z we prove that a local

limit theorem holds; the limit being  a mixture of normal densities

over different supporting lattices. The local CLT holds if this
distribution is uniform.

The results generaiize to general m-range- potential functions Sy
ang Gibbsian random fields Yk,lceﬂd and sharpen a result of
Dobrushin and ‘Tirozsi 1976.

G.R. GRIMMETT

Large deviations for fumours;‘with'an‘application’td'the'design
of algorithms

ctandard methods for finding all shortest paths between all pairs

of vertices of a graph on n vertices operate in worst-case run -
time approximately 0(n3). If the edge-lengths are independent
random variablesAwhose common distribution function F satisfies
F(0) =0, F'(0) =D exists and satisfies D> 0, then there is an
algorithm ‘with  expected run-time O(n2 log n). In.

Nan51y51ng éhls algorithm, we need to understand the following
problem. One person in a village of n people has heard a rumour.
He tells it to someone chosen at random. At each étage, eéqh
person who knows the rumour tells someone chosen at random (this
person may already know the story). Let Sn be the number of
stages until everyone knows the rumour. Then Sn/logzn +1+log 2
in probability. Large deviation results and incomplete small
deviations results are available for S . This is joint work with
Alan Frieze, and the small deviation result is due to B. Pittel.

Deutsche -
Forschungsgemeinschaft . N
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P. GROENEBOOM

Convex hulls of éa‘mples‘in‘]R2

Let N be the number of vertices of the boundary of the convex
hull of a sample on n points, drawn uniformly from the interior
of a convex polygon with r sides. It has been proved by Rényi’dnd
Sulanke (Zeitschrift fiir Wahrscheinlichkeitstheorie 2 , 75-84,
(1963)) that

2
E N, v 3T log n, n+

They also proved in this paper, that the expected number of ver-
‘ tices is of order n! /3 for a sample of size n from the uniform
distribution on the interior of an ellips and of order Viog n for
a sample from a 2-dimensional normal distribution. Since the paper
by Rényi and Sulanke appeared; many papers have appeared dealing
with expectations of functionals of convex hulls, but so far there
is no satisfactory distribution theory.
A martingale characterization is given of the (local) limiting
process of the vertices of the boundary of the convex hull in the
case of a uniform sample from the unit square. From this a central
limit theorem for the number of vertices of the boundary of the
convex hull is derived. Similar results can be given for the other

cases mentioned above.

W. GROSSMANN

Sequences of experiments admitting adaptive estimation

. Consider a sequence of experiments with finite dimensional para-
meter § and a nuisance parameter ¥. An estimate for 6 is called
adaptive if the ignorance of the nuisance parameter does not
cause any loss in efficiency. In order to make this definition
applicable for general situationsefficiency is measured in terms
of minimax bounds of localized experiments. The localization of
Y has to be done in accordance with the rate of convergence of
estimates an for the nuisance parameter . Because of the fact
that this rate is sometimes too slow to allow usual weak conver-
gence the concept of conditional convergence is introduced.
Sufficiens conditions for adaptive estimation are stated. The con-
struction method is the Pitman estimgte where the nuisance para-
meter is substituted by an estimate wn.

DF Deutsche
Forschungsgemeinschaft ©
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L. GYORFI

Is the histogram a cons:.stent estimator of the density for stationary

and ergodic samples?

Estimate a uniform density f on '[0,1] from stationary and ergodic

samples X X2,...xn by a histogram

vy (Bny)
fn (X) = ﬂmh if x € Anl

: [

where P = {An1"" Ankn } is a partition ofA[0,1] and uy, .and X

stand for the empirical measure of X1,... X and Lebesgue measure,

1'

resp. If the samples are i.i.d. and k /n > 0 then
If (x) IE(f (x))|dx > 0 a.s. Example is given when the samples
are stationary and ergodlc and »
1
P(f|£f, (x) ~E(£f (x))|dx > —) > 5 -

A. JANSSEN

Asymptotic results for locally most powerful rank tests in non-
reqgular cases

We consider a Weibull type density f (x) = x r(x)‘l(0 w) (x) for the
shape parameter a € (—1/2,1) Then for the corresponding ‘location
family the test problem H= {6 =0} against K= {6 >0} is treated.
Therefore a new theorem for locally most powerful rank tests is

proved which applies to the case when -1/2<a< 0. Moreover the
asymptotic behaviour of these tests is investigated for our non-
regular situation. Finally we treat the parametric model. It is
shown that under a certain rescaling procedure the corresponding
limit experiment F has the following structure: F=( D%N, #JN,(Qe)GelR)

n 1/
where Qg = L(((k;Jk)v T+a e)nEN) and I is.an i.i.d.

sequence which is exponential distributed with mean 1.

Deutsche
Forschungsgemeinschaft © @
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Local and non-local measures of efficiency

i W.C.M. KALLENBERG o '
The performance of a sequence of estimators can be measured by |
its asymptotic variance 02(8) and also by-its inaccuracy rate. ‘
In 'typical cases' the local limit of the standardized inaccuracy ‘
rate equals (262 (8)}7 . i
Firstly, the above phenomenon is discussed from several points of
view e.g: by relating it to a similar question concerning Bahadur

' and Pitman efficiency in testing theory. Uniforinity of the con-
vergence is a key-point. Secondly, general results on the limiting
equivalence of local and non-local measures are obtained. The con-
cepts of Fréchet- and Hadamard differentiability, which imply uni-
formity, play an important role.

Finally, the theory is applied on linear rank tests, L- and M-
estimators.

Ch. A.J. KLAASEN

Strong Unimedality

It can be shown that a distribution F is strongly unimo&al iff

any two quantiles of the convolution of F with any other distri-
bution are further apart than the corresponding quantiles of F
itself. This characterization of strong unimodality and related
ones will be discussed, together with an application to asymptotic
estimation;

H. L. KOUL

Minimum Distance Estimation 'in Linear Models

In this talk extensions of Cramer-von Mises type minimum distance
estimators from the one and two sample location models to the
linear models are given. These extensions are based on certain
weighted empiricals which are basic to these linear models. The
linear models include the autoregressiv model with regression
components. The class of estimators includes the Hodges-Lehmann
type and Darling-Anderson type estimators. A general limit
theorem is given which is useful in studying the asymptotic nor-
mality and qualitative robustness of these minimum distance

estimators. .
DF Deutsche
Forschungsgemeinschaft © @
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J.. P. KREISS

On adaptive estimation 'in ‘autoregressive models when there are
nuisance functions '

We consider stationary solutions (Xt) of the following difference

tez
equation
L3

Xt = 08X

The errors e, are assumed to be i.i.d. random variables with

zero mean, finite variance and finite Fisher-Information I(f).
f denotes the density of the error-distribution. In a first part ‘

we prove asymptotic normality of the above model for the parameter
(6,f), where we use a specific local parametrization (c.f. a pre-
print of Huang (1984)). The main part of the talk deals with the
construétion of adaptive.estimétés of 8 , if £ is regarded as a
nuisance function. Surprisingly it turns out that adaptation is
possible, even if the underlying f is not symmetric. The construction
uses ideas of the approach given in Stone (1975). All results hold
true for autofegressive processes of order p, too.

U. KRENGEL

Nonlinear models of diffusion on a finite space

Let T be an order preserving operator in 1; of a finite space which
preserves integrals. It is shown that ™ £ converges for all f

under an aperiodicity condition and that in general there exists

p €N such that PP £ converges. In the case of continuous- time
there always is convergence. This extends classical results on

Markov chains to.the nonlinear case. The exponential speed of con-.
vergence need not hold in the nonlinear case. (Joint work with

M.A. Akcoglu).

H. KUNSCH

Jackknife'and'Béétstrap'for'general stationary observations

We consider nonparametric variance estimates for M-estimators T,

defined by "TET Y(Xy X, seeeiX, T )=0. The (X;)  are.

is1 i+r-1
assumed to be a stationary strongly mixing process. Let Yi'be

oo s X

jep-q) s FOr the jackknife define Tm,(j) by

i+1

o®
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é w(Y, 'Tm (J)) O where B = {J:J+1,...,J+m-1} We then estimate
i¢B.
J .

Var(T ) by 1%—59—- 2 (T 2. This is shown to be
m

o - T

m, (3) m,(’))
consistent and asymptotically normal for m + «, m/n + 0 if Zka(k)< @
and y is bounded. It turns out to be equivalent to the Bartlett
estimate of a spectrum. The procedure can be improved by using
Z(‘I'w((l'J)/m))w(YirTm' (3))
the bootstrap we generate for given 1,...,Y pseudosamples
Y;... Y; where the blocks (Y (k = 0,...,; -1)

=0 with a continuous window w. For

fme17 o Ylce)m!

n-np+1
are i.i.d. ~ (n-m+1)" ?

= (Y,...,Y ).

i+m-1

L. LE CAM

On the preservatien-of'Iocei'aéymptotic'normality under information

loss

Let {En} be a sequence of experiments, gn={Pe'n;6 EOn} given by
measures on 0-fields Ah. Assgme that the sequence {Eﬁ}'satisfies
the LAN conditions or the condition of weak Gaussian approximability.
Let ;n be given by restricting the Pe,n to o-fields B cA,. The
LAN property (resp WAG) is inherited by the Fn in the following
cases: a) The En are direct products of bounded infinitesimal
arrays and the passage to Bn occurs factorwise. b) There are
statistics S and T with S, distinguished on ¢ and T defined on
?n and distinguished there such that i) L(Snlpt n) teo, are asymptoti-
cally shift normal ii) L(S T ]P ) is asymptotlcally normal
for some sequence (en).If 1nparub) one requires instead of (11)
that £{s_,T |Pe }+ £(X,Y) with €(X|Y) normal one obtains a re-
lated result of R. Davies {(Proc. Neyman—Klefer Conference, Wads-
worth, 1985). '

o®
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P. MAJOR

On the tail behaviour of'the'distribution'funcﬁioﬁ‘of‘mﬁltigié
stochastic integrals )

.

We consider the s fold product of the measure induced by the
standardized empirical process and the integral of a bounded

function with respect to it . We are interested in the tail be-
haviour of the distribution function of this random integral.

A large deviation type result is presented for this problem

which is in some sense optimal. We prove our result by first .
proving an analog result about Poisson processes and then

applying Poisson approximation of the empirical process.

H. MILBRODT

Asymptotic Théory'éf‘saﬁpiinéxExperiments

The asymptotic behaviour of experiments associated with Poisson
sampling, Rejective sampling and Sampford-Durbin sampling is in-
vestigated. As superpopulation models so-called Lr-generated re-

gression parameter families (1< r < 2) are considered, allowing
also the presence of nuisance parameters. Under some assumptions
on the first order probabilities of inclusion it can be shown
»that the sambling experiments converge weakly iff the underlying
shift parameter families do. In case of convergence, the limit of

the sampling experiments is characterized in terms of Hellinger
transforms. Applications include LAM-bounds and criteria for adapti-
vity, when'estimating a continuous linear functiohal in asymptoti-
cally normal (LAN-) situations. They cover especially thebcase of
sampling from an unknown symmetric distribution, which has been
subject to detailed investigation in the i.i.d. case.

Deutsche
Forschungsgemeinschaft ©
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The rate of convergence 'in CLT ‘in 'Hi’l‘b‘e:r;'t‘ 'épa‘éé

Several theorems concerning the bounds of the remainder term in
CLT in Hilbert space are exposed. Formulate one of them. Let M

be a real separable Hilbert space with norm |- {xk}n, be a se-

quence of i.i.d.r. v with value in M, EX, =0, B=]E|x1| <o,
= E|X1 ]2,/\ be the covariance operator of r.v.X.

Th. 1 Let {012(}: R 012{3 012(+1 be the eigenvalues of A and

cj>0, j=1-7. Then

-1, B
sup | P(|n ZXj—a|<T)—P(|Z-a|<r||<
T 1

6/7

3 3,7
<cB(c”+ |a|”)/(n oj) vn
. ] .

where Z is a Gaussian r.v. with the same covariance operator A

andIEZ =0, ¢ is an absolute constant.

P. NEY

Large deviations ‘of Markov additive processes

n
M.C. on a general state space (&,E) and {Sn) is an .R9-valued

We consider an MA-process { (X ,Sn); n=0,1+-+}, where {Xn} is a
additive component. Properties of the eigenvalues and eigen-
functions of the transform kernel of the process are proved.
These are then used to show that the large deviation principle
holds for, IPx{(Xn,sn) €AxnT} , Aeé, I' a Borel set in ra. The
lower bound (for open ') needs only irreducibility of {Xn} and
non - singularity of {Sn} in a standard sense. The upper bound
(for closed I' ) requires a moment hypothesis when d> 2.

Regeneration techniques are used extensively in the proofs.

J. OOSTERHOFF

On complete families of ‘distributions

A simple proposition is presented which establishes completeness
of (parametric) families of distributions by deriving it from
the completeness of other families. '

Some particular cases are considered, which meedlately lead to
completeness of non-central distributions, non-null distributions

and shift distributions of some well known statistics.
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B.L.S.P.. RAO

Least squares and nonlinear Regression

Consider the nonlinear regression model Xi==gi(9)+ €5 i>1, where
Eﬂei) =0 and E(e%)< ©, The problem studied is the estimation of

the parameter 6 by the method of least squares and obtain the
asymptotic properties of the least-squares estimator (LSE). The .
classical method consists of deriving the normal equations and

using Taylor expansion around the line parameter of the function
Qn(e) i21(X -9y (6))2. Clearly this method is not applicable when

g;(e) are not differentiable. Here we pre;ent an alternate approach
for the study of asymptotic properties of LSE. Weak convergence of
suitably normalized version of the least squares randem fields

Qn(e) is studied and the asymptotic properties of LSE are obtained

via the continuous mapping theorem.Inter alia, the rate of convergence

of LSE is discussed. A non-regular case where the classical method is
not applicable is presented Some of the results have appeared in

J. Multlvarlate Ana¥y51s and Statlstlcs and Probablllty Lectures .

others will appear in StatlSthS and Dec151ons 4 (198s6), Statlstlcs
17 (1986) and Ann. Inst ‘Statist. Math. (1986) .

L. RUSCHENDORF

Unbiased estimation in ‘generalized moment families

For generalized moment families a characterization of the unbiased
estimators of zero isproved, which allows to determine MVUE}s in
many nonparametric families. As special examples we discuss finite
moment fami;ies, extension models, nonparametric translation ’
families and distributions with given marginals.

DF Deutsche
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R.J. SERFLING

Maximal E;obabilitxﬁingggalitieé for'mulfidimensionalxy'indexed
submartingale arrays of random variables ‘and ‘applications

Chow (1960) established a maximal probability inequality for sub-
martingale sequences, thereby extending inequalities of Doob,
H&jek and Rényi, and Kolmogorov. Cairoli 11970) extended some of
Doob's inequalities to multidimensionally indexed arrays and gave
a counter example to possible extension of another of Doob's in-
‘ equalities. Smythe (1974) gave a similar extension of the I-iéjek—
Rényi inequality. In the present work an analogous extension of
Chow's inequality is developed. This yields the results of
Cairoli and Smythe as special cases and also a modified version
of the other Doob inequality, as well as some other useful corolla-
ries. Important applications include random fields and U-statistics.
(This work is joint with T. Christotides.)

J. STEINEBACH

Note on a limit theorem for characteristic functions

Let X be a (real~valued) random variable on some probability space
{®,8,P) with distribution functionF (x)=P (X< x), X €IR, and characte-
ristic function o(t) = [eltX dr(x), t€R. If F is bounded to the

. right (or left), a classical limit theorem on ¢ says that the
vextremities" of F, i.e. rext(F) =’xR = ‘ess sup X (resp. lext(F) =
X[, = ess inf X) are determined by the limit relations

xg = lim ls log @(-is), x =-1lim % log o©(is).
S+ s*X

via elementary convexity arguments, some extended versions of the

latter relations can be derived which, in. particular, provide a

well-known characterization of bounded distribution functions.

Certain relations to other fields such as "ruin theory" or large

deviation problems" are also discussed.
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H. STRASSER : ' -

Stability of limit experiments for dependent observations.

A family of prdbability measures on a filtered probability space
is called a filtered experiment. It is shown that sequences of
filtered experiments, which are obtained by rescaling a fixed
experiment, can only have weak limits satisfying an invariance
property called stability. In case of independent, identically
distributed observations, the result covers previous assertions
obtained by Strasser. In general, the result covers the case of

dependent observations. It can be explained, how so-called. mixed
normal situations arise in the limit. As a by-product we show,
how an increasing family of experiments can be represented by

a filtered experiment. o ’

J. TEUGELS -

Tail estimation

In insurance mathematics premiums are often partially ' determined

from the mean and/or the variance of past claim experience.

For large claims however one can reasonably assume that the distri-
bution F of the claims is of the form 1-F(x) = x %L (x) where L is
slowly varying . One éf the main problems then is to estimate a.

One choice will be Hill's estimator. We find the weakest possible
conditions for asymptotic normality; they easily lead to quantile ‘
and to tail estimation of F as well. :
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- J. van den BERG

some results and problems concerning M-dependent sequences.

We discuss some results in a paper by S. Janssen (Ann. Probab.1984).
In particular we present a simpler proof of his main theorem, using
standard Markov Chain theory. Some attention is paid to the conjecture
that every M-dependent sequence can be "represented" as a finite-

window function" of an i.i.d. sequence.

W.R. van ZWET

Kakutani's interval splitting scheme.

Choose a point at random (i.e. according to the uniform distribution}
in the interval (0,1). Next choose a second point at randqm in the
longest of the two intervals into which (0,1) is divided by the first
point. Continue in the way, at the n-th step choosing a point at
random in the longest of the n subintervals into which the first
(n-1) points subdivide (0,1). Let Fn be the empirical distribution
function of the . first n points chosen. It is known that F. con-
verges a.s. to the uniform d.f. on (0,1) (cf. Ann. Prob. 6 (1978),
133). Ronald Pyke and the author have recently shown that the
corresponding empirical process converges in distribution to a con-
stant multiple of a Brownian bridge.

W. WEFELMEYER

Reqularity ofAestimator-sequences for real-valued functionals

A family of probability measures dominated by a fixed probability
measure P can be identified with a subset of the Hilbert space of
P-square integrable functions by considering the square roots of
the P-densities. Assume that this subset admits a tangent cone
with respect to the Hausdérff. distance. Assume, furthermore, that
we are given a Hellinger differentiable real-valued functional on

DF Deutsche o
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the family of probability measures. Then any estimator-seguence
for the functional which is asymptotically linear and asymptoti-
cally efficient in P is locally asymptotically minimax.

M. YOR

Recent progress on multiple points of Brownian motion

The proofs of the existence of double points for 2- and 3-dimensional

Brownian motion as well as that of points of multiplicity k(for
any k €IN) and even c(: power of the continuum) for 2-diménsional
Brownian motion were probably the deepest results on Brownian
motion obtained in the fifties (Dvoretzky;Erdas—Kakutani - Taylor).
Although K. Symanzik's program for Quantum Field theory (1969) in-

volved quantities closely linked with the double points of Brownian

motion, and was the origin of varadhan's renormalization result,
the field stayed "comparatively calm" until, at the beginning of
the eighties, J. Rosen (with J. Horowitz and D. Geman) showed the
existence of local times of intersection and began to develop a
related stochastic calculus. As a consequence, Varadhan's renor-
malization result has been enormously simplified and, more impor-
tantly has been adequately extended to all multiplicities in 2
dimensions (J. Rosen and E. Dynkin); a central limit ersatz to
Varadhan's result has been obtained in 3 dimensions (the author),
and J.F.Le Gall was able to prove a conjecture of S.J. Taylor con-
cerning the Hausdorff measure of k-multiple points.

The last point of the lecture was devoted (too briefly) to results

of J.F.Le Gall concerning the Wiener sausage, as well as his limit

theorem concerning the asymptotic behaviour of double integrals re-

lated to 2-iﬁdependent 4-dimensional Brownian motions. This theorem
is a sort of analogue of the limit theorem for integrable additive
functionals of 2-dimensional Brownian motion.

Berichterstatter: G. Pflug
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