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Mathematische Stochastik

9.3. bis 15.3.1986

An der diesjährigen Frühjahrstagung "Mathematische Stochastik"

nahmen 43 Teilnehmer aus 13 Ländern teil, darunter 6 aus USA,

ebensoviele aus den Niederlanden, je drei aus Ungarn und Frank­

reich, zwei aus der Sowjetunion und je einer aus Indien, Bulgarien,

Großbritannien, Israel, Belgien und österreich. In der Natur der

gemeinsamen Frühjahrstagung Mathematische Stochastik = Wahrschein­

lichkeitstheorie und Statistik liegt es, daß das Vortragsspektrum

relativ breit gestreut ist. Dennoch gab es eine gewisse Schwer­

punktsetzung. Diese betraf vor allem die Bereiche: präzise Ent­

wicklungen für die Wahrscheinlichkeiten großer Abweichungen, An­

wendungen groBer Abweichungen in der Statistik, Selbstüberschnei­

dungen der Brown'schen Bewegung, Statistik stochastischer Prozesse,

nichtreguläre Fälle, stochastische Prozesse in der Statistik •

Am Abend des zweiten Tages fand ein Workshop zum Thema "~erkola­

tionstheorie" statt, der' von den Herren van den Berg (Delft) und

GrLmmett(Bristol) geleitet wurde. Diese Veranstaltung fand groBes

Interesse, auch bei den vornehmlich an Statistik interessierten

Teilnehmern.

Tagungsleitung: E.Bolthausen (Berlin), G.Pf~ug (GieBen) .
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Vortragsauszüge

R. AHLSWEDE

Identification via "channelS .~ 'a 'second order 'Coding "Theorem.

Identification codes for the discrete memoryless channel "(DMC)

are studied.· The key observation is that N=exp{exp{Ren}} (double

exponentially many!) objects can be "identified in blockle~gth n

with arbitrarily small error probability via a DMC, if randomi­

sation can be used for·the encoding procedure.

Moreover, we present a novel (second order) Coding -Theorem, which

determines the s~cond orde~ . "identification "capacity of the DMC

as a function of its transmission matrix. Surpr1singly this iden­

ti~ication capacity is a well-known quantity: it equals Shannon's

transmission capacity for the DMC.

This is joint work with Guenter Dueck, submitted to IEEE' Inf."

Theory.

L. ARNOLD

Unique ergodicity for'deqenerate 'diffusions

We investigate the invariant probabilities of .a possibly degenerate

diffusion process on a manifold. Using the support theorems of

Stroock, Varadhan and ~unita, the possible candidates for ·suoports

of invariant probabilities can be characterized as the inyariant

control .sets of the corresponding contro! system. There remains

the problem of how many invariant probabili~ies can coexist on one

invariant control set C. Uniqueness of C is proved unde~ the

assumption that the Lie algebra generated by the drift a~d diffusion

vector fields is full at one point in C. This generalizes the.known

results obtained by PDE methods. Several versions of ,the ergodie

theorem are given.
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L. BIRGE

Same properties of the Grenander estimator

'Suppose f is a decreasing densitYon [0,+00[, with c.d.f. F, Fn is

the corresponding empirical distribution (n.i.i.d. variables) and

F the Grenander estimatar with derivative f (F is the concaven . n n
envelope of F

n
). There exists some expl,ici: functional L (f, z),

z >0 which can serve to bound the risk of Fn in this way

K < 1.13

and asymptotically
•

lim
z-+O

-2/3 .
z L (f, z)

Apart fram a multiplicative 'factoraf K, this is in accordance with

the asymptotic results of P. Groeneboom. This extends.in a straight­

forward way to unimodal densities with known mode or decreasing den­

sities on [a.,+ oo[ with lIa" unknown, but also through some minimum

distance device to unimodal densities with unknown mode at the

price of an extra facta 5/yn. This estimator is also easily proved

to be robust: if g is a decreasing regulation of f, only an extra

11 f-g11
1

appears in the bound.

A.A. BOROVKOV

Large Deviations for 'some classes of 'functionals and their

Applications

Let a, (8) ,a2 (8) ••.• be i'.i.d. random fields, 6 E Rk ,

n
sn (eI = iL a i(eI, e E0cR

k

Two main types of functionals of sn' important in statistics,

are considered

sup S (6) - sup S (6)
8Ee n 8Ee n

1 2

In J exp (sn (e) ) p 1 (6) d6 - In J exp (sn (e) ) P2 (8) da'
8, e 2

•
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where 0i c B·, 01 n 02 = (),. Pi are ~ensities on 0 i , i=1, 2. The

asyrnptotic behaviour of the probabilities of large deviations

(full spectrurn) of Gi' i=1,2, is faund.

If x 1 , ••• ,xn is a sarnple from distribution,Pa,SE ° these

results allow (1) to find theorems describing large deviations

of the maximum likelihood extimator (a. (8) = ln Pe (x.) ,Ps = ddPS ),
1. 1. IJ. '

(2) to discribe the asymptotic of errors of the first and second

kind for testing the hypothesis H,={SE8,}, H
f

={SE82 } when

the distance between 01 and 02 is not small (»--- ) and when wevn . .
use the Bayesian qr ratio likeLihaod tests. The results are ab­

tained in collaboration with A.A. Mogulskii.

I. CSISZAR

On the probabilistic 'background 'cf ·the "maximum 'entropy principle

Let Q be,a probability measure originally assigned to a given

measurabl~ space. The"probability kinematics" problem 15 the f<?llowing

(philosophieal) one: how to "update" Q if new evidence suggests that

the true distribution actually belongs to a set of measures n not

conta ining Q. Typica1ly, TI= {P : f f i dP 2: ai' i= 1 , ••• , k} for some func­

tions f i an~ constants a i • The maximum entropy princip1e sa~s tha~

the "proper updating" is the I-projection of Q on TI, i.e., that

p* E n which minimizes the Kullback-Le~'bler informational divergence

D(PIIQ) subject. to PEIT (if such P* exists and is unique). The following

conditional limit theorem supports this princip1e. Theorem (Csiszar

1984): Let X
1

'XZ' ••• be an i.i.d. sequence .with common distribution

Q, let P be the empirical distribution of (X1 , ••• ,X ) an'd letn . n
Pn(m) be the .conditional joint distribution of· (X" ••• ,X ) under,n m
the condition Pn.E TI. Then, if·TI 1s convex and satisfies rninor

additional regularity hypothesis, we have 1im l D(P
rr
(n)l!p*n) = 0,

. n+~ n ,n
and consequently lim D (Prr(m) 11 p*m) = 0 for ev~ry fixed m.

n-+-ClO ,n
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This theorem is partially extended to the case ~hen x1 'x2 ' •..

is a finite state Markov chain with transition probability matrix ~

Let p(2) denote the second order empirical distribution, i.e.,n '
the empirical distribution of «X1 ,X2 ),(X2 ,X3 ), ... , (Xn ,Xn + 1 » and

let n(2) be a given set of two-dimensional distributions. Then

(under some regularity hypothesis) lim pr{x2=x 2 , ••• ,x =x IX1=x",
rn-1 n -4-00 m m I

p(2) En}= n p* (x. +1 Ix. ) 'where P* € IT (2) minimizes
n i=1 1 1 .

\' . P ( x) (2) - •D(P\lW) = LP(x,y) log \\Ty x) subject to PEIT and P=P where

P and P are the two marginals of P and P (y Ix) = P (x,y) /P' (x) •

Corollary:
.... (2) ' .... (2) ~1

1m .(Pr{X1=X, ••• ,~=x IP E IT}-Pr{X1=x1 IP EIl} n P*(xi+1Ixi» = 0
n~ m n n· i=1

Thus the 1imiting conditiona1 distribution corresponds to a Markov

cllain minimiz~ng Kullback-Leibler. divergence rate;. however the

initial distribution of this limiting Markov chain, i.e. the limit

of P {X
1

= a11P~2) E n} remains to be determined. In general, it

differs from the stationary distribution of. the Markov chain deter­

mined by P*(· .). This result was jointly obtained with Cover and

Choi.

D. DACUNHA-CASTELLE

Statistics of diffusions •Let dXt =b(Xt ,8)dt + 02(Xt )dWt beaD.S.E.Ta ~stimate e it is physically

impossible to follow the trajector.y .because it is too irregul"ar.-So we have

to choose some discretization. For such observation, we study

the loss of information. For special problems, only the crassings

of the equilibrium levels are observable, specifically if their

distance is not too small. We study the estimation of 8 for this

kind of observation, in the ergodic case and for different asympto­

tics. The keys are a special representation of the transition,

Tauberian theorems and same aspects of Sturm-Liouville

representation of the Levy measure of the reciprocalprocess of Iocal

time.
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R. DAHLHAUS

Finite sameie effects 'in 'time 'series analysis

Many estimates in time series analysis which are asymptotieally

effieient, ·can have bad finite sarnple behaviour. This is true for

parametrie estimates (e.g. for Yule Walker estimates with roots~

elose to the unit circle) as weil as for nonparametrie estimates

(the nonparametrie periodogram is often bad due to the leakage

effeet).

~ A mathematical model is presented to describe such effects. As

an applieation the relation between maximum likelihood and ~pproxi­

mate maximum likellhood estimation is diseussed. It is proved

that the use of data tapers ean improve a great number of esti­

mates. To illustrate the r~sults simulation examples are presented.

G. DIKTA

Bootstrap 'approximations 'of 'nearest neighbor 'regress~on 'funetion

estirnates

•
Let us assume that (X

1
,y

1
t
), ••• , (Xn'Yn ) i5 an i.i.d., sarnple in the

plane with distribution furietion H. If the first moment of .Y

exists, m(X) :=m(yjx) the eonditional expeetation of Y given X

is defined. In order to estimate the regression furiction

m(xo ) :=m(yjx=xo ) at the point Xo we use a nearest neighbor esti-

. '1 n .·.F~(xo)··-:-··F~(Xi)
mate m (x ) := -- LYiK( ), where K is a kernel

n 0 nan i=1 . an

function and (an) n E JN a sequence of bandwidths.

We show that the bootstrap approximation to the distribution of

(na )1/2(m (x )-m(x » is valid and we 'make a small simulation
n n 0 o· :

study to cornpare confidence intervals for m(xo ) eonstructed by

normal approximation and by bootstrap approximation.
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H. DINGES

Wiener germs

Def. A Wiener germ of order m with c~n~er x* is a family of densities

on U c lRd of the form

f (x)dx=[21TE]-d/2 exp(-.lK(X) )exp(S (X)+ES, (x)+ ..• +Em-' -S 1 (X)+O(Em) )dx
E E 0 m-'

J fE(x)dx = 1-0(E
m

) •

Sj is (m-j)-times continuously.differentiable

K(x) is (m+2)-times"continuously differentiable

Kn(X) positive d~finite, K(X*)=O, K(x) > 0 for x * x*

Theorem (Daniels 1954)

Y1'Y2, ••. ,i.i.d. with integrable charact. function

\lJ(S) := ln ~ exp(8Y) < (X) for e near 0

X(n):= !(Y +•• +Y)=: X
n 1 n E.

for 1
E =- •

n

•
Another, rather trivial, way to 'construct Wiener germs is as follows

{WE:E ElR+} Wiener process Wo = x* a.s. Ta (w') diffeamarphism,

m-times cant. diff. T, (w) (m-)')-times cant. diff.
. ]

T ( E , w) = Ta ( w) + .E T1 (w) + • · · + EmTm (w) +0 ( Em+1 )

Xe: := T(E,W
E

)

{C (X) E -+ O} is a Wiener germ af order m.e:

Theorem (on the tails of onedimensional Wiener germs)

{C (XE) : E -+ O,} onedimensional Wiener germ, cen'ter x*.

Then there exists functions Ao(X)' A1 (x) , •.. ,Am(X),

~. (x) (m-j)-times cont. diff. s. that
J

'lEf1(pr(XE~x» ~Ao(X) +"EA,(X) + ••• +EmAm(X) +O~(s,x)

. 1 In +-e:F (pr(XE~x»=A9(x)+ EA1 (X)+ •.• +E Am(X)+0 (E,X)

ot (E ,xl =E (m+1/2)[q (I~X) I) ]-1 oR: (E ,xl
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v. FABIAN

Finite sample behavior 'bf 'some -löcally 'asymptotically minimax

estirnates

Possibility of numerical investigation of the behavior of the

LAM estimate proposed by the author and J. Hannan (ZW, 82) is

discussed and results are given of such an investigation for

the (i) Iocation parameter case of Cauchy distribution and for

(ii) the estimation of p,A on basis of independent observations

of X + Y with X binomial (n,p) and Y Poisson (A), independent

of X.

P.D. FEIGIN

Semimartingale Models "and "Estimating Equations

The modern setting for both parametrie and nonparametrie in­

ference for stochastic processes is that of semimartingale models.

Although the theory of these models has become qnite well~known,

many statisticians find it quite formidable. On the other hand,

the essence of this theory can be made quite transparent using

a heuristic approach.

We illustrate these heuristics for the estimation equation

approach due to Goda~~ and applied by Thavaneswaran and Thompson,

and,Hutton and Nelson. The optimum. eqliation is readily recognized

and- we are able to consider asymptotic theory very much as in M­

estimation.

Another example of these heuristics deals with the deviation

of the Aalen estimator in the nonparametrie multiplicative
intensity counting process model.
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F. GÖTZE

Distribution of 'sums 'over 'finite "range lattice "randomfields

Consider a strietly stationary m,-dependent random field X., j E 7l
d

J
whieh is defined by

X
j

= h(Yk : k€ j + {O, ••• ,m}d l ," Yk,k €71d i.i.d.

We investigate the limit distribution of SN = X1 + ••• + XN •

If lElx
1

"t 4 < 00 and ~ var(SN) -+ 62 > 0 we obtain neeessary and suffieient

conditions such that normal approximations (lattice/nonlatticel hOl'"

up to an error of order 0 (n-1 /2). If SN E 7l we prove that a loeal

limit theorem holds; the limit being' a mixture of normal densities

over different supporting lattices. The loeal CLT holds if this

distribution is uniform.

The results generalize to general m-range" potential funetions SN

and Gibbsian random fields Y
k

, k E?;ld and sharpen a result of

Dobrushin and 'Tirozsi 1976.

G. R. GRIMMETT

Large deviations "for rumours,' 'with "an "applicatiön "to "the "design

of algorithms

~tandard methods for finding all shortest paths between all pairs

of vertices of a graph on n vertiees operate in worst-case run -

time approximately O(n3 1. If the edge-Iengths are independent "4It
random variables whose common distribution function F satisfies

F (0) = 0, F 1(0) = D exists and satisfies D > 0, then there is an

algorithrn with ,expected run-time O(n 2 log n). In

analysing this algorithm, we need to understand the following

problem. One person in a village of n people has heard a rumour.

He tells it to someone chosen at random. At each stage, ea~h

person who knows the rumour teIls sorneone chosen at randorn (this

person may already know the story). Let Sn be the number of

stages until everyone knows the rumour. Then Sn/log2n -+ 1 + log 2

in probability. Large deviation results and incomplete small

deviationsD$ults are available for Sn. This is joint work with

Alan Frieze, and the small deviation result is due to B~ Pittel.
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P. GROENEBOOM

. - - .... -. 2
Convex hulls 'of samples -inm

Let N
n

be the number of vertices of the boundary of the convex

hull of a sample on n points, drawn uniformly from the interior

of a convex polygon with r sides. It has been proved by Renyi-and

Sulanke (Zeitschrift für ~ahrscheinlichkeitstheorie2 , 75-84,'

( 196 3» that

:JE N - ~ r log n,
n 3

n-+ooo

They also proved in this paper, that the expected number of ver­

tices is of order n 1 / 3 for a sarnple of size n from the uniform

distribution on the interior of an ellips and of order Vlog n' 'for

a sample from a 2-dimensional normal distribution. Since the paper

~y Renyi and Sulanke appeared, many papers have appeared ßealing

with expectations of funetionals of .convex hulls, but so far·there

is no satisfactory distribution theory.'

A martingale char~cterization is given of the (loeal) limiting

process of the vertices of the boundary of the convex hull in the

case of a uniform sarnp1e from the unit square. From this a eentral

limit theorem for the nuffiber of ,vertices of the boundary, of the

eonvex hull is derived. Similar results can be given for the other

cases mentioned above.

w. GROSSMANN

Sequences of 'experiments 'admitting 'adaptive estimation

4It Consider a sequence cf experiments with finite dimensional para­

meter e and a nuisance parameter ~. An estimate for e is called

adaptive if the ignorance of the nuisance parameter does not

cause any lass in efficieney. In order to make this definition

applicable for general situationsefficiency is measured in terms

of minimax bounds of localized experiments. The localization of

~ has to be done in accordanee with the rate of convergence of

estirnates ~n for the nuisance parameter ~. Because of the faet

that this rate is sometimes too slow to allow usual weak conver­

gence the concept of conditional convergence is introduced.

Sufficiens conditions for adaptive estimation are stated. The con­

st~uction method is the Pitman estim~te where the nuisance para­

meter is substituted by an estimate ~ •
n
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L. GYöRFI

where P
n

= {An , ••• A
nk

} is a partition of.[0,11 and u rt .and A
1 n

stand for the empirical measure of Xl' •.. Xn and Lebesgue measure,

resp. If the samples are i.i.d. and kn/n ~ 0 then

Jlfn(x) -lE(fn (x»I'dx ~ 0 a.s. 'Example is given when the' samples

are stationary and ergodie and

•xE An.
~

if

1s the histogram"a 'consiste-nt estimator"of ·the -density "tor 'stationary

and ergodic samples?

Estimate a uniform density f on [0,1] from stationary and ergodie

samples X1 'X2 ' ••• Xn by a histogram

u n (An
i

)

A(~.)
~

A. JANSSEN

Asymptotic results 'for "locally 'most powerful rank tests in non­

regular cases

We cons.i:-der a.Weibull type density f(x) =,'xar(x) 1 (0,00) (x) for the

shape parameter aE (_1/2,1). Then for the corresponding'location

,family the test problem H= {e = O} against K= {e > O} is treated. •

Therefore a new ~heorem for locally most powerful rank tests is

proved which applies to the case when _1/2 < a < o. Moreover the

asymptotic behaviour cf these tests is investigated for our non­

regular situation. Finally we treat the parametrie model. It is

shown tha.t under ·a certain rescaling procedure the corresponding

limit experiment F has the following structure: F= ( ~, B~, (Oe) 8E:IR)

where
~ 1/1+a

Oe = c (« L Ji<) + e)~ E"~)
k=1

and is.an -i.i.d.

sequence which is exponential distributed with mean 1.
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W.C.M. KALLENBERG

Local and non-Ioeal measures of effieieney

The performance of a sequenee of estimators ean be measuredby

its asymptoti~ varianee 0
2 (8) and also by-its inaccuracy rate.

In Itypieal eases l the loeal limit of the standardized inaecuracy

rate equals { 20 2(8)}-1.

Firstly, the above phenomenon is di~eussed from several points of

view e.g. by relating it to a similar question eoncerning Bahadur

and Pitman efficiency in testing theory. Uniformity of the eon­

vergence is a key-point. Secondly, general results on the l~miting

equivalence of loeal and non-Ioeal measures are obtained. The con­

eepts of Frechet- and Had~mard differentiability, whieh imply uni­

formity, play an important role.

Finally, the theory is applied on linear rank tests, L- and M­

estimators.

eh. A.J. KLAASEN

Strong Unimodality

It can be shown that a distribution F is strongly unimodal iff

any two quantiles of the convolution of F with any other distri­

bution are further apart than the correspo~ding quantiles of F

itself. This characterization af strong unimodality and related

ones will be discussed, together with an application to asymptoti~

estimation •

H. L. KOUL

Minimum Distance EstimatiOn 'in 'Linear 'Models

Inthis talk extensions of Cramer-von Mises type minimum distanee

estimators fram the one and two sarnpie Iocati~~ models to the

linear models are given. These extensions are based,on certain

weighted empirieals which are basic ta these linear models. The

linear models include the autoregressiv model with regression

eomponents. The class of estimators includes the Hodges-Lehrnann

type and Darling-Ander50n type estimators. A general limit

theorem i5 given which i5 useful in studying the asymptotic nor­

mality and qualitative robustness of these minimum distance

estimators.                                    
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J." p. KRElSS

On adaptive estimation "in 'autoregressive models when ·there are

nuisanee 'functions

We eonsider stationary solutions (Xt ) t E?Z of the following differenee

equation

The errors e t are assumed to be i.i.d. random variables with

zero mean, finite varianee and finite Fisher-lnformation l(f).

f denotes the density .of ,the error-distribution. In a first part

we prove asymptotic normality .ofthe above model for the parameter4lt

(8,f), where we use a specifie Iocal parametrization .(c.f. a pre­

print of Huang (1984». The main part of tpe talk deals with the

construetion of adaptive. estimates of e , if f is regarded as a

nuisance function. Surprisingly .it turns out that adaptation is

possible, even if the underlying f is not 'symmetrie. The eonstruction

use.s ideas of the approach given in Stone (1975). All results hold

true for autoregressive processes of order p, too.

u. KRENGEL

Nonlinear models ~f ~iffusion 'on:a 'fin~te 'space

Let T be an order preserving operator in l~ of a finite space which

preserves integrals. It is shown that Tn f converges for all f

under an aperiodicity eondition and that in general there exists

pElN such that Tpn f converges. In the case of continuous- time

there always is convergenee. This extends classical results on .•

Markov .ehains to,the nonlinear case. The exponential speed of con­

vergence need not hold in the nonlinear ease. (Joint work with

M.A. Akcoglu).

H. KUNSCH

Jaekknife 'and 'Bootstrap 'for 'general stationary "observations

We consider nonparametrie varianee estimates for M-estirnators Tn. . n-r+1
def lned by I: 4J (X . , X . +1 ' • • • , X. 1 ; T ) =0. The (X . ) are ,

i=1 1 1. l+r- n 1

assumed to be a stationary strongly mixing process. Let Yi ' be

(Xi'Xi+1' ••• 'Xi+r-1). Far the jackknife define Tm, (j) by                                   
                                                                                                       ©
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i{B. ljJ(yi,Tm,(j»=OwhereBj={j,j+', ••• ,j+m-n . We then estimate

] 2
Var (Tn ) by ~~-:) 2 (Tm, (j) - Tm, (. ) ) 2 This is shown to be

consistent and asymptotically normal for m -+ cx), m/n -+- 0 if l ka (k) < CX)

and Wis bounded. It turns out to be equivalent to the BartIett

estimate of a spectrum. The procedure can be improved by using

1(1-w«i-j)/m»tlJ(Yi,Tm, (j» = 0 with a continuous window w. For

the bootstrap we g~nerate for given Y1 ' ••• 'Yn pseudosamples

Yi • • • Y~ where the blocks (Ykm+l' · · · , Y'(k +1 ) m) (k = 0, • • .',~ -' 1 )

n-w+ f
are i.i.d. ;.. (n-m+1) -1 L eS

i=1 (Y i ,···,Y i +m- 1 )·

L. LE CAM

On the preservation ·of "ioeal "asymptotic 'normali~Y ·under information

1055

Let {~n} be a sequence of experiments, ~n= {P S, n i S E Gn } given by

measures on a~fields A' • Assurne that the sequence {~ '1' satisfiesn . n
the LAN conditions or the condition of weak Gaussian approximability.

Let Tn be given by restricting the Ps,n to a-fields Bn C ~. The

LAN property (resp WAG) is inherited by the f n in the following

cases: a) The ~n are direct products·of bounded infinitesimal

arrays and the passage to B
n

occurs factorwise. b) The~e are

statistics Sn and Tn with Sn distinguished on ~n and Tn defined on

f n and distinguished there such that i) C(~\Pt,n) ,tEen are asymptoti­

cally shift normal ii) C(S ,T jP
s

) is asymptotically normal
n n n,n. .

for some sequence (Sn) .lf in~b) one requires instead of (ii)

that cis ,T IP s } -+ C (x, Y) with C (X IY) normal one obtains a re-.
n ~ n,n

lated result of R. Davies (Proc. Neyrnan-Kiefer Conference, Wads-

worth, 1985).
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P. MAJOR

On the tail behaviour of 'the 'distribution 'funetion 'of 'multiple

stoehastie integrals

We eonsider the s fold produet of the measure induced by the

standardized empirical proeess and the integral of .a bounded

function with respect to it . We are interested in the tail be­

haviour of the distribution f~etion of ,this random integral.

A large deviation type result is presented fqr this problem

which is in some sense optimal. We prove our result by first

proving an analog result about Poisson proeesses and then

applying Poisson approximation of the ernpirical process.

H. MILBRODT

Asymptotic Theory 'af 'sampling 'Experiments

The asymptotic behaviaur of .experiments associated with Poisson

sampling, Rejective sampling and Sampford-Durbin sampling is in­

vestigated. As superpopulation models so-called Lr-generated re-

•

gression parameter families (J ~ ~ ~ 2) are considere<;i, allow:Lng

also the presence of nuisance parameters. Under same assumptions

on the first 'order probabilities of inclusion it can be shown

that the sampling experiments eonverge weakly iff the underlying

shift parameter families do. In ease of convergence, the limit of •

the sampling experiments is characterized in terms of Hellinger

transforms. Applications include LAM-bounds and c,riteria for adapti­

vity, when estimating a cantinuous linear functional in asymptoti­

cally normal (LAN-) situations. They cover especially the case of

sampling fram an unknown symmetrie distribution, which has been

subject to detailed investigation in the i.i.d. case.
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The rate of convergence "in "C~T "in "Hilbert ·~pace

Several theorems concerning the bounds of the remainder term in

CLT in Hilbert space are exposed. Formulate one of thern. Let M

be areal separable Hilbert space with norm 1·1, {Xk}n, be a se­

quence of i. i .d.r. v with value in M, lEX, = 0, ß =lE Ix11 < 00,

02 = Elx112,A be the covariance operator of r.v.X.

2 co 2 2
Th. 1 Let {Ok}' , 0k ~ 0k+1 be the eigenvalues of A and

o j > 0, j = 1 - 7. Then

•
sup I P ( In - 1 /2 Y X. - a I < T) - P ( IZ - a I < T , I <

T , J
7

< c·ß (0 3 + Ia I3) / (TI 0.) 6/ 7 vn
1 J

where Z i5 a Gaussian r.v. with the same covariance operator A

andlEZ = 0, c is an absolute constant.

P. NEY

Large deviations ·of "Markov "additive processes

We consider an MA-proces5 {(Xn,Sn); n=0,1···}, where {Xn } is a

M.C. on a general state space (lE,E) and {S } is an .lRd-valued
n

additive cornponent. Properties of the eigenvalues and eigen-

functions of the transform kernel of the process are proved.

These are then used to show that the large deviation principle

holds for,:n> {(X ,S ) E Ax nr}" , AEe" r a. Borel set in ]Rd. Thex n n
lower bound (for open r) needs only irreducibility of {Xn } and

non -singularity of {Sn} in a standard sense. The upper bound

(for closed r ). requires a moment hypothesis when d 2= 2.

Regeneration techniques are used extensively in the proofs.

J. OOSTERHOFF

On"complete families ·cf 'd~stributions

A simple proposition 1s presented which establishes completeness

of (parametrie) families of distributions by deriving it from

the completeness of other families.

Some particular cas~s are considered, which immediately lead to

completeness of non-central distributions, non-null distributions

and shift distributions of some weIl known statistic5.
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B.L.S.P •. RAD

Least squares and 'nonlinear Regression

Consider the nonlinear regression model Xi = gi (8) + Ei' i2:1, where

:IE(Ei) = 0 and JE(€f) < co. The problem studied is the estimation of

the parameter 8 by the method of least squares and obtain the

asymptotic properties of the least-squares estimator (LSE). ~he 4It
~lassical method consists of deriving ~he normal equations and

using Taylor expansion around the line parameter of the function

Q <e) = I (X. - g. (e) ) 2. Clearly' this rnethod is not applicable when'
n . i=1 ~ ~

9><S) are not differentiable. Here we present an alternate approach
~ .

for the study of asymptotic properties of LSE. Weak convergence of

suitably normalized version of the least squares randem fields

Qn(S) is studied and the asymptotic properties of LSE are obtained

via the continuous mapping theorem.tnter alia, the rate of convergence

of LSE is discussed. A non-regular case wherethe classical method is

not appticable i~ I?~e~ented. Some of.t~~ res~~ts have appeare? in

J. ~ultivariate Analysi~.and Statistics 'and '~~obability Lectures

Other s will appear. ~n ,·~t~~i~~iC?~ ·':l~d. I?ecisions ! (1986), Statistics

1 7 (1 986) and 'Ann .. 'Inst." 'Statist .. 'Math. (1986).

L. RUSCHENDORF

Unbiased estimatiön 'in 'generalized 'moment 'families

For generalized moment families a characterization of the unbiased

estimators of zero isproved, which allows to determine MVUE's in

many nonparametrie families. As special examples we discuss finite

moment families, extension models, nonparametric translation

families and distributions with given marginals.
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R.J. SERFLING

Maximal probability i~~~ali~ies for '~u~~id~mensionallY'indexed

submartingale 'arrays of "random variabl~s 'and 'applications

Chow (1960) established a maximal probability inequality for sub­

martingale sequences, thereby extending inequalities of Doob,

Hajek and Renyi, and Kolmogorov. cairoli (1970) extended some 'cf

Doobts inequalities to multidimensionally indexed arrays andgave

a counter example to possible.extensionof another of Doobts' iri­

equalities. Smythe (1974) gave a similar .extension' of the Hajek­

Renyi inequality. In the present work an analogous extension of

ChO\'l' s inequality is deveioped. This yields the results of

Cairoli and Smythe as special cases and also a modified version

of the other Doob inequality, as weIl as some other useful corolla­

ries. Important applications include random fields and U-statistics.

(This work is joint with T. Christotid~s.)

J. STEINEBACH

Note on a limit 'theorem "för 'characteristic 'functions

Let X be a (real-valued) random variable on some probability space

tR,a.;p) with distribution function F (x)=P (X ~ x), x Em, and characte­

ristic function q> (t) = f e itx dF (x), t Em. If F· .is bounded to the

right (ar left), a classical limit theorem on q> says that the

"extremities" of F, i.e. rext(F) = ~R = '~ss sup X (resp. lext(F) =

XL = ~ss inf X) are determined by the limit relations

x = lim llog <p(-is), xL=';'li~ llog <o(is).
R s~oo s s+x s

Via elementary convexity arguments, same extended versions qf the

latter relations can be derived which, in. particular, provide a

well-known characterization of bounded distribution functions.

Certain relations to other fields such as "ruin theory", or large

deviation problem~" are also discussed.
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H. STRASSER

Stability of limit experiments "for "dependent ·observations.

A family of probability measuies on a filtered probability space

is called a filtered experiment. It is shown that sequences of

filtered experiments, which are obtained by rescaling a fixed

experiment, can Qnly have weak limits satisfying an invariance

property called stability. In case of independent, identically

distributed observations, the result covers previous assertions

obtained by Strasser. In general, the result covers the case of

dependent observations. It can be explained, how so-called.mixed

normal situations arise in the' limit. As.a by-product we show,

how an increasing family of experiments can be represented by

a filtered experiment.

J. TEUGELS'

Tail estimation

In insurancemathematics premiums are often partially' determined

from the mean and/or the variance of past claim experience.

Far large claims however one can reasonably assume that the distri­

bution F of the claims is of the form 1-F(x) =X-~L(X) where L is

slowly varyirig • One of the main problems then is to estimate av

Onechoice will. be H111'5 estimatar. We find the weak~st pos5ible

conditions for asymptotic normality; they easily lead to quantile 4It
and to tail estimation of F as weIl.
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J. van den BERG

Some results and problems concernin~ M-dependent sequences.

We discuss some results in a paper by S. Janssen (Ann. Probab.1984).

In particular we present a simpler proof of his main theorem, using

standard Markov Chain theory. Some attention is paid to the conjecture

that every M-dependent Sequence can be I1represented" as a finite-

window function" of an i.i.d. sequence.

W.R. van ZWET

Kakutani's interval splitting scheme.

Choose a point at random (i.e. according to the uniform di'stribution)

in the interval (0,1). Next choose a second point at random in the

longest of the two intervals into which (O,1) i5 divided by the first

point. Continue in the way, at the n-th step choosing a point at

random in the longest of·the n subintervals into which the first

(n-1) points subdivide (0,1). Let Fn be the empirical distribution

function of the first n points chosen. It is known that F con-
n

verges a.s. to the uniform d.f. on (0,1) (cf. Ann. Prob. ~ (1978),

133). Ronald Pyke and the author have recently shown that the

corresponding empirical process converges in distribution to a con­

stant multiple of' a Brownian bridge.

W. WEFELMEYER

Regularity of estimator-sequences for real-valued functionals

A family of probability measures dominated by a fixed probability

measure P can be identified with a subset of the .Hilbert space of

P-square integrable functions by considering ~he square roots of

the P-densities. Assurne that this subset admits a tangent cone

with respect to the Hausdorff. distance. Assume, furthermore, that

we are given a Hellinger differentiable real-valued functional on
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the family of probability measures. Then any estimator-sequence

for the functional which is asymptotically linear and asymptoti­

cally efficient in P is locally asymptotically minimax.

M. YOR

Recent progress on multiple points of Brownian motion

The proofs of the existence of double points for 2- and 3-dimensional

Brownian motion as weIl as that of points of multiplicity k(for

any k ElN) and even c (: power of the continuum) for 2-dimensional

Brownian motion were probably the deepest results on Brownian

motion obtained in the fifties (Dvoretzky-Erdös-Kakutani - 'Taylor).

Although K. Symanzik's program for Quantum Field theory (1969) in­

volved quantities closely linked with the double points of Brownian

motion, and was the origin of Varadhan's renormalization result,

the field stayed "comparatively calrn" until, at the beginning of

the eighties, J. Rosen (with J. Horowitz and D. Gernan) showed the

existence of local times of intersection and began to develop a

related stochastic calculus. As a consequence, Varadhan's renor­

malization result has been enorrnously simplified and, more impor­

tantly has been adequately extended to all mul tiplicities in 2

dimensions (J. Rosen and E. Dynkin); a central limit ersatz to

Varadhan's result has been obtained in 3 dimensions (the author),

and J.F.Le Gall was able to prove a conjecture of S.J. Taylor con-

cerning the Hausdorff measure of k-multiple points. ~
The last point of the lecture was devoted (tao briefly) to results

of J.F.Le Gall concerning the Wiener sausage , as weIl as his limit

theorem concerning the asymptotic behaviour of double integrals re­

lated to 2-independent 4-dimensional Brownian motions. This theorem

is a sort of analogue of the limit theorem for integrable additive

functionals of 2-dimensional Brownian motion.

Berichterstatter: G. Pflug
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