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General Inegualities

4.5. bis 10.5.1986

The fifth International Conference on Genefal Inequalities was
held from May 4 to May 10 at the Mathematisches Forschungs-
institut Oberwolfach.

The organizing commiffee consisted of W.N.Everitt (Birmingham,
England), L.Losonczi (Debrecen, Hungary).and W. Walter (Karlsruhe,
BRD) . Dr.A.Kovacec served efficiently and enthusiastically

as secretary of the conference. The meeting was attended by

50 barticipants from 16 countries.

In his opening address, W.Walter had to report on the death
of five colleagues who had been active in the areé of inequalities
and who had served the mathematical community: P.R.Beesack,b
G.Polya, D.K.Ross, R.Bellman, G.Szegd. He made special mention
of G.Polya, who had been the last surviving author of the
book Inequalities (Cambridge University Press, 1934), who died
at the age of 97 years and whose many and manifold contributions
to mathematics will be recorded elsewhere, in due course. .

.Inequalities Qontinue to play an important and significant
role in nearly}all areas of mathematics. The interests of the
participants to this conference reflected the many different
fields in which both classical and modern inequalities continue
to influence developments in mathematics. In addition to the

established fields, the lectures clearly indicated the importance
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of inequalities in functional analysis, eigenvalue theory,
convexity, number theory, approximation theory, probability
theory, mathematical programming énd economics.

On the occasion of this conference special attention was
payed to the recent solution of the Bieberbach conjecture.
In two carefully prepared lectures, given on the invitation

of the committee, Dr.N.Steinmetz (Karlsruhe) reviewed the

history, and proof of the correctness of the conjecture. ‘
His excellent presentation showed the importanée of a number

of inequalities required for the proof, and how an .inequality

for a solution of a linear systém with constaﬁﬁ coefficients_

could significantly simplify part of the proof as a whole.

The problems and remarks sessions yielded many new ideas
and intriguing conjectures.

All the participants came under the influence of the
remarkable atmosphere now such an established feature of the
Institute.

The ccnference was closed by W.N. Everitt, who, in paying
tribute to all those who had contributed to the progress of the

meeting, asked that the best thanks of all the participants

be presented to the staff of the Institute for their unique . .

contribution in the form of excellent hospitality, and quiet

and effective service.
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Abstracts

J.ACZEL: Bntropies, generalized entropies, inequalities and

the maximum entropy principle.

Inequalities for the Shannon (and Hartley-) entropies and their
generalizations have been used in applications and they served -
as building blocks for their characterizations. After a short
survey of such results the idea is put forward that the maximum
entropy principle (also an inequality) may be used not ohly to

justify probability distributions but also to justify entropies.

R.P. AGARWAL: Linear and nonlinear discrete inequalities i

n

independent variables.

We introduce a discrete analogue of Riemann's function and use
it to study discrete Gronwall-type inequalities in n independent
variables. Next we provide an estimate on Riemann's function and

use it to obtain Wendroff type estimates.

C. ALSINA: On the stability of a functional equation arising

in probabilistic normed spaces.

Motivated by a problem on probabilistic normed spaces we study
the inequality
~(F(d j J
(%) A (r (PP, FlgE)) < ¢

where ¢ > 0 is fixed, d; is the modified Lévy metric, F is an

arbitrary function in ﬁ+, a, b are arbitrary positive real numbers,

and v is a nondecreasing continuous binary operation on A% to be found.

We show the following

Thm: A continuous nondecreasing binary operation on a* satisfies

Deutsche
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aL(T, Tu) = sup (dL(v(F,G), T (Fs@)) : F,G ¢ ah< ¢,

where Tu(F,G)(X) = sup{Min(F(u),G(v)) : u+v = x}.

A. BEN-ISRAEL: J-convexity.

iet J be a family of functions: Pn%F.f:Pn*D is g-convex in Sedom f

if for all x¢S there eéxists F€F such that (i) f(x) = F(x),

(1ii) £(2) = F(2) for all x + z (x,z48).

Examples: (i) Convex functions. Here T is the family of affine ‘
functions: F={F:F(x) = {(x’x) - n, x*er?, nem)

(ii) Sub-J~functions in the sense of Beckenbach, e.g. Bull.Amer.
Math.Soc. 43 (1937), 363-371.

For concreteness let & = {F:F(x) = F(x*,ﬁix)} be a family of
differentiable functions, depending continuously on n+1 parameters
(x*,n)FX*iY c RPgR. The correspondence X xY & § is assumed 1:1.
Results include: 1st order characterizations (gradient inequality),
2nd order characterizations (Hessian) of [-convexity. Applications
to mathematical econom;cé, numerical analysis, optimization.
Reference: A.Ben-Tal, A.Ben-Israel; J.Austral.Math.Soc.XXI A (1976),

341-361.

C.BENNEWITZ: The HELP inequality in a regular case.

Starting in 1972 Everitt, and later others, studied a generalizati®n
- of the well known Hardy Littlewood Polya inequality

o o0 o
(M u1®2 =<4 P a2 T a2
[o] o o

In general the problem is to decide whether there is a finite K
such that

(ol st < 2 P2 ¥ sgun o+ qul 2
a a a

for any u. Here p and q are given so that the differential expression
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(-pu')' + qu is regular at a but singular at b. It was thought
that no inequality was possible if both,a and b were regular.

I shall describe a counterexample to this and then give conditions
reasonably close to being necessary and sufficient for such

an inequality to hold.

B. CHOCZEWSKI: A linear iterative functional inequality of

. third order.

The inequality in question has the form

(1) 8(£7(x)) + b,8(£2(x)) + b 8(£(x)) + b_8(x) < O.

A description of continuous solutions of inequality (1) will be
presented as well as some conditions under which solutions of (1)
yield solutions of a Schroder functional equation.

Results are due to Mrs.Maria Stopa from Krakdw and to the
speaker.

In egquation (1) fk denotes the k-th iterate of a given

function f, and bo,b1,b2 are given constants.

A.CLAUSING: Experimenting with operator inequalities.

G. Polya was not only one of the founders of ineduality

theory but was also very active in making the inductive process

‘ of mathematics an explicit topic.

UFG

This talk tries to report, in Polyas spirit, on some
computer experiments, done with an APL workspace, which are concerned
with Polya operators, a class of linear differential operators
defined by an inverse positivity condition.

Three results are given, all of which had first been found

experimentally by studying examples.

Deutsche
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Thm 1: The nonzero coefficients of the basic functions of a
standard Polya operator altgrnate.

Thm 2: The Greens kernel of a standard Polya operator is
quasiconcave.

Thm 3: The v-th eigenvalue of a Polya operator is aﬁ isotonic
function of the absolute value of the second coefficient of the

boundary conditions.

Conjecture: This function is also convex. o .

W. EICHHORN: Tax progression and measurement of income inequality.

Let T:R+*P,Ay9((y), y a pre-tax income be a feasible (i.e.
T(y) < y for all y¢~ ) and incentive preserving (y<y”implies y~T(y)<y*~T(y*))
tax function and let In:Rf*P, x->I(x) be a strictly Schur-convex
"y-measure" of inequality of incomes x, i.e. a strictly Schur-

convex function that satisfies

I,(x) = I (@+roxe(120)1))

for all 5#92 and T¢P gatisfying §+¢(u§+(1-u)1)692, where
uef0,1] is fixed.’The functional equation shows for which
income distributions the income inequality is preserved.

The following two statements are equivalent:

(1) Iu(y1-T(y1),..., yn-T(yn) < Iu(y1,...,yn) for all yFPE
such that (y;,...,y,) + (a,a,...,a).
(ii) T(y)/(uy+(1<u)1) 4is strictly increasing in ye€R_ .

This result obtained by my Ph.D. student Andreas Pfingsten
generalizes a result (Q=1, Iu the Lorenz measure of inequality)
that I presented at the 1983 meeting ¢n Allgemeine Ungleichungen.
Corollary: An inequality preserving tax function T is necessarily

an affine-linear function.

Forschungsgemeinschaft : © @
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. ESSEN: Rearrangements and optimization problems for certain

linear second-order differential equations.

For coefficients q in certain classes of integrable functions
on the interval 0,71, we determine sup y(T) and inf y(T) when

q varies in the class and y is a solution of one of the equations
y"+ay =0, y(©) =1, y'(0)=a, tel0,1].

In the proofs, we use a kind of calculus of variations and

a partial order between functions introduced by Hardy, Litfléwood
and Polya. The infimum problem arose in the study of growth problems
for subharmonic functions. There are applications to problems

where we try to maximize the first eigenvalue of a certain Sturm-
Liouville problem when q varies in a certain class (there are

also gene;alizations to higher dimensions).

W.N.EVERITT: An example of the Hardy-Littlewood type of integral

inequalities.
At the General Inequalities meeting held at Oberwolfach in

May 1985 it was reported that the inequality

o ) 2 © o0 ’
(_r t£12 4 (x2-1)f21dx) <a [£%ax " (e - (P-nnax
0 o o

is best possible with equality if and only if f(x) = k expf—x2/2]
(when both sides are equal but zero). ‘

It was conjected that the inequality

o 2 e~ o
(" (£2 . (x2-3)f2mx) <k [ 2 gx T (£ - (22-3)1V%ax (%)
o) [o] (o]

is valid with K = 4 and with equality if and only if

f(x) = kx exp -x/27 (again with both sides equal but zero).

This conjecture is false. The inequality (%) is valid but with

o®
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4 < K > 4.1094. There are two cases of equality; the first
when f(x) = kx exp r—x2/21 (with both sides equal but zero),
and a second case when both sides of (%) are not zero but when
the equalising function is more complicated. »
.The lecture will report on joint work with W.D.Evans, W.K.Hayman,
and S.Ruscheweyh.

F.FEHER: p-estimates for ultraproducts of Banach lattices. ‘
A Banach lattice L is said to satisfy a lower p-estimate l

(1<p<w=) iff there exists a constant K>SO such that for each

finite sequence f1,f2,...,anL the inequality

CRug, /P <x 1 B ojg ) 1
h=1

’ h=1 k!
holds. Moreover, L is said to satisfy an upper p-estimate, iff
there exists a constant M > 0 such that for each finite sequence
f1,f2,...,anL one has
loup 2 i Ilsm (7 le lip)'/P

<ks<n h=1 *

The purpose of the lecture is to show, in what sense these
p-estimates carry over to ultraproducts of Banach lattices.

An application is given to the problem of superréflexivity of

Banach lattices. .

I.FENYO: Inequalities concerning convolutions of kernels of -

integral equations.

Let ACR be a measurable set with O<|A|<®, P,Q:A¥A-P integrable
functions. Let p be a number O<ps2 and q its adjoint (1/p + 1/q = 1.).
For an arbitrary function Z:A¥A-P as above define following norm

(if it exists)

Deutsche
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Wzt = 17(712(s, ) |P at)asy /P .
) I

The main result is following statement: If WPﬁq ~ & , and

HQH4< w, then [ P(s,r)Q(r,t) dr exists, its p norm is bounded, and
A

e il 8=2 ppy 1t
N P(s,r)Q(r,t) dr = [a] 3 !.P..p Qg

1 2(s,r)alr,t) arll, = mﬂg% 1zl aly -

o '

R. GER: Subadditive multifunctions and Hyers-Ulam stability.

Let (S,+) be an Abelian semigroup and let (Y,!l,!!) denote a
(real or complex) Banach space. Consider a multifunction F from
S into the family of all nonempty closed convex subsets of Y,

fulfilling the subadditivity condition

Fix+y) € F(x) + Fly), =x,y ¢ S.

sup fdiam F(x) : x £ S} <o

then F admits ‘an additive selection, i.e. a homomorphism a of
(S,+) into tre additive group (Y,+) such that a(x) € F(x)
for all x € S.

. ' Abstract version of this result is also possible. The problem

' DFG

is strictly related to the question about the behaviour of

solutions of the functional inequality
If(x+y) - £(x) - f(Pil <&, x,y ¢8,

considered for mappings f: S » Y (Hyers-Ulam stability problem).

Deutsche
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M. GOLDBERG: Multiplicativity énd mixed-multiplicativity for

operator-norms and matrix-norms

Let V be a normed vector space over €, let L(V) denote the
algebra of bounded linear operators on V, and let N be an arbitrary
" norm on L(V). In this talk we discuss multiplicativity factors

for N, i.e., constants u > 0 for which
N(AB) < uN(A) N(B) v A,B 7 L(V). ‘
We shall examine several finite and infinite'dimensional examples,

as well as certain generalizations of the above concepts.

W. HAUBMANN: Uniqueness inequality and best Harmonic L1-apprOXimation

For a given measure space, let f ¢ L1(X) and V a subspace
of L'(X). Given two best L1-approximants vy, v, £V to f, then

we prove the foilowing inequality:
(+) (f-v1)(f-v2) >0 a.e. in X.

This inequality is very useful in order‘to prove uniqueness of
a best L1-approximant in the case when the occuring functions
are continuous on an appropriate X. )

We consider the approximation of subharmonic functions f by

a space V of harmonic functions and give a sufficient condition

for a best LJI -approximant. Under mild assumptions, (+) yields .

the uniqueness of a best L1—approximant.

C.0. IMORU: On a generalization of Steffensens inequality

In a recent paper, Pecarit obtained the following interesting

generalization of Steffensen's inequality:

DFG Deutsche
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Let f: [0,1] » R be a non-negative and non-decreasing function
and let g: 10,17 = R be an integrable function such that 0 = g(x) <1,
for every x € [0,1]. If p = 1, then

1 B
rte(t)glt)at?? < } £(+)Pat
o o

where

1
» = 17 g(8)atl? .
(o]

The purpose of this talk is to prove a considerably more'géneral

result, which is an extension of Steffensen's inequality.

H.H.KAIRIES: Inequalities for g-factorial functions

The q-factorial fnrction Vg © i R, given by

vg () = (1-x) log (1-q) + log = (1-a"" ") (1-g"%)~", qe(0,1)

n=0

. can be characterized as a Krull principal solvtion of its

Deutsche

difference equation.
(D) f(x+1) - f(x) = log(q®-1)/(a-1).
Moreover, inequalities are obtained which give detailed information

on the behaviour of Yq near 1.

THEOREM. a) Assume f : ©, @ P to be convex, to satisfy (D) for

“some q ¢ (0,1) and £(1) = 0. Then f = Ye

b) Let P(x) := £(x) + f(1/x). Then 1 < x < y implies
F(z) s Fly).

o) Let F,(x) := £(x) + £(1-t(x-1)), x€l1,1+t7") ana
~(x,q) := log(2-qx'1)/log q1_x.

Then Ft(x) > 0 if xF(j,1+1/t) and t=-(x,q).

Forschungsgemeinschaft © @
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H.KONIG: A strict inequality for projection constants

The projection constant of a finite dimensional Banach space X
is A (X) := suplinf {IP| |P:2 2% Y2 projection'|Z Banach, X=2}.
A well-known result of Kadets is that ) (X) < YdimX holds. This
yields that for all *WBSZ there is » >0 such that for all X with
dimX = N one has A(X) < W - €y- There are spaces X with (X)) >

> 7§ - - » thus necessarily ey < L.
R

" ®

rou

The Bruhat Order on Sn can be defined by saying that = < o iff
there exists a sequence ™ = TorTrr Mo ﬂ3,...,ﬂk = o of permutations
ﬁi € Sn, such that i is obtained from T by an order-generating
transposition. For example 54132 < 13524, as we have the sequence
54132 = 53142 -» 13542 »13524. One can ask for nice criteria in
order that m < . In connection with a conjecture of G. Lusztig
in Lie Representation'Theory, R.Proctor found an answer: .
™ <o in §, if and only if for all r,s ¢ {1,2,...,n} there holds
the inequality !{i:i>r, =(i) = s)l<|{i:i=r, o(i)=s}].

The same answer was found independently by this author in dealing

with a refinement of an inequality of Hardy Littlewood and Polya.
In this talk vwe generalize the viewpoint that a permutation is

8 bijection between the (very simple) partially ordered set '
1<2<3<...<n and itself. By appropriate definition of the term
"Order generating transposition" one may obtain similar results

as above for bijections between suitable partially ordered séts.

Deutsche
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N. KUHN: Almost t-convex functions.

Let § + I ¢ © denote an interval and fix t ¢ [0,1]. A function

f:I»R is called almost t-convex iff

fltur{1-t)v) < tf(u) + (1-t)f(v) holds for almost all (u,v)FI2
(in Lebesguemeasure on r2). Furthermore we define Ka(f) t=
:= {t€l0,1]: £ is almost t-convex}.
Theorem: If Ka(f) + {0,1}, then
K, (£) = MK, (£)1r70,1],

where rKa(f)] denotes the field generated by Ka(f).-
The proof is based on a related result for t-convex functions and

on a construction of Kuczma.

M.K. KWONG: Norm inequalities between a function and its derivatives

Ve ieport on work done jointly with A.Zettl. There is a discrete
analogue of the classical Landau inequality HAX"% < CHprHAsz-
where x is either a semiinfinite or biinfinite sequence in T’
and A is the difference operator. The central problem is to determine
the best constant C in terms of p. V

Various extensions of the inequality, both in the discrete
and continuous cases, are also discussed. Tﬁis includes the
extensions to m-dissipative operators, higher orders, Everitts
generaliéation and weighted norms. ‘.

Although analogous results hold in the discrete case, the
proofs are often significantly different from the corresponding

ones in the continuous cases.

o
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L. LOSONCZI: Nonnegative trigonometric pplynoﬁials and related

quadratic inequalities

Inequalities of the form

n n

2 2 2

YU PN L N P TS SN Ll S PO
j=o 9 =ik j=o

are considered, where x ,...,xnﬁR(or Cc), ),A are constants and

o
the sum in the middle means one of the following ones:
@ "5, an v |
i L, ii ¥  with x =.e.= X =0,
j=o j=o n+1 n+k

n ’ :
(iii) = with X y= eoe =Xy = o,

= 0.

(iv) ¥© with x_k=...=x_1=xn+1f...=xn+k

==k

In all cases (with both signs +and-) the exact constants ) ,A
are given. They are minimal and maximal eigenvalues of suitable

Hermitian matrices. The case k=1 has been known.

E.R. LOVE: An inequality for geometric means.

Cochran and Lee [Math.Proc.Camb.Phil.Soc.96(1984)1-7)obtained

the inequality

o oo
[ x¥ exp (-%— ? el log f(t)dtldx < er+1/p [ =Tf(x)ax
) x* o )

for r and p real; p>0 and f(x) = O; This generalizes an old
inequality of Knopp (r=0, p=1). They also obtained a discrete
analogue.

The exponential in the integral on the left is the geometric
mean of f on (0,x) with weight function P 1t s proposed
to present a corresponding inequality with a general weight

function and to consider possible discrete analogues.

Deutsche
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G. LUMER: Parabolic maximum principles, diffusion equations,

and population dynamics

We give general parabolic maximum principles for L-subharmonic
functions u (Lu = 0) on space time Q = NxI (I  an interval),

‘ L being a locally dissipative, parabolic, local operator.

1 We consider general open sets V- in Q and an appropriate closed
‘boundary BP(I) for V. The linear maximum principle then says

. that sup u < sup ut, (where u' = sup {u,0}). Similarly, for the

semilinear cagg(%l have comparison theorems (with Lipschitz

or locally Lipschitz nonlinearities). There are many applications
to parabolic 2-nd order PDE, but also to situations where

L is a ﬁore,éomplicated object than a PD operator (for instance
in transmission problems, or the construction of highly non-
differentiable extensions of PD cperators as intermediate tools).

Tie mentioned maximum principles play an essential role in

obtaining unique global solutions of problems of the type

i Iu + Nu = 0 in V:= {(x,t)¢V :t>s}
| ulx,s) = £f(x) (f initial value at t=s)
‘ . ulFS =0 . (Ps an appropriate lateral boundary),
‘ assuming this problem is solvable for V = 0 and an L-barrier
| . can be constructed for V. Such results apply in particular to
second order parabolic PD operators with merely‘continﬁous
coefficients (real, c(x,t) independent term < 0), in general

open noncylindrical domains V. In particular one gets unique

glpbal solutions for géneralized timedpendent Kolmogorov-

Petrovskii-Piskunov equations important in population dynamics.

DFG Deutsche
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A.W. MARSHALL: Extensions of Markovs inequality for random

variables taking values in a linear topological space

The usual assumption is that A < B means A and B are real
numbers but there are‘ many other possibilities: A familiar example
is that A and B are Hermitian matrices and
(1) A < B means B-A is positive .semi-definite. Analogues of some
classical inequalities are known, where the quantities compared
are not real numbers. ' .
Eiampie 1. If X and Y are k¥n complex matrices and xx¥* is nonsingular,
then YX*(XX*)~'xY”* < YY* in the sense of (1); this reduces to
Cauchy's inequality when k=1. '

Example 2. If X is a random Hermitian matrix such that EX = u

is positive definite and P(X20)=1, then for every positive definite

matrix e,

(2) P(X;e) < minimal root of e_1/2ue-1/2

vThe new result to be presented is a similar version of Chows
extension of Markov's inequality but for random variables taking
values in a linear topological space. The proof will not be given
but to illustrate methods, a proof of (2) will be given in that

more general setting.

H.W. Mc LAUGHLIN: Inequalitites arising from discrete curves ‘

After defining the notion_bf a discrete curve (a geometrically
defined set of discrete points) one has to characterize the curve
with discrete analogues of the classical notions from differential
geometry. Since there are no differentilable - functions available
with which to compute, for example, error estimates, one has to

rely solely on classical discrete inequalities. This leads to an

o®
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investigation of the behaviour of inequalities under the influence
of recursion. An example is: how does the ratio of the geometric
mean to the arithmetic mean vary as the weights are recursively

changed?

R.N. MOHAPATRA: On an analogue of Hardy's Inequality for

sequence space ;ign).

Let w be the vector space of all real sequences and (pn)

be a sequence of positive real numbers. For x in w, let us

write

P
l(pn) = {xfw: Yklikl X <o)
n
1
Ion(x)} = {n k£1xk‘
ces(p ) = {ven:a(|x|) ¢ 1(p ).

If (pn) = p for all n, then l(pn) and ces(pn) reduce to well-known

sequence spaces lP and cesp.

Hardy's inequality for sequences essentially shows that

If we assume (pn) to be bounded then l(pn) and ces(pn)'cgn be
shown to be paranormed sequence spaces. It is natural to wonder
if it is possible to have an analogue of Hardy's Inequality .

for the sequence space l(pn). If that were the case then it

should be possible for us to show that for bounded (p ), 1(p,)) <

< ces(pn).
In the present paper we have shown that such an inclusion among
these paranormed sequence spaces fails to hold. We have also

discussed some open problem in this connection.
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R.J. NESSEL: Approximation theory in the spaée of Riemann

integrable functions

The following notion of a sequential convergence is suggested
for the space Rfa,b] of Riemann integrable functions

’

b
(T f(x)dx := upper Riemann integral).
a

Definition: A sequence {f } & R[a,b] is called Riemann convergent

to £ € R[a,b] if

h L.
(i) sup | f“(x)\ = 0o(1), (ii) [ Tsup | £, (x) - f(x)|lax = o(1).
a<x<b B a k=n : .

It turns out that with this notion of convergence Rla,b] is not
only complete, but continuous functions are also dense in
Rla,b]. This énables one to discuss approximation in Rla,b].
For example, convergence criteia of Banach-Steinhaus-type

are developed, extending basic work of Pdlya (1933) on the
convergence of quadrature formulas. The lecture is a survey

of joint work with W.Dickmeis, H. Mevissen and E.van Wickern.

C.T. NO: A functional inequality

It is shown that a function f:I-R on an interval I satisfies
the irequality f(x) + £(y) < £fOx+(1-2)y) + £f1-2)x+y) for
all x,y ¢ I and all » £ [0,1] if and only if f is the sum
of a convex function C (i.e.: AC(x) + (1=A)C(y) = cOax+(1-2)y))
and an additive function A.

Equivalently speaking, #(x,y) = f(x)+f(y) is Schur convex
on 12 if and only if f is the sum of a convex function on I

and an additive function.

Deutsche
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7Z. PALES: How to make fair decisions?

The purpose of the lecture is to give the complete description

of decision functions, i.e. functions f:5 - Fe, 4] satisfying

(i) min {f(s),f(t)} < f(s+t) < max {£f(s),f(%)}
(ii) 1im f(ns+t) = f(s)

n-xeo

for all s,t £ S, where S is an arbitrary commutative semigroup.

J. RATZ: Some remarks about Cauchy-Schwarz inequality A

The best known method of proof is the one representing the
Cauchy-Schwerz-deficit as the discriminant of a réal quadratic
form. This method heavily rests on divisions and on commutativity
of the domain of scalars. The following statement avoids
divisons and commutativity of multiplication and therefore

also includes the quaternionic case.

Thm: If X is a ring with 1, -:K°K an involutorial automorphism,
and K :={1¢K; X=\} contained in the center of K and made into

a totally ordered ring so that 0 < AY (vi€K), if X is a left
K-module and f: X¥X~K is a positive semidefinite hermitian form,
then f(x,y)ff§T§3 < f(x,x)f(y,y) (v¥x,y¢X). Equality occurs

if and only if 3(2,u) € K¥K\{(0,0)} with fOx+y, dx+uy) = O.

B. SAFFARI: Refinements of norm inequalities for functions.gi

_mean value zero.

Let f be a real-valued bounded measurable function on [a,b]

such that £ £ 0 and ? f(x)dx = 0. Then
a

1 ?lf( )lax < ——» 1”‘ l£(x)-£(y) laxdy < 208
o a2 aa Y TR

where H = ess sup £, h = ess inf f. Similar results hold for
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other LP-norms and for la,bl(with measure (b-2)~'ax) replaced
by any probability space. The proof involves the decreasing

rearrangements of functions £t and £

P. SCHOPF: Zwei Ungleichungen fiir konvexe bzw. sternformige

Funktionen
Sei B « RY die euklidische Einheitskugel, £:B » ®, £ = 0,
geeignet integrierbar und 0 < m € n. Die dann giltige klass.

Ungleichung
1 /m_ 1 n\1/n
(Forrey § £ 0T Gy { 00

wird zundchst fir die Klasse der Funktionen mit f(0) = O und
sternformigen Epigraphen bzgl. (0,0) ¢ rA+! verschidrft,und
anschlieBend wird eine dimensionsfreie, maBtheoretische
Verallgemeinerung der verschﬁrften Ungleidhung angegeben.

Der zweite Abschnitt des Vortrages betrifft konvexe Mino-

bzw. Majoranten von monoton fallenden Funktionen und Ungleichungen

zwischen deren sogenannten k-Momenten.

B. SMITH: Convolution orthogonality

. . kA
Use ? for integration over the set {© :|@ 'EISZE,(k’a’) =

) a-1
Use \_ = T
a a=0

eZ"ihO

% F(g), where & is the Dirac point mass. Put

. Put A ®, =A,. k~ A means k € [5,A]nF
Ecosx

where F is arbitrary. Put @ = £ Xc.
cRC

Theorem. For all ¢ > O there exists & > 0, such that if G has

bounded multiplicative transform, A < B, 4% < x'"°. Then
a ) 2
s besr) (x (xe).)*b)e(o)de«—KrLX1°x
a~A 2 ong ¢ peasp P G x g
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R. SPERB: Optimal inequalities in a semilinear boundary value

prcblem on a two dimensional Riemannian manifold
Consider the semilinear boundary value problem
(%) Aurrf(u) =0 in 0 < M, u= 0 on a0
where Q1 is a domain on a two-dimensional Riemannian manifold.
Suppose that f(0)>0 and f is convex and increasing and ) is
a positive parameter. Then it is known that (+) has a positive
solution for 1¢(0,2%) and no solution for >
Let ¥ be the solution of
(#%) AY+1 = 0 in 0, ¥=0 on d0.
Using y(s(¥(x))) as a supersolution where y(s) and s(¥) are to
be chosen in an optimal way isoperimetric estimates for ¥ -

aﬁd other quantities of interest can be derived.

N. STEINMETZ: The Biebertach Conjecture

In two lectures a survey has been given on the developments
which lead to a proof of the Bieberbach Conjecture, including:

I. Historical remarks; II. Lowner Theory; III.De Branges proof.

P.M. VASIC: Interpolation of some inequalities

Assume, that I © M (I nonvoid and finite) and that an inequality
F(I) = 0 is given. We have "interpolations" of the inequality
P(I) = 0, provided F(I) = F(J) = O whenever I ® J. An important
case is that F(In) = F(In_1) > .= F(Iz) = F(I1)'= 0, where

‘I ={1,2,...,n}. We show more inequalities of the cited type.

n
For example, for the inequality of Levinson,

b pixy % pixi : :
R R ,_
P = s e (AT - A — - prxpV 20
seT 1 P N . icT 1 1
1% iGI 1 iGI 1 1

o
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if x;4x) = 2a, O< x; < a, pi'> 0 and f is convex of order 2 in

0,22a) one has F(IW) > F(I) + F(J) if InJ = ¢ ; hence

F(In) = F(In-1) = ... F(I2) = F(1,) =0 .

1

P.VOLKMANN: Ein Existenzsatz fiir gewdhnliche Differential-

gleichungen in geordneten Banachriumen

Bs wird ein Existenzsatz fiir gewdhnliche Differentialgleichungen.
in Banachrdumen bewiesen, wobei die rechte Seite der Differential-
gleichung eine bzgl. eines Kegels wachsende Funktion ist. (Arbeit

mit Roland Lemmert und Raymond M.Redheffer).

R.J.WALLACE: Sequential search for zcres of 2(2"-1)-th derivatives

How might éimple real zeroes of real valued continuous k-th
deriﬁatives f(k) be efficiently approximated, given that there
is to be recourse s dely to values of f? A standard apprdach
to these questions entails successively selecting points to be
the abscissae for sequences of k-th divided differences whose
signs are then used to locate the zeroes; see Wallace {1] and
the references therein to the work of S.Johnson, J.Kiefer,
R.S5.Booth and others. Of central importance is the particular
rule (o;' strategy) by which these points are chosen. In this ’
talk the speaker shows how analysis of a class of restricted
subadditive inequalities has enabled him to determine the most
efficient strategy for each of the special cases k=2,6,14,30,...,
2(2n-1),... . I1lustrations are given, and the suggestion made
that similar analysis should lead to analoguous results for
- other even k.
Reference: R.J.WALLACE: Sequential search for zeroes of derivatives,
in General Inequalities 4: Proc.of the Foufth Internat.

Conference, Oberwolfach, 1983, W.Walter, ed.(Birkhéuser,

Basel, 1984), 151-167.
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C.L.WANG: Inequalities and mathematical prégramming 111

Three equivalent mathematical programming problems concerning
monotone infinite sequences with suitable constraints are solved
by the establishment of pertinent inequalities. The continuous
version of the inequalities as well as some variants of discrete

and continuous inequalities are also studied.

K.ZELIER: Positivity in absolute summability

Positivity considerations are useful not only for ordlnary
summability, but also for absolute summability. In the latter
case it is quite natural to employ two positivity concepts
and two types of summing operators. Thereby oné meets matrices
having properties like diapositivity. Applications concern
Cesdro methods (factors for absolutely summable series). Several

modifications and extensions are indicated.

A. ZETTL: Norm inequalities for derivatives and differences

In this joint work with M.K.Kwong we consider the inequalities
(1) Uy 2 < gyl lyrl, ana () IAxiZ < clxll la%x!l . The norns
here are the classical LP(J), 1P(M) norms, respectively, with
JR=(~0, ) or J=R*=(0) and N=7={...-2,-1,0,1,2,...% or
M=h={ 0,1,2,...}, 1spP=. The constants K=K(p,J), c=c(p,M)
denote the srallest constants in (1) and (2) respectively. It is
known that c(p,2) = XK(p,R) and c(p,™) = K(p,RT) when p = 1,2 or o.
For other p the values of these constants are not known and it is
not known if_these equalities hold for other p. Here we present

"good" upper and lower bounds for K(p,®): L(p) < K(p,®) < Mlp)

oD
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with explicit formulas for L and M in terms of p for p = 2.
Also an elementary proof is given for a result of Ljubit¢ to show
that if us i=0,1,2 are positive numbers satisfying uf < K(p,J)uou2

then there exists a y in LP(J) such that "y(i)Pp= ug, 1=0,1,2.

Berichterstatter: A. Kovatec.
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