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4It The fifth International Conference on General Inequalities was

held from May 4 to May 10 at the Mathematisches Forschungs-

institut Oberwolfach.

The organizing committee consisted of W.N.Everitt (Birmingham,

England), L.Losonczi (Debrecen, Hungary) and W. Walter (Karlsruhe,

BRD). Dr.A.Kovacec served efficiently and enthusiastically

as secretary of the conference. The meeting was attended by

50 participants from 16 countries.

In hi~ opening address, W.Walter had to report on the death

of five colleagues who had been active in the area of inequalities

and who had served the mathematical community: P.R.Beesack,

•
G.Polya, D.K.Ross, R.Bellman, G.Szegö. He made special mention

of G.Polya, w~o had been the last surviving author of the

book Inequalities (Cambridge University Press, 1934), who died

at the age of 97 years and whose many and manifold contributions

to mathematics will be recorded elsewhere, in due course •

. Inequalities continue to play an important and significant

role in nearly all areas of mathematics. The interests of the

participants to this conference reflected the rnany different

fields in which both classical and modern inequalities contin~e

to ~nfluence developments in mathematics. In addition to the

established fields, the lectures clearly indicated the importance
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of inequalities in functional analysis, eigenvalue theory,

convexity, number theory, approximation theory, probability

theory, mathematical programming and economics.

On the occasion of this conference special attention was

payed to the recent solution of the Bieberbach conjecture.

In two carefully prepared lectures, given on the invitation

of the committee, Dr.N.Steinmetz (Karlsruhe) reviewed the

history, and proof of the correctness of the conjecture.

His excellent presentation showed the importance of a number

of inequalities required for the proof, and how an ~inequality

for a solution of a linear system with constant coefficients

could significantly simplify part oi the proof as~ whole.

The problems and remarks sessions yielded many new ideas

and intriguing conjectures.

All the participants came under the influence' of the

remarkable atmosphere now such an established feature of the

Institute.

The ccnference was closed by W.N. Everitt, who, in payi~g

tribute to all those who had contributed to theprogress of the

meeting, asked that the best thanks of all the participants

be presented to the staff of the Institute for their unique

contribution in the form of excellent hospitality, and quiet

and effective service.

•

'.
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Abstracts

J.ACZEL: Entropies, generalized entropies, inequalities and

the maximum entropy principle.

Inequalities for the Shannon Cand Hartley-) entropies and their

generalizations have been used in applications and they served ­

as building blocks for their characterizations. After a short

survey of such results the idea is put forward that the maximu~

entropy principle (also an inequality) may be used not only to

justify probability distributions but also to justify entropies.

R.P. AGARWAL: Linear .and nonlinear discrete inequalities in n

independent variables.

We introduce a discrete analogue of Riemann's function and use

it to study discrete Gronwall-type inequalities in n independent

variables. Next we provide an estimate on Riemann's function and

use it to obtain Wendroff type estimates.

c. ALSINA: On the stability of a functional equation arising

in probabilistic normed spaces.

Motivate~ by a problem on probabilistic normed spaces we study

the inequality

where ~ > 0 is fixed, dL is the modified Levy metric, F is an

arbitrary function in t+, a, bare arbitrary positive real numbers,

and T is a nondecreasing continuous binary operation on t+ to be found.

We show the following

Thm: A continuous nondecreasing binary operation on ~+ satisfies

(~), if and only if
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Tu(F,G)(x) = sup{Min(F(u),G(v)) : u+v = xl.

A. BEN-ISRAEL: q-convexity.

Let ~ be a'famil~ cf functions: pn~~.f:~n~p i8 3-convex in S~dom f

if for all x~S there exists F~ä such that (i) fex) = F(x),

(ii) fez) ~ F(z) for all x ~ z (x,zcS).

Examples: (i) Convex functions. Here : i8 the family of affine· ~

functions: 3={F:F(x) = (x~x> - ~, x*@Pn, ~~P}

(ii) Sub-3-functions in the sense' of Beckenbach, e.g. Bull.Amer.

Math.Soc. 43 (1937), 363-371.

*'For concreteness let ä = {F:F(x} = F(~ '~ix)} be a family of

differentiable functions, depending continuously on n+1 parameters

( * ) *' n *.x ,~ ~X xY ~ P x~. The correspondence X xY ~ Ö 16 assumed 1:1.

Results include: 1st order characterizations '(gradient inequality),

2nd order characterizations (Hessian) of w-convexity. Applications

to mathematical economics, numerical analysis, optimization.

Reference: A.Ben-Tal, A.Ben-Israelj J.Austral.Math.Soc.XXI A (1976),

341-361.

C.BENNEWITZ: The HELP inequality in ~ regular ~.

Starting in 1972 Everitt, and later others, studied a generalizat~
of the weIl known Hardy Littrewood Polya inequality

et' GO no( .r lu' 1
2 )2 ~ 4 .r lul 2 .r lu ttt2

000

In general the problem is to decide whether there is a finite K

such that

J (plu' ,2 + qluI 2 ))2 ~ K2 S b
2lu 1

2 r I-(pu' ) f + qul
a a a

for any u. Bere p and q are giv-e.!: so that the differential expression
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(-pu')' + qu. is regular at a but singular at b. It ,·,as thought

that no inequality was possible if both,a and b were regular.

I shall describe a counterexample to this and then give conditions

reasonably elose to being necessary and sufficient for such

an inequality to hold.

B. CHOCZEWSKI: ! linear iterative functional ineguality of

third order •

The inequality in question has the form

(1) !(r3(x)) + b2 'Cf2 (x)) + b1~(f(x)) + bo~(x) ~ o.

A description of continuous solutions of inequality (1) will be

presented as weIl as some conditions under which solutions of (1)

yield solutions of a Schröder functional equation.

Results are due to Mrs.Maria Stopa from Krakow and to the

speaker.

In e~uation (1) fk denotes the k-th iterate of a given

function f, and b o ,b1 ,b2 are given constants.

A.CLAUSING: Experimenting with operator inequalities.

G. Polya was not only one of the founders cf inequality

theory but was also very active in making the inductive process

• of mathematics an explicit topic.

This talk tries to report, in Polyas spirit, on some

compu~er experiments, done with an APL workspaee, whieh are· concerned

with Polya operators, a class of linear differential operators

defined by an inverse positivity condition.

Three results are given, all cf which had first been forind

experimentally by studying examples.
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Thm 1: The nonzero coefficients'of the basic functions ef a

standard Polya ,operator alternate.

~: The Greens kerne1 of a standard Polya operator i8

quasiconcave.

Thm 3: The v-th eigenvalue of a Polya operator i8 an i8otonic

function of the absolute value of the second coefficient cf the

boundary conditions.

Conjecture: This function i8 also convex. •
w. EICHHORN: Tax progression and measurement cf ineome inequality.

Let T:R+~, ~((y), y apre-tax income be a feasible (i.e.

T(y) < Y for,all yt:fO+) and ineentive preserving (Y<Y*irnplies y~(y)~y*~(y*n:

tax function and let In:~4P, x4 I(x) be a strictly Schur-ccnvex

"j.l-measure" cf inequality of incomes .!, i.e. a strictly Schur-

convex function that satisfies

for all ~~~~ and T~~ satisfying ~+T(u~+(1~)1)~~~, where

~cro,11 18 fixed. The functional equation shows for which

ineome distributions the ineeme inequality i8 preserved.

The following two statements are equivalent:

far all y~!Rn+ •
such that (Y1 , ••• ,y ) ~ (a,a, ... ,a)..n

(ii) T(y}/{Uy+{1-u)1) i8 strictly increasing in yfR+ .

This result obtained by my Ph.D. student Andreas Pfingsten

generalizes a result (u=1, I the Larenz' measure of inequality)
~

that I presented at the 1983 meeting 'i:'n Allgemeine Ungleichungen.

Corollar~: An inequality preserving tax function T is necessarily

an affine-linear funetion.
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M. ESSEN: Rearrangements and opti~ization problems for certain

linear second-arder differential equations.

For coefficients q in certain classes of integrable functions

on the interval rO,Tl, we determine sup y(T) and inf y(T) when

q varies in the class and y is a solution of one cf the equations

In the proofs, we use a kind of calculus of variations and

a partial order between functions introduced by Hardy, Littlewood

and Poly~. Th.e infimum problem arase in ihe study of growth problems

for subharmonie functions. There are applications to problems

where we try to maximize the first eigenvalue of a certain Sturm­

Liauville problem when q varies in a certain class (there are

also gene:r-alizat.ioI:s to higher dimensions).

•
y" ~ qy = 0, y(O) 1, y'(O) = n, t ~ rO,T].

W.N.EVERITT: An example of the Hardy-Littlewood~ of integral

inequalities •.

At the General Inequalities meeting held at Oberwolfach in

May 1985 it was reported that the inequality

J f2 dx {fn - (x2 _1 )f\2dx
o 0

• is best possible with equality if and only if fex)

(when both sides are equal but zero).

It was conjected that the inequality

(r ff,2 + (X2-3)f2 ldX) 2 ~ K f f2 dx er {f" _ (x2_3)f,2dx (*)
. 0 0 0

is valid with K = 4 and with equality if and only if

fex) = kx exp r-x/2l (again with both sides equal but zero).

This conjecture is false. The inequality (*) is valid· but with
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4 < K ~ 4.1094. There are two cases of equality; the first

when fex) = kx exp r_x2/21 (with both sides equal but zero),

and a second ease when both sides of (*) are not zero hut when

the equalising function is more complicated.

The lecture will report on joint work with W.D.Eva~s, W.K.Hayman,

and S.Ruscheweyh.

F.FEHER: p-estimates for ultraproducts of Banach lattices.

A Banach lattice L is said to satisfy a lower p-estimate

(1~~) iff 'there exists a constant K>O such that for each

finite sequence f 1 ,f2, ••• ,fn~L the inequality

•
11 n I I 11~ K il ~ f k ."

h=1

holde. Moreover, L is said to satisfy an upper p-estimate, iff

there exists a constant M > 0 such that for each finite sequence

f
1
,f

2
, ••• ,fn EL one has

The purpose of the lecture is to show, in what sense these

p-estimates carry over to ultraproducts of Banach lattices.

An application is given to the problem cf superreflexivity of

Banach lattices. •
I.FENYÖ: Inequalities concerning convolutions of kerneIs cf

integral equations.

Let AcP be a measurable set with 0<161~, P,Q:AxA~P integrable

functions. Let p be a number 0<~2 and q its adjoint (1/p + 1/q = 1.).

For an arbitrary function Z:~Y~~ as above define following norm

(if it exists)
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(rC.rIZ{s,t) lP dt)ds,1/p

" /I

The main result is follo'toling statement: If 'IPl!q .,.... ~ , and

I~Q!!q< 00, then ,r P{s,r}Q(r,t) dr exists, its p norm 1s bounded, and
/:0.

11 r P(s,r)Q(r,t) dr !'p ~ lAI q~2 lipilpI!Q!!q
.':-:

R. GER: Subadditive multifunctions and Hyers-Ulam stability.

Let (S ,+) be an Abelian semigroup and let (Y, 11,!!) denote a

(real er complex) Banach space. Consider.a multifunction F from

Sinto the family ef all nonempty closed convex subsets of Y,

fulfilling the subadditivity condition

F(x+y) ~ F(x) + F(y),

If

x,y (: s.

•

s~p (diam F(x) : x F S} < ~

theri F admits"an additive selection, i.e. a homomorphism a of

(8,+) into t~e additive group (Y,+) such that a(x) E F(x)

for all x t: S.

Abstract version of this result is also possible." The problem

18 strictly related to the question about the behavicur cf

solutions of the functional inequality

\If(x+y) - fex) - f(y)1I ~ t=:, x,y r; s,

considered fer'mappings f: S ~ Y (Hyers-Ulam stability problem).
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M. GOLDBERG: Multiplieativity and mixed-multiplicativity for

operator-~ and matrix-~

Let V be a normed veetor space over ~, let L(V) denote the

algebra of bounded linear operators on V, and let N be an arbitrary

norm on LeV). In this talk we diseuss multiplicativity factors

for N, i.e., constants u > 0 for which

N(AB) ~ l1NCA) N(B) ..., ,A,B ~ L(V).

We Rhall examine several finite and infinite dimensional examples,

as weIl as certain generalizations of the above eoncepts.

•
w. HAU13HANN: Uniqueness inequality snd best Harmonie L1-approximation

For a given measure spaee, let f ~ L
1

(X) and V a subspace

of L1 CX). Given two best L1-approximants v 1 ' v2 ~ V to f, then

we prove the following inequality:

8.e. in X.

This inequality is very useful in order to prove uniqueness of
1 .a best L -approximant in the ease when the oceuring functions

are continuous on an appropriate X.

We consider the approximation of subharmonie functions f by

a spaee V of harmonie funetions and give a suffieient eondition 4It
for a best L1-approximant. Under mild assumptions, (~) yields

the uniqueness of a best L1-approximant.

C.O. IMORU: On ~ generalization of Steffensens inequality

In a reeent.paper, Peearic obtained the follow~ng interesting

generalization of Steffensen's inequality:

~... J
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Let f: [0,11 .~ R be a non-negative and non-decreasing function

and let g: r,o,11 -+ H be an integrable function such that 0 '5 g(x) ~ 1 ,

ror every x C rO,1]. If p? 1, then

1 '.\
r r f(t)g(t)dtl P ~ J f(t)Pat

o 0

where 1
) = r r g(t)dtl P •

o

The purpose of this talk i8 to prove a c~nsiderably more g~neral

result, which 1s an extension of Steffensen's inequality.

H.H.KAIRIES: Inequalities for q-factorial functions

The q-factorial ~~n2~~t.ion vq : P+ -+ IR, given by

y (~) = (1-x) log (1-q) + log: (1_q~+1)(1_qn+x)-1, qECO,1)
9 ~o

" cq.n be characterized as a Krull principal solution of ,its

difference equation.

r·loreover, inequalities are obtained which give detailed information

o~ the,behaviour of Yq near 1.

THEOREI"l. a) 'Assume f : IP ~ P to be convex, to satisfy CD) for
+

~ same q ~ (0', 1) and f (1 ) o. Then f = Yq •

~ x < y impliesb) tet F(x) := fex) + f(1/x). Then

F(x) ~ F(y).

c) Let F;(x) := fex) + f(1-t(x-1)), ~~r1 ,1+t-1 ) and

~(x,q) := log(2_qx-1)/log q1-x.

Then Ft(x) ~ 0 if x~(1 ,1+1/t) and t~"T"(x,q}.
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H.KÖNIG: ! strict inequality for projection constants

The projection constant cf a finite dimensional Banach space X

i8 ). (X) := supr inf {!!PI1 IP: Z onto, Xc:z. projection'\ I Z Banach , Xczl.

A well-known result of Kadets i8 that leX) ~ "dimX holds. This

yields that for all tt-'~~>2 there is ~,..;>O such that for all X 1~li th

dimX = None has A(X) ~,~ - €N. There are spaces X with leX) ~

~ ''N - \~ , thus necessarily f':N < 1~

A. KOVACEC: On an extension of the Bruhat Order of the symmetrie

group

The Bruhat Order on Sn ean be defined by saying that ~ ~ a iff

•
there exists a sequence ~ = rro'~1' "2' "3,···,nk o of permutations

ni E Sn' such that TIi +1 i8 obtained from ~i by an order-generating

transposition. For example 54132 ~ 13524, as we have the sequence

54132 ~ 53142 ~ 13542 ~13524. One ean ask for nice criteria in

order that ~ ~·o. In connection with a conjecture cf G. Lusztig

in Lie Representation Theory, R.Proctor found an answer:

TT S Cl in Sn if and only if for all r,sc {1 ,2, ••. ,n1 there holde

the inequality .'{i:~r, '!'T(i) ~ s\'~I{i:~r, o(i):?·s".

The same answer was found independently by this author in dealing

with a refinement of an inequality of Hardy Littlewocd and Polya.

In this talk we generalize the viewpoint that apermutation is

a ~ijection between the (very s~mple) partially ordered set

1<2<3<•••<n and itself. By appropriate definition of the term

"Order generating transposition" one may obtain similar results

as above for bijections between suitable partially ordered sets.

•
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N. KUBN: Almost t-convex functions.

Let fJ =1= I c !D denote an interval and fix t r- ro,11. A function

f:I~R is called almost t-cenvex iff

f{tu+{1-t)v) ~ tf{u} + (1-t)f(v) holds for almest all (u,v)~I2

(in Lebesguemeasure on R2 ). Furthermore we define Ka(f·) :=

:= {tfrO,1]: f is almost t-convex}.

Theorem: If Ka(f) *{O,1}, then

Xa(f) = rKa (f)l nr o,1],

where rKa (f)l denotes the field generated by Ka(f).

The proof is based on a related result for t-convex functions and

on a eonstruction of Kuczma.

M.K. KWONG: Norm inequalities between ~ function and its derivatives

We report on work done jointly with A.Zettl. There'is a discrete

analogue of the classical Landau inequality I!t.xl!~ <:: Cllxllp ll!l2x !! .

where x is either a semiinfinite er biinfinite sequence in L
oo

and ~ is the difference operator. The central problem is to determine

the best constant C in terms of p.

Various extensions of the inequality, both in the discrete

and continuous cases, are also discussed. This includes the

~ extensions to m-dissipative operators, higher orders, Everitts

generalization and weighted nerms.

Although analogous results hold in the discrete ease, the

proofs are often significantly different from the corresponding

ones in the continuous cases.
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L. LOSONCZI: Nonnegative trigonometrie polynomials and related

quadratic inequalities

Inequalities of the form

n 2 2 n 2). ~ Ix . f ~ y; Ix .+x. k I $.A T Ix . I
j=o J J- J+ - j=o J

are considered, where xo, .•. ,xn~R(or C), A,A are constants and

the SUffi in the middle means one of the following ones:

n-k n
(i) 1.: (ii) ~ with xn+1=·· .= xn+k 0 ,

j=o j=o

n-k
(iii) ~ with x -k= x-1 0,

j=-k

In all cases (with both signs· +and-) the exact constants ),~

are given. They are minimal and maximal eigenvalues of suitable

Hermitian matrices. The ease k=1 has been known.

E.R. LOVE: An inequality for geometrie ~.

Coehran and Lee rMath.Proe.Camb.Phil.Soc.96(1984)1-7]obtained

the inequality

j xr exp (~ J t p- 1 log f(t)dt)dx ~ e r +1/ p J xrf(x)dx
o x 0 0

for rand p real, p>O and fex) ~ O. This generalizes an old

inequality of Knopp (r=O, p:1). They also obtained a diserete

analogue.

The exponential in the integral on the left iso the geometrie

mean of f on (O,x) with weight funetion t p- 1 . It is proposed

to present a corresponding inequality with a general weight

function and to consider possible discrete analogues.

•

•
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G. LUMER: Parabolic maximum prineiples, diffusion equations,

and population dynamies

We~ve general parabolic maximum prineiples for L-subharmonic

·functions u (Lu ~ 0) on space time g = nxI (I' an interval),

L being a loeally dissipative, parabolic, loeal operator.

We consider general open sets Y" in n and:an appropriate closed

boundary B (V) for V. The linear maximum principle then says
p -: -

that s~ u ~ aup u+, (where u+ = sup (u,O}). Similarly, ~or the
Bp(y)

semilinear ease we have eomparison theorems (with Lipschitz

or loeally Lipschitz nonlinearities). There are many applications

to parabolic 2-nd order PDE, but also to situations where

L is a more.complicated object than a PD operator (for instan~e

in transmission problems, or the.constructio~ cf highly non­

differA~tiable extensions of PD operators as intermediate tools).

Tb..e i":1,entioned maximum principles play an essential role in

obtaining unique global solutions of problems of the type

u(x,s) fex)

u]r = 0s

Lu + Nu = 0 in Ye:= {(x,t)~V :t>s}

Cf initial"value at t=s)

(r an appropriate lateral boundary),
s "

assuming this problem is solvable for y = ~ and an L-barrier

~ can"be constructed for V. Such results apply in particular to

second order parabolic PD operators.with merely eontinuous

cöefficients (real, c(x,t) independent term ~ 0), in general

open noncylindrical domains y. In particular one gets unique

global solutions for generalized timedpendent Kolmogorov­

Petrovskii-Piskunov equations impor~ant in population dynamies.
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A.W. MARSHALL: Extensions of Markovs inequality for random

variables taking values in a linear topological space

The usual assumption is that A ~ B means A and B are real

numbers but there are many other possibilities: A familiar example

is that A and Bare Hermitian matrices and

•Example 1. If X and Yare kXn cemplex matrices and XX* is nonsingular,

then yx4 {XX*)-1 xy* ~ yy* in the sense of (1); this reduces te

Cauchy's inequality when k=1 •

Example 2. If X is a randem Hermitian matrix such that· EX = u

i~ positive definite and P(~O)=1, then for every positive definite

matrix €,

p(~!) ~ minimal reet of -1/2 -1/2
~ U~

The new result to be presented is a similar version of phows

extension of Markov's inequality but for random variables taking

values in a linear t6pological space. The proof will not be given

but to illustrate methode, a proof ef (2) will be given in that

more general setting.

H.W. Me LAUGHLIN: Inegualitites arising from diserete eurves ~
After defining the notion.of a diserete curve (a geometric~lly

defin~d.set of discrete points) one has to characterize the curve

with discrete analogues of the classieal notions from differential

geometry. Sinee there are no differentLlable' functions available

with which to compute, for example, error estimates, one has to

rely solelyon classical diserete inequalities. This leads to an
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investigation of the behaviour of inequalities unde~.t?e influence

of recursion. An example is: how daes the ratio cf the geometrie

mean to the arithmetie mean vary as the weights are ree~sively

changed?

R.N. MOHAPATRA: On ~ analcgue cf Hardy's Inequality for

sequence spaee !iEn).

Let w be ~he vectar spaee cf all real sequences and (Pn )

be a sequence cf positive real numbers·. For x in w, let· us

write

If (Pn) = p for all n, then l{Pn ) and ees(Pn ) redue~ to well-known

sequence spaees Ip and cesp .

Hardy's inequality for.sequences essentially shows that

Ip c ces p \1 < p ~ ~J~It is known that this inclusiori is strict.·

If we assume {Pn} to be bounded then l{Pn ) ~nd ce~{Pn). c~n be

shown to be paranormed sequenee spaces. It is natural to wonder

if it is possible to have an analogue cf Hardy's I~equality_

for the sequence spaee l(Pn). If that were the ease then it

sh~uld be possible for us to show that for bounded (Pn)~ ~(Pn) ~

~ ces(Pn )·

In the present paper we have shown that such an inclusi~n among

these paranormed sequence spaces fails to hold. We have also

discussed some open problem in thB eonnection.
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R.J. NESSEL: Approximation theory in the space of Riemann

integrable functions

The following notion of a sequ.ential canvergence is suggested

for the" space Rra,b] of Riemann integrable functions
b(J f(x)dx := upper Riemann integral).
a

Definition: A sequenee {f } ~ R[a,bl is ealled Riemann convergentn

to f ~ R[a,b] if

(i) sup I f (x) 1= 0(1},
a.<)($b n

.b.
(ii) J rsup I fk(x} -. fex} I]dx

a ~n
•O( 1 }.

It turns out that ~ith this nation of ~onvergence Rra,b] is not

only eomplete, but continuous funetions are also dense in

Rra,b]. This enables one to diseuss approximation in Rra,b].

For example, convergence critaia cf Banach-Steinhaus-type

are develeped, extending basic werk cf Polya (1933) on the

convergence ef quadrature formulas. The lecture is a survey

of joint work with W.Dickmeis, H. Mevissen.and E.van Wickern.

C.T. NO: A functienal inequality

It is shown that a function f:I~~ on an interval I satisfies

the iriequality fex} + f(y} ~ f(~x+(1-A)Y) + f~1-\}x+}y) for

all x,y C I and all (: rO,l] if and only if f is the sum

cf a convex function C (i.e.: AC(X) + (1-X)C(y) ~ C(XX+(1-A)Y))

and an additive function A.

Equivalently s~eaking, ~(x,y) = f(x)+f(y) is Schur eonvex

on r 2 if and o~ly if f is the sum of a convex funetion on I

and an additive function.

•
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z. PALES: How to oake fair decisions?

The purpose of the lecture is to give the complete description

of decision functions, i.e. functions f:S ~ ~, ~] 8atisfying

Ci) min {f(s},f{t)} ~ f(s+t) ~ max {f{s),f{t)}

(ii) lim f(ns+t) = fes)
n-K'O

for all 8,t r S, where S is an arbitrary commutative semigroup.

~ J. RÄTZ: Some remarks about Cauchy-Schwarz inequality

The best known method cf prcof is the one representing the

Cauchy-Schw~rz-deficitas the discriminant cf areal quadratic

form. This method heavily rests on divisions and on commutativity

of the domain of scalars. The following statement avoids

divisons and commutativity of multiplication and therefore

also includes the quaternionie case.

ThIil: If K is a ring with 1, -:K-'K an involutorial.automorphism,

and K:={AEKj X=A} cqntained in the center of K and'made into

a totally ordered ring so that 0 ~ Ar (~A.~), if X ~s· a l~ft

K-module and f: XxX"'K is a positive semidefinite hermitian form,

then f(x,y}f{x,y) ~ f(x,x)f{y,y) (~x,yEX). Equality acc.urs

if and only if ~().,u) f KXK\ {{q ,O)} with f{) x-+~JY, ) x~y) = o.

B. SAFFARI: Refinements of~ inequalities for functions 'of

.~_~lue~.

Let f be a real-valued bounded measurable function on ra,b]

such that f ~ 0 and ~ f(x)dx = O. Then
a

1
b-a

~ 1 ~ ~ . 2hH. 'f(x) Idx ~ - 2 ,I " If(x)-f(y) Idxdy :c:: h+H
a (b-a) . a a

where H = ess sup f, h ess inf f. S imila.r results hold for
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other LP-norms and for ra,bl(with measure (b-a)-1 dx ) replaced

by any probability space. The proof involves the decreasing

rearrangements of functions f+ and f-.

P. SCHÖPF: Zwei Ungleichungen für konvexe bzw. sternförmige

Funktionen

Sei B c ~d die euklidische Einheitskugel, f:B ~ ~, f ~ 0,

geeignet integrierbar und 0 < m ~ n. Die dann gültige klasse

Ungleichung

(1 r rIJl) 1/ m < ( . 1 r fn) 1/ n
.vollBJ B .' vollE) B .

wird zunächst für die Klasse der Funktionen mit feO) = 0 und

sternförmigen Epigraphen bzgl. (0,0) c R
d+1 verschärft,und

anschließend wird eine dimensionsfreie, maßtheoretische

Verallgemeinerung der verschärften Ungleichung angegeben.

Der zweite Abschnitt des Vortrages betrifft konvexe Mino-

bzw. Majoranten von monoton fallenden Funktionen und Ungleichungen

zwischen deren sogenannten k-Momenten.

•

B. SMITH: Convolution orthogonality

Use j for integration over the set (G : IG ~I~.(k.a.) 1}.

a-1 1 k -Use Aa r ä ~(ä)' where ~ is the Dirac point masse Put ~
a=O

2TIihQ [A ]Dx r e Put Aa~~b = Aab . k ~ A means k E 2,A 0F

'~x

where F is arbitrary. Put G = I: ). c.
c~c

Theorem. For all € > 0 there exists ~ > 0, such that if G has

bounded multiplicative transform, A ~ B, A2B ~ X1-~. Then
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R. SPERB: Optimal inequalities in a semilinear boundary value

problem ~ ~ two dimensional Riemannian manifold

Consider the semilinear boundary value problem

(*) Au+)f{u~ = 0 in n c M, u = 0 on ~0

where n i6 a domain on a two-dimensional Riemannian ma~ifold.

SUPPo6e that f{O»O and f is convex and inereasing and ~ i8

a positive parameter. Then it 18 known that (~.) has a positive

solution fo~ }~(O,~*) and no solution for X>\*.

Let , be the solution of

(**) 6V+1 = 0 in n, ~=O on ~n.

Using X(s(Y(x))) as a supersolu~ion where X(s) and s(V) are to

be chosen in an optimal way isoper"imetric estimates for J;*

and other quantities of interest ean be derived.

N •. STEINMETZ: The Bieberbach Conjecture

In two lectures a survey has been given on the dev~lopme~ts

which lead to a proof of the Bieberbach Conje.ctc~:re, including:

I. Historieal renarks; II. Löwner Theory; III.De Branges.proof.

F.M. VASIC: Interpolation of~ inegualities

Assume , that I c: ~, (I nonvoid and "finite) and that an iriequality

__ F{I) ~ 0 is given. We have "interpolations" of the inequality

F{I) ~ 0, provided F(I) ~ F(J) ~ 0 whenever I ::> J. An important

ease is that F(In ) ~ F(In _1 ) ~ ...~ F{I2 ) ~ F{I1)" = 0, where

I· = {1,2, .•. ~n}. We show more inequalities cf the cited-type.n

For example, ~or the inequality of 1evinson,

~ p.x. ~ p.x!
i~I 1 1 .~- 1 1

F( I) = r p. {f . ( t. . ) - f (1 -J. ) 1 -{ r p. f (x! ) 1 ~ Q..
. ~I 1 p. t p. . CI 1 1
1- itI 1 i~I 1 1
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if xi.+xi = 2a, 0 <: x.i < a, Pi'~ 0 and f is Convex of ord er 2 in

rO,2a) one has F(Il~) ~ FeI) + F(J) if rnJ = ~ hence

P.VO~~: Ein Existenzsatz für gewöhnliche Differential-

gleichungen in geordneten Banachräumen

Es wird ein Existenzsatz für gewöhnliche Differentialgleichungen

in Banachräumen bewiesen, wobei die rechte Seite der Differential-~
gleichung eine bzgl. eines Kegels wachsende Funktion ist. (Arbeit

mit Roland Lemmert und Raymond M.Redheffer).

R.J.WALLACE: Sequential search for Z8rres of 2(2n-1)-th derivatives

How might simple real zeroes of real valuedcontinuous k-th

derivatives f(k) be efficiently approximated., given that there

is to be recourse s.~ely to values of f? A standard approach

to these quest ions entails successively selecting points to be

the abscissae for sequences of k-th divided differences whose

signs are then used to locate the zeroes; see Wallace 11] and

the references therein to the work of S.Johnson, J.Kiefer,

R.S.Booth and ·others. Of central importance is the particular

rule (or s~rategy) by which these points are chosen. In this

talk the speaker shows how analysis of a class of restricted

subadditive inequalities ha~ enabled hirn to determine the most

efficient strategy for each of the special cases k=2, 6, 14,.30, ... ,

2(2n-1 ), .... Illustrations are given, and the suggestion made

that similar analysis should lead to analoguous results for

. other even k.

Reference: R.J.WALLACE: Sequential search for zeroes of derivatives,

in General Inequalities 4: Proc.of the Fourth Internat.

Conference, Oberwolfach, 1983, W.Walter, ed..(Birkhäuser,

Basel , 1984 ), 151 -1 67 •                                   
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C.L.WM~G: 1nequalities and mathematical prcgramming 111

Three equivalent mathematical programming problems concerning

monotone infinite sequences with suitable constraints are solved

by the establishment of pertinent inecfuali t ies. The continuous

version of the inequalities as weIl as some variants cf discrete

and continuous inequalities are also studied.

-K.ZELLER: Positivity in absolute summability

Positivity considerations are useful not only for ordinary

summability, but also for absolute summability. In the latter

ease it is quite natural to employ two positivity concepts

and two types of sumrning operators. Thereby one meets matrices

having properties like diapositivity. Applieations cancern

Cesaro methods (facters for absolutely summable series). Several

modifications and extensions are indieated.

A. ZETTL: ~inequalities for derivatives and differences

In this joint werk wit~ M.K.Kwong we consider the inequalities

(.1)' 'Iy' \\2 ~ KHy!! I\y" \\ and (2) pl\x!!2 ~ cPxl\ 1!!,,2x ll. • The norms
p p p "p p' p

here are the classical LP(J), lPCM) norms, respectively, w·ith

J~:(~, ~) or J~+=(.~) and N=7={ .•• -2,-1 ,0,1 ,2, •.• \ or-,
M=N~( 0,1 ,2, ... }, 1~~. The constants K=K(p,J), c=c(P,M)

denote the 8~11est constants in (1) and (2) respectively. It i8

known that c(p,Z} = K(p,iR) and C(p,~I) = K(p,R+) when p == 1,2 or 00.

For other p the values of these constants are not known and it is

not known if these equalities hold for other p: Here we present

"good" upper and lower bounds for K(p,IC:-): L(p) ~ K(p,~) ~ M(p)
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with explicit formulas for Land M in terms cf p for p ~ 2.

Also an elementary proof is given for a result of Ljubic to show

that if ui ' i=O,1,2 are positive numbers satisfying uf < K(p,J)uou2
then there exists a y in LP(J) such that Ily(U!l

p
= u

i
' i = 0,1,2.

Berichterstatter: A. Kovacec.
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