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The conference was organized by R. Ahlswede (Bielefeld),

J • H. va n Li n t ( Ein d ho v e n), and J.' Mass e y ( Zü r ich) .

The main subjects were algebraic coding, cryptography, and

multi-user information theory. The program included 38 lectures

and. a discussion about open problems and recent developments.
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Abstracts

T. Klöve

Some convolutional self-ortogonal codes

An (I,J) difference triangle set (DTS) is a set

where 6. = {a .. IO<J'<J} for
1 1) --

are sets such that all the numbers

and 0 ~ j' < j ~ J are distinct.

with < i ~ I

m(Ll) = max{ a .. } .
1J

M(I,J) = min{m(Ll) ILl is an (I,J) DTS} .

We show that
31 ~ M(I,2) ~ 31 + 1 for all I,

M( I , 2) = 3 I + 1 f 0 r I == 2 0 r 3 ( roo d 4) •

78s + 6k ~ M( 1 3 s +k , 3) ~ 8 6 s + C k wh e r e ~ k i s g iv e n b y t h e f 0 11 0 w­

ing table:

k 2

Ck 13 23

R. Calderbank

3 4

27 32

567

40 46 54

8 9

58 68

10

72

11

73

12

90

13

91

Applications of coding theory to designs

4It Theorems of Gleason and of Mallows and Sloane characterize the

weight enumerator of maxi~al self-orthogonal codes with all weights

divisible by 4. We apply these results to give a new neeessary

condition for the existence of quasi-symmetrie 2-(v,k~A) designs

where the intersection numbers ·s, t satisfy s == t (mod 2) (the

assumption that there are 2 intersection numbers can be weakened

to intersection numbers sl, ... ,sn satisfying SI s ... s.sn (mod 2» .

We also apply duality in the Johnson scheme J(v,k) to give a very

short proof of a theorem of Frankl and Füred~. We consider a family

F of k-subsets of a v-set such that F is al-design and

Ixnyl > A > 0 for all x,y E F. We prove that v ~ (k 2-k+A)/A

and that v = (k 2-k+A)/A if and only if F is asymmetrie 2-(v,k,A)

design.                                    
                                                                                                       ©
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E.F. AssmuB, jr.

Self-dual binary codes and desarguesian planes of even order

Consider the code generated by the Desarguesian projective

plane of order Ze extended by an overall parity check, C say.

C is self-ort~gonal and we ask whether or not there is a self­

dual code S? C with a generator matrix of the form (IkIM)

where I k is the identity matrix and M is a k x k matrix that

is the incidence matrix of abiplane. Here k = i (Z2e+ 2 e+ Z) .

The answer for e = 1,2, and 3 is yes and there is a general grou~

theoretic constructio~ that yields M in these cases. Thii same

construction yields matrices M for e > 3 that have the prope~ty

that every row has ones and every two rows have 0,2, or

4 ones in common, but for no e > 3

of abiplane.

J.P.M. Schalkwijk

Two-way channels

is M the incidence matrix

Shannon's (1961) model of a two-way communication channel is dis­

cussed, in particular the inner and outer bounds to the capacity

region. As an example of a nontrivial dialogue we then consider

Blackwell's binary multiplying channel (BMC), as does Shannon in

his own two-way channel paper refered to above. We describe Schalk­

wijk's (1983)" coding strategy for the BMC, which we subsequently

show to be optimum for both fixed length strategies with vanishing

probability of error, and also for variable length strategies wit~

zero probability of error. Thus we establish for the first time the

capacity region of a nontrivial (i.e. inner ~ outer bound) two-way

channel. For symmetrie R) = RZ operation the optimum rate is

R) = R2 =.63056 bit per transmission. The essential step in the

eonverse considers the uncertainty reduciion for resolutions

on the initial threshold pair of the

square.
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A.M. Odlyzko

Ba1ancin~ sets of vectors

Tli i s· 1 e c tu r"e .was b asedon j 0 in t wo r k wi t h E. Be r gmann, D. Cop per-'

smith, and P. Shor. Given a positive integer n, what is the

minimal va1ue of k such that there exist k vectors YI'.'.'Yk of

length n with entries + 1 such that for any vector w of

1ength n with entries + 1 there is at least one i ~ i ~ k ,

with v. ·w = o ?
-1 -

~ A very simple construction due to Knuth shows that k ~·n. is

possible, and a proof using commutative algebra is given that

k"=rt is b~st·possib1e. This construction and its extensions

have many app1ications to communication theory.

Z-x: Wan

On-the relationship between Ber1ekamp-Massey and Euclidean

~algorithms for·synthesizing binary sequences

.~

. "

Let .! .. ~ (aO,a l , ..... ~aN-I) be a binary sequence with
N-I 1

a O =a 1 = ... = a _; = 0 a I. Put ro(x) = L aN_1_1..x
.. " n o .' 0 0 i=Q

r_1(x) = x N + ro(x)e(x) where e(x) 1S an arbitrary po1ynomia1

of degree. ~nO ' and also put WO(x) = 1 , W_ 1 (x) = E(X). Define

rk(x) and Wk(x) (k=1,2, ..·.) inductive1y as fol10ws:

"rk (x) ," = P k (x~ rk~ I (x) + r k - 2 (x), where deg r k (x) < deg r k _ 1 (x)

and Wk(x) = Pk(x)W
k

_
1

(x) + Wk _ 2 (x). Suppose k is the sma11est

positive integer such that deg r
k

(x) + deg r
k

_
1

(x) < N, then

Wk (x) is a shortest LFSR which generates a. This is the so-ca11ed

Euc1idian afgor~thm for synthesizing binary sequences.

Foi ' k = 1,2, ... ,

i 1 ,2, • • · ,.wk - 1 •

Wk
write Pk(x) = L

i=1

Then put PkT(X)

Aki
x where

T Ak ·
t x 1.

i=1

Wk T (~.> - p k T (x) Wk _ 1 (x) + Wk _ 2 (x). 0 r der t he 5 e t

{(k,T)II~k~n, l~T~Wk} 1exicographica11y: (k,T) < (k' ,T') iff

k < k' or k = k', T < T'. Then we have the s equence 0 f po 1y­

nomia1s
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W1 1 ' W1 2 ' • • • , W1w 1 (= W1) , W2 1 ' W22 ' • • • ,W 2 W 2 (=W 2) , • • • , Wk 1 ' '\2' • •• ',

\VkW
k

(=Wk ) ,. •• •

It is proved that by adding .nO l' s in front of W11
and repeating

eaeh Wkl" a certain number of times, we obtain the sequence of

polynomials obtained by the Berlekamp-Massey algorithm.

Ingemar Ingemarsson

Further results on unknown funetions •
An invertible funetion y = fex), where x and y are integers

in the range [1,n] is chosen from a set F of M funetions.

An outside observer knows F but not the aetual choice f(x).

He is however able to make a limited number, say i of obser-

vations (x,y) satisfying the unknown funetion. He enneludes

that the function is in a subset of F. If there are equally many

functions in this subset attaining each possible value y for

any argument x the observer is said to have maximal uneertainty

at level i + 1. The highest level with maximal uncertainty is

called the security level k of F The largest security level,

k, satisfies M = (n~~!) . Functions with maximal security level

are e los e 1 y re 1 a ted t 0 Reed-S 0 10m0 n - e 0 des.

If the functions in F are chosen ra?domly the security level is

far from maximal.

The cascading of two unknown funetious, i.e.

I. Csiszar and P. Narayan

f[f(x)] is discussed .

••
Arbitrarily varying channel~ with jamming eons~raints

n
Gi v e n an AVC wi t h JO a mm i n g co n s t ra in t :r P. ( s .) < 0. n, let C an d

i=1 1 - r
Ca denote the average.error capacity for random and non-random

block codes, respectively. While a single-letter formula for Cr
is available, now the "elimination technique" does not work, by

less

which Ahlswede proved in the unconstrained ease that Ca = Cr un­

for deterministic channelsc = 0.. Here we determine C
a a

with binary input and jammer alphabets; it turns out that

o < Ca < C
r

may also obtaino If Y = X + S mod 2 then

Ca = C
r

= ]-h(n) ; the problem of maximum error capacity for this
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case is identical with the basic open problem about errO!-CDr­

recting codes. The ease Y = X·S represents a model for memories

with defects-of unknown loeations. A partial res~lt_'is :obtßjn~d

for Gaussian AVC's, namely that Ca = er for a certain range of

the parameters; it remains unknown whether this always h~lds when

C * 0-.a

F.H.J. Willems

A new universal data eompression method

.. ;".

A new universal data eompr~ssion algorithm is deserib~d. Th~~:,

algorithm eneodes L souree symbols at a time. ~he eode alp~a~et is

binary. For the elass of binary stationary sourees, the e~p~~ted

number of eode symbols per souree symbol is shown to be not ,_ql~re

than (H(UO'U1, ... ,UL_ 1) + rlog(L+I)l)/L. In the analysis of

our algorithm a result on repetition times turns out to be erueial.

The algorithm ean be generalized to arbitrary sour~e_?nd a~bi~rary

eode alphabet sizes. Its implementation is diseussed.

R. Ahlswede and A. Kaspi

On binary state symmetrie Markov ehannels

We study the structure of the transition matrix of binary-input

binary-output Markov channels that are symmetri~. in th~ ~en~~'that
the t~ansition probability is invariant under simultaneaus -comple­

mentation of the input, the output and the state' of the eh'ann'el.

Using the strueture of the transition, matrix, ~e_ give boun~.~ :?n

the eapaeity of the "trap door" ehannel and show that the zero
."' :'

error eapaeity of this ehannel is 0.5.

A multi-terminal problem that arises from· the "trap~ d,oor~·. ehannel

is presented, a~~ it 'is show~ that on~ o~ th~.ex~rem~,?~jnts in'

i ts achilivab le region is (0, log (0.5 (I +'"\f"5», where the s econd te rm

results from the limit of the Fibonacei sequenee.
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K. Kobayashi

The capacity of the permuting relay channel

Blackwel1 1 s trap door channel is a nice example of finite state

channels. Its deterministic versions, that is, permuting channels,

have been studied by Ahlswede and Kaspi (1984) in a multi-terminal

information-theoretic frame work. They determined the capacities

of permuting jammer channels and relay channels for some special

cases. In this talk, we completely solve the capacity problem for

permuting relay channels. More specifically, when Cl is ·the car­

dinality of alphabet, and ß is the number of available stock 10­

cations in channel, the capacity CR(a,ß) of the permuting relay

channel is given by log A, where Adenotes the maximum eigen­

value of a matrix Q derived from the state transition mecqanism

associated with the channel.

T. Helleseth

Optimal linear codes

An [n,k,d] code C is a k-dimensional subspace of GF(Z)o

such that the minimum Hamming distance between the codewords of

C e qua 1 s d. F ur t her, n ( k , d) 'i s d e f in e das t he small e s tin te ger

n such that an [n,k,d] code exists.

For k ~ 7 ,

For k 8

where [xl

n(k,d) has been determined
7

by H. van Tilborg.

it is known that n(8,d) ~ rd/zil for all
i=O

is the smallest integer ~x.

In arecent paper Dodunekov and Manev have determined or given the

best known bounds on n(8,d) for 3 ~ d ~ 130.

We improve these bouods as foliows:

n(8,16) > 37 0(8,30) ~ 65 0(8,32) 68 n(8,34) ~ 75

0(8,36) ~ 78 ,0(8,40) ~ 84 ,0(8,42) ~ 90, n(8,44) E [92,93]

0(8,52) ~ 109 , n(8,58) ~ 120,0(8,60) ~ 123
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E.C. van der Meulen

Reliable transmiss~on of two arbitrarily correlated information

sources over a discrete memoryless asymmetric multiple-access

channel

A discrete memoryless asymmetric multiple-access channel with

two encoders is a "two sender - one receiver" multiple-ac'cess

communication situation whereby messages of one source are en­

code~ by both encoders, whereas the messages of another message

set are encoded by only one of them. In this contributinn. neces­

sary and sufficient conditions are given for the transmission of

two arbitrarily correlated sources over such a discrete memoryless

asymmetrie multiple-access cha~nel. The resuit shows that in ~his

situation the so-caiied separation principie holds. An example is

given illustrating the theorem .. Furthermore it is demonstrated that

the same conditions cQntinue to hold when feedback is avaiIable to

one or both of the encoders. This ~esearch builds forth on the work

by Cover, EI Gamal, and Salehi (1980), Dueck (1981), and Ahlswede

and Han (1983). In concreto, the theorem reads as foliows:

a. A correiated source (UxV,p(u,v» can be transmitted reIiabIy

over a cl. m. AMAC K2 I i f t h·e r e ex ist s a prob. dis trib • P ( x I ' x 2 )

such that

H(UIV) < I(XI;YIX Z)·

H(U,V) < I(XI,XZ;Y)

b. Conversely, if a correiated source pair (UxV,p(u,v»' can be

transmitted reliably over a given d.m. AMAC

KZ1 =(XIXXZ,P(ylxi'xz)',Y), then the following inequalities

must be true·for some prob. distrib. P(xI,x2?'~

H(ulv) ~ I(X1;YIX Z)

H(U,V) < I(X I ,X 2 ;Y)
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H. Niederreiter

Applications of algebraic coding theory to cryptography

Va rio u s wa y s 0 f u s in g a 1 g e b ra i c co d in g <t h e 0 r y in t he des i g n

of crypto-systems are discussed. In particular, we show how

knapsack-type crypto-systems with a high information rate can

be obtained from suitable codes.

G.J. Simmons

Information theory and the authentication of digital messages •
A model for the authentication of digital messages as a zero-sum

two person game was used to derive a channel bound for the authen­

tication channel, in which the value of the game is the probability,

Pd ' ·that an opponent can deceive the receiver. The channel bound

can be expressed in the form

LogZP d ~ -(H(M)-H(S)-H(MIES» ( I )

where H(5) is the source entropy, H(E) is the entropy of the

strategy with which the transmitter and receiver choose an encoding

rule (source states to messages), H(M) is the induced entropy of

the messages and H(MIES) is the average uncertainty of the message

if the source state and encoding rule are known. If equality holds

in (1), the authentication system is said to be perfect in the sense

that all of the information in a message is used to either communi-·

cate the state of the source to the receiver, or to confound the •

opponent. It was s~own that affine resolvable designs - and a new

class of affine rtweakly" resolvable designs - give perfect authen-
.. .'k

t1cat10n systems w1th Pd = ~
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G.F.M. Beenker

Bina r y t r ans~ i"s s ion codes wi t h h i g her 0 r der s pe c t ra 1 zer 0 s a t___........ ---' ----:!~ .....6___:.......;;;;.~_..:.....:.~=__..=..::...•

zero frequency

A" method is presented tor designing binary transmission ~odes in

such a way that both the powe~ spectral density functio~ an~ its

low order derivations vanish at zero frequency.

Codes are called' of zero disparity if a1-1 c-od'e :wor.ds

s a t i s f y" f .i k x. = o· . f 0 r
1.

k-th order

E {-I, I} ,x.
1. i=1
The pow.er s p ec t ra 1 dens i ty func t ion and" i t s

derivatives of a k-th order "zero disparity 'code

(x I ' · · · , x n )

k E {O,I, ••• ,KJ

first 2k + I

can easi~y be shown to vanish at zero frequency:

The maximum number of codewords of a k-th order zero disp~~~~r

code of length n is determined as a coefficient of a generating

function in two variables, for all n E m. For k

weIl as an upperbound for this·number is derived.

a lower as

It is shown that the minimum distance of a k-th order zero dis­

parity code is at least 2k + 2 •

R•.Ahls.w.e<;le .and :G.: :Uu'e'ck

Identifi~ation via ~hatirt~ls

•
o ur mai n dis c 0 ver y isthat N = exp{exp{R . n ) } (-do u b 1 e ex p'o n e ut i a 11 y

many!) objects can be 'id~rttified in blocklength n with arbitrarily

small error p~obability via a discrete memoryless channel (DMC)·, if

randomi sa ti on can be used f or t heencod in"g p roc edur e' ~

Moreover, we present a novel (secondorde.r). Coding Theoret;D.,;.,~.hJch

determines the second order identification capacity of the DMC as a

function of its transmission matrix. Surprisingly this 'identification

capacity is a well-known quantity: it equals Shannon's transmission
. : f"·.

ca pa.c i t y,. ~.'! r· t h e DMC .

The impact of this result for ident~fication probte'ms .....i~ri' computers,

psychology or other areas remains to be expl~·r·ed..
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J. Körner

Graph entropy and its relevance to combinatorics

The graph G is covered by the union of the graphs, Gi '

i = 1,2, ••• ,t if all these graphs have the same vertex set and

every edge of G is contained in at least one of the Gi's.

In a graph covering problem one is given a graph G and a fami1y

of graphs G. One then asks for the minimum number of graphs

Gi ' i = 1,2, •.. ,t such that Gi is in G and the union of the

Gi ' s cover s G. In oide r to ge t lower bounds on tone· c.an use •

a functional which is sub-additive with respeet to the union of

graphs. Such a funetiona1 is graph entropy, introdueed by Körner;

I 9 7 3. Gi v e n a dis t r ib u t ion p ,0 n t h e ver tex s· e t 0 f G, t he e n -

tropy H(G,P) is

min I(XAY)

XEYEY(G)

P = P
x

where I(XI\Y) is natural information and Y(G) is the family of

independent sets of G. Graph entropy and its natural genera1i­

zation, hypergraph entropy were used by Körner and Marton to im­

prove on the Fredman-Kom1os bounds for the minimum number of per­

feet (b,k)-hash functions. The analysis of the method leads to an

interesting conjeeture on perfect graphs that is proved here for

bipartite gr~phs.

K. Marton and J. Körner

Random access eommun~cation and graph entropy

Confliet resolution in random aecess communication raises the

following probabilistic problem. Let U
I

, ... ,U k be independent

r an dom va r i ab l'e s uni f 0 r m1 y dis trib u ted in t heuni tin t erval [ 0 , I ]

A k-partition A of [0, I] (i. e. a partition into k atoms) se-

•
parates the points U

1
' ••• ,U k if eaeh atom of

one of the Ui . For k-partitions AI'.·· ,An'

A

let

contains exact1y
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be the probability of the ev~nt that at least one of the Aj's

separates U I' ... ' Uk • What is the maximum of these probabilities,

if AI, ..• ,An va~y? Hajek's conjecture (support~d by the Van der

Waerden-Falikman-Egorychev theorem) was:

min[I-P
A

A (k)] = (1- ~)n
I'···' n kk

We disprove this by showing

pröve the bounds

25
min[l-PA A (~») < --SI' and

I'···' n

Tbis is achieved by a new te~hnique for lower bounding the number

of graphs of a giv~n structure needed to cover all edges of a

given graph. This technique, developed by J. K6rner, is based on

the subadditivity of graph entropy - a functional on graphs.

c. Heegard

On the spectrum of (d,k) codes

In this talk ·we present a simple method to obtain the spectrum

of a (d,k) code. A (d,k) code describes a set of binary wave-

. forms, w(t) E.{-.1 ,+I} that have a minimum (Tmin=d+l) and

m~ximum (rmax=k+l) length of time between transitions (note:

all.transitions in w(t) occur at integer times). The waveform

w(t) is described by several sequences: the-level.sequence
i- + +Zo = 00(0 ) , zl = u>( I ) , z2 = w(2 ), ... ; the transition sequence

xI = (2:
1
-Z 0 )/2,x 2 = lZ2- z l)/2, ... (note: xjE{-I,O,+I})

the state seque~ce

s .
J

and the runlength sequence

T ) , T 2 ' . • . ( wh e re T i =.'5 j _ I + 1 i f x j *0). A s r an d om proces ses, t he

entropies are related by H(Z) = H(X) R(S) = H(T)/E(T) •

Theorem: For i.i.d •.runle~gths (i.e. the state sequence is a

Markov chain)
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where
1-g(D)g(D- 1 )

TI
o (l+g(D)(l+g(D-])

11 0 = Pr(sO=O) = Pr(xj*O) = ~~T) = g' ~D)ID=1.P (T =JO)D j and
r 1

k+l
1:

j=d+l
g(D)

A simple derivation of this theorem is given (note:

S~(D) = 4S x (D)/(I-D)(I-D- 1».. The method is then eX,tended to find

the spectrum of a popular (d,k) known as MFM (a code that satis­

fies d=), k=3) ..

•Z. 'Zhang and Toby Berger

Multiple description source coding in the excess rate situation

The source data {Xo}~) is encoded into two code f) and f z1 1=

at rates r) and r Z respectively .. These two codes are sent

to three decoders. Two of these decoders observe f] and f Z
respectively whereas the third one observes both of them. They re­

cover the source messages with average distortions d), dZ ,and d O .

Let R be the region of ~ll of the achievable quintuples

"(rl,rZ,dO,dl,dZ) in the usual Shannon's sence. In ~he no excess

rate situation defined by r) + r Z = R(d O) ,·R has been determined.

In the excess rate situation defined by r l + r Z > R(d
O
)' the

problem seems extremly difficult. A special case of this situation

is that r) = .R(d l ) , r
Z

= R(d Z). We obtain hoth an inner bound

and an outer bound of R in this case. The gap ·between them is very

small. On basis of this fact, we conjecture that the following upper

bound is tigbt in this case. •

Theorem: ~r),rZ,dO,dl,dZ) is acievable if there exist r.v's

Xl ' Xz ' U, jointly distributed. witb generic r.v. X such that the

following" conditions are satisfied.

1. 3 .. 5),5 Z 'SO s.t.

Ed(X;Si (Xi,U» ~ d i i ),2

Ed(X;5 0 (X I ,X 2 ,U» ~ da

z . r) + r Z ~ Z I (X; U) + I (Xl; Xz I U) + I (X; XI' XZI U) ,
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V.V. Zyablov, V.A. Zinoviev, S.A. ~ortnoy

Decoding of "generalized concatenated codes and demodulation

Let A,B,C correspond inner, outer and generalized concaten~ted

(GC) code of order m. That means that we use m inner and. m

outer codes to obtain GC-code C. The i-th outer code

Bi ' i = I, •.• ,m, over the alphabet of size qi and with power

N~;i cao be selected independent1y of other outer codes on1y with

the same 1ength n
b

. The inner code must be the system of nested

codes of 1ength' n a Let Ai be i-th inner code. Then AI is par-

'tion of ql codes AZ (i) i = 0, I, .•. ,ql-I, which have the same

parameters. Every code AZ(i) is partition of qz codes A3 (i l ,i Z)

and so 00 ... Let values of symbol of inner codes are se1ected from

space E with Hamming d
H

or Euclidian d E metric, where d E
means square of Euclidian distance. We require also that for every

j , j = I, .•• ,m-l, there exists an automorphism Sj :E
na

.... E
na

such

that

Let da,i 'and . db,i be the minimum distances of Ai and Bi

corresponding1y., where da, i can be d H or d E . Then GC':"code

has parameters: n = na0i," d ~ min {d .db ·} N = Nb,l"··· Nb,m.
I<i<m a,1 1

The decoding a1gorithm consists from m steps ~i i I, ... ,m

We want that i-th step ~i don't depend of result of decoding ~j'

j < i. For this we want to deal only with the f-th inner code

Ai (0, . . . , 0) an d 0 u t e r co d e Bi. Af t er t he d e co d in g ~ i we ' 11

have same word b(i) = (b~i), ... ,b~~» of the code B..and there-
(i) 1

f 0 r e ~~ c 0 des A1.... I (0, . . . , 0 , b p ) P. I , . . . , n b Th e n u s. i n g
~ , . (i)

the autom~rphi~m Si+1 we transform the ~~de Ai+I(O, ... ,O,b p. )

to code A
i

+
1

(0, •.• ~O,O) for every p. Exact description of the

step 'i one can find in paper (Dumer 1.1., Zinoviev V.A.,

# Zyablov V. V.', Problems of· Control and Information Theory', 1983).

Such decoding a1gorithm overa1ly rea1ize the minimum dis~ance of

GC-code .and has co~p1 exi ty o_f decod i~g, whic h .grows wi th .the leng th

of code n = nanb approximatl~ as n
C

where usually c = Z .
Applications of' this resul t are inter'este'd, when the inne~r codes

are phase or amplitude-phase "modulation. In ~his case we have re­

gular method demodulation and decoding simultaniously (Portnoy S.L.,

Pro b 1 e m 0 f In f 0 r m. T r ansm., 1.9.85, 2 1, W,3, ,I 4 - ~ 7) .
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H.C.A. van Tilborg

Burst identification codes

Consider the vectorspace A of all binary n
l

x n 2 arrays.

A .b 1 x b Z burst in A is an n} x n
2

array, all of whose

non zero elements are confined to a b
1

x b
Z

subrectangle~ A

1 in e a r co d e ( sub s p ace) Cis s a i d tobe abI x b Z- bur s t i den ti f i­

cation code, if the pattern of any single b
1

x b
2

burst ca~ be

identified. Together with burst location codes, one can correct

the burst.

Let r be the minimal redundancy of a linear. b 1 x b 2 b~r·st iden.

tification code. Then it can be shown tbat r ~ Zb1bZ-Z. An ex­

plicit construc~ion (+ decoding algoritbm) is given of a b} x b
Z

­

burst identification code with redundancy r = Zb)b
Z

.

G. Cohen

An application of combinatorial group theory to coding

We consider two problems in combinatorial group theory and give

applications to coding. Let (G,+) be a finite abelian group.

Problem 1. Determine s (G), defined as the smallest integer such

that VS, S c G , I S I ~ s (G) q S contains a' subset with zero sum.

Olson has solved it for p-groups. This was used by Alon to prove

the followini conjecture for m apower of two.

Problem 2. Determine c(G,t), defined as

Conjecture (lto). Every binary linear

vector of weight 2m.

[4m,2m+l]

that if s is a generating sub~et of ' G

code contains a

•the smallest integer such

with cardinality c(G,t)

every non zero element of G can be exp~essed as a surn of at most

t elements in S.

We consider the case G

prove

(Z/2Z)r , which is related to coding, and

Pro p·o s i t ion
•

c«Z/2Z)~t) < ~ , for t apower of two.
- t

Prob lem 3. Is the Propos i t ion t rue f or general t?

Final!y, we give an application to coding for reusing write-once

memories.

This work was done jointly with G.' Zernor.
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M.H.M. Costa

Gaussian iriiit~ere~te channels

The' Gaussian interference channel, introduced by Carleial in ]975,

modeis the 'c~mmunicatio~ between average power constrained senders

X I .'. an d. I X2 ~.6 t h e i ~ . res p e c t i ver e ce i ver s Y I an d YZ 0 ver a

sha~ed medi~m ~ith additive Gaussian noise. The channel inputs and

;~~~~u~~ a~e rel~t~~ ~y YI ~ XI + b Xz + ZI and YZ = ~ Xl + X2 + ZZ",
where a and b are non-negative interference parameters, and ZI

• - and Z~ are uni t va r iance norma lly cl i s tr ibu ted noi se t-erms. The

cdpa~iiyrie~i6ri'h~~ be~n obtained when interf~rence~ is s~rong (i.e.,

'. a ~. I -, .. an d . b ~ i ") \: but i s ye t tob e' e s tab 1 i s he d wh e non e 0 f t h'~

1. n i: er f eren ce" par am'et e r s i s in t h e open uni tin t 'e r val. We ex ami n e t h e

'. :\ -. s i m:p 1 er' in 0 d e 1 o,of t 11 e' Z- Gau s si an in t e r f er e n ce c han ne 1, wh e r e 0 neo f

~th~ inte~ference ~ara~eters is ~ero. A signaling scheme is'pro~osed

~h~t· ~~mbine$ th~'krtbwn te~hniques of ~uperposition coding ~n~ time­

sharing (or frequency-sharing). This scheme is optimal within the

~;. re·s:t,ricted cl~ss of· G,aussian signaling techniques .. We motivate the

conjecture that this scheme yields the capacity regjon ~f the· Z­

Gaussian iotetference channel. If true, this conjecture leads to an

improved outer bound of the capacity region of the .general Gaussian

interference channel (with arbitrary parameters).

M.R. Best

~'~~"'A"Ma\-rk-ov 's8u'rce' t~o:del for a convolutional coding scheme

e·.,-:~':;o'n.~~lU~iOnal.co.d_ing sc·heme with maximum likelihood decoding over

a-:·.discrete. memory~_ess· channel can be model.led ·as a Markov source •

.. .: ~ US.i n g :t·h i.s mo deI,. t he s tat ist i ca 1 b eh avi 0 ur 0 f t he er r 0 r s can be_

analyoSe·d'· exact.ly ...In- effect, not onl'y the bit and event error .proba­

~~j~it~, but also the ~~~~t and gap length distribution can be compu­

_':. f ~d.. .M 0 r e ~,v ~ .~_' f 0 r a (s ub .0 P t .i.mum) Vi t erb i d~ c öde r wi t h a f in i tede ­

.cod~?g ~el~y .~h~ de?ende~ce o~ the ~rror statistics on that delay

can be fouod. This generalizes earlier results of Schalkwijk, Post

-: an-d· ~-A~ r i s .-"
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T.S. Han

Hypothesis testing with multiterminal data eompression

The multiterminal ~ypothesis testing H:XY againn ü:ii is

eonsidered where Xn(io) and yn(yo) are separately eneoded

at rates. RI ,R2 ' respeetively. The problem here is to determine

the minimum Sn of the seeond kiod of error probability, under

the condition that the first kind of error P!obab~lity an ~ E

for a preseribed 0 < E < I. We are eoneerned with the asymptotie

behaviour of Sn' so define e>(R 1 ,R2 ,e:) = 1im inf(- *log Sn)" •
n-lJOO

which is ea1led the power exponent. We estab1~shed a good 10wer

bound 6L (R 1 ,R2 ) 00" this power exponent and revea1ed severa1 in­

teresting properties. The 8L (R 1 ,R2 ) is tighter than that of Ah1s­

wede and Csiszar, who first set up the multiterminal framework for

hypothesis 'te~ting. Main argumen.ts are devoted to the case R2 +00

(full side information ease). It is eonjeetured that 0L(R 1 ,R 2 ) is

t i g h tat 1 e ast in e ase 0 f ~ 2 = +00.

Also, we give the complete solution to the ease on1y, with one bit

eompression.

E>. von Co1lani

An entropie eoneept in S,tatistiea1 Quality Contro1

Consider the fo11owing problem whieh arises io Statistiea1 Qua1ity

Control: A lot of, size N is to be inspeeted by means of a. single

sampling plan (n,c) with 0 ~ c < n ~ N , Le. a random sampfe Ofe
size n is taken and if the number of noneonforming it~ms in the

sam p lei s 1 e s s t.b an 0 r e qua 1 tot he a e e e p t an e e numbe r e, t helot

is aeeepted otherwise rejeeted. The problem is ,to determine an ap-

propriate samp1ing plan (n,e) given a linear eost model.

There are three samp1ing schemes to solve this problem and which

m'a y b e e las s i f i e d a e c 0 r d in g tothe i ras s um p t ion s> abo u t t h e prob a ­

bi1ity distribution of the number of nonconforming items M in a lot:

I. Bayes-plans, assuming eomp1ete know1edge about the probability

distribution of M

2. Minimax-plans, as~uming that there is 00 know1edge at all about

the probability distribution and
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3. a-Minimax-pl~ns which assume that one point (for the br~ak-~ven

quality) of th~ distribution funetion of M is known.

To be able to eompare the different eoncepts and to find the r~-

1 evan tin f 0 r ma t ion s abo u t t h e pro b abi I i t Y d i·s tri b u t ion, an e n t r 0 pie

sampling plan is defined applying the principle of Maximum Entropy.

K. Marton

Weak asymptotie isomorphy of eorrelated sourees

Isomorphy problems for correlated sources were raised in eig~d~~

theory (Thouvenot 1975), but the interest in them is also motiNated

b y mu I t i - t e r mi n a I in f 0 r ma t ion t h e 0 r y. A DM SC ( dis e re te me m0 r y.l:e.s s

stationary eorrelated) souree is an i.i.d. sequence of rando~ ~airs

with values in a finite set. Here we con~ider weak asymptotic iso­

morphy of DMSC sources. Two DMSC sources . {(Xi"Zi)'}7'~-oo' {-(X·i,~Z·i) }7=-co
are;a symptotically isomorphie in the weak sense ·if for' E: > 0 ·'and

large enough n, there exists "a joint distribution cif the o-fength

outp~ts of the two sourees, dist(Xn,Zn,x;ri,z,n) satis~ying

We prove that some spectral properties of the distribution

dis t (X 1 ' Z I ) are inva r i an t f 0 r we a k a s y mp tot i cis 0 m0 r p h ~, a o.d .t h e s e

properties wholly determine the distribution in many eases.

C.P. Sehnoor

An efficient identifieation and signature scheme

A. Shamir prop~sed the following interactive authentication scheme.

Let n be a composite number that is hard to factar.

Let Alice have publie ~ey k A mod n an~ 'private key ~ mo4 n .

If Aliee identifies herself to Bob she picks a random r(mod n) ,

sends t:= r 2 mod n' to Bob and lets Bob choose to s~e either Vt
o r ~A mo d n. Bob d e eid e s a t ra nd 0 m. I f Al i ce an d Bob u se d in ­

dependent random numbers then Bob is safe against forgery and Alice

does not reveal any information on ~A mod n to Bob.

We extend this scheme so that the exehanged data ean be used
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to convince a third party, e.g. a judge.

For thi~ Alice and Bob generate pseudorandom number

RA = R (VkA mo d n, ra n d) , RB = R ("V'kB mo d n , ra n d ) t hat ca n 1a te r 0 n

be controled by a trusted authority that knows Vk
A

and ~B.

T. Ericson

1. Asymptotic properties of equal weight codes

2. Disjunctive codes and protocol sequences

Asymptotic properties of equal ·weight codes (Thomas Ericson) •
Let EW{n,w,c,T)

codes of length

Define

denate the (possibly empty) family of bina~y

n , we i g h t w , mOa ximum co r re 1 at ion c, an d s i z e

T{n,w,c) ~ max{T:EW{n,w,c,T)*4l} .

T •

We will discuss various asymptotic properties of this quantity

as n ~ Q); especially the case when w = LnvJ ; e = lnKvJ for

some eonstant sv, K .

Disjunctive codes and protocal sequences (Thomas Ericson, Vietor
Zinoviev)

Kautz and Singleton introd~ced Superimposed codes in 1964 [lJ, these

same codes were later studied under the name of disiunctive eode by

Dyachkov-Rykov [2] and others. Lately the eonnection with protoeol

sequences has been observed [3J. In this context we will present

some new results; in particular an existance bound based on the

Varshamov Gilbert bound.

[1] Kautz, W.H. and Singleton, R.C., "Nonrandom Binary superimposee

Co desI: lEE E T r ans. 0 n I n f. Th .

[2] Dyaehkov, A.G. and Rykov, V.V., "Bounds on the Length of Dis­

juctive Codes", translated from Problemy Peredachi Informatsii,

Vol. 18,. No. 3, pp. 7-13, July-September, 1982.

[3] Nguyen Quang A, Györfi Laszlo,. Massey, James L., "Performances

of Protocol sets for Collision Channel without Feedback.
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T. Ericson, V. Zinoviev

Asymptotic properties cf equal weight codes

An equal weight" code is a binary code such that all codewords

have the same weight. Denote by T(n,w,c) the maximal possible

size of such a code, when the length is P, the common weight

is w, and the maximal cor"relat ion between codewords is c. We

are interested in the asymptotic behaviour of T(n,LvnJ,LvrnJ) as

n ~ ~, where v ~ ware held fixed. Exponential increase of T
n

is obtained if and only if r > v. The exponent is easily lower

bounded by the Gilbert bound. By combining a const!uction by Kautz­

Singleton with arecent result by Tsfasman-Vladut-Zink we obtain

an· impro v e me n t 0 f t his b 0 und i n ace r ta in rang e. r 1 < r < ~ 2 '
. d 1 •• 2prov1de V = --zs, P 1S a pr1me, s = I, , ... , and p ~ 11 •

P

The simplest upper bound (for the siz~ of an equal weight code)

is Johnson bound: T(n,w,c) < ( n
l
)/( w

1
) For certain values- c+ c+

of the parameters (n,w,c) this botind is satisfied with equality.

The corresponding code is equivalent to Steiner system S(n,w,c+I).

There are a few infinite families of Steiner systems, including

eyelie ones. They provide optimal protocols for multi-user channels

without feedback both in the synchronious case (Steiner systems)

and the asynchronious case (eyclic Steiner system). There are als?

special constructions of the 'cyclic Steiner systems S(n,3,2),

which for n E 1 (mod 6) give optimal solutions for self-orthogonal

~onvolutional codes.

W.B. Müller

On eommutative groups of polynomial functions and their appliiations

in cryptography

During the last years the discrete exponentiation x ~ x k has

been used aS'one-way function in the Diffie-Hellman key distri­

bution, in Shamir's three-pass algorithm and in the RSA-public

key cryptosystem. Until recently, the computation of discrete 10­

garithms, the inverse function of the discrete exponentiation,

was believed to be a very hard problem. But recently progress in

computing discrete logarithms has been made, especial1y in Galois
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fields of characteristic 2. In order to protect the above

mentioned sehemes against attacks by these recent algorithms

one can replaee the discrete exponentiation x ~ x k by more

sophisticated polynomial functions x ... f (x), which also commute

with respect to eomposition. It is shown that the so-ealed

Diekson-polynomial functions x.~ gk(l,x) and x ~ gk(-l,x)

can be used as eipher funetions (cf; Müller, W.B. and R. N6bauer:

Cryptanalysis of the Dickson-scheme. To appear in Proc. Euroerypt

85, Lecture Notes in Computer Science).

Another group pf polynomial functions on I/(n) ean be obtained ~
from polynomials of the form 1-1 ·xk.l with I = ax + b E lR [x] ,

a * o. It can be proved that 1-1.xk .1 with k E 2IN +. is a

polynomial over Z iff a 2
, ab , b 2

E Z and b 3 -b E aZ Further­

more, the funetion x ~ ~ . xk.ax with a * 0 a
2

E I is a
a

'permutation of Z/ (n) iff (k,c.p(n» = 1 and (a
2

,n) 1.

At last, all permutations of I/(n) of this form with on~y one

fixed point are described. (If ~ = PIP2 ••• P r ' any permutation of

Z/(n) indueed by polynomials x has at least 3
r

fixed points.)

P. Ny f f e'l er

Souree properties of sequences over loeal rings

The talk concernes the question: what can be saved, when general­

izing periodic (or recurrence) sequenees over finite fields to

sequenees over loeal rings, espeeially over Z'r or Galois rings
r p.

GR(p ,K) Over finite fields, the shift regis~ers are canonical

forms of finite-state machines, as representatives of companion.

matriees. Over loeal rings, shift registers module a nilpotent

ideal playa similar role. The analysis of sequenees ean be.done

by an a1gorithm similar to the Berlekamp-Massey algorithm over

Z and the synthesi~ of new sequences of higher complexity by
pr

"root combinations lf is possible.
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A. Tietäväinen

Upper bounds for codes

Let A(n,d) be the maximum number of code words in a binary

code of length n and minimum distance at least d. We derive

two asymptotical upper bound~ for the number A(2d+j,d) when

d ~ and is paritive and small, show that these bounds are

in a sense best possible, 'and consider some open problems, gener­

alizations and modifications. We -also show how the second McEliece-

~ Rodemich-Rumsey-Welch bound has been generalized to the nonbinary

case.

Ph. Piret

Bounds for codes over the unit circle

Let C be a code of length n and rate R over

A(Q) {exp(21Tir/Q): r=O,I, ... ,Q-I}, and let d(C) 'be the

mim{mum Euclidean dfstance of c. For large n, lower and'

upper bounds are obtained in parametric form on the achievable

pairs (R, eS) whieh eS = d~ (e) In. For Q ~ they are shown

to be expressible in terms o~ modified Bessel function of the

f i r s t kind. The uppe r b ound i s ·e ompa re d wi th the Kaba tyans ki i-­

Levenshtein bound that holds for less restrictive alphabets.

F 0 r Q ~ (x), i t iss. t r 0 n ger t ha n t h e K- L b. 0 und f 0 r eS:5 o. 9 3 .

~ J.L. Massey

Sequenceswith perfect linear complexity profiles

n n'The linear complexity, L(s), of a sequence s = (5 0 ,5 1 , ... ,5
n

_ l ) ,

si E F (an arbitrary field) is the smallest nonnegative integer

L s u eh t hat t her e ex ist Cl' c 2 ' ... , cL in F ' s a t i s f Yi n g

L ~ j < n .

A binary (i.e., F = GF(2» sequence

linear complexity profile when

ns is said to have a perfect

:5 m ~ n •
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The following result was obtained with (and mainly by) the

author's doctoral student, M~-Z. Wang:

Theorem: The binary sequence sn has a perfect linear complexity

profile if and only if So = 1 and sZi + sZi-l + si-l = ° for

~ i < r~l .

R. Ahlswede

On code pairs with specified Hamming distances •For a function f:X x Y ~ Z with X,Y,Z finite C(f) is the

minimal number of bits two persons, one knowing x and the other

y, have to exchange in the worst case so that "both can evaluate

f(x,y). Yao proved

C-(f) ~ log D(f) ,

where D(f) is the minimal size of a partition of X x Y into

rectangles S x T (seX, TeY), on which f is constant. Those

rectangles are called monochromatric.

The determination of D or even the size of the largest monochro­

matric rectangle Mz(f) in {(x,y)EXxY:f(x,y)=z} leads for many

functions to new extremal problems, in particular for product

spaces X Y = {I, ••• , Cl}n

We consider here na
n

is defined by

the parity of the Hamming distance d, which

{
o,n
J ,n

even
odd

Theorem 1 For n E lN and i 0,1

(a)
a = Z
Cl > 4 and ~(n) = i

(b)
-n
a , a ~ 4 and 1JJ(n) * i .

Corollary Zn + 1
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Re1ated results: A rectangle AxB; A,B C {I, ... ,a}n; has

one-sided equiparity, if na(a,b) na(a,b') for every a E A- n n
and all b,b' E B.

For the maximal ~ardinality M(n,a) of such rectangles we have

Theorem 2 For n E lN M(n,a) =
0. 2
0. 3

a > 4

The set A c"{i,i, ... ,o.}n has

for a,a"E A with a * a' .

i-parity (i=O,I) if '.II(a,a') i

,Theorem 3 For n E lN

max{IAI :Ac{I,2, ... ,al n has o-paritY}'=t2:~:+I-Hn):
ln/2Ja. ,

a = ~

0. = 3

.0. ~ 4

The corresponding problem for I-parity sets is unso1ved.

More problems, conjectures and also results in distributive

computing and multi-user source coding are presented in a paper

with the same title, which has been submitted to the European J.'

of Combinatorics.

Duadic Codes

Duadic codes over GF(2) were introduced by Leon, Masley and

Pless in 1984. We.preseot results 00 these codes and generali­

sations to GF(q) which were obtained by M.R.M. 5mid (1986) in

his master's thesis (T.R. Eindhoven). Let n be odd, (n,q) = 1 .

If 5 land _ 52 are unions of cyclotomic cosets mod n, 5 I n 52 = 'I> ,

51 U 5
2

,= {1,2, ... ,n-l} and if the permutation ~a:x ~ ax in­

terchanges SI and S2 than (~a,51,S2) is called a splitting

modn. A duadic code C. (resp. C!) is the cyclic code with
1 . 1

generator g1.(X) .= n (x-o. J ) .(resp. (x-I) g.(x» .
jES. 1 .

1
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(Remark : For q = 2 this is not the definition given by Leon,

Masley and Pless but the definitions are equivalent.) The QR

codes, some special RS and GRM codes are duadic codes (all with

li-I) ·

Theorem: lf C is cyclic and C is self-dual, then C is

duadic with splitting given by lJ_ 1 .

m
1

m
k

n = PI , .•. 'P k A splitting mod n exists ~ q

mod Pi for all i. Fot:: all binary duadic codes of

the minimum distance was calculated using the "new

bound". Several Theorems on duadic codes are given, showing that

many of them have low minimum distance.

Berichterstatter: logo Althöfer (Bielefeld)
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