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J.H. van Lint (Eindhoven), and J. Massey (ziirich).

The main subjects were algebraic coding, cryptography, and '
multi-user information theory. The program included 38 lectures

and. a discussion about open problems and recent developments.
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Abstracts

T. Klove

Some convolutional self-ortogonal codes

An (I,J) difference triangle set (DTS) is a set
o= {a,,8,,...,8;}

where A, = {a..l0<j<J} for 1 <1i <1

. i ij oIz < <
are sets such that all the numbers aij—a.., with 1 <i <1I
and 0 < j' < j < J are distinct. Let

m(A) = max{aij}.

M(I,J) = min{m(a)lA is an (I,J) DTS} .

We show that
31 < M(1,2) <31 + 1 for all I,

M(1,2) = 3I1+1 for I = 2 or 3 (mod 4) .

78s + 6k <M(13s+k,3) < 86s + Sk where Cx is given by the follow-
ing table:

1 2 3 4 5 6 7 8 9 10 11 12 . 13
c, 13 23 27 32 40 46 54 58 68 72 73 90 91

R. Calderbank

Applications of coding theory to designs

Theorems of Gleason and of Mallows and Sloane characterize the
weight enumerator of maximal self—ortﬁogonal codes with all weights
divisible by 4. We apply these results to give a new necessary
condition for the existence of quasi-symmetric 2-(v,k,A) designs
where the intersection numbers s,t satisfy s = t (mod 2) (the
assumption that there are 2 intersection numbers can be weakened

to intersection numbers S~

We also apply duality in the Johnson scheme J(v,k) to give a very
short proof of a theorem of Frankl and Fiiredi. We consider a family
F of k-subsets of a v-set such that F is a I-design and

IxNyl > » > 0 for all x,y € F. We prove that v < (kz-k+h)/k

and that v = (kz-k+k)/k if and only if F 1is a symmetric 2-(v,k,})

o®

design.
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E.F. Assmus, jr. . ) 1)

Self-dual binary codes and desarguesian planes of even order

Consider the code generated by the Desarguesian projective

plane of order 2% extended by an overall parity check, C say.

C 1is self-orthogonal and we ask whether or not there is a self-
dua} code S > C with a generator matrix of the form (IkIM)

where Ik is the identity matrix and M 1is a kxk matrix that
is the incidence matrix of a biplane. Here k = % (228+28+2).

The answer for e = 1,2, and 3 is yes and there is a general group.
theoretic comstruction that yields M in these cases. This same
construction yields matrices ﬁ for e > 3 that have the property
that every row has 2% + 1 ones and every two rows have 0,2, or

4 ones in common, but for no e > 3 1is M the incidence matrix

of a biplane.

J.P.M. Schalkwijk

Two-way channels

Shannon's (1961) model of a two-way communication channel is dis-
cussed, in particular the inner and outer bounds to the capacity
region. As an example of a nontrivial dialogue we then consider
Blackwell's binary multiplying channel (BMC), as does Shannon in

his own two-way channel paper refered to above. We describe Schalk-
wijk's (1983) coding strategy for the BMC, which we subsequently »
show to be optimum for both fixed length strategies with vanishing

probability of error, and also for variable length strategies wit

zero probability of error. Thus we establish for the first time the
capacity region of a nontrivial (i.e. inner # outer bound) two-way
channel. For symmetric R
R

)= R2 operation the optimum rate is
1= R2 =. 63056 bit per transmission. The essential step in the
converse considers the uncertainty reduction for resolutions

on the initial threshold pair of the (61,62)—sehrch on the unit

square.
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A.M. 0Odiyzko

Balancing sets of vectors

This lecture was based on joint work with E. Bergmann, D. Copper—
smith, and P. Shor. Given a positive integer n , what is the

minimal value of k such that there exist k vectors V,,...,V, of
length n with entries +1 such that for any vector w of

length n with entries +1, there is at least one i, 1 < i <k,
with virw s 07?

A very simple construction due to Knuth shows that k < n is
possible, and a proof using commutative algebra is given that

k'=n is best possible. This construction and its extensions

have many applications to communication theory.

Z-x. Wan

On-the relationship between Berlekamp-Massey and Euclidean

ralgorithms for synthesizing binary sequences

Let

3;f.(36;al’f7i?aN;l) be a binary sequence Kith .
a, f;a! =,..= ano_! =0, ano = 1. Put ro(x) =i§0 aN-l—ixl’
r_](x) - ro(x)e(x) , where €(x) 1is an arbitrary polynomial
_of degree <£n,, and also put Wo(x) =1, W_l(x) = e€(x) . Define

rk(x) and wk(x) (k=1,2,...) inductively as follows:

“rk(x)”= pk(k?rkhl(x) + rk_z(x) , where deg rk(x) < deg rk_l(x)

and Wk(x) = pk(x)wk_l(x) + wk—Z(x)' Suppose k is the smallest
positive integer such that deg rk(x) + deg rk_l(x) < N, then
Wk(x) is a shortest LFSR which generates a . This is the so-called

Euclidian aigorithm for synthesizing binary sequences.

L i e Mg
For "k = 1,2,..., write pk(x) = izl X where Aki g Aki+1’
) o T Pwi
i=1,2,...,w,_, . Then put P, (X) = T x s

i=1

k-1(X) *+ W __,(x) . Order the set

{(k, Dl 1<k<n , 1<1<w;} lexicographically: (k,t) < (k',t') iff
k < k' or k = k', T < 1'. Then we have the sequence of poly-

nomials

o®
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lw1(=wl) ’le’wZZ’""w2w2(=w2)""’wkl’wkZ“"3 *

W =W)yee.
kwk wk

It is proved that by adding g 1's in front of Wi and repeating
each wkr a certain number of times, we obtain the sequence of

polynomials obtained by the Berlekamp-Massey algorithm.

Ingemar Ingemarsson

Further results on unknown functions .

An invertible function y = f(x), where x and y are integers
in the range [1,n], is chosen from a set F of M functions.
An outside observer knows F but not the actual choice f(x) .
He is however able to make a limited number, say i, of obser-
vations (x,y) satisfying the unknown function. He concludes
that the function is in a subset of F. If there are equally many
functions in this subset attaining each possible value y for
any argument x the observer is said to have maximal uncertainty
at level i + 1. The highest level with maximal uncertainty is
called the security level k of F. The largest security level,
k, satisfies M = TE%%TT . Functions with maximal security level

are closely related to Reed-Solomon-codes.

If the functions in F are chosen randomly the security level is

far from maximal.

The casecading of two unknown functioms, i.e. £[f(x)] 1is discussed.
I. Csiszar and P. Narayan . .

Arbitrarily varying channel$ with jamming constraints

Given an AVC with jamming constraint igll?(si) < an, let C_ and
Ca denote the average.error capacity for random and non-random
block codes, respectively. While a single-letter formula for Cr
is available, now the "elimination technique” does not work, by
which Ahlswede proved in the unconstrained case that Ca = Cr un-
less e, = 0. Here we determine Ca for deterministic channels
with binary input and jammer alphabets; it turns out that

0 <C_< Ct may also obtain. If Y = X + S mod 2 then

a
Ca = Cr = l-h(a) ; the problem of maximum error capacity for this

o®
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case is identical with the basic open problem about error-cor-
recting codes. The case Y = X.S represents a model for memories
with defects of unknown locations. A partial result is -‘obtained
for Gaussian AVC's, namely that Ca = Cr for a certain'rﬁpge of
the parameters; it remains unknown whether this always holds when
Ca*O.

F.M.J. Willems .

A new universal data compression méthod - - . R,

A new universal data compression algorithm is describg&. This
algorithm encodes L source symbols at a time. The code a}pﬁ;get is
binary. For the class of binary stationary sources, the expected
number of code symbols per source symboi is shown to be not.more
than (H(UO’UI""’UL-I) + [log(L+1)])/L . 1In the analysis of

our algorithm a result on repetition times turns out to be crucial.
The algorithm can be generalized to arﬁitrary source and arbitrary

code alphabet sizes. Its implementation is discussed.

R. Ahlswede and A. Kaspi

On binary state symmetric Markov channels

We study the structure of the transition matrlx of blnary 1nput
binary-output Markov channels that are symmetrlc in the sense ‘that
the transition probability is invariant under 51mu1taneous comple-

mentation of the input, the output and the state of the channel.

. oL L S .-

Using the structure of the transition matrix, we give bpgndg on
the capacity of the "trap door" channel and show that the zero
error capacity of this channel is 0.5. L T

A multi-terminal problem that arises from the "trap door! channel
is presented, and it 'is shown that one of the extreme.points in’
its achievable region is (O,log(O.S([+V35) , where the second term

results from the limit of the Fibonacci sequence.

o®
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K. Kobayashi

The capacity of the permuting relay chanmnel

Blackwell's trap door channel is a nice example of finite state
channels. Its deterministic versions, that is, permuting channels,
have been studied by Ahlswede and Kaspi (1984) in a multi-terminal
information-theoretic frame work. They determined the capacities
of permuting jammer channels and relay channels for some special
cases. In this talk, we completely solve the capacity problem for
permuting relay channels. More specifically, when « is the car-
dinality of alphabet, and B8 1is the number of available stock lo-
cations in channel, the capacity CR(u,B) of the permuting relay
channel is given by 1log A, where A denotes the maximum eigen-
value of a matrix Q derived from the state transition mechanism

associated with the channel.

T. Helleseth

Optimal linear codes

An [n,k,d] code C 1is a k-dimensional subspace of GF(2)"
such that the minimum Hamming distance between the codewords of
C equals d. Further, n(k,d) 1is defined as the smallest integer

n such that an [n,k,d] code exists.

For k < 7, n(k,d) has been determined_by H. van Tilborg.

For k =8 it is known that n(8,d) = [d/zi] for all d > 13
(o]

n M=

i

where [x] 1is the smallest integer <x. ‘

In a recent paper Dodunekov and Manev have determined or given the
best known bounds on n(8,d) for 3 < d < 130.

We improve these bounds as follows:

n(8,16) > 37 ,n(8,30) < 65, n(8,32) = 68, n(8,34) 75
n(8,36) < 78, n(8,40) > 84 ,n(8,42) < 90, n(8,44) € [92,93]
n(8,52) < 109, n(8,58) > 120, n(8,60) > 123 .

1A
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E.C. van der Meulen

Reliable transmission of two arbitrarily correlated information

sources over a discrete memoryless asymmetric multiple-access

channel

A discrete memoryless asymmetric multiple-access channel with

two encoders is a "two sender - one receiver" multiple-access
communication situation whereby messages of one source are en-
coded by both encoders, whereas the messages of another message
set are encoded by only one of them. In this contribution neces-
sary and sufficient conditions are given for the transmission of
two arbitrarily correlated sources over such a discrete memoryless
asymmetric multiple—access channel. The result shows that in this

situation the so-called separation principle holds. An example is

. given illustrating the theorem. Furthermore it is demonstrated that

the same conditions continue to hold when feedback is available to
one or both of the encoders. This research builds forth on the work
by Cover, El1 Gamal, and Salehi (1980), Dueck (1981), and Ahlswede

and Han (1983). In concreto, the theorem reads as follows:

a. A correlated source (UxV,p(u,v)) can be transmitted reliably

over a d.m. AMAC KZI if there exists a prob. distrib. P(xl,xz)
such that )

H(UIV) < I(X;YIX,)

H(U,V) < I(X,,X,;Y)

where P(xl,xz,y) = P(xl,xz) P(ylxl,xz).

b. Conversely, if a correlated source pair (UxV,p(u,v)) can be
transmitted reliably over a given d.m. AMAC
KZl =(X1XX2,P(y|xi,x2),V) , then the folloﬁing inequalities

must be true for some prob. distrib. P(xl,xz)d-

A

H(UIV) I(X,;Y1X,)
H(U,V) < I(X],XZ;Y).
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H. Niederreiter -

Applications of algebraic coding theory to cryptography

Deutsche
Forschungsgemeinschaft

Various ways of using algebraic coding ‘theory in the design
of crypto-systems are discussed. In particular, we show how
knapsack-type crypto-systems with a high information rate can

be obtained from suitable codes.

G.J. Simmons ) .

Information theory and the authentication of digital messages

A model for the authentication of digital messages as a zero-sum
two person game was used to derive a channel bound for the authen-
tication channel, in which the value of the game is the probability,
Py ‘that an opponent can deceive the receiver. The channel bound

can be expressed in the form

Log,Py > -(H(M)-H(S)-H(MIES)) : n

~where H(S) is the source entropy, H(E) is the entropy of the

strategy with which the transmitter and receiver choose an encoding
rule (source states to messages), H(M) is the induced entropy of

the messages and H(MIES) 1is the average uncertainty of the message
if the source state and encoding rule are known. If equality holds

in (1), the authentication system is said to be perfect in the sense
that all of the information in a message is used to either communi- -
cate the state of the source to the receiver, or to confound the .
opponent. It was shown that affine resolvable designs - and a new
class of affine "weakly" resolvable designs - give perfect authen-

tication systems with Py = % .




oF

G.F.M. Beenker

Binary transmission codes with higher

order spectral zeros at .

zero frequency

A method is presented for designing binary transmission qoqésAin
such a way that both the power spectral density function and its

low order derivations vanish at zero frequency. -

Codes are called of k-th order zero disparity if all code ‘words

X = (x),--0s%) , x; € {-1,1}, satisfy %1 ikx; = 0" for
k € {0,1,...,K} . The power spectral density function and 1ts
first 2k + 1| derivatives of a k-th

can easily be shown to vanish at zero

The maximum number of codewords of a
code of length n is determined as a
function in two variables, for all n

well as an upperbound for this-.-number

It is shown that the minimum distance

order zero dzspat1ty code

frequency.

k-th order zero dlsparlty
coefficient of a generating
€ N . k =1

is derived.

For a lower as

of a

Deutsche
Forschungsgemeinschaft

k-th order zero dis-

parity code is at least 2k + 2.

R. Ahlswede .and G. Dueck

Identification via channels

Our main discovery is that N = explexp{R-n}} (double exponentially

many') objects can be identified in blocklength =n with arbitrarily

small error probab111ty via a discrete memoryless channel (DMC), if

randomisation can be used for the encoding procedure. T

Moreover, we present a novel (second order). Coding Theorem, whlch

determines the second order identification capacity of the DMC as a

function of its transmission matrix. Surprisingly this identification

it equals Shannon's transmission

T -

capacity is a well-known quantity:

cagac1tz for. the DMC. )
The impact of this result for 1dent1f1catxon problems,an computers,

psychology or other areas remains to be explored i

o
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J. Kérner ' -

Graph entropy and its relevance to combinatorics

The graph G 1is covered by the union of the graphs, Gi’

i=1,2,...,t if all these graphs have the same vertex set and
every edge of G 1is contained in at least one of the Gi's.

In a graph covering problem one is given a graph G and a family
of graphs G . One then asks for the minimum number of graphs
G, ,i=1,2,...,t such that Gi is in G and the union of the

1

Gi's covers G . In order to get lower bounds on t one can use

a functional which is sub-additive with respect to the union of

graphs. Such a functional is graph entropy, introduced by K&rmer,
1973. Given a distribution P on the vertex set of G, the en-

tropy H(G,P) is

min I(XAY)
XEYEY (G)

P =P
b3

where I(XAY) is natural information and Y(G) 1is the family of
independent sets of G . Graph entropy and its natural generali-
zation, hypergraph entropy were used by Kdrner and Marton to im-
prove on the Fredman-Komlds bounds for the minimum number of per-
fect (b,k)-hash functions. The analysis of the method leads to an
interesting conjecture on perfect graphs that is proved here for

bipartite graphs.

K. Marton and J. Kdrner .

Random access communication and graph entropy

Conflict resolution in random access communication raises the
following probabilistic problem. Let Ul""’Uk be independent
random variables uniformly distributed in the unit interval [0,1] .
A k-partition A of [(0,1] (i.e. a partition into k atoms) se-
parates the péints Ul""’uk if each atom of A contains exactly

one of the U, . For k-partitions A ,...,An , let' PAI""’An(k)

1

Deutsche
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be the probability of the eveént that at least one of the Aj's
separates Ul""’Uk' What is the maximum of these probabilities,
if Al""’An vary? Hajek's conjecture (supported by the Van der
Waerden-Falikman-Egorychev theorem) was: '
k!

min[1-P ()] = (- =)
Alsee Al kK

n

We disprove this by showing min[l-PA A 3)1 < %% , and
n

IR

préve the bounds

nk! /k57!

1-P, A (k) > 2
n

TRERE
This is achieved by a new technique for lower bounding the number
of graphs of a given structure needed to cover all edges of a

given graph. This technique, developed by J. Kérmer, is based on

the subadditivity of graph entropy - a functional on graphs.

C. Heegard

On the spectrum of (d,k) codes

In this talk .we present a simple method to obtain the spectrum

of a (d,k) code. A (d,k) code describes a set of binary wave-

forms, w(t)€.{-1,+1}, that have a minimum (Tm. =d+1) and

in
maximum (Imax=k+l) length of time between transitions (note:

all transitions in w(t) occur at integer times). The waveform

w(t) is described by several sequences: the-level sequence

z w(Of) >z = m(l+) » 2y = w(2+),... ; the transition sequence
(zl-zo)/Z,x2 = (zz-zl)/Z,... (note: ij{-l,0,+1});
the state sequence

¥

_j o x: #0 . and the runlength sequence

s. = J

{s. +1 x° =0
j-1 3

TI’TZ"" (Qhere Ti=sj_l+l if x.#0) . As random processes, the

entropies are related by H(Z) = H(X) = H(S) = H(T)/E(T) .

Theorem: For i.i.d.vrunlepgths (i.e. the state sequence is a

Markov chain)

Forschungsgemeinschaft
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Sx(D) = b4 Ex.xODj = 1-g(D)g(D ) =3 where N -
jeme (1+g(D) (1+g(D™ ")
_ k+1 . . j _ _ _ 1 1
g(D) = j=§+1 P (T,=j)D) and g =P (5,=0) =P (x;%0) = 5ory T ooy | P

A simple derivation of this theorem is given (note:

; -1
§,(D) = 45_(D)/(1-D) (1-D

the spectrum of a popular (d,k) known as
fies d=1, k=3) .

Z. Zhang and Toby Berger

)). The method is then extended to find

MFM (a code that satis-

Multiple description source coding in the excess rate situation

The source data {X.},_
i7i=1

at rates r

to three decoders. Two of these decoders observe f and f

is encoded into two code fl and f2

1 and r, respectively. These two codes are sent

1 2

respectively whereas the third one observes both of them. They re-

cover the source messages with average distortions dl ,d2 , and d

0"

Let R be the region of all of the achievable quintuples

‘(r,,r,,d_ ,d.,d,) 1in the usual Shannon's sence. In the no excess
1 2’70 1 2

rate situation defined by r, + r, = R(do) , R has been determined.

In the excess rate situation defined by T,
problem seems extremly difficult. A special
1 ='R(dl)’ r, = R(dz) . We obtain

and an outer bound of R in this case. The

is that r

small. On basis of this fact, we conjecture

bound is tight in this case.

tr, > R(do) , the

case of this situation
both an inner bound

gap between them is very

that the following upper

Theorem: (rl,rz,do,dl,dz) is acievable if there exist r.v's

X, , X, , U, jointly distributed. with generic r.v. X such that the
1 2 s J

following conditions are satisfied.

1. 3. SI’SZ’SO s.t.
Ed(X;S,(X;,U)) < d; i =1,2,
Ed(X;So(Xl,XZ,U)) < do;

2. r, +r

3. r, > I(X;Xi,U) , 1. =1,2.

Deutsche
Forschungsgemeinschaft
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V.V. Zyablov, V.A. Zinoviev, S.A. Portnoy

Decoding of generalized concatenated codes and demodulation

Let A,B,C correspond inner, outer and generalized concatenated
(GC) code of order m. That means that we use m 1inner and. m
outer codes to obtain GC-code C . The i-th outer code

i
Nb'i can be selected independently of other outer codes only with
b,

B,.,1i=1,...,m, over the alphabet of size q; and with power

the same length - The inner code must be the system of nested

codes of length’ n, . Let Ai be i-th inner code. Then A, is par-

‘tion of q; codes Az(i) , 1 = 0,l,...,ql-l , which have the same

parameters. Every code Az(i) is partition of 1, codes A3(il,i2)
and so on... Let values of symbol of inner codes are selected from
space E with Hamming dH or Euclidian dE metric, where dE
means square of Euclidian distance. We requirée also that for every

n n
js,3j=1,...,m=1, there exists an automorphism Sj:E 25 E? such

that S.(A.(0,...,0,i. .)) = A.(0,...,0,0),
] j-l ] n: : :
qa(x,y) = d(SJ.(x),SJ.(y))_-

J Lo
= 0,1,...,q. 1, and for every x,y € E

ti-1 j-17
Let d_ . and d, . be the minimum distances of A, and B
. a,l b,1 . i

correspondingly; where da . can be dH or d
’

i
g - Then GC-code

i
" has parameters: =n = n_n;-,d > min {d d }, N=N ceee N .

ab?’ l<i<m g,i b,1 b,1 - "b,m

The decoding algorithm consists from m steps Wi s, L= 1l,...,m.
We want that i-th step ¥y don't depend of result of decoding wj,
j < i. For this we want to deal only with the i-th inner code
A.(0,...,0) and outer code B. . After the decoding VY. we'll

> (i) (i) 1) !
have some word b = (bl ,...,bnb ) of the code Bi.and there-
fore . ny codes Ai+‘(0,...,0,bgl)) , 0 = l”f"nb . Then using

the automorphism S we transform the code Ai+l(0,..;,0,bé}))

i+l
to code Ai+l(0,...;0,0) for every p . Exact description of the

step Wi one can find in paper (Dumer I.I., Zinoviev V.A.,

* Zyablov V.V,, Problems of Control and Information Theory, 1983).

Deutsche
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Such decoding algorithm overally realize the minimum distance of
GC-code and has complexity of decoding, which grows with the length
of code n = n_ny approximatl& as n¢ ,'where usually ¢ = 2.
Applications of this result are interested, when the inner codes

are phase or amplitude-phase modulation. In this case we have re-
gular method demodulation and decoding simultaniously (Portnoy S.L.,

Problem of Inform. Transm., 1985, 21, W3, 14-27).

©@L
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H.C.A. van Tilborg

Consider the vectorspace A of all binary n, x n, arrays.

A b xb burst in A is an =n, x n, array, all of whose

2 1

non zero elements are confined to a b1 x b2 subrectangle. A

. |
Burst identification codes : ) )
linear code (subspace) C 1is said tobea bl x bz—butst identifi-

cation code, if the pattern of any single b] x bz burst can be
identified. Together with burst location codes, one can correct

the burst. |
Let r _be the minimal redundancy of a linear, b, x b, bﬁr'st iden. ‘
tification code. Then it can be shown that r > 2blb2-2 . An ex- .

plicit construction (+ decoding algorithm) is given of a bl x b2-

|

burst identification code with redundancy r = 2b1b2.

G. Cohen

An application of combinatorial group theory to coding

We consider two problems in combinatorial group theory and give

applications to coding. Let (G,+) be a finite abelian group.

Problem 1. Determine s(G), defined as the smallest integer such

that ¥S,S < G, IS| > s(G) = S contains a subset with zero sum.

Olson has solved it for p-groups. This was used by Alon to prove

the following conjecture for m a power of two.

Conjecture (Ito). Every binary linear [4m,2m+1] code contains a
vector of weight 2m. ‘

Problem 2. Determine c¢(G,t) , defined as the smallest integer such

that if S 1is a geﬁerating subset of ' G with cardinality c(G,t) ,
every non zero element of G can be expressed as a sum of at most
t elements in S.

We consider the case G = (Z/22)F , which is related to coding, and

prove
Proposition c((Z/ZZ)i:) < %; , for t a power of two.
froposition <

Problem 3. Is the Proposition true for general t ?

Finally, we give an application to coding for reusing write-once

memories.

This work was done jointly with G. Zemor.

E)F' Deutsche
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M.H.M. Costa

Gaussian intérference channels

The Gaussxan 1nterference channel, introduced by Carleial in 1975,

models the commun1cat10n ‘between average power constralned senders

Xl, and ;XZ to the1r respectxve receivers Y] and Y2 over a

shared medxum w1th add1t1ve Gaussian noise. The channel xnputs and

outputs are felated by Y =X +b X, + Z and Y, = a X, + X, + Z

1 % 2 1 T2 | 2

where a and b‘ are non-negative interference parameters, and ZI

and 2, are unit variance normally distributed noise terms. The

cdpacity region has been obtained when interference is strong (i.e.,

““é >1""and b 5 i)', but is yet to be‘estaBlished when one of the

. M.R. Best

‘interference’ ‘parameters is in the open unit interval. We examine the
““simpler fodel of the Z~Gaussian interference channel, where one of
“the interference parameters is zero. A signaling scheme is proposed
that combines the kaown techniques of superposition coding and time-

sharing (or frequency-sharing). This scheme is optimal within the

- .restricted class of Gaussian signaling techniques..We motivate the

conjecture that this scheme yields the capacity region of the. 2Z-
Gaussian interference channel. If true, this conjecture leads to an
improved outer bound of the capacity region of the general Gaussian

interference channel (with arbitrary parameters). B .

“-<“A Markov source 'model for a convolutional coding scheme

et e

-71A convolutional. coding scheme with maximum likelihood decoding over

.ardiscrete. memoryless- channel can be modelled .-as a Markov source.

-4z Using this model, the statistical behaviour of the errors can be,

DF Deutsche
Forschungsgemeinschaft

" ‘and *Aarts.’

analysed  exactly. In effect, not only the bit and event error .proba-

bxllty, but also the burst and gap length distribution can be compu-

q_ted Moreover, for a (suboptlmum) Viterbi decoder with a finite de-

codxng delay the dependence of the error statistics on that delay

can be found. Th1s general1zes ear11er results of Schalkwijk, Post
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T.S. Han

Hypothesis testing with multiterminal data compression

The multiterminal hypothesis testing H:XY against H:XY is
considered where Xn(in) and Yn(§n) are separately encoded

at rates Rj,R, , respectively. The problem here is to deFermine
the minimum Bn of the second kind of error probability, under
the condition that the first kind of error ppobaﬁility a <€

for a prescribed 0 < e < 1. We are concerned with the asymptotic

: : . . . 1
behaviour of Bn , so define @(RI,RZ,E) = 111-1»: inf (- I log Bn) N .
which is called the power exponent. We established a good lower

bound QL(R],RZ) on this power exponent and revealed several in-
teresting properties. The OL(R],RZ) is tighter than that of Ahls-
wede and Csiszar, who first set up the multiterminal framework for
hypothesis testing. Main arguments are devoted to the case R, = +o
(full side information case). It is conjectured that . OL(RI’R2) is

tight at least in case of R, = +=.

Also, we give the complete solution to the case only with one bit

compression.

" E. von Collani

An entropic concept in Statistical Quality Control

Consider the following problem which arises in Statistical Quality
° Control: A lot of size N 1is to be inspected by means of a_single

sampling plan (n,c) with 0 < c <n <N, i.e. a random sample of

size n 1is taken and if the number of nonconforming items in the
-sample is less than or equal to the acceptance number ¢, the lot
is accepted otherwise rejected. The problem is.to determine an ap-

propriate sampling plan (n,c) given a linear cost model.

There are three sampling schemes to solve this problem and which
m}y be classified according to their assumptions about the proba-

bility distribution of the number of nonconforming items M in a lot:

1. Bayes-plans, assuming complete knowledge about the probability

distribution of M

2. Minimax-plans, assuming that there is no knowledge at all about

the probability distribution and

DF Deutsche
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3. a-Minimax-plans which assume that one point (for the break-even

quality) of the distribution function of M is known.

To be able to compare the different concepts and to find the (é-
levant informations about the probability distribution, an entfopic

sampling plan is defined applying the principle of Maximum Entropy.

K. Marton

Weak asymptotic isomorphy of correlated sources - oo <

Isomorphy problems for correlated sources were raised in ergodic
theory (Thouvenot 1975), but the interest in them is also motivated
by multi-terminal information theory. A DMSC (discrete memoryless
stationary correlated) source is an i.i.d. sequence of random pairs
with values in a finite set. Here we consider weak asymptotic iso-
morphy of DMSC sources. Two DMSC sources . {(Xi’zi))?é-w’ {(xiizi)}f=_m
are:asymptotically isomorphic in the weak sense 'if for- & > O -and
large enough n, there exists 'a joint distribution of the mn-length

outputs of the two sources, dist(Xn,Zn,X'n,Z’n) satisfying . .

%H(X“IX'“) <e, %H(x'“lx“) < e, %H(Z“IZ'.“) < e‘.%H(Z'“IZ,-‘.') < €.

We prove that some spectral properties‘of the distribution

3

dist(X],Zl) are invariant for weak asymptotic isomorphy, a@@~these

properties wholly determine the distribution in many cases.

C.P. Schnoor

An efficient identification and signature scheme

Deutsche
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A. Shamir proposed the following interactive authenticatidn scheme.
Let n be a composite number that is hard to factor.

Let Alice have public key kA mod n anq'private key Vfg_qod_q.

If Alice identifies herself to Bob she picks a random r(mod n),
sends t := rz mod n tQ'Bob aﬁd iets Bob cﬁoose to see eiiher VT
or NT?} mod n. Bob decides at random. If Alice and Bob used in-
dependent random numbers then Bob is safe against forgery and Alice

does not reveal any information on VkA mod n to Bob.

We extend this scheme so that the exchanged data can be used

o
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to convince a third party, e.g. a judge.
For this Alice and Bob generate pseudorandom number

R, ='R(V?k mod n, rand) ’RB = R(Vﬁi mod n ,rand) that can lateron

be controled by a trusted authority that knows VEA and V?;.

T. Ericson

l. Asymptotic properties of equal weight codes

2, Disjunctive codes and protocol sequences ‘

Asymptotic properties of equal weight codes (Thomas Ericson)

Let EW(n,w,c,T) denote the (possibly empty) family of binary
codes of length n, weight w, maximum correlation ¢, and size T.
Define A

T(n,w,c) = max{T:EW(n,w,c,T)*¢} .
We will discuss various asymptotic properties of this quantity
as n - o; especially the case when w = |[nv];c = [nKvJ for

some constants V,K .

Disjunctive codes and protocol sequences (Thomas Ericson, Victor

Zinoviev)
Kautz and Singleton introduced Superimposed codes in 1964 [1], these
same codes were later studied under the name of disjunctive code by
Dyachkov-Rykov [2] and others. Lately the connection with protocol
sequences has been observed [3]}. In this context we will present
some new results; in particular an existance bound based on the

Varshamov Gilbert bound.

[1] Kautz, W.H. and Singleton, R.C., "Nonrandom Binary Superimpose
g
Codesq 1IEEE Trans. on Inf. Th.

{2] Dyachkov, A.G. and Rykov, V.V., "Bounds on the Length of Dis-
juctive Codes", translated from Problemy Peredachi Informatsii,
Vol. 18, No. 3, pp. 7-13, July-September, 1982,

3] Nguyen Quaﬂg A, Gyorfi Laszlo, Massey, James'L., "Performances

of Protocol sets for Collision Channel without Feedback.

o
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T. Ericson, V. Zinoviev

Asymptotic properties of equal weight codes

An equal weight code is a binary code such that all codewords

have the same weight. Denote by T(n,w,c) the maximal possible
size of such a code, when the length is =1n, the common weight

is w, and the maximal correlation between codewords is «c. We
are interested in the asymptotic behaviour of T(n,|vn],|vxn]) aé
n » o, where Vv 2 % are held fixed. Exponential increase of T

is obtained if and only if x > v . The exponent is easily lower
bounded by the Gilbert bound. By combining a constructiﬁd by Kautz-
Singleton with 3 recent result by Tsfasman-Vladut-Zink we obtain
an-improvement of this bound in a certain range X, < X < iz,

1
provided v = p 1is a prime, s = 1,2,..., and p > 11.

The simpiest upper bound (for the size of an equal weight code)

is Johnson bound: T(n,w,c) < (c:l)/(cfl) . For certain values

of the parameters (n,w,c) this bound is satisfied with equality.
The corresponding code is equivalent to Steiner system S(n,w,c+1) .
There are a few infinite families of Steiner systems, including
cyclic ones. They provide optimal protocols for multi-user channels
without feedback both in the synchronious case (Steiner systems)

and the asynchronious case (cyclic Steiner system). There areée also
special constructions of the cyclic Steiner systems S(n,3,2),
which for n =1 (mod 6) give optimal solutions for self-orthogonal

convolutional codes.

W.B. Miller

On commutative groups of polynomial functions and their applications

in cryptography

During the last years the discrete exponentiation x - xk hﬁs_
been used as one-way function in the Diffie-Hellman key distri-
bution, in Shamir's three-pass algorithm and in the RSA-public
key cryptosystem. Until recently, the computation of discrete lo-
garithms, the inverse function of the discrete exponentiation,
was believed to be a very hard problem. But recentiy progress in

computing discrete logarithms has been made, especially in Galois

o
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fields of characteristic 2. In order to protect the above
mentioned schemes against attacks by these recent algorithms

one can replace the discrete exponentiation x = xk by more
sophisticated polynomial functions x = f(x) , which also commute
with respect to composition. It is shown that the so-caled
Dickson-polynomial functions x.= gk(l,x) and x = gk(—l,x)

can be used as cipher functions (cf. Miller, W.B. and R. N&bauer:
Cryptanalysis of the Dickson-scheme. To appear in Proc. Eurocrypt

85, Lecture Notes in Computer Science).

Another group pf polynomial functions on 2Z/(n) can be obtained

from polynomials of the form 1_]~xk-1 with 1 = ax+b € R [x],

a # 0. It can be proved that l-l-xk-l with k € 2IN+.1 1is a

2

polynomial over I iff a2 ,ab,b” € Z and b3-b € al . Further-

. : : 2 .
more, the function x - % . xk-ax with a # 0, a~ € Z 1is a

‘permutation of Z/(n) iff (k,p(n)) =1 and (az,n) =1,
At last, all permutations of Z/(n) of this form with only one
fixed point are described. (If n= PPy---P, » any permutation of

Z/(n) induced by polynomials xk has at least 3¥  fixed points

“P. Nyffeler

Source properties of sequences over local rings

The talk concernes the question: what can be saved, when general-

"izing periodic (or recurrence) sequences over finite fields to
sequences over local rings, especially over Z . or Galois rings
GR(pr,K) : Over finite fields, the shift regist%rs are canonical
forms of finite-state machines, as representatives of companion.
matrices. Over local rings, shift registers modulo a nilpotent
ideal play a similar role. The analysis of sequences can be.done
by an algorithm similar to the Berlekamp-Massey algorithm over

4 r and the synthesis of new sequences of higher complexity by
P
“root combinations" is possible.

Deutsche
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A. Tietdvidinen

Upper bounds for codes

Let A(n,d) be the maximum number of code words in a binary

code of length n and minimum distance at least d . We derive

two asymptotical upper bounds for the number A(2d+j,d) when

d » o and j 1is paritive and small, show that these bounds are

in a sense best possible, ‘and consider some open problems, gener-
alizations and modifications. We -also show how the second McEliece-
Rodemich-Rumsey-Welch bound has been generalized to the nombinary

case.

Ph. Piret

Bounds for codes over the unit circle

Let C be a code of length =n and rate R over

A(Q) = {exp(2mir/Q): r=0,1,...,Q-1}, 4and let d(C) 'be the
mimimum Euclidean distance of C . For lérge n, lower and
upper bounds are obtained in parametric form onbtﬁe achievable
pairs (R,68) , which § = dz(C)/n . For Q - o they are shown
to be expressible in terms of modified Bessel function of the
first kind. The upper bound is .compared with the Kabatyanskii-—
Levenshtein bound that holds for less restrictive alphabets.

For Q + =, it is stronger than the K-L bound for § < 0.93.

J.L. Massey

Sequenceswith perfect linear complexity profiles

The linear complexity, L(s™) , of a sequence st = (SO’SI""’sn—l)’
s: € F (an arbitrary field) is the smallest nonnegative integer
L such that there exist € ysCpseresCy in F ‘'satisfying

s. + ¢

j lsj-l +..0t

=0, L<j<n.

cLs;-1L

A binary (i.e., F=GF(2)) sequence s™ is said to have a perfect

linear complexity profile when

L(s™ = |2, 1cm<n.
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The following result was obtained with (and mainly by) the

author's doctoral student, M.-Z. Wang:

Theorem: The binary sequence s? has a perfect linear complexity

profile 1§ and only if sg = 1 and s,. + s,. , + s, | =0 for
1<i<[3].

R. Ahlswede

On code pairs with specified Hamming distances . .

For a function f:X x ¥ = Z with X,V,Z> finite C(f) 1is the
minimal number of bits two persons, one knowing x and the other
y , have to exchange in the worst case so that both can evaluate

f(x,y) . Yao proved

C(£) > log D(f),

where D(f) is the minimal size of a partition of X x Y into
rectangles S x T(ScX,TcY) , on which £ 1is constant. Those

rectangles are called monochromatric.

The determination of D or even the size of the largest monochro-
matric rectangle Mz(f) in {(x,y)€EXxY:f(x,y)=2z} 1leads for many
functions to new extremal problems, in particular for product

spaces X =Y = {l,...,a}n.

We consider here ﬂg, the parity of the Hamming distance d, which

is defined by

¢, 0 _n, _ n _n _ /O0,n even
13 (x",y™ = vy, vin) = {,’n PR .
: - _ a [a] .o
Theorem | For n € W, a = lEJ 3 and i = 0,1 .
4n-l a = 2

' a
(a)  M(m) = {an , 024 and y(n) =i

) &' <M. (% <3, a >4 and Y(n) # i.
< M (m >

4

Corollary C(Hﬁ) = D(Hn) = 2n + |

Deutsche
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Related results: A rectangle AxB; A,B < {I,...,u}n; has

one-sided equiparity, if Hz(a,b) = H:(a,b') for every a € A
and all b,b' € B.

For the maximal cardinality ﬁ(n,u) of such rectangles we have

. 2.4771 L a=2
Theorem 2 For n € W M(n,a) = ‘(2n+l)2n—1 , a =3 .
’ S » ' " , @ > 4

‘ The set A C“(l,2",...,cz}rl has i-parity (i=0,1), if -H(a,a') =

for a,a' € A with a % a'.

.Theorem 3 For n € N
2n-l , a =
max{lAl:Ac{1,2,...,a}" has O-parity} = 2n-1+]-w(n), a =3 .

JLas2]

» &

v
=~

The corresponding problem for l-parity sets is unsolved.

More problems, conjectures and also results in distributive

computing and multi-user source coding are presented in a paper

with the same title, which has been submitted to the European J.

of Combinatorics.

J.H. van Lint

‘ Duadic Codes

Duadic codes over GF(2) were introduced by Leon, Masley and
Pless in 1984, We present results on these codes and generali-
sations to GF(q) which were obtained by M.H.M. Smid (1986) in
his master's thesis (T.H. Eindhoven). Let n be odd, (n,q) = 1.
If S
S

} and 5, are unions of cyclotomic cosets modn, sln SZ=
Vs, = {1,2,...,n-1} and if the permutation u,ix =+ ax  in-
terchanges S1 and S2 than (ua,Sl,Sz) is called a splitting
modn . A duadic code Ci (resp. Ci) is the cyclic code with

generator gi(x) i= '23 (x-aJ).(resp. (x-1) gi(x)).
3834
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(Remark: For q=2 this is not the definition given by Leon,
Masley and Pless but the definitions are equivalent.) The QR

codes, some special RS and GRM codes are duadic codes (all with

v_y) -

Theorem: If C is cyclic and C 1is self-dual, then C is
H_

duadic with splitting given by \ -

m m
Theorem: Let n = p]l,...,pkk . A splitting modn exists e q
is a square mod P; for all i . For all binary duadic codes of

length <127 the minimum distance was calculated using the "new

bound". Several Theorems on duadic codes are given, showing that

many of them have low minimum distance.

Berichterstatter: Ingo Althéfer (Bielefeld)-
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