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T a.g u n g s b e r c h t 3/1987

Mathematische Theorien der Fluide

19.1. bis 23.1.1987

Die Tagung wurde von· den Professoren Wo]fgang Bürger (Karlsruhe) und

Ingo Müller (Berlin) abgehalten. 37 Teilnehmer trugen durc~ ihre Vorträge

und Diskussionsbeiträge zum Gelingen dieser· Tagung bei. Die 37 Vorträge

ordneten sich in 7 Sektionen:

a) Rheologie

b) Wellen

c) Viskoelastizität, Plastizität

d) Elastizität

e) Martensitische Transformationen

f) Thermodynamik

g) Thermodynamik und kinetische Gastheorie

Im Mittelpunkt des Interesses stand die mathematische Formulierung von

Zustandsgleichungen unterschiedlichster Materialien wie Plasmen, polarer

. Flüssigkeiten, Mehrphas~nmiBchungen, Polymernetzwerke, realer Gase, klas­

sischer und relativistischer entarteter Gase sowie viskoelastischer und
" 0

plastischer Körper. In mehreren Beiträgen wurd"en Zustandsgleichungen an

.' konkreten Randwertproblel1len überprüft. Dabei 'wurden besonders Wellen­

phänomene, die Stabilität von S~römungen und Eindeutigkeitsprobleme be­

handelt. Schwerpunkt einer anderen Gruppe von Vorträgen war die mikro­

skopische Begründung makroskopischer Gleichungen für Flüssigkeiten' und

Gase mit der Vorgabe, daß diese Gleichungen ein System qU8silinearer hy­

perbolischer Gleichungen darstellen sollten. Diese sind Gegenstand der

erweiterten Thermodynamik. Weitere Vorträge widmeten sich neueren . Ent-.

wicklungen der Theorie der Plastiziät und der Pha8enübergäng~ in

Memory-Legierungen.

Besonderen Anklang fand ein Abendvortrag von Professor W. Bürger über

die Mechanik und Thermodynamik von Spielzeugen mit vielen interessanten

Experimenten.
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Vortragsau8züge

After-dinner Talk:

w. BUERGER

Scientific toyS
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Scientific toys can be a seriolls challenge to the applied mathematician. The

mechanisms of very common 10ys seem to have not been properly u'nder­

stood. In the leeture I demonstrated a fairly large number of mechanical

and thermal toys (as well aa BOme freehand experiments) and explained

mathematical models for their operation. It is not obvious that the raw egg

wins the race against its hard-boiled opponent when botb are rolling on an

inclined plane. Does the "slinky" win the race against the chain when we

let both fall down freely (Phys. BI. 42, 1986, 407-408)? A working model of

a historie mysterious clock and several proposals for perpetuamobilia were

shown 10 intrigue the audience. We speculated about playing. ball in the

orbit and diseussed "the sailor' s dream in the calm" (to blow his own sail­

baat forwards). Thermal toys as presented in the Iecture are either heat

engines operating on a small temperature difference or thermoacoustic 08­

cillators exerting self-sustained vibrations: the candle seesaw, the putt-putt

boats, the "thermobile", the drinking duck, the Christmas turbine, the

einging chimney (Rijke tube). Various thermal proces'ses ~e realized in

their mechanisms, e.g. thermal convection, heat transfer and phase

transitions.

Section: Rheology

P.K. CURRIE

Statie Shear Layers in Nematic Liquid

In work done together with F.M. Leslie, an attempt has been made to pro­

vide an explanation of certain experimental observations concerning layers

of nematic liquid crystals that can sustain a ahear stress without deform­

ation. Until these observations were made, it was generally accepted that a

nematic liquid crystal could not sustain shesr "stress without flowing. We

have considered a somewhat less complex situation than in the experiments,

confining attention to a alatic nematic Iayer bounded by parallel plates. For

this simpler problem it proves possible 10 demonstrate a mechanism where­

by a slatie layer ~n sustain a shear stress, the effeet arising from arrays

of line disclinations (singuIarities in the orien.tation) anchored 10 the

bounding plates.
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Th. ALTS

BoundarY-Layer Theory of Curved Phase Interfaces

Real pha~e interfaces are thin boundary-layers aeross whieh a11 bulk fields

experience smooth though rapid changes. This ia modelled by a new bound­

ary-layer theory for curved phase boundaries in non-equilibrium. Compar­

ison .with the theory of singular surfaces sllows physical interpretation of

the surface fields in terms of mean values of bulk fields, but it also re­

quires ~atisfaction of dynamica1 consisteney conditions f~.r tangential mo­

mentum and surface stress. These yield new results for the curvature de­

pendence of surface tension, tor phase-change processes across the inter­

face· and for the dynamics of nucleation. A stability analysis p~ves the

impossibility of certain nuclei.

An outline of the theory for ice/water interfaces is given and some pre­

dictions on nuclei formation and on the phenornena of undercooling and

superheating are presented.

R. RYDZEWSKI

The Fjeld Bquations of a Liquid Containing Small Gas Bubbles

A suspension consisting of an incompressible, inviscid "liquid and of ideal

gas bubbles is considered" on a microscopic and on a continuum mechanical

level. From a miscroscopic formulation of mass conserva~ion of both the

liquid and the gas the eontinuum meehanical partial' tnass balance equations

are derived. The equation of motion of a single bubble is established by

use of potential theory of fluid mechanies; averaging it fo~ all bubbles in

the vicinity 'of a point of interest gfves the continuum mechanical balance

equationa for the mean momentum of the bubbles. Averaging the Bernoulli

equation for the liquid in the vieinity of a point of interest gives the

balance equation for the meen momentum of the liquid. In both of these

partial momentum balance equations there occur terms in the partial stress

tensor end in the partial momentum produc~ion respectively, which do not

satisf,.. . the prineiple of material frame indifference. Finally the propagation

of plane harmonie sound waves in the suspens!on ie considered 8S a speci­

fie solution of· the field equations. Phase velocity and attenuation as

fUDctioDa of frequency are calculated.
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A. MORRO

Drag Force and Conservation Laws in Fluid Dynamics

The possible acceleration dependence of the drag on a sphere, executing a

translatory motion in a fluid, is examined in detail. After revisiting the

standard derivations of this dependance, it ia pointed out that the reeult

might be connected with the scheme of incompressible fluids. That the

adoption of this scheme is crucial is made evident by showing that a strik­

ing contradietion would arise in compressible fluids. Next, a proeedure is

applied which, in a suit&ble linear approximation, leads 10 an explicit

expression for the drag in compressible fluids. The drag turns out to de­

pend both on the present value and on the history of the speed of the

sphere. Finally it ia pointed out that improvements are likely 10 occur, if

new conservations laws are considered which arise from a general formula­

tion of Noether ' 8 theorem.

Y.A. BEREZIN

Convection, Gyrotropic Turbulence and the Large Structures in Fluids

Large-scale conveetive motions in the presence of developed small-sC?ale

turbulence are studied. The turbulence is isotropie, homogeneous, gyro­

tropic i.e. < '!T • rot y T > ~ 0, YT ia the small-scale turbulent velocity field.

The turbulent characteristies are assumed to be given.

.',

Linear analysis of the governing equations consisting of the equations of

an incompressible fluid in the Boussinesq approximation with additional

gyrotropic term reveals the existence of neutral stability curves of two

different types. Analysis of the curves and corresponding solutions for the .1
horizontal layer heated from below are given.

F.M. LESLIE

Continuum Theory for Biaxial Nematics

The aim ia 10 give an aecount of continuum theory for biaxial nematic liquid

crystals outlining the particular equationa likely 10 describe flow effects

and equilibrium configurations in alatic magnetic fielda. My starting point

ia a derivation of balance laws based upon the conservation principles of

linear and angular momentum, essentially a generalisation of the equations
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proposed by Ericksen for uniaxial liquid crysta1s. There follows a dis­

cUBsion of constitutive equations needed to describe' flow alignment in the

bulk, where one again finds that the dynamic couple stress is zero but the

stress tensor is more complex than for a uniaxial nematie. The latter part

of the talk derives "equilibrium theory for biaxial nematics extending

Ericksen' s formulation for a uniaxial nematie basad on a principle of virtual

work and presents some preliminary calculations of Friedrieh' B tran~itions

tor biaxial nematics.

S. BESS

Non-Newtonian Viscosity end Normal Pressure Differences: Phenomena and"
Microscopic Bxplanations

The transport coeffieients charaeterizing the flow behaviour of a fluid are

introduced and specified tor a plane Couette· (simple shear) flow. The

pressure tensor is a 'sum of contributions involving integrals ovar the ve­

laelty distribution function, the p~ir-correlation funetion and, for molecular

fluids, an orientational distribution. As B consequence, the viscosity coef­

tieients are also given by a eorresponding sum. The kinetic theory calcula­

tion starts from kinetic equations for the various distribution tunetioDs

which are the Boltzmann equation, the Kirkwood-Smoluchowski equation and

a Fokker-Planck equation. Results obtained trom kinetic theory are com­

pared with non-equilibrium molecular dynamies simulations for gases, denBe

fluids of apherical particles and for polymerie liquids.

Ph. THOMPSON

Fast Adiabatic Waves with Phase Changes

Wavelike phase changes in a variaty of liquid-vapour systems are des­

cribed. Phenomena of interest include liquefaction shock waves, cavitation,

single-phase and multiphase rarefaction shocks, liquid-evaporation waves,

different torms of wave splitting, critica1 supersaturation and near-critical

discontinuities. Very recent results tor shock stability in iso-octa~e are

shown, in which an initially stable shockfront passes through the foll~wing

stages with increasing shock Mach number: Stable, uDstable, stable, un­

stable, over a range MB = 1.86 to 3.22. Some results for non-equilibrium,

near-critical states are shown.
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H. BUGGISCH

Zur Rheologie granularer Medien

Beispiele' für granulare Medien sind Sand, Schnee, pulverförmige Produkte

der Industrie sowie landwirtschaftliche Produkte. Die "Rheologie" solcher

Medien versucht, deren Fließverhalten mit mathematischen Gleichungen zu

beschreiben.

In diesem Beitrag wird die Bewegung des Granulats als "turbulente" Strö­

mung eines inhomogenen Kontinuums angesehen. Durch Ensemble-Mittelwert-

bildung der mikroskopischen Gleichungen der Kontinuums Mechanik werden •

Bilanzgleichungen für gemittelte Feldgrößen hergeleitet. Der Zusammenhang

dieser Gleichungen mit aus der Literatur bekannten auf der Basis von "ki­

netischen" Theorien gewonnenen Gleichungen wird diskutiert.

Eine neue Materialgleichung, welche bei einfacher' stationärer Scherung den

Zusammenhang zwischen Scherrate (Schergeschwindigkeit), Schubspannung

und Normalspannung beschreibt, wird vorgeschlagen. Theoretische Vorher­

sagen werden mit experimentellen Ergebnissen verglichen.

Section: Waves

F. VIDAL &. J. MAZA

Local and Average Velocity in a Critical Inhomogenoua Sampie

In the neighbourhood of a continuous' transition of a phase, when there ia

also an external field the system can develop substantial gradiente. In this

C8se, the measured velocity ia also an average of the lopal (theoretical)

velocity.

The same occura when the system presents some more intrinsic inhomogene­

ity, an example of which is a binary mixture. Under the constraint of weak

inhomogeneity we have presented the relation linking the local end average

velocity. The ultimate goal is 10 obt&in the local velocity (from which

substantial information can be obtained) from the rounded (measured)

velocity.
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K. BUTTER

The Motion of a Finite MaSB of Gravel Down a Rough Incline

Rock, snow or ice avalanches having 8 finite mass are trea~d 8S 8

granular material satisfying the postulates of a frictional Coulomb-like

continuum. Depth-8veraged equations of motion for the granular mass and

the ·averaged longitudinal velocity are derived; they hear a superficial

resemblance to the non-linear shallow water equations. Two sim~1arity

solutions are fouod, one having the shape of a parabolic c.&P, the other the

form of a M-wave. The first is fouod to be unstable against small perturba­

tions; a restricted stability analysis of the second shows it to be stahle.

Numerical 8Olutions of t1).e governing equations, which are based on a finite

difference approximation using McCormack' s upwind differences plus addi­

tional numerical diffusion, are presented and shown to approach the

M-wave similarity solution at large times. The numerical predictions are

compared with laboratory experiments involving the motions of gravel re­

leased from rest on a rough inclined plane. Agreement between theoretical

prediction and experiments is satisfactory. Possible improvements of. the

tbeory and extensions are discussed.

M. HAYES

Inhomogenous Plane Wave SolutioDS in Mechanics and Optics

Elliptically polarized time harmonic inhomogenous plane' waves occur in

many aress. ~or example. the classical Rayleigh 8urface wave ia a combi­

nation of two such waves. Gravity waves in ideal fluid flow, Love and

Staneley waves in solids, electromagnetic,TE and TM waves are a11 formed

by combinatioos of these waves. Using bivectors (or complex vectors) a

simple direct treatment of inhomogenous waves ia possible. In particumr,

the conditioDS for circularly polarized inhomogenous waves are obtained.

Applications are made to anisotropie linearly elastic solids, viscoelastic

solids and to electrically anisotropic crystals.

G. BOILLAT

On Shock Velocity Considered as Eigenvalue

While wave fronts are characteristic surfaces so that wave velocities

appear as eigenvalues of IJome matrix depending on the fields, shock waves
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generally behave in quite a different wa)".

However, it is possible to consider shock velocities as eigenvalues of a

mean value matrix which depends on the stete before and after the shock.

The gradient of this eigenvalue with respect to one of these states

generates the jump of the main field. Multiple eigenvalues which correspond

to the "exceptional" (but very common) case are also considered.

A.M. ANILE

Propagation and Stability of Shock Waves

A tormal justification is provided for Whitham t s characteristic rule and

geometrical shock dynamics starting from the equations of gasdynamics. The

justification i8 based on the theory of propagating singular surtaces and

on the analysis of the initial value problem tor discontinuouB solutions. The

concept of steep shock of order n is introduced tor this purpose. The re­

Bulting theory 18 compared with Whitham' sone and agrees with it in many

C8ses. In other instences there is a emaIl di8crepancy whose significance i8

:not completely clear.

AB a byproduct of the theory we obtain an exact stability result tor the

corrugation stability of a plane fronted shock.

8ection: Viscoel8sticity/Plasticity

F. MAINARDI

The Damping of Surface Waves in ViSCOUB Liquida

The behaviour of small amplitude waves on the plane surface of a Iayer of

a viscous liquid Is derived from the appropriate dispersion relation between

the real wave numher and the complex frequency. Bxplicit numerical results

are presented tor the dispersion properties in some illustrative cases.

A8ymptotic· expressions obtained analytically are used to check the nume­

rical results.

Limits 10 propagation are found for both short and long waves. The wave­

length range of propagation gradually decreases with decreasing the

depth of the layer, so that for any liquid, a critical depth i8 found below

which wave propagation cannot take place.

L.--- _

•
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H. LIPPMANN

On Plastic Strmo Localization

In a plastically pre-strained solid s certain type of instability may occur st

which the p1astified volume reduc8s 80 that ,p1astic deformation localizes to

a Bmaller region. while the remaining part of the body falls back into an

e1astic stat.e. The .onset of ~his localization proceS8 ia usually treated by

means of biturcation theory. In the present lecture an oider approach due

to ConsidEfre (1885) i8 re-established. and generalized in a wsy thaI. it da­

livers under certain conditions. a sufficient and necessary criterion. It is

Ulustrated at the (weIl known) examples of uniaxial necking o~ a metal rod,

and of deformation bands in thin metal strips. An actual non-classical

applicatton arisea when 8o-called dead metal zones are considered 8t the

process of metal extrusion from 8 block container with rectangular axial

section.

Section: Elasticity

T. ATANACKOVIC

In this presentation we studied stability of a thin ela8tic rod that· is

rotating with constant angular velocity about ita &Xis and is loaded with

concentrated force at its end.

Two types of imperfections are assumed 10 be present. The shape imperfec­

tions are characterized by an initial deformation while load imperfections

are characterized by a concentrated force perpendicular to the &xis of

rotation. Using singularity theory the stabillty of the rod ia determined for

increasing and decreasing angular velocity of rotation.

z. WESOLOWSKI

Directional Invariance of a Set of Elastic Layers

A plane sinusoidal wave propagatea perpendicular to a set of e1astie layers.

At the boundaries between the layers both the displacements and stresses

are continuous. The incident wave produces the reflected and transmitted

waves. The retlected wave depends essentiallyon the ordering of the

layers. It haB been proved that in contrast to this the transmitted wave ia

invariant under shuffling of the layers.
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Section: Martensitic Transformations

F. FALK

Motion of Domain Walls in Shape Memory Alloys

Based on a one-dimensional model for the martensitic phase ·transition in

shape memory alloys, domain walls in those systems are treated as trans­

verse shock waves aeross which the shear strain jumps. The motion o.f the

domain .walls is determined by the balance of momentum and energy. In or­

der to evaluate the balance equations coDstitutive relations fo11owing from

Landau theory of phase transitions are adopted. Furthermore, internal fric- e
tion is included. From the balance equations and the constitutive relations

only the value of the speed of the domain walls follow. The direction ~f

motion ia determined by the Second. Law of thermodynamica. In the case of

an austenite-martensite wall, due to the thermodynamic driving force, there

roay be a mechanical power output against externat surface forees •

J. SPREKELS

Existence, Unigueness and Optimal Control of Phase Transitions in Shape
Memory Alloys

The coupled nonlinear system

together with appropriate initial and boundary conditions, constitutes a re­

gularized version for the one dimensional model equations governing

martensitic phase transitions in shape memory a11oys. Assuming the free •

energy " for small I E I in the Landau-Devonshire form, we can prove the

unique existence of a weak solution. Continuous dependance on the date

(f.)') is shown, and for a related problem of optimal control we establish the

existence of optimal controls and necessary conditions of optimality. For the

unregularized system (p = k 2 =0), numerical calculations are presented in

form of a coloured computer graphics movie.
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Section: Thermodynamies

G. CAPRIZ

Continua with General Microstructure

The 'element of a continuum body B with microstructure is thought as a La­

grangean system; the coordinates are: the coordinates Z of the element and

a finite number of order parameters va. These latter are coordinates in a

local ehart of an element 'l of a differential manifold M (as in the. tapa­

logical theory of defects). In a process for B, z and 1! are funtioDs of time

and the choice of the va must be made in such a way that: Ci) the extra

kinetic energy due 10 the microstructure goes to zero as 1! gö6s to zero;

(ii) the power of mierostresses is linear in Il, grad 1!. Then the values of va

de~end on the' observer, in general, and so we must know the elleet of a

change of observer' on II : i.e. one must deline the action of the orthogonal

group on M. ~ : ~(q) and the infintesimal generator a. such that ~(q) = ~ +

a q + 0 (q), where q is the vector of rotation. These are the premisses tor

a study of the dynamics of continua with any type of microstructure,. in

particular of (compressible or incompressible) fluids with microstructure. A

typical result is an expression for the so-called Erickse~ stress, introduced.

in the study of liquid eryst8ls, but in taet present in g~neral in such

fluids.

M. SILHAVY

Admissibility Criteria for Shocks and Propagating Phase Boundaries

Weak solutions of· the equations of motion of an elastic, inviscid isothermal

fluid contain surfaces of discontinuity of specific volume whichcan be

interpreted either as shock waves or as propagating phase boundaries se­

parating the liquid and vapeur phases of the fluid. By approximating the

discontinuities of the fluid by smooth profiles of a non-elastic fluid in

which the preSBure depends on the gradients of specific volume and on a

number of internal parameters the author haB shown in s previou8 paper

that asch jump haa to satisfy certain inequality. This inequality can play

the role of an admissibility criterion for seleeting proper jumps from the

physically meaningful one8. In regions where the pressure is a decreasing,

convex funetion of specific volume the inequality leads to the results ae
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the admissibility criteria proposed earlier. However, in contrast to the

criteria proposed earlier, the present inequality sHows jumps which des­

cribe d·ynamic phase transitions with the specific volumes near the specific

volumes of the statically coexistent phases of the fluid.

Section: Thermodynamics end Kinetic· Theory

B.G.D. COREN

Thermodynamics and Dynamics on the Molecular Level for Simple Fluids

The five linear moment equations of Grad for a dUute gas are considered

first in the esse of longitudinal deviations from equilibrium. Written in

matrix form, the matrix has a structure with 811 off-diagonal elements, that

are non-zero, proportional to ik and the only two nonvanishing diagonal

elements, which correspond to the zz-component of the pr~ssure tensor and

the z-component of the heat fiux vector are non-zero. Symmetrizing this

matrix leads to 5 eigenmodes, where the eigenvalues can be compared with

those of a linear Navier-Stokes hydrodynamics as weIl as with the 5 lowest

moments of a 55-moment calculation. The eigenmodes appear 10 be reliable

to values of klo =0.2 (l =30 10 ), where 10 is the mean free path.

.'

Next, the 26 time correlation functions of the flu.ctuations of the same 5

longitudinal quantities are considered. The exact matrix, which gives the

time evaluation 01 these correlation functions, has the same form as that

for the dilute gas. In the approximation that the matrix does not depend on

frequency, but only on wave number, it has the same structure as that of

a dUule gas, when k ~ O. The matrix elements· and eigenmodes have bean

derived for a 12 - 6 Lennard-Jones fluid from computer simulations. The .1
question of the applicability of this matrix - determined from fluctuation -

to problems on the macroscopic level is not completely clear. The

appearance of k-dependent thermodynamic quantities, which reduce 10 the

usual ones when k ~ 0 is discussed.

logo MUELLER

Extended Thermodynamics of Relativistic Gases

Extended thermodynamics has the objective of determining the 14 fields of

NA, the particle flux vector, and TAB, the energy momentum tensor. The
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corresponding field equations are based upon the conservation laws of'

particle number and of eDergy momentum and upon the balance of fluxes.

Constitutive equatioDS are needed for the flux tensor and its produetion.

The constitutive functions are restricted bY the entropy principle, the

principle 01 relativity and the requirement of hyperbolicity. These

restricttve conditions succeed in determining a11 constitutive coeflicients, if

only the thermal equation of 81&18 is known. That equation can be either

measured or determined from equilibrium statistical thermodynamies~ This

latter procedure requires the knowledge of the distribution funetion· of

molecular momenta tor relativistic and possibly degenerate gases, the

Jüttner distribution • VariouB limiting casea are diseussed: the non-reJa-

• tivistic, non-degenerate case, the ultrarelativistic and strongl)" degenerate

case of Base particles, end the non-relativistic de,enerate C8se appropriate

tor Bosons and Fermions.

w. DREYER

Maximization of Entropy in Non-Equilibrium

The maximization of entropy in non-equilibrium leads to coDstitutive func­

tions tor degenerate gases. which satisty the entropy inequality identically.

Thi8 is an extension 10 non-equilibrium ot Boltzmann' 8 method t .by whieh

the phase densit)" f in equilibrium can be obtained by maximising the en­

trap". under the constraints of fixed mass density, momentum density end

interna! energy density.

In non-equilibrium further moments of f contribute to the stete of the

gas. It is proved tor degen~rate ideal gases that the exploitation of ttle

entropy inequality and the maximization of the entropy itself leads to the

same results as folIows: The well-known Lagrange multipliers of the kinetic

theory turn out to be identica1 10 the Lagrange multipliers of the phenome­

nological theory that were utilized in the evaluation of the entropy in­

equality.

w. WEIBS

Signal Velocities end Extended Thermodynamies

Extended thermodynamicB in its simplest form· ia a field theriry which· con­

siders as basic variables maSB density, momentum density, energy density,
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pressure deviator and heat flux.

This goes b~yond ordinary thermodynamics in which the state of agas

(say) is only described by the five fields mass density, momentum density,

energy density.

The decision what the appropriate number of variables is has to be deter­

mined by "experiments. Intuitively one feels the more a procesa ia far from

equilibrium the more variables are needed. In the talk I have dealt with

the influence of higher moments up to the number 85 in order to study the

propagation of initial disturbaneee in mass denaity and pressure. In par­

ticular the velocity of the fastest disturbance has been calculated. It has

come out that this velocity inereases with increasing number of variables

(moments). Comparison with experiments leads 10 the conclusion that even

more than 85 moments have to be taken into account in order 10 fit the

experimental data.

G.M. KREMER

Kinetic Theory of Polyatomic Gases

A kinetic theory for a polyatomic gas consisting of perfectly rough, e1astic

and rigid spherical .moleeules ia developed. A macroscopic state ia charac­

terized by 29 scaIar fields of density, velocity, pressure tensor, tempera­

ture, translational heat flux, rotational heat fiux, spin and spin ßux.

For the esse of a rarefied gas, the propagation of plane harmonic wave's of

small amplitude is investigated. For the case of a denae gas, the consti­

tutive equations for the pressure tensor, heat flux and spin flux obtained

through an iteration method, can be identified with those of. a polar fluid •

T. RUGGERI

Hyperbolicity and Wave Propagation in Extended Thermodynamics

Some mathematical problems related to hyperbolicity and wave propagation

in Extended Thermodynamies are presented.

In particular we investigate the Cauchy problem tor Bose- end Fermi-gases.

The critical time concerning the blowup ot the solution is estimated tor a

classical fluid.

Finally some perspectives on superfluidity are presented.

•

•
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c. CBRCIGNANI

Wave Propagation According to a Kinetic Model for an Ultrarelativistic Gas

A model of the Boltzmann equation for a relativistic gas, proposed by An­

derson and Witting in 1974, is applied 10 the study of smaIl perturbations

of equilibrium. In particul:ar, it is shown that in the ultrare~tivistic limit

and for (l+l)-dimensional· problems the model is reducible to Bolving a

system of ihree uncoupled equations, one of which ia well-known. A general

method for solving these equations is recalled with a few new details and
. .

applied to the solution of two boundary value problems. The first of these

describes thepropagation of an impulsive change in a half space and is

shown 10 give an explicit example of the reeult that no signal can propa­

gate with a speed larger than the light speed in relativistic kinetic theory.

The second problem deals with steady oscillatioDs in a half space and illus­

trates the meaning of certain recent results concerning the dispersion rela­

tion for ünear waves in a relativistic gas. The more complex equation des­

cribing the propagation of sound waves is also briefly discussed.

K. WILMANSKI

Extended Thermodynamies of a Maxwell-TyPe Fluid

I consider thermodynamic restrietions for a rate-type model öl a non-new­

tonian fluid. Both the deviatoric part of the stress and the heat flux are

Bupposed 10 satisfy the rate equations. It is shown that the normal stress

coefficients a. and CX2 satisfy the conditions cx. < 0, CX2 = - al. The last

condition contradicts the experimental data and can be corrected by re­

placing the rate equations by appropriate balance equations as implied bye exf.ended thermodynamies.

K. SUCHY

Pres8ure Tensor in StronglY Magnetized Media

In a magnetized fluid the heat conductivity belangs to· a special type of

2nd-rank tensors, called "cyclo1onics" by Gibbs, whose eigenvector and

three projectors :em (6) (m = 0, • 1) depend merely on the direction b of

the magnetie field. The viscosity ia a double-symmetric 4th-ra~k cyclotonic.

The 6 projections. of the 4th-rank cyclotonics end their eigentensors are

constructed from the three ~m. Four of them are double.;....tracefree, the
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other 2 are decomposed inta traeefree traeefree, traeefree isotropie iso­

tropie tracefree, and isotropie isotropie parts. For traeefree stress tensors

(as in dilute gases and plasmas) the viscosity tensor has 6 projeetors con­

structed from the three em• With these 5 projeetors the stress evolution

equation ia solved and the viseosity tensor ia repreaented exactly in 5

terms of inereasing order in the strength of the magnetic field.

M. GRMELA

Why are Bracket Formulations Usefu1= Multilevel Deseription of Fluids

Can dynamical equations arising in nonequilibrium atatistical meehanicB be

formulated in Buch a way that they become manifestly compatible with equi­

librium thermodynamics? The formulation that uses generalized Poison

braekets answers this question affirmatively. The unifying bracket formu­

lation is found for example for the Boltzmann an'd the Enskog kinetic equa­

tions and for the Navier-Stokes-Fourier hydrodynamie equations. As an ex­

ample we consider the following problem: Let a family of candidates for the

time evolution equations be given. We want to narrow down the family by

retaining only the time evolution equations that are compatible with equi­

librium thermodynamies (i.e. Bolutions of these equations reflect the ex­

perience expressed in equilibrium thermodynamics). Using the bracket for­

mulation as the mathematical expression of the compatablity with equilibrium

thermodynamics, we retain only those that admit the bracket formulation.

This strategy ia applied 10 the BBGKY hierarchy, the Maxwell-Grad hier­

archy and the governing equations of generalized hydrodynamics. The re­

sults obtained in the context of generalized hydrodynamics are applied to

the study of equilibrium and rheological properties of polymerie liquid

eryst.als.

Berichterstatter: W. Dreyer
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