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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g 5 b e r ich t 4/1987

Quantenstochastik

25.1 . bis 31 .1 .1987

The conference was organised by L. Accardi (~ome) and W. v. Waldenfels

. (Heidelberg).

The main purpose of the meetin~ was to exchange informations about the

'most recent results in Quantum Probability and to continue the already

~xisting successful cooperation between the participants (44

mathematicians and physicist from several countries). The lecture

programme consisted of topics such as theory of quantum white noise,

quantum Poisson processes, quantum stochastic integration, quantume stopping times and further noncommutative (purely algebraic and also

analytic) analogs of probabilistic nations and results like entropy,

Radon-Nikodym theorem and Dirichlet problem. There ware also same

physical talks which established the connection between theoretical

considerations and applications.

The 32 talks have been followed by lively discussions and a fruitful

exchange of ideas has taken place, which to a great extent is due to. the

stimulating atmosphere of the Oberwolfach Institute.
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L. Accardi:

A mathematical theory or quantum noise

In classical physics we have learn~ that a detenninistic system can develop a chaotic behaviour and

that there is a whole hierarchy of "chaotic properties". The same question could be asked for a

quantum system and since for quantum systems the description must be statistical, the problem is to

separate in some sense the detenninistic features of a quantum system from the statistical ones. In

classical probability theory the mathematical realization of this programme can be achieved to a •.

great extent via the Doob-Meyer theorem which states that, under rather general conditions a

stochastic process Xt is described by a stochastic differential equation of the fonn

(1)

where b is a random function (which may depend on X t ) and N is a tlnoise" Le. a martingale

(which itself can depend on X t ). It is also known that all the sufficiently regular noises

(martingales) can be buHt up out of the fundamental ones: the brownian motion and the Poisson

process.

In the quantum domain a decomposition similar to (1) can be achieved provided the system has the

following "chaotic" properties :

1. The algebra of observables A is endowed with a (non trivial) past filtration ( A t] ): ­

s ~ t ~ A s] ~ At] .

2. The past filtration is expected in the sense that there exists a nonn 1 conditional expectation E t]

with range A I)" .1
Under these conditions an equation similar to (1) is deduced.

D. Applebaum:

Quantum stQchastic parallel transport

In A. Connes' differential geometty, a Itnon-commutative manifold" is an appriately smooth

* -algebra A00 of a C * -algebra A and a tlnon-commutative vector bundle" is a finitely generated,

projective A00 - module:= .If .::: is Hemitian and possesses a faithful trace, we may define a

complex inner product on':::' and complete to obtain a Hilbert space ho.
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We consider the situation where (A, G, a) is a C * -dynamical system, G heing a Lie group with

Lie algebra L whieh acts as derivations on A00 that are annihilated by the trace.

If H is some noise space, such as symmetrie Fock space over L2 (1R+, (Cd) , a quantum parallel

transp0I1; process on ho ® H, if it exists, is a family of adapted unitary operators U = ( U (t), t ~ 0 )

safisfying the quantum stochastic differential equation

dU = U (VXj dMj + 1/2 d < VXj Mj, VXk Mk > } ..

U (0) = I

where V is a compatible connection on ~ , { xl' .... , Xn } is an onhonormal basis fo! Land

{MI,... , Mn} are semimartingales in hO(8).H.

Examples studied so far are the classical case where * is the Ito fonn of the usual equation for

stochastic parallel transport equation on smooth sections of a" vector .bundle and the case of

Heisenberg modules over the non-commutative torus algebra where d = 1 and Mj G= 1,2) are

linear comhinations of annihilation and creation processes. This example yields the three canonieal

fonns of quantum diffusion process of Hudson & Parthasarathy when V is chosen to minimize the

Yang Mills action of Connes and Rieffel.

A. Barchielli:

Input aDd output chanDels in quantum systems and quaDtum stocbastic differential

eguatioDs

A well known application of quantum stochasttc calculus is in the theory of dilations of quantum

dynamical semigroups. In physical tenns, the quantum Brownian motion, which is the main object

in quantum stochastic calculus, plays the role of quantum noise and represents a very idealised

hath. However,- one can interprete the quantum Brownian motion also as an idealised description of

a physical field (the electromagnetic field, for instance), which carries information in and out some

system. This change of point ~f view is very imponant: now one" can use quantum stochastic

differential equations for modelling systems such as atoms stimulated by laser fields and which

emit light. In the talk I discussed how the field after interaction with the .nsystem" can be described

by means of quantum stochastic differential equations and how infonnation on the system can be

extracted from this ltouter fieId".
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C. Cecchini:

Noncommutatiye Radon- N;kodym theorems

First, in the framework of a theory of noncommutative LP - spaces for states on von Neumann

algebras developed by the autbor, a Radon-Nikodym theorem connecting those spaces related to

different states on the same von Neumann algebra is given. In the second part a result obtained with

D. Petz, giving an explicit Radon-Nlkodym fonnula for o>-conditional expectations is given, when

a majorization condition is satisfied between the states. It implies extending canonically a nonna!

faithful state with respect to a given m-conditional expectation. Fioally, this result is generalised

with 00 restrictions. •

w. Cegla:
Lattice structure in Minkowski spaces

In Minkowski space we deduce the orthogonality relation from a causal structure. Theo we

construct the fannily ofdouble orthoclosed sets which fonn a complete orthomodular lattice.

This lattice is atomistic, with trivial center and does not satisfy the eovering law, therefore cannot

be represented as the lattice of projections of a von Neumann algebra.

M. Fannes:
An applicatiou or pe Fjnettj"s theorem

Astate on an infinite product of measure spaces on an infinite tensor produet of C* - algebras is

called symmetric whenever it is invariant under local permutations. De Finetn' s theorem and, its

various extensions identify the extreme symmetrie states with the symmetric product states. This

theorem is useful to compute the equilibrium states of the discrete mean-field models with •

permutation invariant Hamiltonians. More general models showed at least allow a non-eonstant

extemal field q in the Hamilitonian. Therefore the notion of q-symmetric state is introduced for

classicallattice" systems and an extension of De Finetti' s theorem is obtained under the condition

that q is unifonnly bounded and it is conjectured that the result remains true if q has less than

logarithmic growth.
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w. Ford:

Tbc quantum ItaoKcYio eguatjQo - tbc independent oscjllato[ model

The quantum Langevin equation for a Bmwnian particle in a potential V (x) has the form:

m x+ I~ dt' ~ (t - t) x(t') + v"(x) =F (t)

where the random operator-force F(t) has (symmetrie) correlation:

.!. < F (t) F (t') + F (t') F (t) > =
2 1 •

(00 {_ • + uoo
Jo doo Re IJ. ( 00 + 10 ) b CI) coth - .eos 00 ( t - t ')

n . . 2k1t

and commutatoI'

[ F (t), F (t')] =.l.. J dm Re { 11 (0) + i 0+) } ~ (J) sin Co (t - t' ).
in 0

Here

ii (z) = Jo dt eizt IJ. (t), Imz>O,

is the Fourier ttansform of the memory funetion. This is clearly analytic in Im z > O. In addition, as

a consequence of the second law of thennodynamics, its boundary value on the real axis must have

positive real part,

Thus i1 (z) is a positive funetion, whieh among other imponant properties ~eans that it cao. be

represented in the form:

"." . i
IJ. (z) = - lCZ +-

1t
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All these properties ean be derived from the independent ·oscihltor (10) model, in which the

Brownian particle is surrounded by a number of masses, to each of which it is coupled by aspring,

as shown in the figure. The Hamiltonian for the SO model is

I show how in a few trivial steps one can derive the quantum Langevin equation with

Re { ji ( 0> + io+) } = 1t
2
~ m. O>~ [ S (0) - 00. ) + S ( 00 + 00. ) ]
~ J J J J

j

Clearly, by an appropriate choice of the distribution of the masses mj and the frequencies COj this

can represent the most general positive distribution. Thus this very simple 10 modelhas remarkable

generality!

A. Frigerio:
Quantum Pojssou processes pud applications

Aecording to conventional wisdom, the reduced time evolution of a system S coupled to a reservoir

R displays a Markovian irreyersible behaviour when the characteristic relaxation time t R of

correlation in R is much shorter than the characteristic time 'tS for appreciable effects on S of its

interaction with R.Two physical situations in which the eondition 'tS » t R is satisfied are those of

weak coupling and of low density. In the weak coupling limit the system S appears to be driven by

a (non-Fock) quantum Brownian motion, and in the low density limit it appears to be driven by a

"quantum Poisson process" of some kind. The quantum Poisson process over a von Neumann •

algebra M with a cyclic and separating vector ~ is defined by Nt (x; ~) = W (1 [O,t] @~) -1 At (x)

W (1 [O,t] @ l;) where W (~) is a Weyl operator and At (x) is the gau~e process (x is an element of

M). Quantum stochastic differential equations of the fonn dU (t) = d Nt (x; ~) U (t) are considered,

where Nt (a @ b; l; ) =a @ Nt (b; ~) , a E A (initial algebra), b E M. They.are shown to have a

unitary solution if and only if x = u - a, u being a unitary element of A @ M. Such unitary operators

U (t) may be used to oonstruct dilations of quantum dynamical semigroups on A whose generator L

has the fOIm < ~, L (a) ~' > = < <I> @ l;, [ u* (a (8) 1) u - a @ 1 ] <1>' @ ~ >.
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G. C. Hegerfeldt:
Npocommlltntiye Bonloes pr probnbilistjc options ond results

Random variables can be considered as multiplieation operators, and mixed moments

E ~ 1 --- ~ nErn (~ I --- ~ n) ean be written as a scalar produet <" ~I ----~n , > in L2 (d P),

where ,(co) == 1. This ean be generalized by replacing { ~i} by operators AI ,---,~ in a Hilbert

spaee H, with a common dense invariant domain ofdefinition, and 4> by some unit veetor <I> E H

so that m (AI ----- ~): == < <1>, AI -----~ <I> > . In quantum field theory these

moments eorrespond to n-point functions. Slightly more general, let M be a set and M the free

algebra generated by M, let *be an involutive map of M onto itself and extend it to an involution *
on M. Wecan consider representations 1t of M to possibly unbounded operators in a Hilben space

H with a cyclic vector '0 and domain D = 1t (M) '0 .The notion of random variable is now

generalized by 1t (a) , a E M, or a E M (1), the linear subsp~ee of M spanned by M, and

expectation is replaeed by < 4>0' •>, m E M • is astate if m (a* a) ~ 0, a. E M, and m (1) = 1.

Now one ean define eumulants in elose, but not identieal, aIl:alogy to the classieal ease. One ean

defme the analogy of addition of independent random variables, analogs of infinitely divisible

random variables.With the noncommutative notions one can prove analogs ofresults in probability

theory, in partieular: noneommutative analogs of Marcinkiewiez theorem, of Cramer's theorem, of

the centrallimit theorem, and of two factorization theorems of Khinchin.There are applieations of

the results to eoherent states in quantum mechanies, to thennal eoherent states (by G. G. Emch and

the speaker)~ and 10 quantum field theory.

A. S. Holevo:

CpnditionaJly positive definite (unctjons aod coOtiouous meosuremeot processes

in quantum probabiljty

The notions of positive definite and conditionally positive definite functions with values in the

space of bounded linear maps of a C*-algebra are introduced. The Sehoenberg type theorem,

relating the notions , is given. The representation theorems f~r positive definite and conditionally

positive definite functions are established, implying a noneommutative generalization of the

Levy-Khinchin formula.

The applications to the problem of continuous quantum measurements are diseussed. It is shown

that this problem is intrinsieally related to classieal topies of probability theory such as infmite

divisibility and functionallimit theorems.
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R. L. Hudson:

Quantum diffusion and cobomology or a1eebras

Quantum stochastic calculus as developed by the lecturer and K.R. Parthasarathy is reviewed. It is

a noncommutative theory of stochastic integration in which operator -valued adapted processes are

integrated against three basic integrators, the gauge, creation and annihilation processes A, A and

A+. The quantum Ito product fomula is a m~ltiplication table for the differential of the basic

processes. Classical Brownian motion, Poisson processes and even Fermionic fields are all

encompaned in the single theory based on Boson Fock space.

The theory is used to construct quantum diffusion. These are quantum stochastic processes based

on a * -algebra ;;t which are govemed by systems of stochastic differential equations of fonn

dx = Ä. (x) d A + (X+ (x) d A + Cl (x) d A+ + t (x) dt, x (0) = Xo E J'l.

Here Ä., Q +, Q, 't are linear maps from jf to itself called structure maps. The Ito product fomula

gives rise to certain identities to be satisfied by the structure map which are analysed from the

viewpoint of the Hochschild algebra cohomology theory for ;;t. Examples include the

noncommutative torus, where cohomological obstruction to the construction of quantum diffusions

are found, and examples involving quantum Poisson processes.

B. Kümmerer:
NODcommutatjye PoissoD proc;esses aud CQDtjDUQUS Markoy dilations

We adapt our standard notation from the theory of (stationary) Markov dilations for completely .

positive operators on W·-algebras as they are contained, e.g. in the Proceedings on Quantum

Probability I, TI, Springer Lecture Notes in Mathematics 1055 and 1136. This definitions fonn a

natural frame for a theory of non-commutative stationary Markov processes. In particular, a

Markov dilation is a stationary Markov process for a given semigroup of transition operators.

Given a dynamical system (0[, $, 1) for discrete time, then (OI ,$, e (T-Id) t) is a continuous

dynamical system Observing that

00 n
e (T-Id)t = ~ e -t t T n

~ iiT
n=O

we can use the classical Poisson process for proving the following result:

Theorem.!f (0.., $, T) has a discrete Markov dilation then (01., <p, e (T- Id) t) has a continuous

Markov dilation.

•

                                   
                                                                                                       ©



•

- 9 -

This continuous dilation has a natural interpretation in terms of non-eornmutative eompound

Poisson processes. Using earlier results on generalized Bemoulli shifts this construction provides

us with the fmt new examples for white noise beyond the white noises eomposed from classical

Brownian motion and Poisson processes and the non-commutative quasifree shifts on the CCR and

CAR algebras.

Applying an approximation theory we proved to the following result.

Theorem. For a given eontinuous dynamical system (a., q>, Tl) the following eonditions are

equivalenl

(a) (01. ,q> , Tl ) has a dilation

(b) For each single 10 the discrete dynamical system (Ot, q>, Tl) has a dilation.
. 0

(c) There exist eontinuous dynamical systems (01., q> , Tj ) jE] which have a dilation and

a ·C~ - Id) l
real numbers numbers (aj) jE] s.t. Tl = pointwise weak* lim je J for all t > O.

H Ol is finite dimensional then the same holds for Markov dilations.

In partieular, the above result reduees theexistence problem for eontinuous dilations to the

existence problems for discrete dilations which is easier to handle with.

J. T. Lewis:
Tbe laree deyjation prjncjple and models or an jnteractjn2 Boson Eas

We investigare condensation in some models of an interaeting Boson gas. The motivation is an old

conjecture of F. London:

Momentum-space condensation is enhanced by a spatial repulsion among partieles.

• The models we consider are diagonal in the occupation numbers; such models were studied around

1960 by Huang, Yang and Luttinger and by Thouless. These models can be investigated by the

methods of elassical probability; this enables us to obtain rigorous results on the existence of the

pressure and henee on condensation. This is achieved by the use of Varadhan' s Theorem. We

prove that the distributions of various random variables associated with these mcxlels in the free-gas

grand canonical ensemble satisfy the large deviation principle. This is joint work with M. van den

Berg and T. V. Pule.
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G. Lindblad:

Dynamical entrooy for quantum systems

I discuss the difficulties of providing a non-commutative generalization of the Kolmogorov-Sinai

entropy to any * - automorphism of a W*-algebra with an invariant normal state. A defmition is

given which differs from earlier ones by Conoes and St.smner and by Emch. This approach is based

on operational ideas oamely the time-ordered correlation kerneIs. It takes proper accouot of the

difference between space-time translations for oon-commutative systems. The commutative KS

entropy is nevertheless included as a special case. Several derived properties of this entropy remain

conjectured. •

M. Lindsay:

Quantum stochastic calcylus with integral kerneis

Two illustrations of the kernel calculus were given. The first is the existence and uniqueness

problem for a class of quantum stochastic differential equations. There are solved by a recursive

procedure which gives the solution in an explicit fonn. The second is a characterisation of strongly

continuous evolutions which are hoth adapted to the filtration of a non-unit variance ("finite

temperature") quantum Brownian motion aod are covariant uoder the group of shifts of the

quantum Brownian motion - also called Markovian cocycles. There are determined by a tripIe of

generators via a "kernel differential equation". When the evolution is unitary-valued this leads to a

quantum- stochastic Stone's theorem: any such evolution is the solution of a quantum-stochastic

Schrödinger equation

dU =U [iHdt + LdA* - L*dA - 1/2 (aL*L + bLL*) dt]

where a and b are fixed parameters detennined by the varianceltemperature of the Brownian motion _'

and H is self-adjoint. The presence of the last term is due to the Ito fonn of the equatioo.

Conversely the solutions of such equations provide unitary Markovian cocycles.
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A. Luczak:
Nuclear instruments in yon NeumanD a1eebras

Let ( A, A ) be a measurable space and let W be a a-finite von Neumann algebra. A (dual)

instunnent E* on ( A, A ) aeting in W is a a-additive measure on (A, A) with values in the space of

linear positive nonnal mappings of W into itself enjoying the condition E*A (1) = 1 . By the

observable ofE* we mean the semi-spectral measure e defined by e (E) = E*E (1).

Nuclear instruments are those of the fonn

e· E* E (x) = I P (x, E, A) e (dA) , Ee A, xe w.

Weakly repeatable instruments are defmed by

E*E ( E*F (1) ) = E*E n F (1), E,F E A, and

repeatable by E*E E*F = E*E n F·

It turns out that for nuclear instruments weak repeatability and repeatability coineide. If E* is a

(weakly) repeatable nuclear instrument, than there exists a eentral projection p in the algebra oe.. =
{ e (E) : E E A } such thal. the mapping

ep (x) = P E*A (x) (x e W)

is a nonnal conditional expeetation from W onto OL.. Moreover to each instrument E* there

corresponds in a canonical way, a numher instrument E* ofthe fann E*E (x) = IE Q (X,A) e (dÄ)

which has the same observable as E*.

H. Maassen:
A qyantum stochastic calculys usjne jntegral kerneIs

A motivation and a construction is given for an explicit quantum stoehastic calculus based on

several types of noise. Starting from heuristically postulated Ito roles (such as dB? = dt for

Brownian motion or dN? =eiNt + A dt for the compensated Poisson process Nt =Pt - At) a

Hilben algebra is constructed in which these Ito mIes are actually valid. This is done starting from

the Ansatz .

N (f) = f
r l

00

f (co) dNCI) : = L
n:::O

f f ( {t.} ) dN
t

••• dNr •
J 1 "n
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The Hilbert space in question is the Fock space L2 (rI ), where r I: = {O) cl: 0) finite }

and I c R is an intervaL The algebraic structure in the case Nl =B
l
is given by (f * g) (a) =

= La C (J Ir f (a u a) g (a u a) da. The notions of stochastic integration, stochastic

differentiation aod the forward derivative are now defined in terms of the kemels f. The

fundamental theorem of stochastic calculus is n::gained and the Ito mIes are recovered.

This circle of ideas is repeated for the Bose noise of annihilation and creation operators A- and A+,

and a stochastic calculus of the same type is obtained with the Ito mIes dA-dA+ = c+ dt' and

dA+ dA- = c_ dt. Linear quantum stochastic equations can be explicitly solved by recursion. This

leads to the construction of cocycles for quantum Markov processes. •

K. R. Parthasarathy:
Local time and fine stIllcture jn Fock space catenlus

Define Fourier transfonn F in L.2 (R) by (Ft) (x) =(2 x) ·1f2 Je -ixy f (y) dy and extend it to S (IR)'

the space of tempered distributions by (FI\) (<<p) =A (F<I» for all «P E S (R). Note that

Pp p-l =q, Pq p.1 = -po The derivative 1\" of 1\ satisfies 1\' ( <I> ) = - 1\ (<1>"), ( p 1\') ( <I> ) =i F

/\ (q cl».
Let H be a Hilbert space, X a selfadjoint operator, <I> E S (lR). Then < ~, 4> (X) ,,> =

< ~ ,P p-l <I> (X) 11 > = (2 1t) -1f2 I (p-l <1» ( y ) < ;, e -iyX 11 > dy. Taking this as a clue we

define for any A E S (IR)' the fonn

< ~, /\ (X) 11 > =F-l 1\ ( (21tyl/2 < ~,e -ix X Tl> )

for a11 pairs ( ;,Tl ) such that (2 x) -ln. < ;, e -ix X Tl> E S (JR) as a function of x.

Theorem 1. Let H =r (h) be the boson Fock space over h, fEh, X = P (f) =i ( a (f) - a+(f) ). e
Then for any two coherent vectors 'V (u), 'I' (v) the following holds:

< 'I' (u), /\ ( P (f) ) 'I' (v) > = A ('1>1) =F A (<P2) where

«PI (x) =(2 x) -112 11 f li-I exp ( < u,v > - 1/211 f 11-2 ( x + i [ < u, f> - < f, v > ] )2 )

~2 (x) =(2 x) -1/2 exp ( < ut V > - 1/2 II f 112 x2 + ( < U, f> - < f t v » x).

Theorem 2. In Theorem 1 replace f by f l where t -+ fl is a continuous map from R int~ h such that

11 f t 1)2 is differentiable in 1. Let Ut V E h be such that < u, fl > - < fl' v > is differentiable. Then
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1 d 2 ()=2' dt 11 f1 11 < 'V (u), A" P ( f1) 'V (V) > +

< 'V (u), A' (p ( f1) ) 'V (V) > ~ i ( < f , V > - < u, f > ).
dt 1 1

Remark 1.

• 2.

3.

Theorem 2 contains the weil known Tannaka fonnula

d Iw (t) I= [ sgn w (t) ] dw (t) + S ( w (t) ) dt

Theorem 2 implies that for the Ornsteio Uhlenbeck process x (t)

d I x I =sgn x (t) d x (t) + S ( x (t) ) dt.

Theorem 2 can be interpreted in the generalised sense as

dA ( P (ft) ) = i { dA+-(ft) A" ( P (ft) ) - A' ( P (fl» dA (ft) } +

.!. ~ 11 f 11 2 A" ( P (f »)
2 dt 1 1

D. Petz:
CQnditional expectatjons in quantum probability

After a short reyiew of the work of Moy, Umegaki aod Takesaki we treat propert~es of the

qrconditional expectation frorn a von Neurnano algebra M ioto its subalgebra Mo ( tP is a fixed

faithful normal state on M).

tP is considered as the adjoint of the embedding Mo --+ M ·when M and Mo are endowed with an

appropriate inner product. As an application of the ep-conditional expectation, we say that Mo is

suffieient with respect to a family a of states on M if the eonditional expectation EtJ;>: M --+ Mo

does not depend on ep , that is EtP = EO) for any tP, 0) E 8. We eharaeterise sufficient su~~gebras in

tenns of Radon-Nikodym eocyeles and transition probabilities.

J. Quaegebeure:
Quadratic variation and Ito 's table jn quantum stochastic calculys

Let (T, F) be a measurable space and Fo a subset of F whieh is closed for finite uni?ßs and

intersections. Let xl'x2: Fo --+ ot be finitely additive measures with values in some oon­

commutative topologieal algebra oe .We say that Xl and x2 have a quadratic variation' if
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I xl' X2) (I) : =tim LXI (Ik) X2 (Ik) exists in 01.. for all I E F0 ' where the limit is taken over the
I Ik I k

net of all fmite Fo--"partitions Ik ofI. We show that the notion of quadratic variation provides

the fonnluation for Ito' s formula in a general quantum stochastic integration theory, namely

dx1 dx2 = d DXI' x2) .

Next we study the quadratic variation of certain measures taking values in algebras obtained by

some representations of the CCR C*-algebra C(H) over a hilben space H. In the case of quasi-free

representations 7t we construct for a measure x on (T, F0) with values in B (H) and on fEH, the

field measure BxJ and the gauge measure Axon (T, Fo) taking values in the operators affiliated

with 1t (c (H) ). We prove that UBx. f, Bx g It I Bx ftAxO I Axt Bx go and lAx' A x 0exist for
1 2 12 12 12

the topology of strong convergence on an appropriate domain, provided IxI' x2 I exists in the

strong operator topology and xl and x2 are non-atomic. We characterise the Fock representation in

tenns of the quadratic variation of the field and gauge measures. Finally we prove the existence and

give the explicit fonn of the quadratic variation of the field measures in a non-quasi-free infinitely

divisible representation of C (H) . Part of this work was done jointIy with L. Accardi.

u. Quasthoff:

Noncowmutatiye Bernoulli ßows

The construction of (discrete) Bemoulli shifts using infinite tensor products of finite dimensional

matrix algebras is generalized to the continuous case. The underlying von Neumann algebra is

constructed with a countable equivalence relation using the procedure of Feldmann and Moore. The

Connes-SWJnner entropy of such a flow equals the Kolmogorov-Sinai entropy of the corresponding

commutative flow. Conditions for conjugacy of non-conunutative flows are discussed.

J.-L. Sauvageot:

A Dirichlet problem for C*.aJeebras

On a C*-algebra A (with unit) consider two given data:

- a quantum Markov semigroup ( ~t ) t ~ 0 ; Donn continuous, whose generator 6. is local

. a bilateral ideal I.

By constructing a suitable dilation of the semigroup, we get a quantum process where the time

evolution of the suppon process of I ( in A** ) is a commuting family of projections t and thus

provides a spectral measure which represents the "fIrSt exit time from 1."

•
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By stopping the evolution of the process, thanks to this stopping time, we get a completely positive

map 1\ from NI into A·* such that:

1. for all a ~ "All A (0.) / (A/I)** = a.
2. for all a E All A (a) / 1** is an hannonic element

By assuming the semigroup is a FeUer semigroup, plus a standard smoothness condition on the

boundary NI' we show that the previous solution of stochastic Dirichlet problem is also a solution

of the topological Dirichlet problem.

M. Schürmann:
Quantum independent iucrement processes and coutinuous tensor products

Convolution evolutions of states on involutive bialgebras on the one hand give rise to quantum

stochastic processes of independent increments. On the other hand they determine a continuous

tensor product with some additional structure consisting in the existence of a shift and of a unit

vector which plays the mle of the vacuum vector in Fock space.

The special ease of the involutive bialgebra K < d > (which we eall the quantum anologue of the

coeffieient algebra of the unitary group) was treated. If the convolution evolution is replaced by a

convolution semi-group of states the associated process with independent stationary increments is

represented by a unitary evolution on cd <&> H (where H is a Hilbert space) satisfying a eocycle

identity. The theory yields the result that in special cases (d= 1; Weyl operators; Wigner-Weißkopf

atom) the solution of a quantum stochastic diffemtial equation in the sense of Hudson &

Panhasarathy is detennined by its generator which is a conditionally positive linear functional on

K < d >. It is a CODjecture that this statement holels in the general case.

G. Sewell:e Eol[l!PY· l!b~il[yabililY a od tbil noua1jzild ~ilS:Qod law l!f Ibil[ml!dyoamjs:~

Since entropy is a funcrion of the microstate of an observable quantum system, the question arises

as to whether thennodynamics extends to processes, demanded by General Relativity, in which the

system exchanges matter with unobservable space-time regions, Le. Black Holes. A widely

.accepted view, proposed by Be~ensteinon phenomenological grounds," is that Black Holes have

entropies proport_jonal to their surface areas, and that, consequently, processes in which they

participate satisfy a Generalized Second Law (GSL) of .thennodynamics, of the form
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A (S + a A );?; 0 (.), where S is the total entropy of observable systems, A is the Black Hole area

and a is a universal constant. I argue that the hypothesis of a Black Hole entropy is untenable,

since observable microstructure is essential to the entropy concept, but that, nevertheless, the GSL

(.) is valid. My derivation of this result is based on a treatment of the open system, L fonned by

the matter and fields in the observable region. This treatment rises only on simple basic demands of

Quantum Statistical Thermodynamics and Relativistic Mechanies, and the area tenn in the resultant

GSL represents mechanical work done on L.

K. B. Sinha:
Slopping limes in quantum slocbastic caJcuJus

The definition of classical stop time as a fR-valued random variable such that the event 1: ~ t is

adapted to the filtration ~] for every t > 0 is taken over to define a stop time S in the (boson) fock

space as a spectral measure on IR+ such that S [ 0, t] E 'ß (9ft]) for every t > O. For such a

stop-time, first a stop-time integral of the type ~ W (f s] ) S (ds) 'V ( g s]) ~ (s) is defined where

~ (s) is a future adapted process satisfying some integrability assumption. With the help of this two

Hilben subspaces 9fs] aod 9f[s ' the "past" and "future" spaces are defined as follows.!Jls] =

c.!. sp { I: S (ds) 'V (f s] ) I f, 0 ~ a ~ b ~ oo} and 1I[s = range of US where US =

r; S (ds) r (9s) with (9s f) (t) = 0 ift< s and = f (t - s) if t ~ s. Then there exists an

isomorphism from 9ls] <8> 9l[s onto 91 in a canonical way and US W (f) Us-1 , the shifted Wey!

process is again a Weyl process on 9l[s' These two results constitute the quantum version of the

strong Markov property of the Brownian motion. b

One can also defme the "past" and "future" algebras Ols] = { Ia S(ds) W (f s] ) I f }" and

01. [s = { .f;s (ds) W (f[s) I f } H. Then one has a surprising result (which is also very non-

classical) that OZ s] = 'ß (9-1) if the stop time S has every neighbourhood of 00 in its support.

R. F. Streater:
Non-linear slQchastic processes

We want a simple class of models of an autonomous system which moves under stochastic

dynamies to an equilibrium state Pß ' where J3 is determined by Pß (H) = Po (H) where Po is any

initial state (of finite energy). His the Hamiltonian of the system.

•

•
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Consider a dilute gas; two particles may mteract and scatter befon: meeting any oth~rs. Let!fl, ~th

dim 91< 00, be the Hilben space of one panicle. The scattering gives an automophism of tß (91):

A --+ SAS·, A E I}j (9l), S =scattering matrix. More randomization is achieved if the Hamilt()ni'41

of 2 particles is random, giving a doubly stochastic map A --+ TA = Eco ( S (co) A S ~co)* ). Sil)~e

S commutes with the free 2 body Hamiltonian h =H QS) 1 + 1 QS) H, T and T* map the spectral

projections of h to themselves: h =~ EP (E), TP (E) =P (E), T* P (E) =P (E) : T* =adjoint as a

superoperator on the Hilbert-Schmidt operators. But T*o p does not converge to equi~i~~um,".as·

any funetion of h is a fIXed point - we must add the Stoßzahlansatz: after scauering, p.articles, reeQter
... .. . ·'1

the population as independent particles: this means we project onto the first Hilbert spac'e· of the 2

partiele space 91 QS) 9-l To take into ae~ount statistics, we use. r (91) instead .of ~ fg)_.1l:~~e

Boltzmann map is 't =Q T, T =bistochastie on r (91), Q =quasi-free pro~ee~on.Let T,~ .e!~<?dic

relative to H, i. e. T T* has only functions of H = 1: Cl\: ak· ak as fixed points. Theorem tOp -+

Gibbs state as n --+ 00 if COj are relatively rational.

G. Süßmann:
Quantum {rietion

The open system considered is a quantum partiele under the influenee of some frietion force, its

motion not necessarily being bound: it may be in a scattering state as weIl. A pure state is assumed:

Wt = I 'V't > < 'Vt I·This irreversible process is different from absorption,where the enei'gy'is un ­

changed (the elastical ehannel of the optieal model), whereas the probability decays'. By friction~on

the other hand, the probability 'stays unehanged (= 100 %), whereas the energy decays.' In the

absorption case a good solution is given by complex potentials U = V - iW, leading to

non-hemlitean Hamilton operators; in the frietion ease I have proposed a non-linear' potential,

leading to astate dependent but somehow hennitean operator. More specifieally, the Hamiltonian is

bilinear and local, similar to that for the Hartree-Foek approximation for~ the' atomicor nucleare shells.

Y. Suhov:

Classieal and quantum degenerate bydrodynamjcs

The hydrodynamic limit was introdueed in the paper of eh. Morrey (1955) for the purpose to

derive rigorously 'Hydrodynamie Equations (Euler equation) for the Hamilto'nian 'equations of

motion. However, Morrey used some assumptions on the solution of the equations'of motion"
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which are very hard for cheeking in any case of interacting particles. The last years, some model

examples were investigated from such a point of view, in particular harmonie oscillators, or, more

generally, linear systems (both classical and quantum), and hard rads on the line R1. The talk

contained a review of related results.

K. Urbanik:

Jojnt djstributions and cQmmutabiljty or obseryables

ABoreI probability measure p':': on the k-dimensional euclidean space Rk is said to be the joint •

probability distribution of 01. l: ( Al' A2,...., Ak) at the state r if for every system a I' '~,...,~
k

ofreal numbers the projection ofp~ onto the realline defined by (xl' x2,...,xk) --+.1: aj Xj
J =1

coincides with the one-dimensional distribution

k

~ a.A.LJ J J
j=l

Pr

LerS (ct) be the set of states r for which p~ exists. It is well-known that S (a) contains all states

if and only if oe. consists of commutig operators. A syste~ Ol.. = (AI' A2, ,Ak) is said to fulftl

the probabilistic commutation condition ifthere exists a system ~ = (BI' B2, , Bk) of commuting
Ol $

observables such that p T =P r for all T E S (Ol) .

Theorem. If (JL. consists of ~ne-sidedbounded observables with purely point spectrum, then OL

fulfils the probabili~tic commutation condition. Using Weyl transfonn we ean prove that the pair of

canonical observables does not fulfil the probabilistic commutation condition.

A. Verbeure:

Detailed balance and crHjcBt slowin2 down

We derive rigorous results about the phenomenon of critical slowing down. For classical la~ce

systems a stochastic. dynamics is constructed satisfying essentially a locality propeny and the

detailed balance property with respect to astate. An upper bound for the energy gap of the

evolution is derived in tenns of the fluctuation of an observable, choosen in the right way. Ifone
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chooses for the state an equilibrium state of a system chowing a phase transition, the above

mentioned upper bound yields the phenomenon. For quantum systems, analogous results are

derived for the free Bose gas and for th~ Dicke-Maser model; for the fust model the energy gap

tends to zero like ( T- Tc)2, for the second modellike (T- Tc)1.

All this is based on joint work with various people: M. Fannes, R. Alicki, T. Quaegebeur, D.

Gooleris and P. Vets.

W. v. Waldenfels:
• Tbe relations or the Qoncpmmutatiye coefflcjent aleehra pr the groug U(d)

t~t H be an infinitedimensional Hilbertspace. Write each element of the unitary group U ( cd ® H)

in the form u = (uik) iJt = l,...,d' U ik E B (H). Define the functions Fik : U (cd ® H) -+ B (H)

by Fik(u) = uik and eall ~ the algebra generated by Fik and Fik* with respect to pointwise

multiplieation. Then ~ is isomorphie to the eomplex algebra with 1 generated by xik' xik• i,k =

1,...d with relations (xx*)pq = Bpq and (x·x) pq = Öpq • Here x is the matrix (xik)i,k=l,..,d and x* =

(xki *) i,k = 1,..,d . The algebra ~ is the noncommutative analoge of the commutative coefficient

algebra and is used as astate space forquanturn stochastic processes.

J. Wilde:
Stochastic jnteeration

We eonsider fennion stochastic integration for the Clifford process, and for the ereation and

annihilation processes in eertain non-Fock quasi-free-states and give elementary proofs offennion

analogues of Ito~ s theorem (that every Brownian functional is a constant plus a stochastic integral).

Thus we obtain very simple proofs of the martingale representation theQrems for these theories.

Berichterstatter: M. Remenyi
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