MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsbericht 4/1987

‘ Quantenstochastik

25.1. bis 31.1.1987

The conference was organised by L. Accardi (Rome) and W. v. Waldenfels
_(Heidelberg). '

The main purpose of the meetihg was to exchange informations about the
‘most recent results in Quantum Probability and to continue the already
existing successful cooperation between the participants (44
mathematicians and physicist from several countries). The lecture
programme consisted of topics such as theory of quantum whité noise,
quantum Poisson processes, quantum stochastic integration, quantum
. stopping times and further noncommutative (purely algebraic and also
analytic) analogs of probabilistic notions and results like entropy,
Radon-Nikodym theorem and Dirichlet problem. There were also some
physical talks which established the connection between theoretical

considerations and applications.

The 32 talks have been followed by lively discussions and a fruitful
exchange of ideas has taken place, which to a great extent is due to the

stimulating atmosphere of the Oberwolfach Institute.
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Vortragsaus ziige

L. Accardi:
A _mathematical theory of quantum noise

In classical physics we have learnt that a deterministic system can develop a chaotic behaviour and
that there is a whole hierarchy of "chaotic properties". The same question could be asked for a
quantum system and since for quantum systems the description must be statistical, the problem is to
separate in some sense the deterministic features of a quantum system from the statistical ones. In
classical probability theory the mathematical realization of this programme can be achieved to a
great extent via the Doob-Meyer theorem which states that, under rather general conditions a
stochastic process X is described by a stochastic differential equation of the form

dX =bdt+dN ¢9)]

where b is a random function (which may depend on X, ) and N is a "noise" i.e. a martingale
(which itself can depend on X, ). It is also known that all the sufficiently regular noises
(martingales) can be built up out of the fundamental ones: the brownian motion and the Poisson
process.

In the quantum domain a decomposition similar to (1) can be achieved provided the system has the
following "chaotic" properties :

1. The algebra of observables A is endowed with a (non trivial ) past filtration ( A g):
sSt—)As] € Ay

2. The past filtration is expected in the sense that there exists a norm 1 conditional expectation E ;
with range A e
Under these conditions an equation similar to (1) is deduced.

D. Applebaum:
Quantum stochastic parallel transport

In A. Connes’ differential geometry, a "non-commutative manifold” is an appriately smooth
* - algebra A*° of a C * - algebra A and a "non-commutative vector bundle” is a finitely generated,
projective A* - module = .If Z is Hemitian and possesses a faithful trace, we may define a
complex inner producton = and complete to obtain a Hilbert space hy,.
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We consider the situation where (A, G, a ) is a C * - dynamical system, G being a Lie group with
Lie algebra L which acts as derivations on A* that are annihilated by the trace.

If H is some noise space, such as symmetric Fock space over L2 ®R*, ©9), a quantum parallet

transport process on hy @ H, if it exists, is a family of adapted unitary operators U= (U (1),t20)
safisfying the quantum stochastic differential equation

dU=U(Vx; dMi +122d <Vx; M}, Vx, M > }
*
U@)=I

where V is a compatible connection on = , { Xy, ..., X, } is an orthonormal basis for L and
{M!l,.,M"} are semimartingales in hy ® H.

Examples studied so far are the classical case where * is the Ito form of the usual equation for
stochastic parallel transport equation on smooth sections of a vector bundle and the case of
Heisenberg modules over the non-commutative torus algebra where d = 1 and Mj (G=1,2) are
linear combinations of annihilation and creation processes. This example yields the three canonical
forms of ﬁuantum diffusion process of Hudson & Parthasarathy when V is chosen to minimize the
Yang Mills action of Connes and Rieffel.

A. Barchielli:

A well known application of quantum stochastic calculus is in the theory of dilations of quantum
dynamical semigroups. In physical terms, the quantum Brownian motion, which is the main object
in quantum stochastic calculus, plays the role of quantum noise and represents a very idealised
bath. However, one can interprete the quantum Brownian motion also as an idealised description of
a physical field (the elecu'omagneuc field, for instance), which carries information in and out some
system. This change of point of view is very 1mportant now one can use quantum stochastic
differential equations for modelling systems such as atoms stimulated by laser fields and which
emit light. In the talk I discussed how the field after interaction with the "system" can be described
by means of quantum stochastic differential equations and how information on the system can be
extracted from this "outer field" A
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C. Cecchini:

N tative Radon- Nikodvm it

First, in the framework of a theory of noncommutative LP - spaces for states on von Neumann
algebras developed by the author, a Radon-Nikodym theorem connecting those spaces related to
different states on the same von Neumann algebra is given. In the second part a result obtained with
D. Petz, giving an explicit Radon-Nikodym formula for o-conditional expectations is given, when
a majorization condition is satisfied between the states. It implies extending canonically a normal
faithful state with respect to a given w-conditional expectation. Finally, this result is generalised
with no restrictions.

W. Cegla:
Latti in Mink ki

In Minkowski space we deduce the orthogonality relation from a causal structure. Then we
construct the fannily of double orthoclosed sets which form a complete orthomodular lattice.

This lattice is atomistic, with trivial center and does not satisfy the covering law, therefore cannot
be represented as the lattice of projections of a von Neumann algebra.

M. Fannes:

! lication_of De Finetti’s tt

A state on an infinite product of measure spaces on an infinite tensor product of C* - algebras is
called symmetric whenever it is invariant under local permutations. De Finetti* s theorem and, its
various extensions identify the extreme symmetric states with the symmetric product states. This
theorem is useful to compute the equilibrium states of the discrete mean-field models with
permutation invariant Hamiltonians. More general models showed at least allow a non-constant
external field q in the Hamilitonian. Therefore the notion of q-symmetric state is introduced for
classical lattice systems and an extension of De Finetti” s theorem is obtained under the condition
that q is uniformly bounded and it is conjectured that the result remains true if q has less than
logarithmic growth.
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W. Ford:
1 I L . ion - the ind fent il fel

The quantum Langevin equation for a Brownian particle in a potential V (x) has the form:

l C .
m‘£+f_~dt'u(t- )X @) +V° (x) =F@

where the random operator-force F(t) has (symmetric) correlation:

%< FOFW)+FQ)F@® > =
=l f: dwRe {ﬁ(m+io+)hmcoﬂlh—m‘cosm(t-t’)
T . 2kn
and commutator

©o

[Fo.Fe)] =% Io doRe{l(w+io") }hsinw-1t").
1T

R@=J, deZ p@, Imz>0,

is the Fourier transform of the memory function. This is clearly analytic in Imz > 0. In addition, as
a consequence of the second law of thermodynamics, its boundary value on the real axis must have
positive real part,

Re{fi(w+iot)}20.

Thus [ (z) is a positive function, which among other important prdperties means that it can be
represented in the form:

(@) =-icz +i Idw _Re{ﬁ(mﬂo")}
n z-®
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All these properties can be derived from the independent -oscilator (I0) model, in which the
Brownian particle is surrounded by a number of masses, to each of which it is coupled by a spring,
as shown in the figure. The Hamiltonian for the SO model is '

2
. 1 2 1
“+-m+"<")+zj‘f{z—mjpj 7m0} -0}

I show how in a few trivial steps one can derive the quantum Langevin equation with

Re { I (@+io") } =—12£ ; m, mjz[S(m-(oj)+8(m+mj)]

Clearly, by an appropriate choice of the distribution of the masses m; and the frequencies o this
can represent the most general positive distribution. Thus this very simple 10 model has remarkable
generality!

A. Frigerio: |
Quant Poi i licati

According to conventional wisdom, the reduced time evolution of a system S coupled to a reservoir
R displays a Markovian irreversible behaviour when the characteristic relaxation time Tg of
correlation in R is much shorter than the characteristic time Tg for appreciable effects on S of its
interaction with R.Two physical situations in which the condition Tg >> Ty, is satisfied are those of
weak coupling and of low density. In the weak coupling limit the system S appears to be driven by
a (non-Fock) quantum Brownian motion, and in the low density limit it appears to be driven by a

algebra M with a cyclic and separating vector § is defined by N, (x; ) =W (g ® B1A ()
Wapn® & ) where W (§) is a Weyl operator and A , (x) is the gauge process (x is an element of
M). Quantum stochastic differential equations of the form dU (t) =d N (x; &) U (1) are considered,
where N:( a®b; §)=a®N,(b;€),ae A (initial algebra), b € M. They are shown to have a
unitary solution if and only if x = u - a, u being a unitary element of A ® M. Such unitary operators
U (t) may be used to construct dilations of quantum dynamical semigroups on A whose generator L

|
"quantum Poisson process” of some kind. The quaritum Poisson process over a von Neumann .
|
\
|
has the form < D, L () ®* > = <O ®E, [u*@®NHu-a®1]0 @ >. |

|
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G. C. Hegerfeldt: }
N ive anal ¢ babilisti . \ \

Random variables can be considered as multiplication operators, and mixed moments
EE&,-—& =m(&,--&)can be written as a scalar product <¢,&, &, ¢ >inL?(dP),
where ¢ (®) = 1. This can be generalized by replacing { §;} by operators A,,---, A, in a Hilbert
space H, with a common dense invariant domain of definition, and ¢ by some unit vector ® € H
so that m (A, ----- A= <B, A A, ®>. In quantum field theory these
moments correspond to n-point functions. Slightly more general, let M be a set and M the free
algebra generated by M, let * be an involutive map of M onto itself and extend it to an involution *
on M. We can consider representations 1t of M to possibly unbounded operators in a Hilbert space
H with a cyclic vector ¢, and domain D = n (M) ¢, . The notion of random variable is now
generalized by n (a),ae M, orae M (), the linear subspace of M spanned by M, and
expectation is replaced by < ¢, >, me M *isa state if m (a*2)20,ae M,andm (1) = 1.
Now one can define cumulants in close, but not identical, analogy to the classical case. One can
define the analogy of addition of independent random variables, analogs of infinitely divisible
random variables.With the noncommutative notions one can prove analogs of results in probability
theory, in particular: noncommutative analogs of Marcinkiewicz theorem, of Cramer” s theorem, of
the central limit theorem, and of two factorization theorems of Khinchin.There are applications of
the results to coherent states in quantumn mechanics, to thermal coherent states (by G. G. Emch and
the speaker), and to quantum field theory.

A. S. Holevo:

Conditionall itive definite functi I . I
. babili

The notions of positive definite and conditionally positive definite functions with values in the
space of bounded linear maps of a C*-algebra are introduced. The Schoenberg type theorem,
relating the notions , is given. The representation theorems for positive definite and conditionally
positive definite functions are established, implying a noncommutative generalization of the
Lévy-Khinchin formula.

The applications to the problem of continuous quantum measurements are discussed. It is shown
that this problem is intrinsically related to classical topics of probability theory such as infinite
divisibility and functional limit theorems.
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R. L. Hudson:
0 I fiffusi i col I  aleel

Quantum stochastic calculus as developed by the lecturer and K.R. Parthasarathy is reviewed. It is

a noncommutative theory of stochastic integration in which operator -valued adapted processes are
integrated against three basic integrators, the gauge, creation and annihilation processes A, A and

A*. The quantum Ito product fomula is a mhltip]ication table for the differential of the basic
processes. Classical Brownian motion, Poisson processes and even Fermionic fields are all
encompaned in the single theory based on Boson Fock space.

The theory is used to construct quantum diffusion. These are quantum stochastic processes based .
on a *-algebra A which are governed by systems of stochastic differential equations of form

dx=2A (x)dA+(1+(x)dA+a(x)dA++t(x)dt,x(0)=xoe a.

Here A, a ¥, a, tare linear maps from A to itself called structure maps. The Ito product fomula
gives rise to certain identities to be satisfied by the structure map which are analysed from the
viewpoint of the Hochschild algebra cohomology theory for A. Examples include the
noncommutative torus, where cohomological obstruction to the construction of quantum diffusions
are found, and examples involving quantum Poisson processes. -

B. Kiimmerer:

li I I. E . . I I. nl l I.l I.

We adapt our standard notation from the theory of (stationary) Markov dilations for completely
positive operators on W*-algebras as they are contained, e.g. in the Proceedings on Quantum
Probability I, II, Springer Lecture Notes in Mathematics 1055 and 1136. This definitions form a
natural frame for a theory of non-commutative stationary Markov processes. In particular, a
Markov dilation is a stationary Markov process for a given semigroup of transition operators. .
Given a dynamical system (Ol , ¢, T) for discrete time, then (01, ¢, e (T 1)) is a continuous
dynamical system. Observing that

oo B

n

-1d + ot
e(T )t=§ el-—Tn

n!

n=0

we can use the classical Poisson process for proving the following result:
Theorem.If (O, ¢, T) has a discrete Markov dilation then (01, ¢, e (T-19) 1) has a continuous
Markov dilation.

Deutsche :
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This continuous dilation has a natural interpretation in terms of non-commutative compound
Poisson processes. Using earlier results on generalized Bernoulli shifts this construction provides
us with the first new examples for white noise beyond the white noises composed from classical
Brownian motion and Poisson processes and the non-commutative quasifree shifts on the CCR and
CAR algebras. . ‘

Applying an approximation theory we proved to the following result.

Theorem. For a given continuous dynamical system (&, ¢, T,) the following conditions are
equivalent. ’

(a) (01, ¢ , T, ) has a dilation

(b) For each single t, the discrete dynamical system (0, ¢, T, ) has a dilation.

Y
(c) There exist continuous dynamical systems (OL, ¢ , Tj) i€l which have a dilation and
real numbers numbers (&) ¢ s.t. T, = pointwise weak* lim ;¢ i3 714 Yfor atl t> 0.

If OU is finite dimensional then the same holds for Markov dilations.

In particular, the above result reduces the existence problem for continuous dilations to the
existence problems for discrete dilations which is easier to handle with.

J. T. Lewis:
The 1 leviati incipl i fels of . ing B

We investigate condensation in some models of an interacting Boson gas. The motivation is an old
conjecture of F. London: )

Momentum-space condensation is enhanced by a spatial repulsion among particles.

The models we consider are diagonal in the occupation numbers; such models were studied around
1960 by Huang, Yang and Luttinger and by Thouless. These models can be investigated by the
methods of classical probability; this enables us to obtain rigorous results on the existence of the
pressure and hence on condensation. This is achieved by the use of Varadhan” s Theorem. We
prove that the distributions of various random variables associated with these models in the free-gas
grand canonical ensemble satisfy the large deviation principle. This is joint work with M. van den
Bergand T. V. Pule . )

o
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G. Lindblad:
Dynamical entropy for quantum svstems

I discuss the difficulties of providing a non-commutative generalization of the Kolmogorov-Sinai
entropy to any * - automorphism of a W*-algebra with an invariant normal state. A definition is
given which differs from earlier ones by Connes and Stgrmer and by Emch. This approach is based
on operational ideas namely the time-ordered correlation kernels. It takes proper account of the
difference between space-time translations for non-commutative systems. The commutative KS
entropy is nevertheless included as a special case. Several derived properties of this entropy remain
conjectured.

M. Lindsay:
n hasti Icul jth i 1

Two illustrations of the kernel calculus were given. The first is the existence and uniqueness
problem for a class of quantum stochastic differential equations. There are solved by a recursive
procedure which gives the solution in an explicit form. The second is a characterisation of strongly
continuous evolutions which are both adapted to the filtration of a non-unit variance ("finite
temperature") quantum Brownian motion and are covariant under the group of shifts of the
quantum Brownian motion - also called Markovian cocycles. There are determined by a triple of
generators via a "kernel differential equation”. When the evolution is unitary-valued this leads to a
quantum- stochastic Stone’s theorem: any such evolution is the solution of a quantum-stochastic
Schrodinger equation

dU = U [iHdt + LdA* - L*dA - 1/2 (aL*L + bLL*) dt ]

where a and b are fixed parameters determined by the variance/temperature of the Brownian motion .

and H is self-adjoint. The presence of the last term is due to the Ito form of the equation.
Conversely the solutions of such equations provide unitary Markovian cocycles.

Deutsche
Forschungsgemeinschaft
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A. Luczak:
Nul . . N Igel

Let ( A, A) be a measurable space and let W be a o-finite von Neumann algebra. A (dual)
insturment €* on ( A, A ) acting in W is a 6-additive measure on (A, A) with values in the space of
linear positive normal mappings of W into itself enjoying the condition €%, (1) = 1 . By the
observable of £* we mean the semi-spectral measure e defined by e (E) = €¥; (1).

Nuclear instruments are those of the form

e (x)=/P(xEAe@)) , Eec A, xe W.

Weakly repeatable instruments are defined by

€% (e*p (1)) =€*; op (1), EFe A, and

repeatable by €% €*p = €% 4

It turns out that for nuclear instruments weak repeatability and repeatability coincide. If €* is a
(weakly) repeatable nuclear instrument, than there exists a central projection p in the algebra OU =
{ e (E):Ee A } such that the mapping

d(x)=p€&*, (x) (xe W)

is a normal conditional expectation from W onto Ol. Moreover to each instrument €* there
corresponds in a canonical way, a number instrument £* of the form ﬁ*E x)= IE Q (x,A) e (dA)
which has the same observable as £*.

H. Maassen:

A motivation and a construction is given for an explicit quantum stochastic calculus based on
several types of noise. Starting from heuristically postulated Ito rules (such as dBt2 = dt for
Brownian motion or dNt2 = dN, + A dt for the compensated Poisson process N, = P, - At)a
Hilbert algebra is constructed in which these Ito rules are actually valid. This is done starting from
the Ansatz - )

N(0=J f(co)de:=i j f([tj})dN‘l...dN'h.

T =0 <<y,

o
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The Hilbert spacein question is the Fock space L2 ( Ip),where Tp: = {wcI: o finite }
and IcR isaninterval. The algebraic structure in the case N;=B,is givenby (f+g) (0)=

=2 aco f,‘- f(auwo) g(auwo)do. The notions of stochastic integration, stochastic

differentiation and the forward derivative are now defined in terms of the kernels f. The
fundamental theorem of stochastic calculus is regained and the Ito rules are recovered.

This circle of ideas is repeated for the Bose noise of annihilation and creation operators A™ and A¥,

and a stochastic calculus of the same type is obtained with the Ito rules dA” dA* = ¢, dt “and

dA* dA- = c_dt. Linear quantum stochastic equations can be explicitly solved by recursion. This

leads to the construction of cocycles for quantum Markov processes. ‘

K. R. Parthasarathy:
Local fi L fi truct in_Foc lcul

Define Fourier transform F in L, R) by (Ff) (x) = (2 1) V2 [e “i%Y f (y) dy and extend it to S (R)"
the space of tempered distributions by (FA) (¢)=A (F¢) forall ¢ € S®R). Note that
Fp Fl=q, Fq F'! = -p. The derivative A" of A satisfies A" (¢)=-A (¢"), (FA")($)=iF
A@e).

Let H be a Hilbert space, X a selfadjoint operator, ¢ € S(R). Then <E§, ¢ (X)M> =
<E,FFloX)n > =Qm12[(F! ¢)(y)< & e¥X n> dy. Taking this as a clue we
define for any A € S (R)” the form

<E AN >=FIA( @2 < geixXn>)
for all pairs ( &,n ) such that 2) "12< E, e-ixX n> e § R) as a function of x.

Theorem 1. Let H =T (h) be the boson Fock space overh, fe h, X =P (f) =i ( a (f) - a*(® ). .
Then for any two coherent vectors W (u), W (v) the following holds:

<Y@,A(PO) v >=A(©0) =FA ¢y where

0, 0=Qm) 2| fllTexp(<uv>-12|If)| 2(x+i[<uf>-<f,v>])?)

0, ) =2m) 2 exp (<u,v>-12[f(|2 x2+(<u,f>-<f,v>) x).

Theorem 2. In Theorem 1 replace f by f, where t — f| is a continuous map from R into h such that
Il ||2 is differentiable in t. Let u, v € h be such that < u, fl > - <f,, v >is differentiable. Then




a3 -

<wvw, A (PE)) yw >

gle

1 d
=5 3 If, 1< wy@)A~ (P(f,)) yv) >+

<y, A" (P(£)) yw> % i(<f,v>-<uf>).

Remark 1. Theorem 2 contains the well known Tannaka formula
) dlw@®|=[sgnw(@®)]dw(®)+3 (w(®)dt
2. Theorem 2 implies that for the Ornstein Uhlenbeck process x (t)
dlx| =sgnx(@®dx@®+3(x(@®))dt
3. Theorem 2 can be interpreted in the generalised sense as
dA(PE)) =i {dA*E) A (PE)- A (P(E)) dA () } +

1d 2 ...
> g IEI°A (pe))
D. Petz:

Conditional S babilit

After a short review of the work of Moy, Umegaki and Takesaki we treat properties of the
¢-conditional expectation from a von Neumann algebra M into its subalgebra M, (¢ is a fixed
faithful normal state on M). ' _

¢ is considered as the adjoint of the embedding M, — M when M and M, are endowed with an
appropriate inner product. As an application of the ¢-conditional expectation, we say that M, is
sufficient with respect to a family 6 of states on M if the conditional expectation 54,: M- M,
does not depend on ¢ , that is E¢ =E, forany ¢, ® € 6. We characterise sufficient suba@gebras in
terms of Radon-Nikodym cocycles and transition probabilities.

J. Quaegebeure:

Quadrati iati 1 Ito ‘s table i tochastic calcul

Let (T, F) be a measurable space and F a subset of F which is closed for finite unipns and
intersections. Let x;,x5: Fy — Ol be finitely additive measures v_/ith values in some non-
commutative topological algebra O . We say that x, and x, have a quadratic variation if

DFG Deutsche
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lxl:le (I)3=|

net of all finite F--partitions I, of . We show that the notion of quadratic variation provides
the formluation for Ito”s formula in a general quantum stochastic integration theory, namely
dx; dxy=d [ixq, x,] .

Next we study the quadratic variation of certain measures taking values in algebras obtained by
some representations of the CCR C*-algebra € (H) over a hilbert space H. In the case of quasi-free
representations T we construct for a measure x on (T, F;) with values in B (H) and on f € H, the
field measure B,(f and the gauge measure A, on (T, F) taking values in the operators affiliated
with T (C (H) ). We prove that | B,&f, B, S11B, fiAX"z' A By Bl and LAy, A I exist for

l}mI E x1 () xp (I) exists in Olforallle Foy., Where the limit is taken over the
k

the topology of strong convergence on an appropriate domain, provided Ix, X9 | exists in the
strong operator topology and x, and x, are non-atomic. We characterise the Fock representation in
terms of the quadratic variation of the field and gauge measures. Finally we prove the existence and
give the explicit form of the quadratic variation of the field measures in a non-quasi-free infinitely
divisible representation of ¢ (H) . Part of this work was done jointly with L. Accardi. '

U. Quasthoff:
N ive B i

The construction of (discrete) Bernoulli shifts using infinite tensor products of finite dimensional
matrix algebras is géneralized to the continuous case. The underlying von Neumann algebra is
constructed with a countable equivalence relation using the procedure of Feldmann and Moore. The
Connes-Stgrmer entropy of such a flow equals the Kolmogorov-Sinai entropy of the corresponding
commutative flow. Conditions for conjugacy of non-commutative flows are discussed. -

J.-L. Sauvageot:

On a C*-algebra A (with unit) consider two given data:

- a quantum Markov semigroup ( @) , » o ; norm continuous, whose generator Adis local

- a bilateral ideal L. )

By constructing a suitable dilation of the semigroup, we get a quantum process where the time
evolution of the support process of I (in A** ) is a commuting family of projections, and thus
provides a spectral measure which represents the "first exit time from 1." ‘

o®
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By stopping the evolution of the process, thanks to this stopping time, we get a completely positive
map A from A/j into A** such that:

l.forallae AA @/ (A/D** =

2.forallae A/fA (@) / [+ isan harmonic element.

By assuming the semigroup is a Feller semigroup, plus a standard smoothness condition on the
boundary A/[, we show that the previous solution of stochastic Dirichlet problem is also a solution
of the topological Dirichlet problem.

M. Schiirmann: .
Q l ind i iner i in i

Convolution evolutions of states on involutive bialgebras on the one hand give rise to quantum
stochastic processes of independent increments. On the other hand they determine a continuous
tensor product with some additional structure consisting in the existence of a shift and of a unit
vector which plays the role of the vacuum vector in Fock space.

The special case of the involutive bialgebra K < d > (which we call the quantum anologue of the
coefficient algebra of the unitary group) was treated. If the convolution evolution is replaced by a
convolution semi-group of states the associated process with independent stationary increments is
represented by a unitary evolution on Cd® H (where H is a Hilbert space) satisfying a cocycle
identity. The theory yields the result that in special cases (d= 1; Weyl operators; Wigner-Wei8kopf
atom) the solution of a quantum stochastic differntial equation in the sense of Hudson &
Parthasarathy is determined by its generator which is a conditionally positive linear functional on
K < d >. It is a conjecture that this statement holds in the general case.

G. Sewell: ‘
E i bili it} lized 11 £ i1 i .

Since entropy is a function of the microstate of an observable quantum system, the question arises
as to whether thermodynamics extends to processes, demanded by General Relativity, in which the
system exchanges matter with unobservable space-time regions, i.e. Black Holes. A widely
accepted view, proposed by Bekenstein on phenomenological grounds,-is that Black Holes have
entropies proportional to their surface areas, and that, consequently, processes in which they
participate satisfy a Generalized Second Law (GSL) of thermodynamics, of the form

o®
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A(S +o A)2 0 (%), where S is the total entropy of observable systems, A is the Black Hole area
and « is a universal constant. I argue that the hypothesis of a Black Hole entropy is untenable,
since observable microstructure is essential to the entropy concept, but that, nevertheless, the GSL
(x) is valid. My derivation of this result is based on a treatment of the open system, 2 formed by
the matter and fields in the observable region. This treatment rises only on simple basic demands of
Quantum Statistical Thermodynamics and Relativistic Mechanics, and the area term in the resultant
GSL represents mechanical work done on 2.

K. B. Sinha:
S . . . tochasti lcul

The definition of classical stop time as aR-valued random variable such that the event T <tis
adapted to the filtration F, for every t> 0 is taken over to define a stop time S in the (boson) fock
space asa spectral measureon R, suchthat S[0,t]e B(H q) foreveryt>0. For sucha

stop-time, first a stop-time integral of the type TS W (f sl )S@ds) y(g sl ) & (s) is defined where
€ (s) is a future adapted process satisfying some integrability assumption. With the help of this two
Hilbert subspaces #{ ) and # , the "past” and "future” spaces are defined as follows. ) =
cl sp {1, S (@) v ()| £,0Sasbse )} and 3= range of US where US=

f; S (ds)T' (8,) with (8,f)()=0 ift<sand =f(t-s) if t2s. Then there exists an
isomorphism from #; ® 7{[; onto #{ in a canonical way and U W (f) Us-1, the shifted Weyl
process is again a Weyl process on %[ . These two results constitute the quantum version of the
strong Markov property of the Brownian motion. .

One can also define the "past” and "future” algebras Ol §= [ fa S(ds) W (f s] ) f }" and

o s= { Jso S@)W (fp 1f } ". Then one has a surprising result (which is also very non-
classical) that 07 g=3 (#) if the stop time S has every neighbourhood of e in its support.

R. F. Streater:
Non-li hasti

We want a simple class of models of an autonomous system which moves under stochastic
dynamics to an equilibrium state Pp > where B is determined by Pp (H) = pg (H) where py is any
initial state (of finite energy). H is the Hamiltonian of the system.
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Consider a dilute gas; two particles may interact and scatter before meeting any others. Let , with
dim %<, be the Hilbert space of one particle. The scattering Agives an automop‘hism of B (9;1):
A — SAS*, A € B(#), S = scattering matrix. More randomization is achievéd if the Hamiltpnian
of 2 particles is random, giving a doubly stochastic map A = TA =E_ (S (@) A S (w)* ). Since
S commutes with the free 2 body Hamiltonianh=H® 1 + 1 ® H, T and T* map the spectral
projections of h to themselves: h = Y2 EP (E), TP(E)=P (E), T*P (E)=P (E) : T* = adjoint as a
superoperator on the Hilbert-Schmidt operators. But T*" p does not converge to equlllbnum as
any function of h is a fixed point - we must add the StoBzahlansatz: after scattering, pamcles reenter
the population as independent particles: this means we project onto the first Hilbert space of the 2
particle space # ® 7L To take into account statistics, we use I' (#) instead of H ® .'1{ The
Boltzmann map is T = Q T, T = bistochastic on I" (#), Q = quasi-free pro;ecuon Let T be ergodlc
relative to H, i. e. T T* has only functions of H = X w, a,* a, as fixed pomts Theo;g 'c“p -
Gibbs state as n — eo if ; are relatively rational. :

G. SiBmann:

Quantum fricti

The open system considered is a quantum particie under the influence of some friction force, its
motion not necessarily being bound: it may be in a scattering state as well. A pure state is assumed:
W, =1y, > <y, | .This irreversible process is different from absorption,where the energy is un -
changed (the elastical channel of the optical model), whereas the probability decays. By friction, on
the other hand, the probability stays unchanged (= 100 %), whereas the energy decays. In the
absorption case a good solution is given by complex pofentials U =V - iW, leading to
non-hermitean Hamilton operators; in the friction case I have proposed a non-linear potential,
leading to a state dependent but somehow hermitean operator. More specifically, the Hamiltonian is
bilinear and local, similar to that for the Hartree-Fock approximation for the atomic or nuclear
shells.

Y. Suhov:
Classical \ I i hydrod .

The hydrodynarmc limit was introduced in the paper of Ch. Morrey (1955) for the purpose to
derive rigorously Hydrodynam1c Equations (Euler equation) for the Hamiltonian ‘equations of
motion. However, Morrey used some assumptions on the solution of the equations of motion -
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which are very hard for cheeking in any case of interacting particles. The last years, some model
examples were investigated from such a point of view, in particular harmonic oscillators, or, more
generally, linear systems (both classical and quantum), and hard rods on the line R!. The talk
contained a review of related results.

K. Urbanik:
Toi tistributi i bili { o} bl

A Borel probability measure p? on the k-dimensional euclidean space RK is said to be the joint
probability distribution of OL = ( A}, Ag,...., Ap) at the state " if for every system o , 0,...,04
k
of real numbers the projection of pz-l onto the real line defined by (x,, X5,....X) = p o X;
A i=1
coincides with the one-dimensional distribution

k

2“5 A

i1
Pr

Let'S (o) be the set of states I" for which p? exists. It is well-known that S (@) contains all states
if and only if OL consists of commutig operators. A system OL= (A, A,, ....,A}) is said to fulfil
the probabilistic commutation condition if there exists a system & = (B, B,,..., B,) of commuting
observables such thatp 5 =pP forallTe S @).

Theorem. If 0L consists of one-sided bounded observables with purely point spectrum, then O
fulfils the probabilistic commutation condition. Using Weyl transform we can prove that the pair of
canonical observables does not fulfil the probabilistic commutation condition.

A. Verbeure:
Detailed bal i_critical slowi i

We derive rigorous results about the phenomenon of critical slowing down. For classical lattice
systems a stochastic. dynamics is constructed satisfying essentially a locality property and the
detailed balance property with respect to a state. An upper bound for the energy gap of the

evolution is derived in terms of the fluctuation of an observable, choosen in the right way. If one
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chooses for the state an equilibrium state of a system chowing a phase transition, the above
mentioned upper bound yields the phenomenon. For quantum systems, analogous results are
derived for the free Bose gas and for the Dicke-Maser model; for the first model the energy gap
tends to zero like ( T- T)?, for the second model like ( T- T)!.

All this is based on joint work with various people: M. Fannes, R. Alicki, T. Quaegebeur, D.
Gooleris and P. Vets.

W. v. Waldenfels:

‘Let H be an infinitedimensional Hilbertspace. Write each element of the unitary group U ( C% ® H)
in the form u = ( “ik)i,k= 1,.d ViK€ B (H). Define the functions F;, : U ( Cd®H) - B H)
by Fy(u) = u; and call X, the algebra generated by F; and F;, * with respect to pointwise
multiplication. Then % is isomorphic to the complex algebra with 1 generated by x;, X * i,k =
1,...d with relations (xx*)p, = 8, and (x*x) ;. =8, . Here x is the matrix (xj);y_;, qand x* =
i ¥) k=1,.d" The algebra Xy is the noncommutative analoge of the commutative coefficient
algebra and is used as a state space for quantum stochastic processes.

J. Wilde: |
SI l l. . | I. }

We consider fermion stochastic integration for the Clifford process, and for the creation and
annihilation processes in certain non-Fock quasi-free-states and give elementary proofs of fermion
analogues of Ito” s theorem (that every Brownian functional is a constant plus a stochastic integral).
Thus we obtain very simple proofs of the martingale representation theorems for these theories.

Berichterstatter: M. Reményi
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