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The Oberwolfach conference ItAlgorithms in Combinatorial Geometrylt

brought together mathematicians and computer scientists working on geometrie

problems. A wide spectrum of problems was touched, clever· ad-hoc methods were ..

confronted with first drafts of conceptual machinery. A general consensus

emerged that for developing the field intense cooperation with areas from

theoretical mathematics like real algebraic geometry could turn out rather

helpful.
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Vortragsauszüge

K. H. BORGWARDT;

Linear programming algorithms admitting a probabalistic analysis

In recent years the behaviour of linear programming a1gorithms was studied from a

.proba1i~tic view under different stochastic models. But all the algorithms whieh

admitted such an analysis were modifications of a parametrie variant of the Simplex-

~ .Method. The talk will explain two such approaches in detail and give some geometrical

background. It .will be shown that there are geometrical properties .and advantages

of parametrie variants which make them more useful than other variants for the pur­

pose of a probabilistic analysis.

M. SHARIR:

Davenport-Sehinzel 5equenees and their geometrie applications

Davenport-Sehinzel sequences are sequences composed of n symbols which do not

contain any pair of adjacent equal elements,.and do not contain any (not ne~essarily

continuous) subsequences of the form a •.. b .•. a ..• b ••. a~ .. , for a * b , of length

5+2 (these are (n,s)-Davenport-Schinzel sequences). These s~quenees arise in the

calculation of the lower envelope (i. e. pointwise minimum) of n continuous

funetions eaeh pair of which intersect in at most s points. The talk" reviews'

recent progress in the analysis and applications of these sequenees. We derive

sharp upper and lower bounds on the maximal length As(n) of an {n,s)-Davenport­

Schinzel sequenee.. In partieular A3 (n) = e(na(n», where a(n) is the (extremely

slowly growing) inverse Ackermann's funetion. For s > 3 we have
O(a(n)s-3) . ls-JJ

As (n) = O(na(n) ) and n(n a --r (n». The geometrie applications of these

sequences inelude: (i) Efficient (O{na(n)log n» preprocessing of a polyhedral

terrain to support fast (O{log n» ray shooting queries from a fixed viewing point

in an arbitrary direction. (ij.) Planning a purely translational motion separating

two (m-sided and n-sided) interlocking simple polygons in time

O{mna(~)log m log n). (iii) An upper bound of 0(kn~6(kn» on the number of free

contacts of a k-sided convex polygon B amidst polygonal obstacles having n

sides altogether, in which B makes three s{multaneous contacts with the obstacles·.

(iv) Construction of collections of n line segments in the plane, whose lower
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enve10pe consists of O(na(n» subsegments. (v) Tight bounds e(n2~(n» on the

combinatoria1 comp1exity of the lower enve10pe of n triangles in 3-D space,

and some other sharp bounds on the comp1exity of the 10wer enve10pe of 2-D surfaces.

J. E. GOODMAN

Hadwiger's transveTsa1 theorem in higher dimensions (joint with R. Pollack)

A theorem of Radwiger states that a family of pairwise disjoint compact convex set~

in the plane has a 1ine transversal if and on1y if the fami1y can b~ ordered so -

that for any three of the sets there is a 1ine meeting them in the prescribed order.

We extend Hadwiger's theoremto hyperplane transversals of compact ~onvex sets in

d dimensions. The "ordering" of the sets is rep1aced by their norder type", and

the'condition that na two have a common point by- the condition that no d meet a

commo~ d-2-f1at.

F. R. K. CHUNG

The sidewa1k problem

Given a finite curve f = [0,1] ~mn , we want to determine if we can move two points

from one end of the curve to the other end such that the two points are (a1ways)

of distance J and 1ie in the curve. In this talk, we will give a short solution to

this problem. Ve will also discuss severa1 other problems on different distances

and on po1ytope graphs.

•w. PLESKEN

An algorithm for finding the automorph~sm group of a 1attice in Euclidean space

The motivation for developing such an ~lgorithm was due to a conjecture by

J. Thompson on tnt.egra1 laminated 1attices with prescrlbed minimutQ m e, For m = 3

and 4 the conjectuJ;e was verified thus, g~vi.ng (f.urther) constructions and charac­

terizations fora certain unimodular lattice in 23-space and for the Leech 1attice.

The a1gorithm itself consists of a backtrack search of tuples of 1attice vectors
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which have the same scalar products as a given basis of the lattice. Since partial

tuples usually cannot be extended to full basis tuples a matrix ~ cal1ed the

finger print - is used to guide the search. The finger print records members of

vectors (usual1y of shortest length) hav~ng certain scalar ~roducts with sequences

of basis vectors. It does not only help to construct automorphisms, but can also
. .

be used to find isometries to other lattices and. to prove or disprove that one has

generators for the full automorphism group of the lattice. For integral lattices the

algorithm can be improved by using the dual lattice at the same time. (joint work

with M. Pohst).

J. M. WILLS

Regular polyhedra with hidden symmetries

The 5 regular compounds can be,interpreted asO collapsed polyhedral realizations of

regular maps. In particular Kepler's Stella Octangula can be interpreted a~ a

collapsed regular torus whose 48 automorphisms alloccur as synune~ries of the,

Stella Octangula. This is a surprising and simple example of. the general program

to investigate various polyhedral realizations of regular ma~s in E3• The symmetry

group of a po1yhedra1 realization is a subgroup of the automorphism group of the

regular map; its index is called the index of the polyhedron. The automorphisms 'which

do not occur as symmetries are ca1led hidden symmetries.

There are several methods and algorithms.to find or enumerate such regular polyhedra

or to disp~ove their existence: By ~. Dress for Grünbaum's "new regular po1yhedra",

by J. Bokowski for regular polyhedra with or without self-intersections, by S. E.

Wilson for branched covers and by A. M. Macbeath" for unbranched covers. We discuss

~ so~ results and interesting open problems.

J. O'RQURKE

\ ~
MOving a ladder in three dimensions

The problem considered i,s planni.ng the motion 'of- a line segment (a lIt'add"er") in

three dimensions tn the presence of polyhe~ral obstacles. An initial and final

position are given, together with the obstac1es, which have a total of n vertices.

We show a lower bound of 0(n4) by exhibit~ng a collection of obstacles that force
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The continuous geometries of J. von Neumann are in apreeise sense' "continuous

analogues" of the finite-dimensional projeetive geometries. In the discrete setting,

these have been generalized in the theory of matroids, which are se~modular rather

than modular.

We show how to construct " eont inuous analogues'~ to other classes of matroids throu'gh

an emhedding procedure. Ihis yields, in particular, a continuous partition lattice.

In joint work with L. Lovasz we also constructed co~tinuous algebraic matroids

(based,on field extensions) and eontinuous transversal matroids.
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a ladder to make that many distinct moves to reaeh the final position. And we

establish an O(n6 log n) upper bound by describing an algorithm that requires

that much time in the worst case. The algorithm is based on the cell decomposition

appro~ch pioneered by Schwartz and Sharir.

A. B.JBRNER

Continuous matroids

A. SCHRIJVER

Homotopic Routing

The following problem arises in some of the automatie procedures for the design of

integrated cireuits. Let G = (V,t) be a planar undirected graph, embedded in the

plane E 2 , let I1, ••• ,Ip be some of its faces (including the unbounded face),

and let CJ , ••• ,Ch be curves ;in m.2~ (IJ U••• u I p>' eac~ starting and ending in

vertices on the bounda..ry of I) U ••• UI • Do there exist pairwise edge-disjoint

paths PI"" 'Ph in G so that Pi i~ homotopic· to Ci in ]R2 .... (11 U • " u Ipl

(i = 1, ••• ,11)7 We diseuss some special cases where a so-called "cut-condition" is

sufficient, and we discuss the result that this cut-condition always is equivalent

to the existence of a "fractional" packing of paths.

•

••
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R. E. JAMISON

Reeognizing Angle .Orders

Let Lk denote the elass of eonvex k-gons in the plane. A partial~y ordered

set (P,~) is represented by Lk iff it is isomorphie to a subposet 'of Lk under

set-inciusion. The class L
2

. consists of all eonvex angular .regions and the posets

represen~ed by L2 were called angle orders. by Fishburn and Trotter. There are

several minimal poseta. known which are not representable by L
2

, but ·it is un­

known whether the number of these is finite or not. The recognition problem for

representability ~y Lk (k fixed) is probably NP-hard and seems to be related

to the following eombinatorial problem:

Let X be a (finite) set and. J a family of subsets. When can X be eyelieally

ordered so that eaeh set in J is the union of at most kares (intervals) in

the eyelie order?

P. ROSENSTIEHL

Jordan Pushing and Pulling

We eonsider in the plane a set,of Jordan ares monotonie with respect to the Y-axis,

called the objects, and a set of jordan ares monotonie with respeet to' the X-axis

called the pushers, such that eaeh pusher is ineident by one end with the upper .

side of a first objeet and ineident by the other end with the lower side of a seeond

object; the pusher is said oriented from the first to the second objeet. Further­

more the objects are pairwise disjoint, and any pusher is d1sjointfrom the ob­

ject~ exeept bY'its two ineidences; at last whenever two pushers cross, 'they are

both oriented in the positive direction of the Y-axis.

The theorem proved is that the pushing relation between the objeets is acyelie.

The·theorem is closed in the diseussion of a system of potential inequality on

the Y-coordinat~s of points belonging to the objeets of the type Yj -Yi ~ a ij
(aij < 0 for a pusher, a ij > 0 for a puller). Consequenees appear about the

existence of Fary-type layout of planar graphs, about tentative of stretching of

pseudolines of a pattern, and prac.tically while improving the automatie design

of electrical networks. The result generalizes the domdnance relation studied

by L.J. Guibas and F.F. Yao for the motion in a given direction of segments

of any direetion.
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G. PURDY

Some Extremal Problems in Geometry

We diseuss several inequalities and·extremal problems in t d insteäd of the

more usual Rd , ine1uding a eonjeeture of Dirae, a result of Kelly and ~oser

and the inequality n - R. + P =:' 0, eonjeetured by the author, involving the R. 1ines

and p planes determined by n points. We use the inequality t 2 +3/4 t 3 =: n+.L (2i-I)t'i
. . f 1· . . .. f 1>31nvolv1ng the number ti 0 1nes eonta1n1ng exaetly 1 p01nts rom among

n""given points in fl2, (assuming t n = t n-
1

t n- 2 = 0), proved reeently by

F. Hirzebruch, using an inequality on ehern numbers.

N.J.A. SLOANE

The Solution to Ber1ekamp's Switching Game'

Four recent results in packing and eovering (I) the theta series of diamond.

(11) Paeking superballs H = {(KI,~ •• ,Kn) : L IKilo ~ I} (with J.A. Rush).

(111) Penny-packing (with R.L.Graham). (IV) The solution to Berlekamp's. light-bulb

game: for the 10 x 10 game the answe.r is 34 (with P.C. Fishburn) •

. B. KORTE

Polynomial Time Algorithms for Convex Shellings

In Combinatorial Optimization very often a polynomial-time (eombinatorial) a1go­

rithm for a problem and a nice and eomprehensive deseription of the eonvex hull

of its characteristie veetors coincide. There are on1y few exemptions from this

rule: for stable sets in perfect graphs a good polyhedral desc~iption but no a

good eombinatorial algorithm is' known. On the other hand the stable set problem

in elaw-free graphs can be solved in polynomial time, but we do not have a poly­

hedral eharacterization. Only very "ugly" facts are known. One aim of this leeture

is to eontribute another problem to this list of exemptions: We show that the

validity problem for the feasibi1ity polytopeof semd-convex and convex shelling

in the plane ean be solved in polynomdal time, but we were not able to deseribe

the polytoPe,sinee we found also very strange faeets.
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For some other antimatroids we were able to characterize the convex hull of

characteristic vectors nicely. For same other antimatroids we could on1y character­

ize the conical hull, while a characterization of the convex hull is NP-hard.

For other antimatroids (with long circuits) even the membership problem f~r the

conical hull is NP-complete. - This .reports on joint work with L. L~vasz.

R.L. GRAHAM

Remarks on some nonstandard pa~king and covering problems

In this talk we will discuss various, results .and. problems which relate to the

following two questions:

I. Given an open convex region R =E
2 , what is '~he shortest length CL(R):

a curve C can have wh~ch cannot be.covered by R in any position or orientation.

For example, if R is a disc D then CL(D). ~ diam(D). Si~larly, if R iso

a squ~re S, then CL (S) = diam(S). However, a~Besicovi teh showed in 1965, .,,';--­

if R is an equil~teral triangle T, then ~L(T) < O,9~ diam(T) •. Which re~iöns

(or polygons) R have CL(R) = diam(R)? As R = R(t) 'continuously change~ from

a circle (t = I) to an ellipse of eccentricity. t, how does the optima~ ~urve C'

evolve? In particular, when does it become non-polygonal? Is there adecision

procedure for dete~oing CL(R) when R is a polygon? What happens in higher
3 ' -',

dimensions, e.g., a uoit simplex or cube in JE ?

2. What is the densest packing of unit squares in a square of si~e a? If W(a)"

denotes the minimum possible area of uncovered space in a packing of unit squares

ioto ~ large square of side a, it is clear that W(a) = O(a). In 1975, P. ErdBs

d h h () ( 7/11)." b .an t e aut or showed that W a = 0 a • Th1S was su sequently 1mproved by
3-13'

. -2-+E:·
MOntgomery to W(a) = O(a " ) for any ~ > o. The best lower bound known is

due to Roth and Vaughan. It asserts that for a(a- [al) > 1/6,

W(a) > c(lI all a) 1/2

for some c > 0 where ·11 all denotes the dis tance of a to the neares tinteger.

There are ~ny variants of this question, e.g., packing strips with discs or

squares, covering squares by squares, etc.

.. I
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DAVID DOBKIN

Finding Empty Convex Polygons

Let S be a set of n points in general position in the plane. Let rr(S) denote

the-set of Tc S such. that ITI = rand the points of T form a convex r-gon

with no other point of S in it. Let yr(S) = :lrr(S)1 • We show that rr(S) can

be found in time O(yr(S) + Y3(S» •

2
< 2n2Let gr(n) = min{yr(S) I 151 = n} . We show that E-+ cn ~ g3(n) ,2

2
< 3n2 2 2

!!.....+ CD ~ 84(n)
n and n

8 1)-+ C ~ g5(o) ~ 2n g6(o) ~ T

DAVID AVIS

Extrema1 Properties of Fixed Radius Neighbourhood Graphs

For i ~ 1, .•. ,n let (xi,ri ) be a sphere in ~d with centre xi aud radius ri~

A fixed radius ~eighbourhood graph (F.R.N.G.) is a directed graph pn the centres,

where (xi ,xj ) is an edge whenever x j lies on the sphere '(xi' r i) . Examples

are the minimum distance graph, nearest neighbour graph, diameter graph, furthest

-neighbour graph etc. 'Bounds are given on the maximum numbe~ of ~dges in F~N.R.G.

which are assymptotical1y tight in even dimensions. It is estab1ished that the
3 ' - n 2 3n f ff·furthest neighbour graph in m can have at 'most- lr + ~ + 255 edge~ or su 1-

ciently large n • Examp1es show that such graphs can have at least ~ + 30
4 2

edges.

(Joint work with P. Erdös and J. Pach)

J. J. SEIDEL

Designs and Approximation

Each of the notions: ord~nary t~(V,K.,A) de~ign, sphericalt-de~ign, cubature

formo1a of strength t for the unit sphere S, deals with the approximation of the

'set of all blocks, resp. vecto~s, by a nice subcollection. We present a general

\..
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setting for these notions and theii generalizations-in -terms of measures in

V = Rd by defining dt to be a measure of streng~h t whenever

V ffk(x)~t(x) vf IIxll kdt(x) ·sffk(x)dt(X) , for all fk E Ho~(V") , for

k = 1,2, ••• ,t •

The-case of finite suppor~ (X,w) with t 2 leads to eutaetic stars.

Finite support (X,w) with t = 2e , and X distributed over enough spheres,

yields lxi >-dim Pol (V) = (d+e) •
- e e

The ease X c S leads to cubature formulae and spherical -t-designs.

Also lattices fall underthe general not ion of measure of strength t

results are to be expected.

(Joint work with A. Neumaier)

GUNTHER M. ZIEGLER

The Face Lattice of Hyperplane Arrangements

EverY. ~rrangement H of affine hyperplanes in lRd determines a partition of ]Rd

i~to :open topological cells. The face lattice L(H) of this partition' was t~e

obj~~t of a study by Barnabei and Brini.

W'e use geometrie constructions' from the theory of conve~ polytopes to prove the

shellaQility of L-(H) and to determine the topology of its intervals up to homeo­

morphism.

W'e will discuss connectio1J.s to other recent progress in the combinatorics of

hyperplane arrangements.

L~ J. GUlBAS

On the complexity of many facets in an arrangement of n lines in the plane

What i5 the largest total number of ~d~e5 that m distinct faces can have in an

arrangement of ~ lines on the plane? We prove that this quantity 1S
1 2y

1'+'Y 1+y 2
~(m n + m + n log n) for any y > 3 . Our technique is based on analyzing

the space complexity of an ~lgorithm for computing the faces containing m given
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points P1, ••• ,Pm in an arrangement of n 1ines 11 ,12 , ••. ,ln • The algorithm

,uses a-partition-based range searching technique forsolving the half-planar range

query problem :(- The search tree is built on the duals of the lines 1*1'··· ., In* •
- . 'b

Then the duals of the points pi, ••. ,p: are sent down this tree.. Whenever a

line (dual point) reaches anode all of whos~ poin~s are on the same side, the

line is placed on a special bucket associated with that node. The partition sub-

division stops when ( # of lines at a node) ~ (# of points)2 • At the bottom

we dualize back and compute the full. arrangement. We then go back up the tree,

combining the cells computed from each of the children. •
JURGEN BOKOWSKI

Realizable and Nonrealizable Chirotope manifolds of genus 3

Oriented,matroids er chirotopes have been proved to be an appropriate structure

to study a variety of realizabillty problems. The talk deals with two cases in

which combinatorial complexes are given and the geometrie realization is of

interest and has to be decided:. geometrie regular polyhedra and manifolds .of

genus 3.

The method of the author to decide such eases was discussed and ~re re~ent results were
\

given. The shap~ of polyhed-ral realizations of these manifelds of genus 3 was

shewn on slides, video-tapes and a graphic·werk station.

HENRY CRAPO

Geometrie reasoning by co~uter

J. Computati6nal tools for geometrie research

Geometrie research h~s always been impeded by the unavailability of adequate and

effieient means for visual representation, a~d by the unavoidabl~ gap which sepa­

rates eoncrete geometrie models from their logieal and algebraic description.

Reeent advances in computer-aided design, together with progress in computer-aided

geometrie reasoning, promise a speedy improvement in the eonditions .under which

geometrie research is ca~ried out •

..
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Since computers haven!:t been told there's anythingspeeial about three dimensions,
J

they are perfe~tly eontent to work'on ~igher-dimensional proble~, when p~ogrammed

to use the usual techniques of vector representation and linear algebra. Higher

dimensional subspaces are easily represen~ed in ptojective (Grassmann-P.1ücker)

coordinates. Exterior algebra, .suitably upgraded to the Rota-Doubilet~Steindouble

algebra of join and meet, enables one to draw.out the eonseque~ees of geometri~

hypotheses for geometrie figures of arbitrary dimension. But since eomp~ter output

is typically no more than 2-dimensional, consisting as it does of essentially

I-dimensional strings of letters,· arid two-dimension~l drawings or sereen presenta­

tions, some way has to be found adequately to represent and to manipulate higher­

dimensional struetures in 2-dimensional form.

2. A glimpse at descriptive geometry

Since the time of Gaspard Monge, geometers have suecessfully developed teehniques. } . ' ~

to bridge the gap between 2 and 3 dimensions.' The most substantial"effort goes by
. ~ "

the name of descriptiv~ geome~ry. The basic ~ec~nique in de~eriptive geom~t.ry L8

to work on plan~ drawings'as if they were alr~adY 3-dimensional. The first'lst;p is

. just a question of correet ~abelling of a pl~ne~'figure: the visi~le inters~et~on

of two lines in the drawing-plane is, not tak~n.to be·a point unless the two' lines

are known to be eoplanar in 'the assoeiated spatial realization.· As a seeond step,

the deseriptive geometry" teehnique.of rab~tte~nt· (rotation of flat polyg~nal '

faces down into the plane) ean be used·to obt'äin corre~t Euclidean dimensions for

plane faees, so .they· can be cut from cardboa~d, and real 3-dimensional models ean·

be built.

There i5 no obst8ele, at least ~n theory,·to extend~ng the m~thods of descriptive

geometry to higher dimensions. Janos Baraes, a colleague of ours and founder of

the Struetural Topology research group in MOntreal; ~ndertook the extension of

deseriptive geometry to 4 and 5 dimensions, in orde~'t~ understand the meehanics

and statics of bar and joint struet~res in 3 dimensions.

3. The use of partially defined 'objects .

The natural deseription of geometrie structures, and thus the starting point for

any eomprehensive geametry software package, is in termS of variable points, and

combinatorial statements of incidenee and"other projective properties. The eorres­

ponding caleulations can only b~ aecomplished in terms ~~ polynomials' in the coor­

dinates of undetermined points. Symbolie computation methods are applicable to
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this problem, but will need to be extended to eover the gap mentioned in our

introductory paragraph. Geometrie statements, eorr~etly translated into geometrie

languag~, do not neeessarily deseribe single families of geometrie models. The~e

is a phenom~non of branehing omnipresent in the adjoint situation linking geometrie

properties and geometrie ,models. Algebraieally, this is simply the observation

that an radieal ideal iS'an interseetion of prime ideals.

4. Outlines of a programming environment

The essential features of a programming environment for automated descriptive

geometry would seem to inelude the following: ~

input devie~s flexible enough to, generate exaet data o.f ineidenee, approximate

data of loeation, without impeding the free use of geometrie imagination.

- a data base permitting the stoeking af a variety of partia1ly defined geometrie

figures, either generic, or else with speeifie projeetive coordinates, whenever

these beeome available.

- a rich voeabulary of e1ementary forms

- interaetive definition of complex struetures, by deelarations of ine~denee, or

by other methods of compositian starting from simple struetures (such as sp1ines).

Such struetures should inelude all sarts of configurations of lines-and planes,

meehanical and arehitectural structures of"bars and joints, of h~nged panels,

and tensegrity syste~ of elastic cables ~nd sheets.

- ealculation of the effeet of g~ometrie operations, princip6lly of projection and

intersection, earried out in symbolie form in the double algebra of Doubile~­

Rota-Stein.'

automatie censtruetion of generie models (often after taking into aecount the

natural branehing into elasses of minimal' models) , andinteraetive eomputation

of models determined by aseries of tree choiees of h~ights, bar lengths,

dihedral angles, and the like. ~

automatie ealeulation 'of deseriptions of figures with special geometrie proper­

ties, such ~s those whieh lift to ~igher dimensions, or which admit eertain

internal motions.

- derivation of the logieal consequences of geometrie hypotheses, and automat1e

proof of geometrie theorems.

- legible representations of highe~-dimensional geometrie fo~, via screen,

plotters, laser printers.
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CHEE K. YAP

Moving arobot arm in a·partia11y known environment (or, How to search in the dark)

We report on ~ joint. work." with J •. Cox. We consider motion p1anning in a significantly

different setting tha~ that used in most current<Jresearch. This model, first used

by Lumelsky, assumes that the environment (obstaeles) is not known except that we

assume a polygonal. environment. The algorithm discovers ies environment by making

"guarded moves" which consists of prescribing an algebraic motion which is stopped

~ when the arm touc~es new obstacle points. The arm is assumed-to be comp1etely

covered by sensors so that all contact points are knoWn. We show that there is a

po1ynomia1 time algorithm for a 3-1ink arm in the plane. _This case is important.

because significant new comp1ications arise which are not encountered in Lumelsky's

origi~a1 work on 2-degree.of freedo~ robots. Dur ~ethod' is based on the. retraction

approach.

LOUIS.'J. BILLERA

Computing bases for modules 'of smooth sp1ines

For a si~licia~ (or general po1yhedral) d-d~mensioned complex-in ~d , we define

Cr(ö)" to be the set of all smooth (of order r) piecewise polynomia1 functions

defined on A. We consider the question of computing a free basis for' Cr(A) as

a module over the po1ynomial ring R = ~[xl, ••• ,xd] and we describe an example of a

tricingu1ated 2-disk t:af _for which CJ (A) is not free. (Co (A) is free for all
, n

triangulated d-nianifo1ds and - Cr (A.> is free for all 2-manifolds). 'f'ina1ly, we

describe a construction of the ring Cr(A) for d-complexes· embe~ded in RN ,

d < N , which- leads" in the case r = 0 , to a poss1b1e g~neralizatio~of" the nation

of the face ring to nonsi~l~cial comp1exes.

PETER W. SHOR

A Simp1~fied Rea1ization of -Davenport-Schinzel -Sequences by Segments

We show that the lower envelope of n line segments in the plane can have size

8(na(n» , where .a(n) is the inverse Ackermann function. The lower envelope of
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the segments forms a Davenport-Schinzel sequence, so this bound is tight. This

theorem was first proved by Ady Wiernik. Dur construction uses the same combina­

torial construction of the sequence as Wiernik, but it simplifies the plaeing of

the line segments by using one real parameter instead of a complicated system of

constraints. We hope the same techniques can be used to show non-linearity of

other realizations of Davenport-Schinzel sequences.

ALOK AGGARWAL

Geometrie Applications of a Matrix-Searehing Algorithm

Let i I and i Z be any two rows and let jJ and j2 be any two columns of a

(p *q)-sized, real-valued matrix A. Then, A is called monotone if both b > a

and· c > d are not simultaneously possible. We ~how that the maximum values for

all rows of a monotone matrix A can be computed with 9(p + q) questions where

every question only asks for the comparison between seme two entries o~. A. We

describe some geometrie applications of finding the maxima in monotone matriees

and also discuss some unresolved proble~.

R. POLLACK

Computing the geodesie center ofa simple polygon.

•

The geodesie c~nter of a simple polygon is a point inside the polygon which

minimizes the maximum ~nternal distance to any point in the polygon. We present

an algorithm which calculates the goedesic center of a simple polygon with n .

vertices in time O{n log2n) • This is a generaiization of the problem of finding~
the center of the smallest circle enelosing n given points.

(Joint work vith Micha Sharir)

Berichterstatter: A. Dress
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MARTIN GRÖTSCHEL

Decomposition and Optimization Algorithms for the Cycle Problem in Binary Matroids

A cycle in a binary matroid is the disjoint union of circuits. The maximum weight

cycle problem is the task to find, given a binary matroid M with weights on the

elements of the ground set, a cyele of maximum weight. The ~yele polytop~ of M

is the eonvex hull of the ineidenee vectors of the cycles of M.

For k = 2 and 3, we define several k-sums of binary matroids and of cyele poly­

topes; and we establish interesting relations between these k-sUms. We exploit

these relationships to eonstruet polynomial time algorithms for the solution of

the maximum weight cycle problem for some classes of binary matroids and for the

solution of the separation problem of a certain LP-relaxation of the eyele polytope.

These algorithms are based on polynomial time matroid deeomposition algorithms and

on good optimization procedures for certain special cases of the cycle prob~em.

This werk is joint with Klaus Truemper (Dalias).

ZOLTAN FUREDI

The Solution of the Littlewood-Offord Problem in High Dimension

Consider the 2n partial sums of arbitrary n vectors of length at least one

in d-dimensional euclidean·space. It is shown that no closed sphere of diameter 6

contains more than (l~J + 1 + 0(1»(ln/2J) out of these sums, and this is best

possible. For 6 - tAJ smal! an exact formula is given.

These are joint results with P. Frank!.
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