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Tagungsbericht 5/1987

Algorithmen in der kombinatorischen Geometrie

1.2. bis 7.2.1987

Tagungsleiter: A. Dress (Bielefeld), R.L. Graham (Murray Hill)

The Oberwolfach conference "Algorithms in Combinatorial Geometry"

brought together mathematicians and computer scientists working on geométric
problems. A wide spectrum of problems was touched, clever ad-hoc methods were.
confronted with first drafts of conceptual machinery. A general consensus
emerged that for developing the field intense cooperation with areas from
theoretical mathematics like real algebraic geometry could turn out rather
helpful.
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Vortragsausziige

K. H. BORGWARDT:

Linear programming algorithms admitting a probabalistic analysis

" In recent years the behaviour of linear programming algorithms was studied from a

.probalistic view under different stochastic models. But all the algorithms which

admitted such an analysis were modifications of a parametric variant of the Simplex-

. Method. The talk will explain two such approaches in detail and give some geometrical

oF

background. It will be shown that there are geometrical properties‘aﬁd advantages
of parametric variants which make them more useful than other variants for the pur-

pose of a probabilistic analysis.

M. SHARIR:

Davenport-Schinzel sequences and their geometric applications

Davenport-Schinzel sequences are sequences composed of n symbols which do not
contain any pair of adjécent equal elemeﬁts,,and do not contain any (not necessarily
continuous) subsequences of the form a...b...a...b...a,.., for a # b , of length
s+2 (these are (n,s)-Davenport-Schinzel sequences). These séduences arise in the
calculation of the lower envelope (i. e. pointwise minimum) of n continuous
functions each pair of which intersect in at most s points. The talk reviews
recent progress in the ;nalysis and applications of these sequences. We derive

sharp upper and lower bounds on the maximal length As(n) of an (n,s)-Davenport—
Schinzel sequence. In particular AB(n) = 8(na(n)), where a(n) 1is the (extremely
slowly growing) inverse Ackermann's function. For s > 3 we have

s-3 . ST
0taln) )) and Q(na 27" (n)). The geometric applications of these

As(n) = O(na(n)
sequences include: (i) Efficient (O(na(n)log n)) preprocessing of a polyhedral
terrain to support fast (0(log n)) ray shooting queries from a fixed viewing point
in an arbitrary direction. (ii) Planning a purely translational motion separating’
two (m-sided and n-sided) interlocking simple polygons in time

O(mna(mn)log m log n). (iii) An upper bound of O(kniﬁ(kn)) on the number of free
contacts of a k-sided convex polygon B amidst polygonal obstacles having n

sides altogether, in which B makes three simultaneous contacts with the obstacles.

(iv) Construction of collections of n 1line segments in the plane, whose lower
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envelope consists of Q(na(n)) subsegments. (v) Tight bounds O(nza(n)) on the
combinatorial complexity of the lower envelope of n triangles in 3-D space,
and some other sharp bounds on the complexity of the lower envyelope of 2-D surfaces.

J. E. GOODMAN : b

Hadwiger's transversal theorem in higher dimensions (joint with R. Pollack)

A theorem of Hadwiger states that a family of pairwise disjoint compact convex set'
in the plane has a line transversal if and only if the family can be ordered so

that for any three of the sets there is a line meeting them in the prescribed order.
We extend Hadwiger's theorem to hyperplane transversals of compact convex sets in
d dimensions. The "ordering" of the sets is replaced by their "order type", and
the condition that no two have a common point by the condition that no d meet a

common d-2-flat.

F. R. K. CHUNG

The sidewalk problem

Given a finite curve f = [0,1] -0]R » We want to determine if we can move two pomts
from one end of the curve to the other end such that the two points are (always)

of distance 1 and lie in the curve. In this talk, we will give a short solution to
this problem. We will also discuss several other problems on different distances
and on polytope graphs,

W. PLESKEN

An algorithm for finding the automorphism group of a lattice in Euclidean space

The motivat:i:on for developing such an algorithm was due to a conjecture by
J. Thompson onintegral laminated lattices with prescribed minimum m . For m = 3

and 4 the conjecture was verifjed thus giving (further) constructions and charac-
terizations for a certain unimodular lattice in 23-space and for the Leech lattice.

The algorithm itself consists of a backtrack search of tuples of lattice vectors
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which have the same scalar products as a given basis of the lattice. Since partial
tuples usually cannot ke extended to full basis tuples a matrix - called the )
finger print — is used to guide the search. The finger print records members of
vectors (usually of shortest length) having certain scalar groducts with sequences

of basis vectors. It does not only help to construct automorphisms, but can also

be used to find isometries to other lattices and to prove or disprove-that one has
generators for the full automorphism group of the lattice. For integral lattices the
algorithm can be improved by using the dual lattice at the same time. (joint work
with M. Pohst). - ' . . =

J. M. WILLS
!

Regular polyhedra with hidden symmetries

The 5 r§gular compoun&s can be‘interpreted as collapsed polyhedral realizations of
regular maps. In particular Kepler's Stella Octangula can be interpreted as a
collapsed regular torus whose 48 automorphisms all occur as symmetries of the

Stella Octangula. This is a surprising and simple example of the general program

to investigate various polyhedral realizations of regular maps in E3. The symmetry
group of a polyhedfal realization is a subgroup of the automorphism groub of the
regular map; its index is called the Zndexr of the polyhedron. The automorphisms ‘which
do not occur as symmetries are called hidden symmetries.

There are several methods and algorithms to find or enumerate such regular polyhedra
or to disprove their existence: By A. Dress for Griinbaum's "new regular polyhedra",
by J. Bokowski for regular polyhedra with or without self-intersections, by S. E.
Wilson for branched covers and by A. M. Macbeath for unbranched covers: We discuss

‘ ‘ some results and interesting open problems.

J. O'ROURKE

\
Moving a ladder in three dimensions

The problem considered is planning the motion of-a line segment (a "ladder") in
three dimensions in the presence of polyhedral obstacles. An initial and final
position are given, together with the obstacles, which have a total of n vertices.

We show a lower bound of ﬂ(na) by exhibiting a collection of obstacles that force
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a ladder to make that many distinct moyes to reach the final position. And we
establish an O(n6 log n) upper bound by describing an algorithm that requires
that much time in the worst case. The algorithm is based on the cell decomposition
approach pioneered by Schwartz and Sharir.
A, BJORNER
Continuous matroids
The continuous geometries of J. von Neumann are in a precise sense "continuous . .

analogues'" of the finite-dimensional projective geometries. In the discrete setting,
these have been generalized in the theory of matroids, which are semimodular rather

than modular. A

We show how to construct "continuous analogues' to other classes of matroids through
an embedding procedure. This yields, in particular, a continuous partition lattice.

In joint work with L. Lovasz we also constructed continuous algebraic matroids

(based on field extensions) and continuous transversal matroids.

A. SCHRIJVER

Homotopic Routing

The following problem arises in some of the automatic procedures for the design of
integrated circuits. Let G = (V,t) be a planar undirected graph, embedded in the
plane ]Rz, let Il,...,Ip be some of its faces (including the unbounded face),

and let C],...,C be curves in ]RZV,\(I'~l (17N UIP)’ each starting and ending in

h
vertices on the boundary of II U... UIp . Do there exist pairwise edge-disjoint .

paths P]""’Ph in G so that Pi is homotopic't:o C:.L in ]RZ\(IlU...uIP)
(i =1,...,h)? We discuss some special cases where a so-called "cut-condition" is
sufficient, and we discuss the result that this cut-condition always is equivalent

to the existence of a "fractional" packing of paths.
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R. E. JAMISON

Recognizing Angle .Orders

_ Let I, denote the class of convex k-gons in the plame. A partially ordered

k

set (P,<) 1is represented by I  iff it is isomorphic to a subposet of Zk under

set-inclusion. The class L, coisists of all convex angular regions and the posets
reptesenped by 22 were called angle orders by Fishburn and Trotter. There are
several minigal posets. known which are not representable by 22, but ‘it is un-
known whether the number of these is finite or not. The recognition problem for
representability by Ek (k fixed) is probably NP-hard and seems to be related

to the following combinatorial problem:

Let X be a (finite) set and. J a family of subsets. When can X be cyclically
ordered so that each set in J is the union of at most k arcs (intervals) in

the cyclic order?

P. ROSENSTIEHL

Jordan Pushing and Pulling

We consider in the plane a set, of Jordan arcs monotonic with respect to the Y-axis,

called the objects, and a set of Jordan arcs monotonic with respect to the X-axis
called the pushers, such that each pusher is incident by one end with the upper
side of a first object and incident by the other end with the lower side of a second
object; the pusher is said oriented from the first to the second object. Further-
more the objects are pairwise disjoint, and any pusher is disjoint from the ob-—
jects except by'its two incidences; at last whenever two pushers cross, they are
both oriented in the positive direction of the Y-axis.

The theorem proved is that the pushing relation between the objects is acyclic.

The theorem is closed in the discussion of a system of potential inequality on

the Y-coordinates of points belonging to the objects of the type Y;-¥; > a,.

(aij < 0 for a pusher, aij > 0 for a puller). Consequences appearJabout theJ
existence of Fary-type layout of planar graphs, about tentative of stretching of
pseudolines of a pattern, and practically while improving the automatic design
of electrical networks. The result generalizes thé dominance relation studied
by L.J. Guibas and F.F. Yao for the motion in a given direction of segments

of any direction.
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G. PURDY

Some Extremal Problems in Geometry

We discuss several inequalities and- extremal problems in Cd instedd of the

mor; usual Rd, including a conjecture of Dirac, a result of Kelly and Moser

and the inequality n-%+p > 0, conjectured by the author, involving the & lines

and p planes determined by n points. We use the inequality t2+3/4 ty2n+ 'Z (Zi-l)t'i
involving the number t; of lines containing exactly i points from among i23 .
n given points in CZ, (assuming t Tt Tt
F. Hirzebruch, using an inequality on Chern numbers.

= 0), proved recently by

N.J.A. SLOANE

The Solution to Berlekamp's Switching Game

Four recent results in packing and covering (I) the theta series of diamond.
(I1) Packing superballs H = {(k,s..,k ) : I l&ila < 1} (with J.A. Rush).

(III) Penny-packing (with R.L.Graham). (IV) The solution to Berlekamp's.light-bulb
game: for the 10x 10 game the answer is 34 (with P.C. Fishburn).

* B. KORTE

Polynomial Time Algorithms for Convex Shellings

In Combinatorial Optimization very often a polynomial-time (combinatorial) algo- '
rithm for a problem and a nice and comprehensive description of the convex hull

of its characteristic vectors coincide. There are only feﬁ exemptions from this

rule: for stable sets in perfect graphs a good polyhedral description but no a

good combinatorial algorithm is' known. On the other hand the stable set problem

in claw-free graphs can be solved in polynomial time, but we do not have a poly-
hedral characterization. Only very 'ugly" facts are known. One aim of this lecture

is to contribute another problem to this list of exemptions: We show that the

validity problem for the feasibility polytopeof semi-convex and convex shelling

in the plane can be solved in polynomial time, but we were not able to describe

the polyiope,since we found also very strange facets.
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For some other antimatroids we were able to characterize the convex hull of
characteristic vectors nicely. For some other antimatroids we could only character-
ize the comical hull, while a characterization of the convex hull is NP-hard. i
For other antimatroids (with long circuits) even the membership problem for the

conical hull is NP-complete. — This reports on joint work with L. Lovasz.

‘ R.L. GRAHAM

Remarks on some nonstandard packing and covering problems

In this talk we will discuss various results ané problems which relate to the -
following two questions: ) . » i

1. Given an open convex regi&n R S]Ez, what.i;2£ﬁe shortest length CL(R)§ -

a curve C can have which cannot be covered by R in any position or orientation.
For example, if R 1is a disc D then CL(D).f;diam(D). Similarly, if R is

a square S, then CL(S) = diam(S). However, ?é Besicoviteh showed in 1965,>Jf
if R is an equilateral triangle T, then CL(T) < 0,99 diam(T). Which reéi&ﬁs
(or polygons) R have CL(R) = diam(R)? As R = R(t) ‘continuously changes from
a circle (t = 1) to an ellipse of eccentricity t, how does the optimal curve C
evolve? In particular, when does it become non-polygonal? Is there a deciéioh
procedure for determining CL(R) when R 1is a polygon? What happens in.highet
dimensions, e.g., a unit simplex or cube in E3?A »

2. What is the densest packing of unit squares in a square of side a? If W(a)

denotes the minimum possible area of uncovered space in a packing of unit squares

I ~ into a large square of side a, it is clear that W(a) = O(a). In 1975, P. Erdés

and the author showed that W(a) = 0(a7lll)

) 3-/3
) o o ) ——i—+e
Montgomery to W(a) = O(a ~. -

. This was subsequently improved by

) for any € > O. The best lower bound known is
due to Roth and Vaughan. It asserts that for a(a-I[a]) > 1/6,

W) > c(jaf a)l/2
for some c > 0 where {a| denotes the distance of o to the nearest integer.
There are many variants of this question, e.g., packing strips with discs or

squares, covering squares by squares, etc.
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DAVID DOBKIN
Finding Empty Convex Polygons
Let S be a set of n points in general position in the plane. Let I‘r(S) denote
the-set of T < S such that [T} = r and the points of T form a convex r-gon
with no other point of S in it. Let 'rr(S) = !lI'r(S)l . We show that I‘r(S) can
be found in time O(y_(5) + v5(8)) . »

2
Let g.(n) = min{y_(8) | Isl = n} . We show that %— + cn < gy(m) < 202 ,
2 o

-% +cn < gl.(n) < 3n2 s %-4-.(: < gs(n) < Zu2 and g6(n) i'nz_ .

DAVID AVIS

Extremal Properties of Fixed Radius Neighbourhood Graphs

For if l,...,n let (xi,ri) be a sphere in ]Rd with centre x; "and radius LI

A fixed radius neighbourhood graph (F.R.N.G.) 1is a directed graph on the centres, -
where (xi,xj) is an edge whenever x. lies on the sphere '(xi,ri) . Examples

are the minimum distance graph, nearest neighbour graph, diameter graph, furthest
-neighbour graph etc. Bounds are given on the maximum number of edges in F.N.R.G.

which are assymptotically tightf in even dimensions. It is established that the

furthest neighbour graph in R3 can have at most’ nT + % + 255 edges for suffi-

ciently large n . Examples show that such graphs can héve at least 54— + 223
edges. o . .

(Joint work with P. Erdds and J. Pach)

J. J. SEIDEL ’

Designs and Approximation

Each of the notions: ordinary t-(v,c,A) design, spherical t-design, cubature
formula of strength t for the unit sphere S , deals with the approximation of the

'set of all blocks, resp. vectors, by a nice subcollection. We present a gemeral
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setting for these notions and their gemeralizations-in -terms of measures in
V= Rd by defining df to be a measure of strength t whenever

- k . :
v ffk(x)di(x) = VI %1l "dg(x) Sffk(x)dt(x) , for all fk € Homk(V) , for

k=1,2,...,t .

The -case of finite supporﬁ (X,w) with t = 2 leads to eutactic stars.

Finite support (X,w) with t = 2e , and X distributed over emough spheres,

yields x| >-dim Pol_(v) = (7% .
The case X < S leads to cubature formulae and spherical t-designs.

) ' Also lattices fall under the general notion of measure of strength t ; certain
results are to be expected.

(Joint work with A. Neumaier)

GUNTHER M. ZIEGLER

The Face Lattice of Hyperplanme Arrangements

Everi érrangement H of affine hyperplanes in Rd determines a partition of Rﬁ

into ‘open topological cells. The face lattice L(H) of this partition was tﬁg
object of a study by Barnabei and Brini. -
We-dge geometric constructions from the theory of convex polytopes to prove the
shellability of L(H) and to determine the topology of its intervals up to homeo-—
morphism. * o
We will discuss connections to otheér recent progress in the combinatorics of

hyperplane arrangements.

L. J. GUIBAS

On the complexity of many facets in an arrangement of n lines in the plane

What is the largest total number of edges that m distinct faces can have in an

arrangement of n lines on the plane? We prove that this quantity is
1 2y . :
&(m'+yn]+7 +m+ n log n) for any Yy > % . Our technique is based on amnalyzing

the space complexity of an algorithm for computing the faces containing m given
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points PysseesPy in an arrangement of n lines 11,12,..;,1n . The algorithm
uses a partition-based range searching technique for solving the half-planar range .
query problem:” The search tree is built on the duals of the lines 17,...,1; .
Then the duals of the points p?,...,p; are sent down this tree. Whenever a
line (dual point) reaches a node all of whose points are on the same side, the
line is placed on a special bucket associated with that node. The partition sub-
division stops when ( # of lines at a node) > (# of points)2 . At the bottom
we dualize back and compute the full arrangement. We then go back up thé tree,
' combining the cells computed from each of the children.

. - —

JURGEN BOKOWSKI

Realizable and Nonrealizable Chirotope manifolds of genus 3

Oriented matroids or chirotopes have been proved to be an appropriate structure

to study a variety of realizability problems. The talk deals with two cases in

which combinatorial complexes are given and the geometric realization is of
interest and has to be decided: geometric regular polyhedra and manifolds of
genus 3. ) ) ,
The method of the author to decide such cases was discussed and more recent results were
given. The shape of polyhedral realizationms éf these manifolds of genus 3 was

shown on slides, video-tapes and a graphic work station.

HENRY CRAPO

Geometric reasoning by computer .

1. Computational tools for geometric research °

Geometric research has always been impeded by the unavaiiability of adequate and
efficient means for visual representation, and by the unavoidable gap which sepa-
rates concrete geometric models from their logical and algebraic description.
Recent advances in computer-aided design, together with progress in computer-aided
geometric reasoning, promise a speedy improvement in the conditions .under which

geometric research is carried out.
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Since computers haven't been told there's anything special about three dimensions,
3

they are perfectly content to work-on higher-dimensional problems, when p;ogrammed‘

to use the usual techniques of vector representation and linear algebra. Higher

dimensional subspaces are easily represented in projective (Grassmann-Pliicker)

coordinates. Exterior algebra, suitably upgraded to the Rota-Doubilet-Stein double

algebra of join

and meet, enables one to draw.out the consequences of geometric

hypotheses for geometric figures of arbitrary dimension. But since computer output

is typically no more than 2-dimensional, consisting as it does of essentially

I-dimensional strings of letters, and two-dimensional drawings or screen presenta-

tions, some way has to be found adequately to represent and to manipulate higher-

dimensional structures in 2-dimensional form.

2. A glimpse at

-

desctxptxve geometry

Since the time of Gaspard Mnnge, geometers have successfully developed techuxques

to bridge the gap between 2 and 3 d1mens1ons. The most substantial effort goes by

the name of descrxpt1ve geometry. The basic technlque in descrxpt1ve geometry is -

to work on plane drawings as if they were already 3-dimensional. The flrst‘step is

- just a question

of two lines in
are known to be
the descriptive
faces down into
plane f;ces, so
be built.

of correct labelling of a plqne figure: the visible 1nters%ct;on
the drawing plane is not taken to be -a point unless the two lines
coplanar in the associated spatial realization. As a second step,
geometry technique. of rabgttemeﬂt (rotation of flat polygonal

the plane) can be used.to obtain correct Euclidean dimensions for

they can be cut from cardboard, and real 3-dimensional mbdgls'can-

Y N

There is no obstacle, at least in theory, to extending the methods of descriptive

geometry to.higher dimensions. Janos Baracs, a colleague of ours and founder of

the Structural Topology research group in Montreal, undertook the extension of

;
descriptive geometry to 4 and 5 dimensioms, in order to understand the mechanics

and statics of bar and joint structures in 3 dimensions.

3. The use of partially defined objects

The natural description of geometric structutes, and thus the starting point for

any compreheusxve geometry software package, is in terms of variable points, and

combinatorial statements of incidence and other projective properties. The corres—

ponding calculations can only be accomplished in terms 6f polynomials.in the coor-

dinates of undetermined points. Symbolic computation methods are applicable to
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this problem, but will need to be extended to cover the gap mentioned in our
infroductory paragraph. Geometric statements, correctly translated into geometric
language, do not necessarily describe single families of geometric models. There

is a phenomenon of branching omnipresent in the adjoint situation linking geometric
properﬁies and geometric models. Algebraically, this is simply the observation

that an radical ideal is-an intersection of prime ideals.

4. Outlines of a programming environment
The essential features of a programming environment for automated descriptive

geometry would seem to include the following: ‘

- input devices flexible enough to gemerate exact data of incidencg,'approximate
data of location, without impeding the free use of geometric imagination.

- a data base permitting the stocking of a variety of partially defined geometric
figures, either generic, or else with specific projective coordinates, whenever
these become available. ’

- a rich vocabulary of elementary forms

- interactive definition of complex structures, by declarations of incidence, or
by other methods of composition starting from simple structures (such as splines).
éuch structures should include all sorts of configurations of lines-and planes,
mechanical and architectural structures of bars and joints, of hinged panels,
and tensegrity systems of elastic cables and sheets.

- calculation of the effect of geometric operations, principally of projection and
intersection, carried out in symbolic form in the double algebra of Doubilet-
Rota-Stein. » . .

- automatic construction of generic models (often after taking into account the
natural branching into classes of minimal models), and interactive computation
of models determined by a series of free choices of heights, bar lengths,

dihedral angles, and the like. -

- automatic calculacioﬁ‘of descriptions of figures with special geometric proper-
ties, such as those which lift to higher dimensions, or which admit certain
internal motioms. ' ‘

- derivation of the logical consequences of geometfic hypotheses, and automaticA
prbdf of geometric theorems.

- legible representations of higher-dimensional geometric forms, via screen,

plotters, laser printers.
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CHEE K. YAP -

Moving a robot arm in a-partially known environment (or, How to search in the dark)

We report on a jointiwbrk:withAJ._Cox. We consider motion plauﬁing in a significantly
different setting than that used in most currentcresearch. This model, first used

by Lumelsky, assumes that the environment (obstacles) is not known except that we
assume a polygonal environment. The algorithm discovers its environment by making
"guarded moves" which consists of prescribing an algebraic motion which is stopped
when the arm touches new obstacle points. The arm is assumed  to be completely

covered by sensors so that all contact points are known. We show that there is a

‘polynomial time algorithm for a 3-link arm in the plane. This case is important.

because significant new complications arise which are not encountered in Lumelsky's

original work on 2-degree of freedom robots. Our method is based on the. retraction

approach.

LOUIS J. BILLERA

Computing bases for modules of smooth splines

For a simplicial.(or general polyhedral) d-dimensioned compléx.in. mﬁ s, we define

_CF(a) to be the set of all smooth (of order r) piecewise polynomial functions

" defined on A . We comsider the question of computing a free basis for C (A) as

Deutsche
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a module over the polynomial ring R ]R[xl,...,x ] and we describe an example of a
trlangulated 2-disk Af for which C (A) is not free. ‘(CO(A) is free for all
triangulated d—manifolds and - C (A) is free for all 2~manifolds). Finally, we
describe a construction of the ring c¥(8) for d-complexes embedded in ’Y ,

d <N, wh1ch leads, in the case r =0 , to a possible generallzatxon of the notion

of the face ring to nonsimplicial complexes.

PETER W. SHOR

A Simplified Realization of Davenport-Schinzel Sequences by Segments

We show that the lower envelope of n 1line segments in the plane can have size

8(na(n)) , where a(n) 1is the inverse Ackermann function. The lower envelope of
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the segments forms a Davenport-Schinzel sequence, so this bound is tight. This
theorem was first proved by Ady Wiernik. Our construction uses the same combina-
torial construction of the sequence as Wiernik, but it simplifies the placing of
the line segments by using one real parameter instead of a complicated system of
constraints. We hope the same techniques can be used to show non-linearity of

other realizations of Davenport-Schinzel sequences.

ALOK AGGARWAL

Geometric Applications of a Matrix-Searching Algorithm

Let i] and i2 be any two rows and let jl and j2 be any two columns of a
(p * q)-sized, real-valued matrix A . Then, A is called monotone if both b > a
and.- ¢ > d are not simultaneously possible. We show that the maximum values for
all rows of a monotone matrix A can be computed with 8(p + q) questions where
every question only asks for the comparison between some two entries of A . We
describe some geometric applications of finding the maxima in monotone matrices

and also discuss some unresolved problems.

R. POLLACK

Computing the geodesic center of a simple polygon .

The geodesic center of a simple polygon is a point inside the folygon which
minimizes the maximum internal distance to any point in the polygon. We present
an algorithm which calculates the goedesic center of a simple polygon with n
vertices in time 0(n logzn) . This is a generalization of the problem of finding
the center of the smallest circle enclosing n given points.

(Joint work with Micha Sharir) )

Berichterstatter: A. Dress
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MARTIN GROTSCHEL

Decomposition and Optimization Algorithms for the Cycle Problem in Binary Matroids

A cycle in a binary matroid is the disjoint union of circuits. The maximum weight
cycle problem is the task to find, given a binary matroid M with weights on the
elements of the ground set, a cycle of maximum weight. The cycle polytope of M

is the convex hull of the incidence vectors of the cycles of M.

For k = 2 and 3, we define several k-sums of binary matroids and of cycle poly-
topes; and we establish interesting relations between these k-sums. We exploit
these relationships to construct polynomial time algorithms for the solution of
the maximum weight cycle problem for some classes of binary matroids and for the
solution of the separation problem of a certain LP-relaxation of the cycle polytope.
These algorithms are based on polynomial time matroid decomposition algorithms and
on good optimization procedures for cer;ain special cases of the cycle problem.

This work is joint with Klaus Truemper (Dallas).

ZOLTAN FUREDI

The Solution of the Littlewood-Offord Problem in High Dimension

Consider the 2" partial sums of arbitrary n vectors of length at least one

in d-dimensional euclidean -space, It is shown that no closed sphere of diameter 4
contains more than (LA} + 1 + o(l))(ln72J) out of these sums, and this is best
possible. For A& - |A] small an exact formula is given.

These are joint results with P. Frankl.
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