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MATHEMATISCHES FORSCHUNGSINSTITUT QBERWQLFACH

Tag u n g 5 b e r. ich t 11/1987

Mathematische Stochastik

8.3. bis 14.3. 19.87

Die diesjährige allgemeine Stochastik Tagung stand unter der Leitung

von F. Götze (Bielefeld) und P. Bickel (Berkeley).

Die Arbeitsgebiete der 48 Teilnehmer aus den Vereinigten Staaten und

acht europäischen Ländern umspannten weite Gebiete der rnathema~'

tischen Stochastik. Etwa 40 Vorträge wurden nach verwandten Themen

zu Sitzungen zusammengefaßt.

Als Schwerpunkte ergaben sich dabei: Semiparametrische Modelle,

asymptotische Entwicklungen, starke Invarianzprinzipien, funktion­

ale Grenzwertsätze, Bootstrap Methoden sowie die Theorie der gr~ßen

Abweichungen mit ihren vielfältigen Anwendungen auf Probleme der

statistischen Physik. Ferner gab es Vorträge zur Verbindung von

~ Informationstheorie und Statistik, zu robusten Schätzproblemen und

empirischen Spektralprozessen.

Diese Vielfalt von Vorträgen über zum Teil wesentliche neue Ent­

wicklungen in den verschiedenen Gebieten führte zu einem erfreulich~

lebhaften Meinungsaustausch auch außerhalb des Vortragsprogrammes.
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Vortragsauszüge

R. AHLSWEDE:

Remote Data

On Minimax Estimation in the Presence of Side Information about

Model: One person, called "helper" observes an outcome •
of

of the sequence

n n n
x = (x1' ... 'xn ) E X of the sequence X = (X1, ... ,Xn )

i.i.d. RV's and the statistician gets a sample yn = (Y
1
,·· .,Yn )

n
of RV's with a densitY't~lf(Ytle,xt)

(8 E e l-parametric).

The helper can give some (side) information about n
x to the'

statician via an encoding function s
n

with

rate(s ) ~ 1.. log ** range(s ) ~ R .
n n n

Based on the know1edge of s (xn ) and
n

A
to estimate 0 by an estimator 0

n

n
Y the statician tri es

Result: For the maximal mean square error

R. (R)
n

inf
ß

n

inf
sn:rate(sn)~R

We estab'lish a Cramer-Rao type bound and, in case of a finite X,

prbve asymptotic achievability of thi~ beund under certain condi-

tiens. (Joint werk with M.V. Burnasev)

O. E •. BARNDORFF-NIELSEN:

A Problem in Fisheries

The talk reported on work in progress, joint with Ian James and
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George Leigh, eoneerning the natural mortality of ocean fish.

Let 1.I denote the rate of natural mortality for fish of a par-

ticular species and suppose ~ is a eonstant, i.e., independent

of time and age. The basis for inferenee on II is the observed

reeapture times tl, ... ,t n of a total of N fish which have

been tagged and then .simultaneously released in the oeean, at time

O. The fishing pattern resulting in the recapture of n fish

~ among the N released is considered unknown and is modelIed by a

distribution function ~ which determine the potential i.e.

ignoring natural mortality reeapture time of a tagged fish. The

maximum likelihood estimator

tioD of the equation

of 1s determined as the solu-

A
while ~ assigns pro?abi1ity exp(~t.)/N

1
to time point

i = 1, ••• , n • In the ease where the aetual fishing rate is

constant and equal to A, say, the limiting behaviour of the

1\
distribution of ~ is as foliows:

I

A
'2 1\

~ N(O,A 21J/(A-lJ»For > \J N (1l-1J)

I
'2 A

~ N(O,l)A II (N /10 g N) ( lJ -ll )

1
1

-ä 1\
A < lJ N (lJ-ll) ~ 5 a

where a ~ 1 + A/ll and where 5
a

indicates a stable law of index

a and wi th mean o. Normalizing
A
II - lJ by observed information

rather than merely a funetion of N

limiting behaviour.

leads to a somewhat less exotie

                                   
                                                                                                       ©



- 4 -

R. BERAN:

Prepivoting Test Statistics: A Bootstrap View of "the Behrens-Fisher

Problem, the Bartlett Adjustment, and Nonparametrie Analogs

Approximate tests for a composite null hypothesis about a parameter

e may be obtained by referring a test statistic to an estimated

quantile of that test statisticts null distribution. Either asymp­

totic theory or bootstrap methods ban be used to estimate the de- ...

sired quantile. The bootstrap approach typically leads to more

accurate critical values, if the asymptotic null distribut10n of

the test statistic does not depend on unknown paramters. Certain

classical refinements to asymptotic test, such as Bartiettts adjust-

ment to likelihood ratio test and Welchts e~timated t-distribution

solution to the Behrens - Fisher problem, are analytical approxima-

tions to natural bootstrap test. Prepivoting is the transformation

of a test statistic by the cdf of its bootstrap null distribution.

Bootstrap tes"t based on a test statistic prepivoted one or more

times have asymptotically smaller error in level than da bootstrap

or simple asymptotic theory tests based on the original test

statistic. Analytical approximation of the prepivoting transforma-

tion is sometimes feasible. Monte Carlo approximation works more ~

generally.

R. BHATTACHARYA:

An L 2 Comparison ·af Boatstrap & Empirical ~dgeworth Methodologie~

An empirical Edgeworth expansion of the distribution function of a

statistic is obtained by replacing population moments by sampie

moments in the Edgeworth expansion. The expected squared error of
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this method of estimation is compared with that of the bootstrap.

It is shown that the bootstrap performs better than a two-term

empirical Edgeworth for a broad class of statistics under reason-

able conditions, if the statis~ics are studentized.

Markov Processes and Nonlinear Time Series Models

Criteria for ergodicity are obtained for certain classes of Markov

~ processes which are not in general irreducible. These are applied

to nonlinear time series models. Classes of functions on the state

space for which the central limit theorem holds are found.

P. BICKEL:

~fficient Estimation of

"Maximum Likelihood" Ideas

Dimensional Parameters Based on

We discuss several ways of modifying non parametrie maximum likeli-

hood estimation to make it applicable in a variety of important

situations.ln particular, we develop the extension of generalized

(M) estimation to dimensional parameters.Using this notion we

construct efficient procedur~s in the transformation and bivariate

~ censoring models.

E. BOLTHAUSEN:

00 Self-Repellent One Dimensional Raodom Walks

Let p(x), x E Z , be a probability distribution on ~ satis-

fying 1: x p(x) = 0 . The probability distribution of the self-

repellent random walk is de!ined by

n
n (I-Al )/Z·

i,j=l wi=w j n
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where A E (0, 1 ) , w = (wO = O·,w), ••• ,w n ), w. E 71. and where Z
1 n

is the appropriate norming faetor in order that QA beeomes a
n

probability measure. Then the following result can be proved:

Theorem If 1: R,Elxlp(x)" < 00 for some E > 0 , then'there exists

A0 > 0 S U c h t hat f 0 r A E ( 0 , A0 1 . t her e ex ist c ) ('A ), c 2 ( Ä ) > 0 wi t h

lim Q~ (c
l

().) ~ Iwnl/n ~ c 2 ().» I.
n~

J •. CUZICK:

Semi-Parametric Regression Models

A class of models of the form y = S(z)+g(a(z)+x)+ error is

considered, where a and S are known parametrie functions "and

g is some unknown smooth funtion. Detailed analysis is carried

out in the case when a(z) == 0 and S(z) = ßz . Tbis special case

ist am e d sem i par am e tri c a d d i t i ver e g res s ion. An a I y.s i s i s b ase don

a loeal linear predietor

where ~.
1

has the form

1:1.
1

of the Hpseudo-residuals"

a~ 1:1. • •
1 1 + J

Simple examples are nearest neighbor, linear interpolation, moving

average, and loeal least sequences. In vector notation 6 = AA ~

and minimization of IIA AI1
2 leads to the estimator S=z'c y/i'c z

where c = (I-A)' (I-A) ."

If (x,z) are drawn from a bivariate distribution the best possible

estimator has efficiency E(Var(z(x»/Var(z) compared to the

parametric MLE with g unknown. This can be achieved when E is

normal by taking
-1

n tr (A'A)2 ~ 0 . Small modifications will also

achieve the effieiency tor general known errors.

                                   
                                                                                                       ©



·e

- 7 -

R. DAHLHAUS:

Empirical Spectral Processes

Let Xl' ... '~N be a stationary process with mean 0 and spectral
• A

distribution function F(A) = f f(a) d a where f(a) is the
o TI

spectral density. A common estimate of F(>..) = J X(O Al(a)f(a) da
-TI '

i s ..

1 X (a) IN(a) da
-TI (O,A 1

where

is the periodogram. We replace X(O,Al by functions g E Fand

prove weak convergence of the resulting empirieal speetral process

1\

VN(FN(g)-F(g»gEf · Furthermore, we apply the above result to time

sei.i-es anal}sis, for example to estimators of the speetral density

<:

obtained by minimi~ing the cross entropy of the proeess.

H.E. DANIELS:

Loeal Brownian Motion and ehe Maximum of Certain Gaussian Proeesses

Durbin (J.Appl. Prob. 1985) recently used the Ioeal Brownian be-

haviour of a elass of not necessarily Markovian Gaussian proeesses

to find approximate first exit time distributions. 1 use the idea

in a different way to 'extend to Gaussian proeesses resuits on the

maximum, and the time at which it is attained, of a random walk

whose mean p~th h~s a maximum (Daniels and Skyrme (Adv. Appl. Prob.

1985), Barbour (JRSS.B. 1975), Groeneboom (Probability Theory and

Stochastics, to appear». The method is applied to the breaking

strength and extension of bundles of fibres under general assump-

tioos.
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u. EINMAHL:

Strang Invariance Principles for Partial Sums of Independent

Random Vectors

A construction method for multidimensional random vectors is pres-

cuted. It is applied ta prove strang invariance principles for
n

partial sums of i.i.d. random vectors 1 X
k

, n E ~, such that

E [ H ( I XI I ) 1 < co wh e reH : [ 0 •co) -+ [0. co) isa co n tin U 0 U 5 funct i oe
satisfying

-2
t H(t) is non-decreasing and t- 4+ r H(t) is non-in-

creasing for some r > 0 •

M. FALK:

Weak Canvergence of Same Bootstrap Estimates

Le t X I ' ••• ,X n bei id rv f s wi th common d f F. Denote by T(F)

the parameter of interest and by

XI'··· ,Xn •

Put

F
n

the sample df pertaining to

wh e re P n { T ( Fit ) - T ( Fn) ~ x} den 0 t e s t heb 00 t s t rap e s tim a t e 0 f

P { T ( F n ) - T ( F) ~ x}. Be f 0 re t he sampIe X I ' ... , Xn i s d rawn ,

Zn (x) : = P n { T ( F~ ) - T ( Fn) ~ x} - P { T ( F n ) - T ( F) ~ x} , x E lR ,

•is unknown, i.e. ( Zn (x) ) x E lR d e f ine s ast 0 eh ast i c pro ces s i n DR

which we may ca!l the bootstrap process based on Fand T.

In the talk, weak convergence resu!ts in D
R

for the bootstrap

process are presented for several choices of T.
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J. FRANKE:

Bootstrapping Kernel Spectral Density Estimates

We consider estimating the spectral density f(w) ~f a linear pro-

from a sample of size

using the periodogram W j = (2n j ) 1T, j = 1 , ••• , N, N= [T 12 1

view of the asymptotic properties of

var E; t < co ,EE;t = 0 ,i. i. d. ,x =
t

cess

~ the periodogram we can reinterpret this task as estimating the

regression function f(w) in a multiplicative regression model

1, ••• ,N, e: j .. a p pro x im a t e l'y 11 . i . i . cl •

This formal analogy inspires an approach for bootstrapping kernel

estimates ~(w;k): where h denotes the bandwidth, of f(w):

Us i n g a.n in i t i ale s t i ~ a t e ~ ( w; g ) wege t .e mp i r i c a 1 res i du als "E: ••
J

After rescaling them, we draw an i.i.d. sampIe e:*l, •.• ,E*N from the

empirical distribution of the rescaled ~ and we define thej ,

bootstrap periodogram as I*T<W.) = ~(w. ;g) E*.. Finally, we get
J J J

~*(w;h,g) as a kernel spectral estimate whith band width h,

smoothing the bootstrap periodogram. We prove that this intuitive ad-

hoc method works in the sense that, under appropriate conditions,

the distribution of (Th)1/2" <1(w;h)-f(w» and the conditional

distribution, given the original data, of
J/2 6* h

(Th) (t (w;hg) _·t(w;g»

converge to each other in Mallows metric d
2

if h ~ 0 with optimal

rate and g ~ 0 a bit slower.

P. GAENSSLER:

On Convergence in Law of Random Elements in Certain Function Spaces

The aim of the present paper is to popularize the applicability of a

model for convergence in law of random elements in certain (noo -
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separable) function spaces being at first esp'e,cially appropriate

for simplifying the presentation of known functional limit theorems

for univariate empirical processes (like the uniform one) and which

at the same time allows for a straightforward generali2ation in

handling also empirical processes based on multivariate observations

up to empirical processes based on rand om data in arbitrary sample

spaces and being indexed by certain classes of sets or functions,

respectively.

R. GILL:

•
Nonparametric Maximum Like1ihood Estimation' in Semiparametric Models

In many practical situations, estimators are der~edin a semipara­

metric model by appealing to ,same generalization of the maximum 1ike­

lihood principle. Centred and sca1ed, the estimators are asymptotic­

a1ly Gaussian and in fact asymptotically efficient in the sense of

achieving the asymptotic infomation b~unds of ~.g. Beg~n, Hall, Huang

and Wellner [19s"31 •

Dur aim is to.under.stand when an~ why this happens. ~e show that (in,

nice examples) such estimators satisfy' an infinite-dimensional version

of the score equation: for each of a large family of parametric s~

models passing through the estimates, we must have that the (para­

metrie) score functions is zero a~ the estimate. So the NPMLE solves

an unbiased infinite dimensional estimating equation. Now, assuming

that the estimator is vn - consistent in a suitab1e strong sense, and

that the generalized score function is a smooth function of parameter

and data, we can identify the limiting distribution of the estimator

an d s h ,0 W t hat i t i s in d ee d t heb e s t pos s i b 1 e .,

A first version of such a theorem is sketched when the parameter is a

L _
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cumulative hazard function, considered as an element of n[o,Tl.

"Smoothness" is described in terms of comp-act (=Hademard) different-

i abi 1 i t Y i n D[ 0 , Tl·, sup norm. The result explains why various

versions of the Kaplan-Meier estimator, arising in complety different

sampling experiments (e.g. Markov vs. semi-Markov),. have an asymptotic

distribution of the same form: in all these problems, the. generalized

score function and hence also its functional derivative are of the

same form, and therefore the information bound (achieved by thise NPMLE) is the same tao.

E. HAEUSLER:

Laws of the Iterated Logarithm 'For Trimmed Sums

Let F be a distribution function in the domain of attraction of a

non-normal stable law with characteristic exponent a E (0,2) and

F (0-) = 0 : of independent random vari-

ables with common distribution function F let

denote the order statistics based on XI' ... 'Xn for ·each n > I.

We discuss the law of the iterated logarithm behavior of trimmed

sums of the form

sequence of non-negative integers such that k
n

where

and

k
n

is a

k In -+ 0
n

as n -+ co Special emphasis is laid on the sequences

for some 0 < C < co , because they constitute the level which

distinguishes between classical and non-classical law of the iterated

logarithm behaviour. For these sequences we show that the constant

K(a,c) in the law of the iterated logarithm for Sn(kn ) is given by

) 112M fM YK( 1, c) = 2' c [e log M- 0 e log y dy - log M + M 1 ,

where M E (0,00)

and by K(a,c)

for a * 1 •

I -M
is the unique solution of the equation c=M(I-e ),

a{2-a)I/2 1/2 [I + . {(-!- -I) M/a. ME (O,co)
2(a-l) c m1n cM e ·

) a M M Y -a+l d }'s a t i s f i es -=M e - -fe y y J
c 0
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c. HIPP: (joint work with F. Götze)

Local Limit Theorems for m-Dependent Random Fields

Loeal limit theorems are derived for sums of m-dependent rand~m fields

which admit a representation based on an independent random field. The

resulting approximations are mixtures of the usual approximations ~

the iid lattice ease on different supporting lattiees. The weights~

these mixtures are the probabilities that the sum lies in a certain

residue class of the integers; these probabilities are nonasymptotic.

The same approximations are derived for statistics which are finite

range potentials of a) an iid random field or b) a Gibbsian random

field with finite and finite range interaetions.

K. HORNIK:

Asymtotieally Optimai Tests for Markov .nd Other Related Processes

We first consider a general statistieal model and give asymptotie lower

bounds for type 11 errors in fixed alternatives in the case where the

(maximal) type I error tends to 0 exponentially fast. As an applieation

we prove a very strong non-Ioeal asymptotie optimality property Of~

likelihood ratio test for the drift parameter of a Wiener proeess.
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P. JANSSEN:

Strong Uniform Consistency Rates for Estimators of Conditional

FuncJionals

To establish strang uniform consistency rates for kernel type esti-

mators of functionals of the conditional distribution function one

can rely on appropriate

of the foim

a. s. properties of randomly weighted d. f·.

G (x) =
tn

-]
n

n
I: yt(Yi)I(X i ~ x) ,

i=l
xEm.

where ( Xi' Yi)' i =1 , • • • , n are b i v a r i a t e 0 b s e r va t i '0 n s ( s a y ) an d

where, for some interval I is a family of real-valued

measurable functions on lR. These properties are discussed and f.or

nonparametrie curve estimation specific applications, including ~-

and L-smoothers, are given.

J.L. JENSEN:

Asymptotic Expansions {or Strongly Mixing Harris Recurrent Markov·

Chains

N
Asymptotic expansions are derived for sums on the form I: f(x

i
)

N 0
and f f(x

i
,x

i
_

1
), respectively, where Xi is a Harris recurrent

Markov chain and the distribution of has a continuous com-

ponent. Contrary to previous results it is only necessary to assume

that the Markov chain is strongly mixing with a polynomia~ly de-

creasing mixing coefficient. This is achieved by introducing an atom

ioto the state space. The work is based on thepapers by Bolthausen

(1982) and Hipp (1985).
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C.A.J. KLAASSEN:

Adaptive Estimation in Partially Irregular Models

Consider estimators which behave locally asymptotically like· an

average of some function taken at .the observations. This function

is called the influence function and one calls such estimators

locally asymptotically linear. It can be shown that the influence

function of a locally· asymtotically linear estimator can be estimated

consistently and conversely, that, given a consistent estimator of

the influence function, estimators can be constructed which are

locally asymptotically linear in that influence function. With the

help of these results an adapti~e estimator may be construeted for

a partially irregular model.

•J.P. KREISS:

On Stochastic Adaptive Estimation

We d~al with the estimation problem of the parameter v in first

order autoregression. Since for such models, under same regularity

conditions, loeal asymptotic normality holds true, we are interested

in locally asymptotieally minimax estimators for v which does not
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depend on the error-distribution.

We give a method whieh should work quite weIl, also for small sampie

sizes. In a first step we estimate the score-statistic by using a

Fourier expansion for the.score-function with estimated coefficients.

Then we use a loeal random search to find a parameter value whieh

minimizes the absolute value of the estimated seore-statistie. Tbis

estimator appears to be loeally asymptotieally minimax. To show the

praetieal relevanee of the proposed proeedure we add some simulation

results.

H.R. LERCHE:

On M. Kac's "Can One Hear the Shape öf ä. Drum?"

A classical result of M. Kae on the number of holes of a drum is

derived by using a second-order approximation of the exit probabili-

ties of Brownian Bridge from a eircle. A somewhat more general result

is this: Let f denote a smooth funetion with f(O)=f'(O)=O and

denote the two dimensional Bronwnian Bridge

wi t h ast a r·t in g - an dend p 0 in t ~ = ( 0 , y) wi t h Y < 0 •

Let

• T E: = in f { t > 0 I w2 ( t) > f ( VEW 1 (t) ) / VE }

Then as E: -+ 0

Pt", '" { TE:< I } = ex p ( - 2 y
2 ) { I - vE f ' , (0) y 2 eIl ( 2 y) + 0 (v'E) }

~ ~ q:>(2y)

The lecture described is joint work with D. Siegmund.

B. LINDSAY:

Rank Pseudo-Likelihood (Preliminary Report)

Pseudo-likelihood is an inferential mechanism developed for use in
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certain spatial models on 1attices, where the true 1ike1ihood is

computationa1ly horrendous. Consideration will be given here to

construction of rank pseudo-like1hoods which seem to provide a

range of solutions from the fu1ly efficient to the partia11y effi-

cient but robust. A goodness-of~fit statistic is a natural auxi1i-

ary of the analysis.

P. MAJOR:

Limit Theorems in Statistical Physics on rhe Role of Continuous

Symmetry

We have discussed limit theorems which appear in statistical physics

in a natural way, and compared them with the problems of classical

probability. They are very similar, but because of some instabi1ity

properties of the operators appearing in statistical physics prob1emsof

a much more sophisticated picture ari~es there. This instability is

the deeper cause of such phenomena as phase transities, critical

phenomena e.t.c.

D. MASON:

Some Remarks about Strong A roximation ~nd the Dar1in -Erd6s Theor

Let {Xn , fn,n ~ O} be a martingale difference sequence and for each

2 n 2
integer n ~ set s = I: E(XiIF i _ 1 ) and S = Xl + ••• +X

n '
with

n
i=l

n
2

So = .sO = 0 Define the partial sum process on [O,co) based on

these random variables to be S(t) = Sn whenever

number of sufficient conditions are presented under which the Dar1ing-

Erdös theorem holds for such a process S(t), meaning that

a(T) sup S(t)/t
l

/
2

- b(T) ~ E as T
l<t<T

2 log log T + 2-] log log log Tb(T)(2 log log T)I/2,where a(T)
I

I

L _
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and E is an extr~me value random variable with

distribution function exp(-exp(-t», - V< t < co.

One such set of conditions is

(I) 2
s

n
co a.s. as n .... co •

There exists a sequence of positve constants

with probability one

e: ~ 0
n

such that

(11) 1: P ( I Xn 1 > e: s / ( log log s ) 1/ 2 1 I-
n

_ 1 ~ < co
n=1 n n n

'( I I I ) log log Sn
2

sn

n
'1:

i=1
E(X~ 1 (Ix. 1

1 1
> e:.

1

1/2
si / (log log si) 1Fi _ 1 ) .... 0 ,

(IV) 1:
i=1

2
(loglogsi) E(X~ (I 1

2 1 I Xi
s .

1

< e:.
- 1

. 1/2
,s .i / ( log log si) ) 1Fi-I) < 00 •

When X1'X 2 ' ... , form an i.i.d. sequence, these conditions hold if

2
and only if E XI log log (lXII v'3) < co ~ which is the best suffic-

ient moment condition on X, for the Darling-Erdös theorem to

hold in this case attainable by strang approximation techniques or

by a refinement of the original methods of Darling-Erdös (1956).

H. MI~BRODT:

Onthe Asymptotic Power of the Two-Sided Kolmogorov-Smirnov'Test

The asymptotic power of the two-sided one-sample Kolmogorov-Smirnov

test is investigated. Contrary to the common belief, it is found

that this test behaves v~ry much like a test against a onedimensional

alternative, and not like.a well-balanced procedure for higher-

dimensional alter~atives: There is essentially only one direction

of deviations from the hypothesisifor~~hich it has reasonable
'l .

asymptotic power! This optimal dijecti~~'is determined. Its know-
.~ "

ledge provides a quick and easy check of the performance of the

Kolmogorov-Smirnov test for any other direction of al~ernatives.
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Employing Abstract-Wiener space techniques,

a representation of the asymptotic power funition near the hypo-

thesis is derived. This representation is in terms of an orthogonal

series in the "tangent space l1 of directions of alternatives. The

beginning of this series is evaluated numerieally, thus computing

the curvatures of the asymptotie power funetion for a system of 50

orthonormal directions. This yields I1l oea l effieiencies l1 of the KS

test which are high for one direction only. and then rapidly dcreaJlt

to zero.

D.W. MÜLLER:

Estimating ~he Shape 6f the Error Distribution in a Linear Model

Let y i x ~ e + E: i '( i = I ,~. . . ,n) be a linear model with E:. iid AJ F
1

and x. , e ElRP •
1

The design x.
1

is deterministie, the parameter

dimension p is allowed to tend to infinity with n ~ ~ Let

~ be an estimator of e.
n

Let ~. = y. - x:-~. be t h e i t h res i -
1 1 1 n

contain a translate of F with prob abi 1 i ty ~ 1 - a

to have rate qn ' if (~ _8)T X
T X (ft -8) = °p(qn)n n n n

of consistency of ~ yield a positive answer to (*)
·n

dual. The following question (*) is considered: does a (l-a)"Kolmo-

gorov-Smirnov~band.around the empirical distribution of residuals

~ is said
n

Which ratee

Proposition (by E. roannidis)

Let f be the density of F s.t. s u P t I f ' ( t) I <+~ •

For estimators with rate qn the answer to (*) is positive provided

that (i)

(ii) 0"'" •

For the good rate of qn=P (se"e Yohai & Maronna 1979) one obtains
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p3/2 n- I / 2 log (p) ~ 0 as a ~ufficient condition.

J. PFANZAGL:

Fixed Versus Random Nuisance Parameters

methods for determining a lower bound for the

wi thsampleis a

be a family of p-measures, the problem is
n

(. x I ' • • • , x n) - ~ Pe, n·· ,
1 Y

For the case of random nuisance par~meters

Suitablee .

Pe,n lA (a,n) E a x H

to estimate

Let

e·
asymptotic variance of regular estimates for ~ are known; as weIl

as methods for the construction of estimator-sequences attaining this

asymptotic bound. Th·e·.qu·e~s:tion is discussed whether these bounds also

refer to the case of unknown (non-random) nuisance paramete~s. No final

answer to this problem is obtained so far.

P. REVESZ (E. WILLEKEN5):

Strong Theorems for Renewal Process

be a sequence of positive i~i.d. r.v. 's witb 5 0 =0,

Denote by Tt = BUp {n : Sn < t} • Some a1-

most sure upper and lower bounds for Mt = ~max{XI,x2,···,XTt'

are proved. A typical result is the fo110wing:

t-S }
T

t

Let (O<a< I) where L(x) i~ a s10wly varying

function then

lim inf
t~

Mt
t loglogt=ß(a). a.s.

where ß(a) is the solution of. the equation I .
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H. RIEDER:

Robust Regression ·Estimators and their Least Favorable Contamination

Curves

In the multiparameter linear regression model y = x'S+u , the ideal

model distribution may be subjected to infinitesimal perturbations of

the following types: (e) E-eontamination, (h) Hellinger; errors-in-

variables,

or, given

error-free-variables with fixed contamination curve E(X>'"
p E [I ,co], with any E (x) satisfying an LP-norm eon-

straint (p) 11 E 11 < I .
p -

For the resulting variety of eontamination

models, robust estimators and eorresponding least favourable eon~

tamination eurves E* (x) are determined. For example, the Hampel-

Krasker estimator, which is minimax in model (e, 1) , has an f!'- (x)

with essentially E*(x)/Ixl. increasing from 0 to its finite maxi-

mum as I xl tends from 0 to The Huber estimator turns out·

to be minimax in model (e,2) with E*:(X) roughly proportional- to

lxi. The least favorable eontaminations look similar in ,the general'

models (c,p) and (h,p), though the respeetive minimax estimators are

rather different, since residuals are bounded in case (c) ~ut ooly

downweighted in ease (h).

J. RITOV (P.J. BICKEL):

Large Sampie Theory of Estimation in lID Biased Sampling Regression

Model

Consider the semiparametric linear regression model where (x', y) are

observed with. y = ßT x + E x and e: independently with distribu~

tion functions Hand G respectively. Suppose that we don't sampie

from this distribution but there are s strata and stratum is

sampled with probability ). .
J

(known or unknown). Given that stratum
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was sampled, the pair (x,y) is sampled accotding to the cori-·

ditional probability density w(j,x,y) g{y-STx ) h(x)/W(j,G,H)

where w(.,.,.) are known weight functions. We discussed the

estimation of S, G and H when H has a known finite support.

We described an M-estimator which is LAN under any G,H and

asymptotically efficient at a particular distribution GO.

• U. RÖSLER:

Quicksort and a Fixed Point Theorem for Distributions

Quicksort is an a1gorithm to·sort a random list of numbers. pick by

random a number out of the unordered list. Compare all other numbers

witb the chosen one and build up a list of sma11er and a list ·cf

1arger numbers. Then apply the same procedure to the new 1ists until

we end up with all numbers in their natural order.

Let X
n

be the number of comparisons to sort a list of n numbers.

The random variable is thought to be proportional to the time.used

by this algorithm.

The appropriate normalization of X
n is y

n n
In .

distribution Y
n

converges to a r.v. Y being a fixed point of the

transformation S: distr. ~ distr. given by

S(F) = L(TX+(I-T)X+c(T»

X,X,T independent, L(X)=F=L(X),T uniformlyon [0,1"1 distributed,

C : [0, I ] ~ lR explicitely known.

Dur main result is: s is a contraction on the space of distribution

functions
2

F, Jx ~ F ( x ) = 0, f x d F ( x ) <co , with respect to the D .
2

Wasserstein metric. Furthermore the unique fixed point L(y)

exponentia1 moments.

has all
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Another good sorting algorithm is Heap sort. This algorithm has the

advantage, that X
n

for Heap sort is bounded by n In n and

'4 n In n. X
n

for Quicksort is bounded by n In n and 2
n with

expectation E(X
n

) = 2 n In n In order to compare both one is

interested in the probability of the event Xn Quieksort ~ 4 n In n .

Tbis probability is small, less to const(y)n- Y for every y > 0 .

M. ROSENBLATT:

Remarks on Limit Theorems for Nonlinear Funetionals of Gaussian

Sequences

•
Limit theorems for sums of nonlinear functionals of Gaussian sequences

typically obtain as limit distribution that of a single term 1n an ex-

pansion given by Dobrushin for a process subordinate to' a Gaussian pro-

cess. One shows how one can obtain' limit theorems ef this type where the

limit distribution is that of a full expansion' of Dubrushin's type.

A. SCHICK:

On Efficient Estimation of Functionals

The question of efficient estimation of functionals is addressed i~

the case when finite-dimensional submodels satisfy the LAMN condition.

A conditional convolution theorem for regular estimates and a lower

bound on the loeal asymptotic risk of an estimate are presented. A

sufficient condition for an estimate to be efficient in the sense of

these 'results is given. An application to branching processes is dis-

cussed.
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A.W. VAN DER VAART:

On the Asymtotic Information Bound

For locally asymptotically normal models we discuss asymptotic bounds

on the performance of estim~tors with values in a vector space. For

estimators with values in mk
we give a genera1ized convo1ution

theorem and discuss the situation that the tangent cone is not a

linear space. In particular we show that the convolution and LAM

theorem remain true if the assumption of tinearity of the tangent

cone is relaxed to convexity. Next we give a convolution and LAM

theorem for estimators of functionals with values in (more) general

vector spaces. For this we extend the notion of differentiab1e

functionals as given in Pfanzag1 (1982).

W.R. VAN ZWET:

Why Do Edgeworth Espansions Work?

Edgeworth expansions were origina1ly developed to provide corrections

for skewness, kurtorsrsetc. to the normal approximation for more or

less arbitr~ry dist~ibutions. Theoretical work, however, has long

concentrated on distributions of sums of independent random variables

and vectors. Now recent work (van Zwet, ZW 1984), (Friedrich, Ann.

Statist. 1988?), (Biekel, Götze, van Zwet, Ann Statist. 1986) is

leading up to a point where it can be shown that the distributions

of functions of independent random variables possess Edgeworth ex­

pansions under mild conditions. These resu1ts~ will final1y prov1de

a theoretical justification for the extensive use of Edgeworth ex-

pansions in practice. They also indicate that it will generally be

possible to construct so-ca11ed empirica1 Edgeworth expansions which

may provide an alternative to bootstrap resampling in certain situa-

tions.
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Y. VARDI:

Asymptotics for Emprirical_Distributions in Selection Bias Models

The empirical distribution function in selction bias models is an

important data an~lytic tool often needed in the analysis of

observational studies and encountered (as opposed to sampled) data.4II,

In this paper we discuss the large sampie behauviour of such

empirica1 distributions, and give informal proofs for the stated

asymptotic properties.

w. WEFELMEYER:

Estimation of Functionals in the Independent, Not Identically ·Distri-

buted Case

In the i.i.d. case, -the tangent cone introduced.by Chernoff and LeCam

is useful to describe bias bounds for the asymptotic risk of estimat-::

ors. The concept of a tangent cone can be carried over to models for

independent, not identically distributed observations. This makes i~
feasib1e to define canonical gradients for vector-valued functionals

on such models. We obtain a convolution theorem and an asymptotic

minimax bound in terms of the canonical gradient. The asymptotic

minimax bound is attained on contiguous neighborhoods fgr all bounded

bow1shaped loss functions if and only if the estimator is asymptoti-

cally linear with optimal score function.
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J.A. WELLNER:

Semiparametric Models and ACE

Models incorporating both "parametr'ic" (finite - dimensional) and

"nonparametrie" (infinite - dimensional) components are called semi­

par am t e r i c mo d e 1 s. I n t his tal k I will i n t rod u ces e ve ra 1 -e x a"m pIe s 0 f

such models in which the Method of Alternating Proje~tions (MAP)

arises naturally in the construction of efficient estimates. Some of

the history of the method of alternating projections will b~ reviewed,

and connections made with recent work on alternating conditional ex­

pectation (ACE) methods in. regression theory.

M. WOODROOFE:

Corrected Confidence Levels for Adaptively Designed Experiments

Consider a non-linear model Yk g{xk;w)+e
k

, k = 1,2, ... , in

which the design variables, x k xk{Y1, ... ,Yk - l ) may be fünctions

of the previous responses. A very weak asymptotic expansion for the

distribution of the maximum likelihood estimator is presented, from

which the effect of the adaptive nature of the design may be seen.

C.F.J. WU, J. SHAO:

Same General Theory. for the Jackknife

It is weIl known that the delte-one jackknife gives inconsistent vari­

anee estimators for nonsmooth estimators such as the.sample quantiles.

Consistency can be restored by using a more general jackknife with d,

the number of observations deleted, depending on a smoothness rneasure
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of the point estimator. Dur general theory exp1ains why jackknife

works or fai1s. It also shows that, (i) for "sufficient1y smooth"

estimators, -the jackknife variance estimators with bounded

consistent and asymptotically unbiased; (ii) for "nonsmooth"

cl are

estimators, d has to go ~o infinity at a rate explicitly deter-

mined by a smoothness measure to ensure consistency and anymtotic

unbiasedness. Improved results are obtained for several classes of

estimators. In particular, -for the sampIe p-quantiles, the jack­

knife variance estimators with d satisfying n
l

/
2

/d ~ 0 are

consistent and asymptotically unbiased.

Berichterstatter: F. Götze
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