MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsbericht 11/1987

Mathematische Stochastik

. 8.3. bis 14.3.1987

Die diesjihrige allgemeine Stochastik Tagung stand unter der Leitung
von F. G8tze (Bielefeld) und P. Bickel (Berkeley). '

Die Arbeitsgebiete der 48 Teilnehmer aus den Vereinigten Staaten und
acht europiischen Lindern umspannten weite Gebiete der mathema-'
tischen Stochastik. Etwa 40 Vortridge wurden nach verwandten Themen

zu Sitzungen zusammengefaBt.

Als Schwerpunkte ergaben sich dabei: Semiparametrische Modelle,
asymptotische Entwicklungen, starke Invarianzprinzipien, funktion-
ale Grenzwertsidtze, Bootstrap Methoden sowie die Theorie der grofien
Abweichungen mit ihren vielfdltigen Anwendungen auf Probleme der

statistischen Physik. Ferner gab es Vortridge zur Verbindung von

. Informationstheorie und Statistik, zu robusten Schdtzproblemen und

oF

empirischen Spektralprozessen.
Diese Vielfalt von Vortridgen iiber zum Teil wesentliche neue Ent-

wicklungen in den verschiedenen Gebieten fiihrte zu einem erfreulich

lebhaften Meinungsaustausch auch auBerhalb des Vortragsprogrammes.
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Vortragsausziige
R. AHLSWEDE:
On Minimax Estimation in the Presence of Side Information about
Remote Data
Model: One person, called "helper" observes an outcome ' ‘
x" = (x],...,xn) € X of the sequence X" = (Xl,...,Xn) of
i.i.d. RV's and the statistician gets a sample y" = (G A

. n
of the sequence ¥%(6,x") of RV's with a density T f(yt|e’xt)
t=1
(6 € ® l-parametric).
The helper can give some (side) information about x" to the

.. . . C . n .
statician via an encoding function s, ¢ X" » N with

log #range(sn) < R.

Al
rate(sn) =<

Based on the knowledge of sn(xn) and yn

the statician tries
. . A )
to estimate © by an estimator en.
Result: For the maximal mean square error
. : A 2
ln(R) = inf inf © sup E_l0 - 817 .

0
sn.rate(sn)fR 60€0

We establish a Cramer-Rao type bound and, in case of a finite X,
prove asymptotic achievability of this bound under certain condi-

tions. (Joint work with M.V. Burnasev)

" 0.E. BARNDORFF-NIELSEN:

‘A Problem in Fisheries

The talk reported on work in progress, joint with Ian James and
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George Leigh, concerning the natural mortality of ocean fish.
Let u denote the rate of natural mortality for fish of a par-
ticular species and suppose p 1is a constant, i.e., independent
of time and age. The basis for inference on u 1is Ehe observed
recapture times trseeesty of a total of N fish which have
been tagged and then simultaneously released in the ocean, at time
0. The fishing pattern resulting in the recapture of n fish
among the N released is considered unknown and isvmodelied by a
distribution function ¢ which determine the potential i.e.
ignoring natural mortality recapture time of a tagged fish. The
maximum likelihood estimator ﬁ of u 1is determined as the solu-
tion of the equation

uti

n
p ) -N=0,
1

A . ey A . .
while ¢ assigns probability exp(uti)/N to time point t.

i=1,...,n. In the case where the actual fishing rate is
constant and equal to A, say, the limiting behaviour of the
A -

distribution of u 1is as follows:

1

. 2 A ~ 2

For A > u : N (u=u) 3 N(O,A"u/(x-u))

1 .

2 .A ~
- A =y (N/logN)“(u-u) ¥ N(O,1)

1
T-3 A
a ~
- A< N (u-u) = s
where a =1 + X/u and where Su indicates a stable law of index
a and with mean O. Normalizing ﬁ - u by observed information

rather than merely a function of N leads to a somewhat less exotic

limiting behaviour.

o
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R. BERAN:

Prepivoting Test Statistics: A Bootstrap View of ‘the Behrens-Fisher

Problem, the Bartlett Adjustment, and Nonparametric Analogs

Approximate tests for a composiﬁe null hypothesis about a parameter
6 may be obtained by referring a test statistic to an estimaged
quantile of that test statistic's null distribution. Either asymp-—
totic theory or bootstrap methods ban be used to estimate the de-
sired quantile. The bootstrap approach typically leads to more
accurate critical values, if the asymptotic null distribution of

the test statistic does not depend on unknown paramters. Certain
classical refinements to asymptotic test, such as Bartlett's adjust-
ment to likelihood ratio test and Welch's estimated t-distribution
solution to the Behrens - Fisher problem, are analytical approxima-
tions to natural bootstrap test. Prepivoting is the transformation
of a test statistic by the cdf of its bootstrap null distribufion.
Bootstrap test based on a test statistic prepivoted one or more
times have asymptotically smaller error in level than do bootstrap
or simple asymptotic theory tests based on the original test
statistic. Analytical approximation of the prepivoting transforma-
tion is sometimes feasible. Monte Carlq approximation works more .

generally.

R. BHATTACHARYA:

An L2 Comparison of Bootstrap & Empirical "Edgeworth Methodologies.

An empirical Edgeworth expansion of the distribution function of a
statistic is obtained by replacing population moments by sample

moments in the Edgeworth expansion. The expected squared error of
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this method of estimation is compared with that of the bootstrap.
It is shown that the bootstrap performs better than a two-term
empirical Edgeworth for a broad class of statistics under reason-

able conditions, if the statistics are studentized.

Markov Processes and Nonlinear Time Series Models

Deutsche
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Criteria for ergodicity are obtained for certain classes of Markov
processes which are not in general irreducible. These are applied
to nonlinear time series models. Classes of functions on the state

space for which the central limit theorem holds are found.

P. BICKEL:

Efficient Estimation of o Dimensional Parameters Based on

"Maximum Likelihood" Ideas

We discuss several ways of modifying non parametric maximum likeli-
hood estimation to make it applicable in a variety of important
situations.In particular, we develop the extensign of generalized
(M) estimation to o« dimensional parameters.Using this notion we
construct efficient procedures in the transformation and bivariate

censoring models.

E. BOLTHAUSEN:

On Self-Repellent One Dimensional Random Walks

Let p(x), x €Z, be a probability distribution on Z satis-
fying I x p(x) = 0. The probability distribution of the self-

repellent random walk is defined by

A n
Qw) =1 plw.-w

n
1 ] j—l) ? (]-XIm.=w )/zﬁ

j=1 i)

o®



where X € (0,1), w = (mo =0, w ..,wn), w; €Z and where

is the appropriate norming factor in order that Qz becomes a

1°° n

probability measure. Then the following result can be proved:

elxl|

Theorem If I 2 p(x) < @ for some € > O, then there exists

Ao > O such that for 1 € (O,Ao]- there exist c](X), ¢, (A)>0 with

Lim Q) (c, ) < lo 1/n < ¢, (1) =1

n=rco

J. CUZICK:

Semi-Parametric Regression Models

A class of models of the form y = B(z)+g(a(z)+x); error is
considered, where o and B are known parametric functions "and
g 1s some unknown smooth funtion. Detailed analysis is carried
out in the case when a(z) = O ané ‘8(2) = Bz .This speéial case

is tamed semiparametric additive regression. Analysis is based on

~

a local linear predictor Ai of the "pseudo-residuals" A,=y,;-Bz;,
where A, has the form T oad AL, .
i . . i Ti+]
j*0
1jl<M

Simple examples are nearest neighbor, linear interpolation, moving
average, and local least sequences. In vector notation A = AA .
and minimization of ||X AII2 leads to the estimator B=z'c y/z'c z
where ¢ = (I-A)'(I-A) .

° If (x,z) are drawn from a bivariate distribution the best possible
estimator has efficiency E(Var(z(x))/Var(z) compared to the
parametric MLE with g unknown. This can be §chieved when € is
normal by taking n_l tr (A'A)2 - 0. Small modifications will also

achieve the efficiency for general known errors.

. .
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R. DAHLHAUS:

Empirical Spectral Processes

Let X,,...,X

N be a stationary process with mean O and spectral

. Y
distribution function F(XA) = ! f(a) d « where f(a) 1is the
. ) 0 .
spectral density. A common estimate of F(x) = } X(O X](u)f(u) do
-1 4

is,‘
Fo) =} X () Ty(a) d
= 1 a a
‘ N Sro (0,1 N
where
I (a) = 5 B x (-iat)|?
§$®) = 37§ ¢ exp(-iat)

is the periodogram. We replace X(O,A] by functions g € F and
prove weak convergence of.the resulting empirical spectral process
\/ﬁ('f\‘N(g)—F(g))geF . Furthermore, we apply the above result to time
series analysis, for example to estimators of the épecéral density

obtained by minimizing the cross entropy of the process.

‘ H.E. DANIELS: ~

‘ Local Brownian Motion and the Maximum of Certain Gaussian Processes

! Durbin (J.Appl. Prob. 1985) recently used the local Brownian be-

‘ . haviour of a class of not necessarily Markovian Gaussian processes
to find épproximate first exit time distributions. I use the idea
in a different way to extend to Gaussian processes results on the
maximum, and the time at which it is attained, of a random walk
whose mean path has a maximum (Daniels and Skyrme (Adv. Appl. Prob.
1985), Barbour (JRSS.B. 1975), Groeneboom (Probability Theory and
Stochastics, to appear)). The method is applied fo the breaking
strength and extension of bundles of fibres under general assump-

tions.
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U. EINMAHL:

Strong Invariance Principles for Partial Sums of Independent

Random Vectors

A construction method for multidimensional random vectors is pres-

cuted. It is applied to prove strong invariance principles for
n

partial sums of i.i.d. random vectors )]'. Xk’ n €N, such that
E[H(IXII)] < o, where H : [0,) » [0,) is a continuous functio‘
satisfying t-ZH(t) is non-decreasing and t_4+rH(t) is non-in-

creasing for some r > 0.

M. FALK:

Weak Convergence of Some Bootstrap Estimates

Let X,,...,X be iid rv's with common df F . Denote by T(F)
1 n

the parameter of interest and by Fn the sample df pertaining to

L. -

z (x):=P {T(F¥)-T(F ) <x} - P{T(F )-T(F) <x}, x €R,

where Pn{T(F’;)-T(Fn) <x} denotes the bootstrap estimate of

P{T(Fn)-T(F) <x}. Before the sample Xl""’xn is drawn, Zn(x) .

is unknown, i.e. (Zn(x))x€]R defines a stochastic process in DR

which we may call the bootstrap process based on F and T.

In the talk, weak convergence results in DR for the bootstrap

process are presented for several choices of T.
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J. FRANKE:

Bootstrapping Kernel Spectral Density Estimates

We consider estimating the spectral density f(w) of a linear pro-
<@

cess Xt = I IJk Et-—k N Et- i.i.d., EF,t =0, var Et < @,

using the periodogram IT(mj), vy = (2nj)/T, j=1,...,N, N=[T/21,
from a sample of size T. In view of the asymptotic properties of
. the periodogram we can reinterpret this task as estimating the

regression function f(w) in a multiplicative regression model

IT(wj) = f(wj)ej , i = l,...,N,ej "approximately" i.i.d.

This formal énalogy inspires an approach for bootstrapping kernel
estimates ?(w;k) ; where h denotes the bandwidth, of f(w): ‘
Using an initial estimate ?(m;g) we get empirical residuals .éj‘
After rescaling them, we draw an i.i.d. sample dl,...,€% from the
empirical distribution of the reécaled éj R and we define the
bootstrap periodogram as f;(mj) = %(wj;g) é; . Finally, we ggt
?*(w;h,g) as a kernel spectral estimate whith band width h,

smoothing the bootstrap periodogram. We prove that this intuitive ad-

hoc method works in the sense that, under appropriate conditions,

1/2°

A
the distribution of (Th) (f(w;h)-f(w)) and the conditional

1/2

*
. distribution, given the original data, of (Th) (? (w;hg)--‘lt’(m;g))

converge to each other in Mallows metric d2 if h -+ 0 with optimal
/5

rate and g » 0 a bit slower.

P. GAENSSLER:

On Convergence in Law of Random Elements in Certain Function Spaces

The aim of the present paper is to popularize the applicability of a

model for convergence in law of random elements in certain (non-

i
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separable) function spaces being at first especially appropriate

for simpiifying the presentation of known functional limit theorems
for univariate empirical processes (like the uniform one) and which
at the same time allows for a straightforward generalization in
handling also empirical processes based on multivariate observations
up to empirical processes based on random data in arbitrary sample

spaces and being indexed by certain classes of sets or functions,

respectively. ) ) ‘

R. GILL:

Nonparametric Maximum Likelihood Estimation in Semiparametric Models

In many practical situations, estimators are derivedin a semipara-
metric model by appealing to some generalizatiﬁn of the maximum like-
lihood principle. Centred and scaled, the estimators are asymptotic-
ally Gaussian and in fact asymptotically efficient in the sense of
achieving the asymptotic infomation bounds of e}g.>Beghn, Hall, Huaﬁg

and Wellner [1983] .

Our aim is to.understand when and why this happens. We show that (in.

nice examples) such estimators satisfy an infinite-dimensional version

of the score equation: for each of a large family of parametric s.

models passing through the estimates, we must have that the (para-
metric) score functions is zero at the estimate. So the NPMLE solves
an unbiased infinite dimensional estimating equation. Now, assuming
that the estimator is Vn - consistent in a suitable strong sense, and
that the generalized score function is a smooth function of parameter
and data, we can identify the limiting distribution of the estimator

and show that it is indeed the best possible.

A first version of such a theorem is sketched when the parameter is a

Deutsche
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cumulative hazard function, considered as an element of DI[O,t].
"Smoothness" is described in‘tetms of compact (=Hademard) different-
i;bility in Dpl[O,t] , sup norm. The result explains why various
versions of the Kaplan-Meier estimator, arising in complety different
sampling experiments (e.g. Markov vs. semi-Markov), have an asymptotic
distribution of the.same form: in all these problems, the.generalized
score function and hence also its functional deriva{ive are of the
same form, and therefore the information bound (achieved by this

NPMLE) is the same too.

E. HAEUSLER:

Laws of the Iterated Logarithm 'For Trimmed Sums

Let F be a distribution function in the domain of attraction of a
non-normal stable law with characteristic exponent a € (0,2) and
F(O0-) = 0. For a sequence Xl,Xz,... of independent random vari-

ables with common distribution function F, let X, <...< X
’ ’

“denote the order statistics based on Xl""’xn for each n > 1

We discuss the law of the iterated logarithm behavior of trimmed
sums of the form S_(k ) = X + ... + X where k is a

. "ntn I,n n-kn,n n
sequence of non-negative integers such that kn - o and kn/n - 0
as n - o . Special emphasis is laid on the sequences K~ c10g2 n
for some 0 < ¢ < =, because they constitute the level which
distinguishes between classical and non-classical law of the iterated

logarithm behaviour. For these sequences we show that the constant

K(a,c) 1in the law of the iterated logarithm for sn(kn) is given by

K(1l,c) = % CI/Z[eMlog M-Ig e log y dy - log M + M},
where M€ (0,©) 1is the unique solution of the equation %=M(I-e—M),
_ 172
and by K(a,c) = %E:—_‘;i;— /2 [I + min{(c—lM e ve (0,

s e 1 o -MM y -—a+l ]
satisfies —=M e IO e’y dy}J

for o #* 1.

Deutsche
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C. HIPP: (joint work with F. Gotze)

Local Limit Theorems for m-Dependent Random Fields

Local limit theorems are derived for sums of m-dependent random fields
which admit a representation based on an independent random field. The
resulting approximations are mixtures of the usual approximations i
the iid lattice case on different supporting lattices. The weights’
these mixtures are the probabilities that the sum lies in a certain
residue class of the integers; these probabilities are nonésymptotic.
The same approximations are derived for statistics which are finite
range potentials of a) an iid random field or b) a Gibbsian random

field with finite and finite range interactions.

K. HORNIK:

Asymtotically Optimal Tests for Markov and Other Related Processes

We firsf consider a general statistical model and give asymptotic lower
bounds for type II errors in fixed alternatives in the case where the
(maximal)'type I error tends to O exponeﬁtially fast. As an application
we prove a very strong non-local asymptotic optimality property of‘

likelihood ratio test for the drift parameter of a Wiener process.

Deutsche
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P. JANSSEN:

Strong Uniform Consistency Rates for Estimators of Conditional

Functionals

To establish strong uniform consistency rates for kernel tyﬁe esti-

mators of functionals of the conditional distribution function one
. can rely on appropriate a.s. properties of randomly weighted d.f.

of the form

-1 n
th(x) =n iil yt(Yi)I(Xi <x), x €R

where (xi’Yi) , i=l,...,n are bivariate observations (say) and

where, for some interval I, {Yt,tGI} is a family of real-valued

measurable functions on TR . These properties are discussed and for

nonparametric curve estimation specific appiications, including M-

and L-smoothers, are given.

J.L. JENSEN:

Asymptotic Expansions for Strongly Mixing Harris Recurrent Markowv

‘ Chains
N

Asymptotic expansions are derived for sums on the form I f(xi)
N o]
and ? f(xi’xi—l) , respectively, where Xy is a Harris recurrent

Markov chain and the distribution of f(xi) has a continuous ﬁom-
ponent. Contrary to previous resuits it is only necessary to assume
that the Markov chain is strongly mixing with a polynomially de-
creasing mixing coefficient. This is achieved by introducing an atom
into the state space. The work is based on the papers by Bolthausen

(1982) and Hipp (1985).
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C.A.J. KLAASSEN: ) ‘

Adaptive Estimation in Partially Irregular Models

Consider estimators which behave locally asymptotically like an
average of some function taken at the observation;. This function

is caile& the influence function and one calls such estimators
locally asymptotically linear. It can be shown that the influence
function of a 1ocally'asymtotica11§ linear estimator can be estimated
consistently and conversely, that, given a consistent estimator of
the influence function, estimators can be constructed which are
locally asymptotically linear in that influence function. With the
help of these results an adaptive estimator may be constructed for

a partially irregular model.

J.P. KREISS:

On Stochastic Adaptive Estimation

We deal with the estimation problem of the parameter v in first
order autoregression. Since for such modéls, under some regularity
conditions, local asymptotic normality holds true, we are interested

in locally asymptotically minimax estimators for v which does not

DF Deutsche
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depend on the error-distribution.

We give a method which shéuld work quite well, also for small sample
sizes. In a first step we estimate the score-statistic by using a
Fourier expansion for the.score-function with estima?ed coefficients.
Then we use a local random search to find a parameter value which
minimizes the absolute value of the estimated score-statistic. This
estimator appears to be locally asymptotically minimax. To show the
' practical relevance of the proposed procedure we add somé simulation

results.

H.R. LERCHE:

On M. Kac's "Can One Hear the Shape of a Drum?"”

A classical result of M. Kac on the number of holes of a drum is
derived by using a second-order approximation of the exit probabili=-
ties of Brownian Bridge from a circle. A somewhat more geneéral result
is this: Let f denote a smooth function with £(0)=£f'(0)=0 and
£''(0)#0 ; Let W=(W1,W2) aenote the two dimensional Bronwnian Bridge
with a starting- and endpoint Eé(o,y) with y < 0.
Let

Qo T, = infle>0lW,(6) > £(VEW, (£))/VE)

Then as € = 0

= — 2 - IR 2 9(2y) .
PE’E(TE<I}— exp(-2y°){1-Vef''(0)y sy o(ve)l.

The lecture described is joint work with D. Siegmund.

B. LINDSAY:

Rank Pseudo-Likelihood (Preliminary Report)

Pseudo-likelihood is an inferential mechanism developed for use in

DF Deutsche
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certain spatial models on lattices, where the true likelihood is
computationally horrendous. Consideration will be given here to
construction of rank pseudo-likelhoods which seem to provide a
range of solutions from the fully efficient to the partially effi-
cient but robust. A goodness-of-fit statistic is a natutalnauxili-

ary of the analysis.

P. MAJOR: .

Limit Theorems in Statistical Physics on the Role of Continuous

Symmetry

We have discussed limit theorems which appéar in statistical physics

in a natural way, and compared them with the problems of cléssical
probability. They are very similar, but because éf some instability .
properties of the operators appearing in statistical physics problemsof
a much more sophisticated picture arises there. This instability is

the deeper cause of such phenomena as phase transities, critical

phenomena e.t.c.

D. MASON:

Some Remarks about Strong Approximation dnd the Darling-Erdds ThEir‘

Let {Xn,En,IIZ 0} be a martingale difference sequence and for eaéh

n

integer n > 1 set s2 =z E(XgIF. ) and S = X +---+X_ , with
- noLo i’ i-1l n 1 n

S0 = sg = 0. Define the partial sum process on [0,o) based on

these random variables to be S(t) = Sn whenever si <t Ssi+l A

number of sufficient conditions are presented under which the Darling-

Erddés theorem holds for such a process S(t) , meaning that

1/2

a(T) sup S(t)/t b(T) 2 E as T » o ,

1<t<T

where a(T) = (2 log log 'I‘)I/2 , b(T) = 2 log log T + 2-llog log log T
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- 2_Ilog (41) and E 1is an extreme value random variable with
distribution function exp(-exp(-t)), - D< t < =,
One such set of conditions 1is
2
(1) s -+ ® a.$. as n = ®,
There exists a sequence of positve constants € + 0 such that

with probability one
[--]

1
(11) n)=:l P(Ixnl >e sn/(log logs )

/2 .
|‘n—l~) < @

n
(rrr) 2e&logsn 3 px? 1(ix 1>, s /(log logs.)' /21
sn i=] 1 1 1 1 1

i-1) 7 05

© . 2 ) .
(IV) 'Z ﬁlgﬁ;%ﬂi§$l— E(Xi I(IXiI <egg si/(log logsi)llz)IF ) <o,

i=1 s il
1
When xl,xz,..., form an i.i.d. sequence, these conditions hold if
and only if E Xf log log(IXlIv3) < o | which is the best suffic-
ient moment condition on X, for the Darling-Erdés theorem to

hold in this case attainable by strong approximation techniques or

by a refinement of the original methods of Darling-Erd&s (1956).

H. MILBRODT:

On _the Asymptotic Power of the Two-Sided Kolmogorov-Smirnov Test

The asymptotic power of the two-sided one-sample Kolmogorov-Smirnov
test is investigated. Contrary to the common belief, it is found

that this test behaves very much like a test against a onedimensional
alternative, and not like a well-balanced brocedure for higher-
dimensional alternatives: There is essentially'only one direction

of deviations from the hypothesiséforﬁyhich it has reasonaﬁle
asymptotic power! This optimal diéeg;iga‘is determined. Its know-
ledge provides a quick and easy check of the performance oé the

Kolmogorov-Smirnov test for any other direction of alternatives.

DF Deutsche .
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Methods are as follows: Employing Abstract Wiener space techniques,
a representation of the asymptotic power function near the hypo-
thesis is derived. This representation is in terms of an orthogonal
series in the "tangent space" of directions of altern#tives. The
‘beginning of this series is evaluated numerically, thus computing
4the curvatures of the asymptotic power function for a system of 50

orthonormal directions. This yields "local efficiencies" of the KS

test which are high for one direction only, and then rapidly dcrea

to zero.

D.W. MULLER:

Estimating the Shape of the Error Distribution in a Linear Model

Let y; = xz 0 +ei(i=l,u..,n) be a linear model with € iid~F

and x; , 6 erP . The design X, is deterministic, the parameter

dimension, p is allowed to tend to infinity with 'n - «. Let
A . A T 3 . .
en be an estimator of © . Let €, T ¥y Tx; 0 be the ith resi-

dual. The following question (*) is considered: does a (1-a) Kolmo-
gorov-Smirnov-band.around the empirical distribution of residuals

. . s A . .
contain a translate of F with probability > 1 - a ? en is said

. T T .
to have rate q_, if ('én 8)" X Xn(ﬁn 8) = Op(qn) . Which rate‘

of consistency of @n yield a positive answer to (*) ?

Proposition (by E. Ioannidis)
Let f ©be the density of F s.t. suptf(t)$+m R suptlf'(t)l<+m.
For estimators with rate a4, the answer to (*) is positive provided

that . -1/2
q n

(1) n - 0

1/2 -1/2
n

s . 3 -~
(ii) p a, log(p qn) - 0.

For the good rate of q,=p (see Yohai & Maronna 1979) one obtains
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p3/2 n-]/2 log (p) - 0 as a éufficien; condition.

J. PFANZAGL:

Fixed Versus Random Nuisance Parameters

Let Pe n I1A(8,n) € 8 x H be a family of p-measures, the problem is
k4

Nt with
'y

(nl,...,nn) unknown. For the case of random nuisance parameters

n
to estimate 6 . Suitable is a sample (x],...,xn) ~ X Pe
i

(nl,...nn)_~ r® . methods for determining a lower bound for the
asymptotic variance of regular estimates for -8 are known, as well

as methods for the construction of estimator-sequences attaining this
asymptotic bound.The'quesition is discussed whether these bounds also
refer to the case of unknown (non-random) nuisaﬁce parameters; No final

answer to this problem is obtained so far.

P. REVESZ (E. WILLEKENS):

Strong Theorems for Renewal Process

Let X , X,,... be a sequence of positive i.i.d. r.v.'s with $§,=0,
Sn=X1+X2+-~-+Xn(n > 1) . Denote by LT = sup{n : Sn < t} . Some al-
most sure upper and lower bounds for M, = max(Xl,Xz,...,XT » E-S_ }
" t t
are proved. A typical result is the following:
Let P{X, > x} = N (0<a<1) where L(x) 1is a slowly varying
1 a
X L(x)
function then M
lim inf —= log log t=B(a) _a.s.
-0 t
: z Bk a
where B(a) is the solution of.the equation T ks © 1.
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H. RIEDER:

Robust Regression Estimators and their Least Favorable Contamination

Curves

In the multiparameter linear regression model y = x'6+u, the ideal
model distribution may be subjected to infinitesimal perturbations of
the following types: (c) e-contamination, (h) Hellinger; errors-in-

variables, error-free-variables with fixed contamination curve e(x)'

or, given p € [1,®], with any e(x) satisfying an LP-norm con-
straint (p) Ilel% < 1. For the resulting variety of contamination
models, robust estimators and corresponding 1éast favourable con-
tamination curves e*(x) are determined. for example, the Hampel-
Krasker estimator, which is minimax in model (c,1) , . has an ¢&* (x)
with essentially e*(x)/lx| . increasing from O to its finite maxi-
mum as |x| tends from O to . The Huber estimator turns out
to be minimax in model (c,2) with €*(x) roughly proportional: to
Ixl. The least favorable contaminations look similar in the general-
models (c,p) and (h,p), though the respective minimax estimators are
rather different, since residuals are bounded in case (c) but only

downweighted in case (h). . .

J. RITOV (P.J. BICKEL): .

Large Sample Theory of Estimation in IID Biased Sampling Regressiomn

Model

Consider the semiparametric linear regression model where (x,y) are

. observed with. y = BTx + €, x and € 1independently with distribu-
tion functions H and G respectively. Suppose that we don't sample
from this distribution but there are s strata and stratum j is

sampled with probability Aj (known or unknown). Given that stratum

Deutsche
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j was sampled, the pair (x,y) 1is sampled according to the con-
ditional probability density w(j,x,y) g(y-BTx) h(x)/W(j,G,H)
where w(.,.,.) are known weight functions. We discussed the
estimation of B, G and H when H has a known finite support.
We described an M-estimator wﬂich is LAN wunder any G,H and
asymptotically efficient at a particular distribution Go ;-

U. RUSLER:

Quicksort and a Fixed Point Theorem for Distributions

Quicksort is an algorithm to sort a random list of numbers. Pick by

random a number out of the unordered list. Compare all other numbers

with the chosen one and build up a list of smaller and a list of
larger numbers. Then apply the same procedure to the new lists ﬁnt

we end up with all numbers in their natural order.

Let Xn be the number of comparisons to sort a list of n number

The random variable is thought to be proportional to the time.used
by this algorithm.
xn-E(Xn)

The appropriate normalization of Xn is Yn = —_—a - In - -

il

S.

distribution Yn converges to a r.v. Y being a fixed point of the

transformation S: distr. - distr. given by
S(F) = L(tX+(1-1)X+c(1))
X,X,t independent, L(X)=F=L(X),T uniformly on [0,1]1 distribut

¢ : [0,1)] R explicitely known.

Our main result is: S 1is a contraction on the space of distribut
functions F, [xdF(x)=0, Ixz dF(x)<w, with respect to the D, -
Wasserstein metric. Furthermore the unique fixed point L(Y) has a

exponential moments.

ed,

ion

11
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Another good sorting algorithm is Heap sort. This algorithm has the

advantage, that Xn for Heap sort is bounded by n 1ln n and

‘4 n 1ln n. Xn for Quicksort is bounded by n 1n n._and n2 with

expectation E(Xn) = 2n lnn. In order to compare both one is
interested in the probability of the event Xn Quicksort > 4 n 1n n.

This probability is small, less to constz(y)n-Y for every y > O.

M. ROSENBLATT: o .

Remarks on Limit Theorems for Nonlinear Functionals of Gaussian

Deutsche
Forschungsgemeinschaft

Sequences

Limit theorems for sums of nonlinear functionals of Gaussian sequences
typically obtain as limit distribution that of a single term in an ex-
pansion given by Dobrushin for a process subordinate to a Gaussian pro-

cess. One shows how one can obtain limit theorems of this type where the

limit distribution is that of a full expansion'of Dubrushin's type.

A. SCHICK:

On Efficient Estimation of Functionals

The question of efficient estimation of functionals is addressed in‘
the case when finite-dimensional submodels satisff the LAMN condition.
A conditional convolution theorem for regular estimates and a lower
bound on the local asymptotic risk of an estimate are presented. A
sufficient condition for an estimate to be efficient in the sense of
these results is given. An application to branching processes is dis-

cussed.
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A.W. VAN DER VAART:

On the Asymtotic Information Bound

For locally asymptotically normal models we discuss asymptotic bounds
on the performance of estimators with values in a vector space. For
estimators with values in Rk we give a generalized convolution
thgorem and discuss the situation that the tangent cone is not a
linear space. In particular we show that the convolution and LAM
theorem remain true if the assumptfon of iineérity of the‘tangent
cone is relaxed to convexity. Next we give a convolution and LAM
theorem for estimators of functionals with values in (more) general
vector spaces. For this we extend the notion of differentiable

functionals as given in Pfanzagl (1982).

W.R. VAN ZWET:

Why Do Edgeworth Espansions Work?

Edgeworth expansions were originally developed to provide corrections
for skewness, kurtorsisetc. to the normal approximation for more or
less arbitrary distributions. Theoretical work, however, has long
concentrated on distributions of sums of independent random variables
and vectors. Now recent work (van Zwet, ZW 1984), (Friedrich, Ann.
Statist. 1988?), (Bickel, Gdtze, van Zwet, Ann Statist. 1986) is
leading up to a point where it can be shown that the distributions

of functions of independent random variables possess Edgeworth ex-
pansions under mild conditions. These results’ will finally provide

a theoretical justification for the extensive use of Edgeworth ex-
pansions in practice. They also indicate that it will generally.be
possible to construct so-called empirical Edgeworth expansions which
may provide an alternative to bootstrap resampling in certain situa-

tions.
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Y. VARDI:

Asymptotics for Emprirical_ Distributions in Selection Bias Models

The empirical distribution function in selction bias models is an

important data analytic tool often needed in the analysis of

s

observational studies and encountered (as opposed to sampled) data..

In this paper we discuss the large sample behauviour of such
empirical distributions, and give informal proofs for the stated

asymptotic properties.

W. WEFELMEYER:

Estimation of Functionals in the Independent, Not Identically Distri-

buted Case

In the i.i.d. case, 'the tangent cone introduced by Chernoff and LeCam
is useful to describe bias bounds for the asymptotic risk of estimat-—=

ors. The concept of a tangent cone can be carried over to models for

independent, not identically distributed observations. This makes i.
feasible to define canonical gradients for vector-valued functionals
on such models. We obtain a convolution theorem and an asymptotic
minimax bound in terms of the canonical gradient. The asymptotic
minimax bound is attained on contiguous neighborhoods fer all bounded
bowlshaped loss functions if and only if the estimator is agymptoti-

cally linear with optimal score function.




J.A. WELLNER:

Semiparametric Models and ACE

Models incorporating both "parametric" (finite -~ dimensional) and
"nonparametric" (infinite - dimensional) components are called semi-
paramteric models. In this talk I will introduce several examples of
such models in which the Method of Alternating Projections (MAP)
arises naturally in the construction of efficient estimates. Some of
the history of the method of alternating projections will be reviewed,
and connections made with recent work on alternating conditional ex-

pectation (ACE) methods in.regression theory.

M. WOODROOFE:

Corrected Confidence Levels for Adaptively Designed Experiments

Consider a non-linear model Y = g(xk;m)+ek, k= 1,2,..., in
which the design variables, X, = xk(yl,...,yk_i) N may be functions
of the previous responses. A very weak asymptotic expansion for the

distribution of the maximum likelihood estimator is presented, from

which the effect of the adaptive nature of the design may be seen.

C.F.J. WU, J. SHAO:

Some General Theory for the Jackknife

It is well known that the delte-one jackknife gives inconsistent vari-
ance estimators for nonsmooth estimators such as the sample quantiles.
Consistency can be restored by using a more general jackknife with d,

the number of observations deleted, depending on a smoothness measure
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of the point estimator. Our general theory explains why jackknife
works or fails. It also shows that, (i) for "sufficiently smooth"
estimators, the}jackknife variance estimators with bounded d are
consistent and asymptotically unbiased; (ii) for '"nonsmooth"
estimators, d has to go to infinity at a rate explicitly deter-
mined by a smoothness measure to ensure consistency and anymtotic
unbiasedness. Improved results are obtained for several classes of .
estimators. In particular,  for the sample p-quantiles, the.jack-
knife variance estimators with d satisfying n|/2/d - 0 are

consistent and asymptotically unbiased.

Berichterstatter: F. Gotze
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