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MATHEMATISCHES FORSCHUNGSINSTITUT QBERWQLFACH .

Tag u n g s b e r ich t 12/1987

Mathematische Modelle in der Biologie

15.3. bis 21.3.1987

The mathematical research Institute Oberwolfach has earIy recognized that the few
mathematicians interested in Mathematical Biology around 1970 would stimulate
a wide-spread interest in this field, and it has supported and enhanced their efforts
by inviting to conferences in 1975, 1978, 1981, 1984, organized by the late Helmut
Werner (Münster/Bonn), K.P.Hadeler (Tübingen), Willi Jäger (Heidelberg). In
contrast to the situation in Physics there is no clear distinction between Theoretical
Biology, Mathematical Biology and Biomathematics. Very often a scientist covers
the whole field from formulating a model in close contact with experimentalists
to the mathematical investigation of this model and possibly t~ generalizations
which are of mathematical interest in themselves. The Oberwolfach conferences
have contributed in shaping a community of scientists who work on mathematical
problems related to Biology. This community is not organized but ßuctuating,
and it is closely connected by personal contacts and joint research activities.
The present conference, due to a long list of proposals, a generous director, and
unexpectedly many affirmative auswers, started with about 40 proposed contri­
butions. Such number hardly agrees with the concept of Oberwolfach to organize
small groups for cooperative research. The organizers decided to have some lec­
tures in the mornings and special sessions of a rather informal character in the
afternoons and sometimes evenings. This schedule has produced a rather liberal
and informal atmosphere and a very active participation'..
Various fields have been covered, contributions on population dynamies were most
numerous. There is generally a strong interest in populations structured by age,
level of infection, size or other characters. Ecology is a field of active research,
in particular persistence of species is a biologically relevant concept for the many
situations where global stability does not hold. Epidemiology has been and will
be a field of importance, even if the results will not answer the urgent demands of
the public.
Aggregation, chemotaxis, pattern formation are fields in which hard experimental
data are available; the same is true for various problems in physiology, in particular
neurobiology, cardiology, and muscular contraction.
Sometimes it is necessary to return to basic ideas and to discuss whether diffusion,
growth, attraction, biomass ect. are valid concepts and which phenomena are
described by such notions. One has to recall that, in contrast again to Phy'sics, in
Mathematical Biology most quantities are phenomenological.

The participants carne from various countries, the atmosphere was relaxed, same
joint"work was continued or got started. The invariably good care of Mr. Fürsten­
dorf and his staff is gratefully acknowledged.
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Vortragsauszüge

Tom AIdenberg

Liebig's Law and Ecosystem Model Response.

Liebig's Law of the Minimum (1855) states that the nutrient present in a minimum
amount relative to the needs of a plant will limit the yield (crop). In the framework
of ecosystem models~ a generalization of the limiting factor concept can be obtained •
by calculating standing stock sensitivity coefficients with respect to nutrient input
concentrations (or input light intensity) through Tomovic sensitivity analysis. In
a one-species-two-nutrients algal culture, Liebig's Law results from a bifurcation
of the steady state solutions for each nutrient depleted. Variable quota (nutrient
biomass ratio) models can be analyzed similarly.
In trophic situations (e.g. water quality models) nutrient and light sensitivity can
be monitored in their transfer from the primary to the secondaiy trophic level.
The sensitivity approach seems also applicable to assessing the so-called indirect
effects in ecotoxicology.

Wolfgang Alt

Searching Behavior of Male Ectocarpus Gametes.

After release from gametangia~ female gametes of the brown algae species Ecto­
carpus siliculosus, settle on surfaces (of rocks) and produce

10JUY1

the sexual pheromone ectocarpene. The male gametes first swim in 3-D water,
then upon hitting a 2-D surface perform 'more ·or less curved paths, whereby the
pheromon~ (a) decreases the tendency to leave the surface, (b) increases the mean
turning rate bo and (c) induces sharp turns in paths pointing down the gradient.
The stochastic process for the

angle dtIJ t = Btdt
arid the turningrate dBt = .,\(bo - B t ) + VlJdWt

is compared with experimental data (movies produced by Annette Geiler) byes­
timating bo and plotting the variance of
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With the aid of simulations this model is compared to another one, in which B t

- represents the alternating strokes of the front flagellum (see picture).
The spiral search strategy (within a range ~ 400j.tffi distanee from the female)
provides an intense area eovering exploration, although the macroseopie motility
is reduced. However, due to the ehemotactic response, the me~ searching time
becomes finite - according to an explicite formula based on a diffusion approxima­
tion

1
8T u = -8r {r(J.L8r u - xu)}.

T

The further strategy of male gametes to leave a surface at low pheromone concen­
tration in order to randomly search for other surfaces even inereases the mating
probability, if a sparse random distribution of female gametes on different. surfaces
(rocks in the sea) is assumed.

Bernd Aulbach

The Past in Short Hypereyeles.

The so-called short hypercycles

Xi = Xi(X~-~ - L XjXj-l), i = 1, ... , n, (xQ = x n ), n = 2,3,4
j=l

are known to have simple dynamics as far a.s future time is coneerned. In fact, any
trajeetory in the interior of the state simplex S eonverges to the unique interior
equilibrlum as t -+ 00. In this talk the past behavior is examined whieh turns
out to be less simple. As t -+ -00 there are two types of asymptotie behavior:
either (I) a trajectory converges to an equilibrium on the boundary of S or (11)
it oscillates aperiodically approaching the closed polytope which is formed by the
nonstationary edges of S. The case n = 2 has only type (I) trajectories whereas
all trajectories in case n = 3 are of type (11). In case n = 4 both types of solutions
exist.

Erleh Bohl

SV-40-Replication.

The mechanism of SV-40-replication consists of three main steps. A model was
presented ineorporating these steps oue after another to illustrate their inßuence
on the system.

Stavros Busenberg

An Age-Structured Epidemie Model.

An epidemie model is analyzed with fertility, morta1ity and transmission rates
dependent on the age of the affected population. Endemie threshold crlteria are
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derived and the stability of steady state solutions is analyzed for certain forms
of the force of horizontal infection. The relation between age-structured epidemie
models of this type and eatalytie eurve models of epidemies is derived. The pos­
sibility of identifying vertieally transmitted diseases from the catalytic eurve is
demonstrated.

Pierluigi Colli

Mathematical Modelling of heterogeneous MuseIe Fibre.

One considers a mathematical model of a contracting museie fibre, whieh is as­
sumed to be non-homogeneous in order to account for the differences between the
tension-Iength relationship determined in short segments of the fibre and the one •
observed in the whole musele fibre. The model gives a system of nonlinear and
nonlocal hyperbolie equations; the existenee and the uniqueness of the solution
are proven.

Piero Colli-Franzone

A Mathematical Model 01 Cardiac Sources and Propagation
Wavefronts Spreading in Myocardial Excitable Tissue.

We introduce a mathematical model describing the potential distribution elieited
by tbe electrical activity of tbe heart in the depolarization phase of the ventricular
tissue. By means of singular perturbation techniques we derive jump relationsbips
of the potential through the excitation wavefront and various equations eoncerning
the dependenee of the propagation wavefront velocity on the eleetric properties of
the medium. Numerieal simulation in 2-dimensional medium are presented.

James D. Cushing

Asymptotic Dynamies of Some Discrete Models
for Structured Population Growth.

The existenee and stability of equilibria are diseussed for general nonlinear, discrete
matrix models for populations structured into an arbitrary number of categories.
The model allows transitions between any two categories (not necessarily in a
progressive manner). Nonlinear Leslie and Usher models are included as special
cases. An observation of Leslie is proved eoneerning the existence and stability of
a persistent solution (" stable age distribution") for a certain type of nonlinearity.

Odo Diekmann

Bistability in a Prey-Predator- Patch Model.

Tbe interaction between, for instance, rose plants, spider mites and predatory
mites is characterized by tbe fact that IDeal mite colonies go extinct while on a
larger spatial scale the system persists. One cau model such a situation by viewing

l--- -
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the population as an ensemble of Iocal colonies (which are characterized' by the
number of spider mites and predatory mites) and, in addition, free patehes (plants),
searehing spider mites and searching predatory mites (the so-ealled air planeton).
Thus we obtain a rather eomplicated structured population model, with colonies
as "individuals" . By a time scale argument, which amounts to the assumption
that loeal colonies have a negligible lifetime, one can reduee tbe model to a system
of three ordinary differential equations which inherits some of the cbaracteristics
of the struetured model. The o.d.e. system has bistable behaviour suggesting that
biologieal control can only be successful if predatory mites are introduced in large
quantities. .
The lecture is a progress report on joint work with Hans Metz and Mous Sabelis
(from tbe University of Leiden), which is far from finished. One of tbe aims is
to bridge tbe gap between relatively simple qualitative o.d.e. models· and very
complex quantitative simulation models in the hüpe that a whole continuum of
models gives, when taken together, more insight than each of t'hem separately.

Klaus Dietz

Dynamies of Sexually 'I'ransmitted Diseases.

Tbe classical models for sexually transmitted infections assume homogeneous mix­
ing eitber between all males and females or between certain subgroups with het­
erogeneous contact rates: This implies that everybody is all the time at risk of
acquiring an infection. These models ignore the fact that the formation of a pair
of two suseeptibles renders them in a sense temporarily immune to infection as
long as the partners do not separate and have no contacts with other partners.
The present model, whose stability conditions are investigated jointly with K.P.
Hadeler, takes into account the phenomenon of pair formation by introdueing ex­
plicitly a pairing rate and a separation rate. The infection transmission dynamies
depends on the contact rate .within a pair and the duration of an infection. One
can specify explicitly a lower bouud for the number of life time partners for the
persistence of the infection. This bound decreases considerably as the average
duration of a partnership increases.

Herbert I. Freedman

Models Incorporating Prey Behaviour as Modified
by a Parasite leading to Predator Survival.

The prey population in a predator-prey model is divided into susceptibles and
infectives with respect to a parasite. The predator functional responses of the
infectives are altered leading to criteria for survival of the predators. Criteria are
also obtained for there to exist a globally asymptotically stable- equilibrium.
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Jean-Pierre Gabriel

Hemodialysis and Urea Kinetics.

The importance of mathematicaJ modeling in dialysis arose recently as a conse­
quence of the achievement of individualized treatment therapies. Two distinct
models are basically used,' namely the urea kinetic model and the direct dialysis
quantification, for the estimation of the urea distribution volume and tbe urea
generation rate. Unfortunately they lead to different results for the same patient.
1t seems that the underlying hypotheses of the models are poorly described in tbe
literature. The aim of the talk is an attempt to fill this gap and to show. that the
observed discrepancy is not surprising at all.

Annette Grabosch

A Cell-Cycle Model Based on Unequal Division.

Of concern is a mathematical model proposed by Kimmel et al. wbicb describes
the cell cycle of eukaryotic cells, which are characterized by their RNA content.
The model is based on three assumptions: (i) in mitosis a cell divides into two
daughter cells of possibly different sizes, (ii) the RNA content at'the beginning of
the cell cycle determines the RNA content at the end of the cycle (i.e. at division),
Ciii) the RNA content at the beginning of the cell cycle determines the duration
of tbe cycle. These assumptions lead to an integral equation which describes the
cells dividing at time t which have an actual RNA-content x

(*) m(t, x) = Loo

k(x,y)m(t - q(x),y)dy, t ~ 0, m(t, x) = g(t,x), t < O.

For all 9 E L'([-r,O] x [0,00)) =: E there exists a unique solution of (*) which
moreover can be described by a one-parameter semigroup of positive linear oper­
ators on E. Results from positive operator and spectral theory are used to show
that m(t, x) "-J eAO t h(x) for large t. This restates essentially the result of Arino
and Kimmel (1987) by using more recent functional analytic methods. Moreover,
using strong positive properties (such as irreducibility) one can show that supp h
is bounded from below away from 0 and from above.

Michael R. Guevara

Spatiotemporal Patterns of Block in Cardiac Tissue.

Block of propagation of the cardiac impulse is the underlying cause of many cardiac
arrhythmias. A model of a one-dimensional cable of cardiac Purkinje fibre is
investigated numerically. The proximal end of the cable is stimulated with a
periodic train ofcurrent pulses. At sufficiently low rates of stimulation, for every
stimulus pulse, there is a wave of excitation that propagates through the cable to
its distal end. At high rates of stimulation not every wave traverses the cable -

•
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some impulses 'are blocked in tbe interior of the cable. Many different patterns of
block resembling clinically observed rhythms (such as Wenckebach and M<;>bitz I
periodicity) are seen. These eire described as a function of one parameter: the
rate of stimulation. Clinical examples are present~d in which it is shown that the
dynamics can be reduced to that of a one-dimensional difference equation.

Mats Gyllenberg

Age-Size Structure in Populations with Quiescence.

In many populations not all individuals are actively growing, hut some are in a
quiescent state. Under certain circumstances a normally growing individual can
become quiescent and later it may return to the normal state again. ~ften an
individual can undergo several transitions back and forth from one state to the
other.
A mathematical model (a system of PDE's) for the continuous age-size distribution
of a population with both normal and quiescent individuals is given. The theory of
positive operator semigroups is used to show that nnder general assumptions about
individual behaviour th~ age-size distribution converges to a stable distribution.
Some of the features of the model are illustrated by a simple example.
The presentation is based on joint work with Glenn. Webb.

K.P. Hadeler

Models for Infectious Diseases and Parasitic Infections.

Three approaches towards models for infections diseases and parasitic infections
are presented. In a first model (R. Waldstätter, K.P. Hadeler, G. Greiner) the
population is subdivided into a class of noninfected and a class of infected, whieh
is struetured according to the level of infection x E ffi.+. The model is formulated
as a diffusion problem on {P} U lR+ where P is a point. In other words, the state
of tbe population is a measure with a d~nsity on IR+ and a point mass at zero. In
view of a Lotka birth law the problem is not formally self-adjoint. Mathematically
the problem is treated, after a Liouville transformation, as a self-adjoint problem
with non-self-adjoint, relatively bounded perturbation. In a second approach (M.
Kretzscbmar, K.P. Hadeler, K. Dietz) a host population is classified according to
discrete parasite numbers, Le. is described by a linear multitype .birth and death
process with killing (of the host). The related characteristic differential equations
show aremarkable similarity to Lotka-Volterra systems and the equations of evo­
lutionary game dynamics (vector Riccati eqnations). For the third class of models
(sexually transmitted diseases) see the lecture of K.Dietz.
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Henk Heijmans

On the Simplification of Structured Population Models.

When developing structured population models, one usually makes all kinds of
simplifying assumptions on tbe level of the individual. This is unavoidable if one
is to end up with a problem which is amenable to mathematical analysis. The
best known type of approximation is by time-seale arguments.. In this lecture a
different type of simplification is considered, one wbich eould be called: "From .
state jumps to reduced growth".
In the linear case, one cau give a mathematieal justification of such a simplification
by the Trotter-Kato theorem for Co-semigroups. If tbe equations are nonlinear,
then things become more difficult, hut there is good hope that the results extend ..
to the nonlinear case. •

Josef Hofbauer

Saturated Equilibria and Applications to Boundedness;
Persistence, and Stability of Lotka-Volterra EquatioDs.

We call an equilibrium x of an ecological differential equation Xi = xifi(Xl, ... , Xn)
saturated ifmissingspecies cannot invade the system at x: if Xi = 0 then !i(f) ~ o.
Two main results: 1) Interior solutions x(t) > 0 eonverge to an equilibrium x <=> x
is saturated. 2) Index Theorem: The surn of tbe indices of all saturated equilibria
is +1. In particular, every ecologieal system has at least one saturated equilibrium.
There are obvious applieations to persistent systems: As they cannot have sat­
urated equilibria on bdlR+. they must have an interior fixed point. Based on a·
characterization of Lotka-Volterra equations Xi = xi(ri - (AX)i) with bounded
orbits in terms of "B-matrices" ('Ix ~ O,X =1= 0 : 3i : Xi > 0, (AX)i > 0) we derive
criteria for the existence, uniqueness of saturated equilibria, their loeal and global
stability in terms of aJgebraic properties of the interaction matrix.

James P. Keener

Wave Propagation in Parallel Nerve Fibres and
its Implication to Fibrillation Onset.

We discuss the effeets of anisotropy, exeitability and refractoriness in models of
action potential propagation in myocardium. We show the signifieant differenee
between discrete models and eontinuous models with respect to propagation faU­
ure. We use this difference to suggest a possible meehanism to explain one dirnen·
sional propagation in two dimensional anisotropie media and to suggest how this
mechanism may also lead to permanently rotating waves of propagation in tbe
myoeardium. The theory is quantitative and prediets a window of vulnerability
to premature stimuli. It remains to eheck this anaJyticaJly determined window of
vulnerability against experimental observations on fibrillation onset.
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A. Lasota

Statistical Stability, Periodicity and Chaos in Population Dynamies.

The dynamies of a discrete dynamical system may be described from the statistical
point of view by the sequence of iterates of a positive operator P (The Frobenius­
Perron operator P). A convenient way to study such iterates is to use the lower
bound function theorem. Roughly this theorem says that if the iterates pn/
are bounded from below (P" f ~ h + En ) then they must converge to a unique .
stationary density (pn / ~ /., p /. = f.). The lower bound function theorem was
first proved for positive, norm-preserving operators (Lasota-Yorke) and recently
extended to positive operators which may not preserve the norm (Rudnicki). Thus
the theorem may be applied to systems in which the population either grows or
becomes extinct. Particularly interesting applications in biology are related to the
problem of modeling cell cycle dynamics (Lasota-Mackey, Tyson).

Douglas A. Lauffenburger

ADynamie Model for Cell Adhesion.

The adhesion of cells to surfaces is a key event in many physiological and path~

logical processes such as the immune response and the metastatic spread of ~ancer.
This adhesion is typically mediated by the binding of cell membrane receptors to
complementary ligand molecules and the adhesive surface. In order to understand
this phenomenon quantitativeIy, we present and analyze a dynamical mathemati-"
ca! model for receptor-mediated cell adhesion to a ligand-coated surface in a fluid
sbear flow. The model is comprised of a pair of nonlinear ordinary differential
equations which can be analyzed in the phase plane.

Markus Löffler

Modeling Hemopoietic Stem Cell Regulation.

Red and white blood cells and blood platelets have a common ancestor stern cello ~

Althougb the cell kinetic parameters of the blood forming proliferation and matu­
ration scheme are fairly weH known it is still unclear how the regenerative activity'
of tbe stern cells rnay be controlled. A simple two compartment model (ste~

ceIls, differentiated cells) based on ordinary non-linear differential equations Will
be presented which enables a classification of the basic control hyphotheses. Two
stern cell properties are considered to be controlled independently: the prolifer­
ative activity and the growth fraction. Examining the parameter space of the
coupling coefficients reveals conditions for stablity and bifurcation. The analysis
gives suggestion for a reasonable choice of values. Some unsatisfactory features of
previously published models will become apparent. In addition numerical results
of a more complex model describing the interaction of granulo- and erythropoiesis
on the stern cells will be presented. '
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Michael Mackey

The Dynamies of Platelet Production.

In certain clinical situations, the number of circulating platelets in the blood
stream display oscillatory dynamics which may either be periodic or aperiodie.
A physiologically realistic model of platelet production yields a first order delay­
differential equation for tbe number of circulating" platelets (P). The equation is
nonlinear and contains two significant time delays, one of which is state dependent
as it depends on the value of P in a monotone increasing fashion.
Analysis plus numerical simulations suggest that increasing the random destruc­
tion of circulating platelets leads to a successi<;)n of bifurcations of platelet dy-
namics, finally culminating in aperiodic variations in P. These results are in •
correspondence with the clinically observed phenomena.

(Frank van den Bosch and) Hans Metz

Applying the Diekmann-Thieme Model for the
Spatial Spread of Epidemics and Populations.

The Diekmann-Thieme model is a spatial extension of the Kermack- McKendrick
functional differential equation model for the development of an epid~mic. For this
model Diekmann and Thieme independently proved the existence of an asymptotic
speed of radial expansion. To apply the Diekmann-Thieme model in practice one
has to devise weIl fitting submodels with few parameters for the integral kernei,
and corresponding parameter estimation proeedures. The talk describes the results
of a cooperative project to this end by Frank von der Bosch, Jan Zadoks from the
Agrieultural University in Wageningen and myself. The agreement between tbe
observed and predieted rate of foeus expansion turned out to be surprisingly good.
Further topics addressed were approximation formulas for caleulating the speed,
the eonnection with Fisher's equation, the extension to the spread of general strue­
tured populations and to non-rotationally symmetrie space kerneis (a neeessary
extension if one wishes to study large scale spread of plant epidemies). Tbe (con­
jectured) results were applied to the spread of musk rat, collared dove and rabies.

Jaroslav Milota

Stability in Population Models with Infinite Delay.

Several biologieal models lead to partial differential equations of the type

ü(t) = dßu(t) + f(u(t), Ut).

The theory for linearized equations is developed. This yields suffieient eonditions
for asymptotic stability of equilibria and also bifurcation results. As an example,
the Volterra equation

ü(t) = dßu(t) + au(t)[l - bu(t) - e 1°00 k(s)u(t + s)ds]

is treated.
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Piero de Mottoni

A hyperbolic System of Conservation Laws of Degenerate Type
Arising in a Pursuit-Escape Model.

The object of the present report (based on a joint work with Hsiao Ling, Peking)
is the system of conservation laws

Ut + (u( 1 - v)):t = 0

vt+{v(l+u))z=O x E IR, t > 0

This is motivated by a model, originally proposed by Murray and Cahen,
describing nonlinear advection phenomena for two populations, the "pursuers"
and the "fugitives". According to this interpretation u, v, are the space gradients
of population densities U(x, t), V(x, t) ~ 0 where U denotes the fugitives and V
the pursuers. Since U, V obey the system {where only the total mass IIR(U +V.)dx

. is conserved) .
Ut + (U(I - Vz))z = -U,Vz:t

vt + (V(1 +Uz))x = +VUzz

in which 1-Vz , 1+Uz represent the advection velocities of the U's, respectively
of the V's, this means that the U's provoke the V's into the pursuing .action by
moving away, while the V's cause the U's to ßee by running after them. Mo~eover,
the terms on the right-hand side say that the fugitives, when buHt up into a peak,;
are" stronger" than the pursuers, for they cause tbe pursuers to be eaten if they
overtake a peak of fugitives; instead, the rearguard of the fugitives is eaten by the
pursuers. In turn, the pursuers' forerunners eat the fugitives, but being grouped
into a peak is disadvantageous for the pursuers, because the fugitives will feed on
any peak of pursuers which happens to overtake them.
After studying rarefaction waves, shock waves and contact discontinuities for (*),
the existence and uniqueness of the solution of the Riemann problem is proved.
Then the possible wave interactions are studied in order to apply Glimm's method
(in a somewhat modified form) and hence to establish the existence of a solution
of the initial-value problem for (*). The qualitative properties of the solutions are
studied in case of specific initial data.

Hans G. Othmer

Oscillations, Relay and Signaling in Dictyostelium discoideum.

Tbe cellular slime mold Dictyostelium discoideum exhibits several of the morpho­
genetic processes, including cell-cell communication, cell movement and ch~mo­

taxis, and pattern formation and regulation. For this reason it serves as a model
system from which insight into the control of these processes can be obtained. In
this lecture we report on joint work with Peter Monk and Gary DeYoung on a
mathematical model that reproduces the experimental observations on relay and
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adaptation. NumericaJ computations show that this model predicts propagating
waves of tbe correct amplitude, speed and wave form in an aggregation field. Tbe
computations also show that when an aggregation field is stimulated periodically
at a sufficiently high frequency tbere is "conduction block" or "gating" of the
waves, as is observed experimentally. We also address tbe question as to whether
a single cell can serve as a pacemaker in an aggregation field and show that it can
for parameter values suitable to cells of that age.

Günter Palm

Stability and Threshold Control in Neural Networks.

Investigations on associative memory and observations in real neural networks
suggest tbat it should be possible to stabilize the total activity at relatively sparse
activity patterns, i. e. patterns in which only a low percentage of neurons ia active.
Moreover, it should be possible to regulate this overall level of activity by some
global parameter (here the threshold).
By means of a simple analysis of randomly connected neural networks one can show
that this is indeed possible witb plausible amounts of excitation and inhibition.

Manfred Peschel (coauthors W. Mende and F . Breitenecker)

Models of Biodynamical Systems with the Lotka-Volterra Approach.

Direct Iteration as a simulation concept

Xi' =Xi II (1 + DGijXj)/ II (1 - DGijxj)
G,;>o Gi;<O

for Lotka-Volterra system~

Xi=XiLGijXj, i=O,I, ... ,n-1, Dstep-width.

Special cases are Hypercycle

and chaotic Lotka-Volterra networks of the form

Xi' = R;Fix~'(1 - xr')" II (1 + DGijxj)/ II (1 - DGijxj)
Gij>o Gij<o

o < ~81, and normalization factars Fi , as alternative proposals for neural net­
works. Control-factors of the forms

U = (1 + KRg(xs))/(l + KRg(x)) resp. U = (1 + KRg(xs)/g(x))/(l + KR~

•
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with g( x) monotonous functions are discussed. Bifurcations and chaos in xl = xU
mayarise.

Helmut Schwegler

Stefan problems in Modeling of Self-Maintaining Systems.

Recently "protocell models" have been discussed as examples of self-maintaining .
and proliferating sytems being governed by simple physical mechanisms of diffu­
sion, reaction and solidification. Mathematically these mechanisms co~dense into
a free boundary problem. For the aim of understanding better the matbemati­
ca! questions here a I-dimensional version model of such models is investigated.
It consists of a diffusion equation for a building material with a production term
which is constant over the whole length of the I-dimensional object (size dependent
nutrition). This building material can condense at the ends (pointlike surface) of
the object giving rise to growth or shrinkage according to the excess of material
transported to the ends by diffusion beyond a constant loss. This balance gives
the so-called Stefan equation for the change of size. 1t depends on tbe one band
on the gradient of the concentration of the building material and determines on
the other hand the boundary for the diffusion of the material.. lt can be shown
that under sufficiently high nutrition there exist stationary solutions foi the size of
the object and the concentration profile, i. e. the object is self-~aintaining. The
stability of one branch of stationary solutions can be shown by explicitely solving
the equations in the neighbourhood of the stationary sol~tions.

Karl Sigm~nd

A Maximum Principle for Frequency Dependent Selection.

It is weIl known that the classical selection equation of Fisher, Haldane and Wright
is a gradient (with the average fitness as potential) if the state space, Le. the
probability simplex, is provided with a certain Riemannian metric first intro~uced

by Shahshahani. If the fitness parameters are frequency dependent, this is 00

longer valid in general. However, if the fitness is given by agame whose dynamies
is a Shahshahani gradient, then the corresponding frequency dependent sel~ciion

equation is also such a gradient. This is the case in particular if thegenotypes
correspond to convex combinatiol1;s of the alternatives.

Brian D. Sleeman

Complex Behaviour of Biological Models
and Hamiltonian Dynamies.

Discrete time models from population genetics, ecology, physiology may often be
formulated as

(1).
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where, for example, Un(X) represents the gene fraction or population density at
time "n" at the point x of the habitat and Q is an operator on a certain set
of functions on the habitat. The habitat may be one, two or three dimensional.
It may be discrete in whieh case x ranges over a discrete set of niehes. Under
certain monotonicity conditions on Q it is known that (1) supports "discrete"
travelling fronts. If this condition is relaxed then (1) may exhibit quite complex
characteristics. For a class of biologieal models based on. Fisher's equation we
attempt to distinguish between complex behaviour appearing at each generation
and that due to diffusion throughout the habitat. Typically if (1) is continuous
in space and has period-2 solutions in time tben tbe spatial behaviour. may be
descrihed in terms of Hamiltonian dynamics leading to non-integrahle systems
(implying stocbasticity) to which KAM theory may be applied as weH as the id.eas
of Melnikov.

Hal Smith

Oscillations and Multiple Steady States in
a Cyclic Feedback System with Repression.

The classical Goodwin equations modeling the control of protein synthesis in the
. cell and variants which include multigene expression in" a single feedback loop are
studied. In the case that an even number of genes are involved in the loop, it
is shown tbat convergence to steady state is the rule. In this case tbere can be
multiple stahle steady states if the nonlinearities are sufficiently strong. If an
odd number of genes are· involved in the loop, a general result is stated wbich
implies that periodie solutions oeeur when the steady state in unstable (strong
nonlinearities) .

Betty Tang

Competition in the Gradostat.

Tbe chemostat is a well-studied model ecosystem in which all components, in
particular the nutrients, are assumed to he bomogeneously distributed. Tbe gra-
dostat, which essentially is a concatenation of chemostats, was devised to study _
growth along a nutrient gradient. When only one species grows in tbe gradostat, .,
there is an interesting spatial distribution of the population. Wben there are two
competing species, so far we have been able to ohtain conditions for eoexistenee
as weH as globally asymptotically stahle steady state in a 2-vessel gradostat. In
the general n-vessel gradostat, coexistence as a steady state ean be shown to be
possible. This isdifferent frorn the chemostat where competitive exclusion holds.
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Petre Tautu

Qualitative Aspects of Thmor Growth.

A stochastic spatial model for tumor growth is introduced in the framework of the
theory of interacting biologieal" cell systems. Essentiai biological characteristics
of normal and neoplastic growth are discussed leading to the construction of a
general growth model on an infinite d-dimensional (d ~ 1) lattice. Three classes
of growth models are mentioned: (i) Eden models, (ii) Williams-Bjerknes models,
and (iii) a multivariate Markov configuration model. These belong to the family
of "voter" models having the advantage of existence of dual processes. Among
many qualitative aspects of tumor growth, the (weighted) occupation time will be
analyzed in this talk; a parallelism with a class of measure-valued· processes will
be panicularly mentioned.

Horst R. rrhieme

How to Estimate .the Efficacy of Control
Measures in Epidemie ·Plant Diseases.

In their paper "A model for spread of plant disease with periodic removal" (J.
Math. Biology 21 (1984), 149-158) S. Fishman and R. Marcus present a model for
the spread of the Citrus Tristeza virus in a citrus orchard. .The trees are planted
in rows and are periodically inspected. Detected infected trees are removed. Un­
fortunately it is unknown how large the percentage of detected trees (among the
infected trees) actually is and whether tbe control efforts are sufficient to keep the
disease down. We show how the success of the control measures can be judged by
appropriately combining the data from all rows collected at single inspections and
comparing the combinations· from subsequent inspections.

Robert T. Tranquillo

Stochastic Model of Leukocyte Chemosensory Movement.

We propose a unifying hypothesis to explain the component of directional ran­
domness observed in tracks of leukocytes in both random motility and chemo­
taxis. It is based on a description of the leukocyte as an integrated system sensing
and responding to a "noisy" receptor signal: noise inherent in receptor-sensing
of chemoattractants underlies the directional randomness. The unbiased random
walk characteristic of random motility arises from perceived fluctuating gradients
without a mean reference direction and the biased random walk in chemotaxis
arises due to the occurrence of perceived concentration fluctuations around the
mean gradient.
Analysis of the stochastic model yields an objective index of directional random­
ness in random motility, the "directional persistence time", in terms of model
parameters associated with receptor binding, receptor signal transduction, and a
cell turning response. Simulation of the model equations yields cell tracks from
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which tbe orientation behavior in a chemoattractant gradient can be character­
ized in terms of the same model parameters. This work elucidates the relationship
between persistence and orientation in terms of the sensing, transduetion, and
response mechanisms.

John J. Tyson

A Stochastic Model of Cell Division
(with application to fission yeast).

Cellular, genetic and molecular studies suggest that cell division in lower eukary­
otes is controlled by tbe interaction· of an activator and an inhibitor of mitosis.
From experimental evidence we construct a stochastic model of cell division and
derive tberefrom the characteristic statistical properties of cell cultures in balanced
exponential growth. Comparing the implications of the model with experimental
observations, we predict the mitotic activator to be an unstable protein present in
approximately 200 copies per cell at division.

Gail Wolkowicz

A Predator-Prey Model Involving Group Defence.

A class of ODE's of generalized Gause type, modelling predator- prey interaction
involving group defence by the prey is considered. By group defence we mean the
phenomenon whereby the prey are better ahle to defend or. disguise themselves
when their numbers are large.
Using the carrying capacity of tbe environment as the bifurcation parameter, it
is shown that the model exibits rieh dynamics: As well, tbe results give strong
support for Rosenzweig's paradox of enricbment since the model predicts that
sufficient enrichment leads to extinction of the predator for almost all initial con­
ditions.
The model will then be used to motivate how the connection matrix could be used
in the analysis of biological models.

Berichterstatterin: M. Kretzschmar
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