
..~ .

MATHEMATISCHES FORSCHUNGSINSTITUT OBERWQLFACH

Tag u n g 5 b e r ich t 15/198 7

Reelle Alge~raische Geometrie

5.4. bis 1'1.4.1987

This conference, directed by E. Becker (Dortmund), L.

Bröcker (Münster) and M. Knebusch (Regensburg), was the

second one on this subject held at Oberwolfach. Some:of the

major topics treated in its course have been algebraic ge~­

metry over the reals,semialgebraic geometry and the real

spectrum, sUbanalytic geometry, quadratic forms and orderings

of higher level, logical and model-theoretical methods and

relations te other branches of mathematics such as Teich­
müller theery. A feature of particularly growing interest

is the search for algorithms computing geometrical invari­

ants ef real algebraic varieties. It became evident in the
course cf this week that the topics centered around-the

subject "real algebraic geometry" are intimately related

to each ether and- therefore cannot be isolated. The large

numbe~ of participants, most cf them coming from abroa~,

showed that the interest in this area ef mathematics i5

still increasing.
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•

P-ADIC AND REAL SUBANALYTIC SETS

Question (Serre, ± 1980): Let f E Zp {X1 ' ... , Xm} be apower

series over Zp converging on z~, let Z(f) c ~ be its zero ~.

set, put Nk = * image of Z(f) under z~ ~ (Z/pk)ID, k =

0,1,2, .... Is then the Poincare series L Nk t k rational
k=O

in t?

Denef (Invent. 1984): Yes, if f is a polynomial.

Denef, v.d. Dries (1986, to app. Ann. Math.): Yes, always.

For polynomials Denef used Macintyre's p-adic analogue of

Tarski-Seidenberg. The general problem was solved by con­

structing a p-ad~c analogue of the theory of subanalytic

sets. Since the proof of the real "fiber cutting lemma"

has no p-adic analogue we invented a new technique that by­

passes fibercutting' completely, and that also works in the

classical real case. We prove our central result (both in

the p-adic and in the real case) by an elimination of

quantifiers, which adds to·the flexibility in working with

subanalytic sets. In the' real case our theorem can be stated

as foliows. Equip I = [-1,1] with operations f : Im ~ I, one

for each power 'series f E ffiIIX1 , ••• ,XmD that converges on a

neighborhood of Im and maps Im into I, and also with the

operation D : 1 2 ~ I given by D(x,y) {
x/y if lxi ~ Iyl ,y*O
o otherwise,

and finally with the binary relation <.

Formulas in the language with these basic operations and
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relation are called D-analytic formulas.

We now have:

Theorem. Each D-analytic formula is equivalent to one with­

out quantifiers.

As immediate consequencesone obtains that the definable sub­

sets of Im are exactly the subsets of Im that are sUbanalytic

in mm, hence that the complement and the. interior cf a sub­

analytic set (in any manifold) are subanalytic, etc.

C. ANDRADAS:

ON THE STABILITY INDEX OF EXCELLENT RINGS

We develop a general theory of stability index far excellent

rings. Let A be an excellent ring, XA its real spectrum and

U c XA a basic open constructible subset. We define st U

min{k E m: U = {x € XA : f 1 (x) > 0, ••• , f k (x) > O}} and s t A =

sup{st U}. Our approach follows closely the works of Br~cker

and Mahe.

(A) Theorem 1: The following are equivalent: (1) st A <00;

(2) st k(~) <00 for all, €Spec A.

In fact,only a finite number of 1'5 is needed in (2): the
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zero divisors of A, then the zero divisors of the regular

locus of A, and so forth.

Corollary 2: Let B be a f.g. A-algebra or an excellent alge-

braic extension of A. If st A < 00 then st B < 00.

(B) Next assurne that A is henselian, with residue field k

and total rings of fractions K. Then

Theorem 3: dirn A ~ st K ~ dirn A + st k + 1.

Therefore from Theorem 1 we get st A < 00 iff st k < 00.

(C) Finally we apply the above results to global semiana-

lytic subsets of a complete analytic real manifold M of

dimension d.

Theorem, 4: Any basic open global semianalytic subset S of

M can be wr i t ten asS = {x E M: f 1 (x) > 0, . • • , f s (x) > O} wher e

f 1 ) ... )fS are analytic on M and

s ~ {d(d+2)/4 if d is even

(d+l)2/4 if d is odd .
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H.W. SCHÜLTING:

HOMOLOGICALLY AND ALGEBRAICALLY TRIVIAL CYCLES

Let X be a projective, nonsingular, n-dirnensional variety

over lR, and let Zk(X) be the free abelian group·generated

by the k-dimensional subvarieties cf X. There is ~ canonical

homomorphisrn cl = clk : Zk(X) -+ Hk(X(JR), Z /2) .• We want to
'0 r/Jcompute the kernel of clk . Deflne Zk(X) = {z EZk(X), z ra-

'thtional. equivalent to a cycle rn i Zi' Zi (~) = <ZS}, Zk (X)

{~ E Zk(X"), z rational equivalent to a cycle rn i Zi ':

dirn Z 0 (JR Y < k} 0

. 1

1) The solution is weIl known in the cases k ~ 0, k

kern(cl K ) = Z~(X) für k = 0, k = n-1

n-1: .'

2) The following example is constructed:

X = proj :IR [Xo , ... , X 5 ] / (X~ + ••• + X ~ - X~ ), hence, X (JR) = S a. •

There exists a cycle z with 11· z E[ z~ (X) far n > 1 (but

cl(z) = 0). It will follow, from 4) that Z.EZ
2

(X).-

3) Using a theorem of Ischebeck we can prove": kern(cl
k

) =
th .

Zk (X) for "every k. The main tool is ·the class.ification-

of non-oriented bordisrn.

4) Using Hironaka's methods on "smoothing" of cylces, we

prove Z0 10 f k 0 (3 n-1)k ~ mln .' ~ .e.

Question: Can the 3 in the above bound be dropped?
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G. STENGLE:

A MEASURE OF COMPLEXITY FOR COMPLEX POLYNOMIALS WITH APPLI­

CATIONS TO THE ANGULAR DISTRIBUTION"OF ZEROS

Let P(z) be a complex polynomial of degree n. Let M(P) =

{m1 , ... ,mk } be the set of nonzero exponents actually appear­

ing in P. The following gives an internal measure of the

additive complexity of the set ~(P).

Definition. Let M,G be subsets of a commutative semigroup.

Let d(M,G) (diameter of M with respect to G) be 00 if for no

k one has M'c G U (G+G) U U (G+ ... +G) (k surnmands), and

the minimum such k otherwise. Let YM( s) = min{d (M, G) : I GI =s} .

Theorem. There exists a constant C such that if

K ( P) = I?in [( j +1) log 2 YM( P ) (j) + j 2 ] ,

J>O

then any open sector of aperture n/deg P contains no more

than' CK{P) zeros of P. •

The point of this estim~te is its independence of the co­

efficients and degree of P. The propf is a simple applica­

tion of Khovan~ky estimates.

Corollary 1. The number of zeros of P in any sector of

k 2

aperture n/n is no more than C

Corollary 2. If the set M(P) is an arithmetic progression

then the bound of the previous Corollary is polynomial in k.
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NIL. ALLING:

FOUNDATIONS OF ANALYSIS OVER SURCOMPLEX NUMBER FJELDS

Over the field of compl~x numbers t the following hold~

(A) Locally, the simple roots of ~A(X) E~[X] are analytic·

functions of its coefficients.

(B) Let ~A(X,Y) E(G[X,Yl and let (xo'Yo) E.C 2 with

(d~A/dY)(xo'yo) # O. Let ~A(~,y) = O. Locally

about (xo'Yo)' y is an analytic function of x.

(C) Let <.pi, · . · ,~; E t [Xi' ... ,Xn ] define a map from Cn to ~n,

taking ä to 0, that is non~singular at ä E (9,.:.,0) E~n.

Then it has an analytic inverse, defined in some neigh­

borhood cf Ö, in the range space.

All of these classical theorems admit generalizations over.

the surcomplex number fields, and thus - a bit further re-

stricted - over the surreal number fields.
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T. RECIO:

THE WIDTH OF A SEMIALGEBRAIC SET AND THE COST OF AN ALGE­

BRAIC DECISION TREE

Lower bounds for the cornplexity of the rnembership .problem

(to a semialgebraic set S =]Rn) in the model of computation 4It
of algebraic decision trees have been systematically obtain-

ed either by considering the number of connected components

of S or through the notion of "width of a .complete proof"

as introduced for semilinear sets by Rabin. Several attempts

to extend this not ion for the non-linear case have failed

to produce non-linear lower bounds, as remarked by Ben-Or.

On the other hand it has been shown that some problems aris-

ing in computational geometry can not be formulated with

semilinear tasks. Therefore we have presented here a general

definition of the width of a semialgebraic closed set S ~:rnn ,

w(S) = min{r € m ,s = U {x E :rnn , f. (x) > 0, ... ,f. (x) > ol ,
iEI 11 - lr-

f .. E JR [xl} (a similar definition holds far open set s) .
lJ -

In the general case the width of the congruence class of a ~

semialgebraic set S is defined as Wcon(S) = min{w(A)1 A closed,

s.a.set , A ~S of cod. ~ 1}. Then we have the following re-

sults:

i) The width of the congruence class of a sa.set S is a

lower bound for the cost of any algebraic decision tree

solving the membership problem far S.

ii) VS =lRn , s.a., wcon(S) ~ n. Therefore, taking n as a

parameter, at best linear lower baunds can be obtained.
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iii) The width of a basic closed s.a. set is in general

smaller (and not always equal) to the t-invariant cf

its complement in lRn , and smaller_than the s-invariant

of the given set.

iv) Under certain conditions on P1·~· .. 'Pm E: m [xl, it can

be shown that w{P1 ~O, ... 'Pm ~O} = m and that

Wcon{P1 ~ 0, · · . Pm ~ O} = m •

C. SCHEIDERER:

QUOTIENTS OF SEMIALGEBRAIC SPACES

We consider affine semialgebraic (s.a.) spaces over a ~e?l

closed base field R and s~a. maps between them. For M such

aspace and E =M x M a closed s .a., equivalence relation on

it we say that the (geometrical) quotient M/E exists' if

there is an identifying map f : M ~ N to same space N such

that E = M xNM (that is, the set of equivalence classes,

equipped with the quotient topology, carries a (unique) s.a.

structure). This notion coincides with that of effectiv~

epimorphisms (in the affine category) provided that M is

locally complete. G.W. Brumfiel has shown M/E to exist if

P1,P2 : E ~ M are proper. Assuming M locally complete we

show that M/E exists if and only if there is some subspace
. -1 -1

K of M such that P11P2 (K) : P2 (K) ~ M is proper and onto.
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(In fact, EK := E n (KxK) is proper over K in this case,

and M/E just "is" KIEK.) On the other hand, M/E does a~ways

exist if E ~ M are open (again M loeally eomplete). Examples

show that the Iocal completeness hypotheses cannot be dropp­

ed. The proofs are given within the set-up of real spectrum .

They make essential use of the fact that the theory of real

elosed fields with compatible non-trivial valuation admits

elimination of quantifiers.

K. KURDYKA:

ARCWISE SYMMETRIC SEMI-ALGEBRAIC SETS

A semi-algebraic set E in lRn is said to be arcwise symme­

trie iff for eaeh y : (-1,1) ... JRn, analytic are, y(-l,O) cE

implies y(-l,l) cE. The class of all arcwise symmetrie sets

in lRn forms a class of closed sets for a noetherian topo­

logy. We eall it AR-topology. This topology is between

Zariski topology and strong topology. We claim that

•

•
1) If V is algebraic, dimV= k, there is a l-1-correspondence

between AR-irreducible components of V cf dirn k and

connected components of a resolution cf singularities of V.

2) AR-irreducible immerged components correspond to Nash

sheets of v.
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3) If E is AR-closed, f : E ~ JRrn regular injective and

proper, then feE) is AR-closed.

We define a ring of semi-algebraic functions on JRn, which

satisfies the following condition: If y : (0,1) ~ JRn is an

analytic are then foy is analytic. We call this ring Aa(lRn ).

4) For each E, AR-closed in mn
, there exists f E Aa (JRn)

such that r- 1 (0) = E.

5) codim sing(f) ~ 2.

6) The ring Aa(mn ) is an integral domain, not.hoetherian,

nor factorial, but Spec Aa is a noetherian space.

7) The Nullstellensatz holds true for AaClRn ) (as in com­

plex case).

W. PAWLUCKI":

SETS WITH POLYNOMIAL CUSPS IN APPROXIMATION THE9RY

A subset E of JRn is said to be un..i..6oJtmly. polynomi.a.lty c.u.b-

p..i..dal (Upe), if there are three positive constants M,m,d

such that for each point x EE there exists a pelynomial

map h
x

: JR ~ ]Rn ef deg < d, and such that:

i) hx (]O,l]) c E, hx(O) x, and

ii) dist (hx(t),lRn ...... E) ~ Mt n , for each x EE and t E [0,1].
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Every open bounded sUbanalytic subset of IRn is UPC; in

particularly every o~en bounded semi-algebraic. subset is

UPC. Let E be a UPC subset of JRn. We have the following

version of Markov's inequality:

IID~IIE ~ C-krlaIUPUE ' where p : mn ~ m is a polynomial of
n

deg~ k, aElli , ßPIlE = sup{lp(x)l: xEE} and positive con-

stants C,r depend only on E. Markov's inequality is u~ed in

the proof of the following version of Bernstein's theorem:

Assume that F is compact. Let f : E ~ lR. Let Pk denote the

space of polynomials of deg ~ k, on JRn. Then the ~ollowing

conditions are equivalent:

1) there .exists a C
OO

extension f : mn
-+ ::rn of f,

2) for every r >0: lim kr.distE(f,Pk ) = 0 (where
df k~

distE(f,Pk ) = inf{lIf-pIlE : P EP k})·

J. BOCHNAK:

ALGEBRAIC MAPPINGS INTO S2n

Working jointly with W. Kucharz we got several results

concerning the structure of real algebraic (i.e. regular)

mappings between real algebraic sets. Here is a sampIe cf

results (all spaces are supposed to be compact and connect-

ed) •

•
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Th. 1. Let M be a C
OO

surface. Then ·the following conditions

are equivalent:

i) M is homeomorphic to S1, ~2(R) or the Klein bottle.

ii) For each nonsingular real algebraic set X, diffeomorphic

to M, the set R(X,Sl) is dense in C
oo

(X,Sl) (in C
OO

topo-

logy) .

Notation. Given a nonsingular real algebraic set, R(X,Sn)

(resp. COO(X,S )) denotes the set of regular (resp. C
oo

) mapp-n . .

ings from X into Sn.

Th. 2. Let M be a C
OO

surface. Then the fo~lowing condit~ons

are equivalent:

i) M is nonorientable of odd genus;

ii) for each nonsingular real algebraic set X diffeomorphic

to M, the set R(X,S2) is dense in C
oo

(X,S2).

Th. 3. Let M be a C
OO

surface. Assurne that M is either orient-

able, or nonorientable of even genus. Then there is a non-

~ singular real algebraic 'set X diffeomorphic toM, such that

each f ER(X,S2) is homotopic to a constant.

Th. 4. Let M be an orientable 4-dimensional C
OO

manifold.

The following are equivalent:

i) The signature a(M) of M is 0;

ii) there is a nonsingular real algebraic set X diffeo­

morphic to M, such that each f E R(X,S4) is homo~opic

to a constant.

Th. 5, 6, 7, ... etc.
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J.J. ETAYO:

N-GONAL CYCLIC REAL ALGEBRAIC CURVES

Let C be a projective irreducible non-singular algebraic

curve defined over lR, whose real part· C(JR) is Zariski­

dense in C. We denote by p the genus of C and by k the

number of connected components of C(lR). C is called

N-gonal cyclic if there exists ~ birational isomorphism

~ of C, of order N, such that C/~ is ratio~al, and

~ ( C ( lR )) C C ( lR ) and (C / <p) ( lR ) = C ( ]R ) / c.p Ic(m)

We study here the existence of such a curve according to

the values of the couple (p,k) distinguishing whether

C ...... C(:IR) is connected or not. Moreover the characterization

we obtain allows us to decide in an effective way the

branching orders of the proj ect ion C(JR) ... C(lR) / q>.

In a second step we calculate, given the number N, the

minimum genus cf an N-gonal cyclic curve, and determine

the topological types of the curves achieving this bound.

The technique we use involves Klein surfaces and NEC groups.
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M. SEPPÄLÄ:

COMPLEX CURVES WITH REAL MODULI

The moduli space Mg of"smooth complex algebraic curves cf

genus g, g ~ 2, is a quasiprojective variety defined over Q.

Mg can be embedded in a projective space ~N(C) in such a

way that the complex conjugation in IPN(C), restricted to

Mg, is the mapping Mg ~ Mg, [Cl ~ [Cl. Here C is the complex

conjugate of the curve C.

We show, applying the above observation, that the real part

of Mg, Mg(lR) is the moduli space of genus g converings of

real algebraic curves.

Using Teichmüller theory we can analyze the topol~gical,

analytic and algebraic structures of Mg(lR) and its various

curves of genus p with n distinguished points•
parts.

Use the notation

J complex isomorphism classes of real algebraic

1

. .

Thm. M~O is the closure of tne regular part of Mg(lR) pro-

vided that g > 4.

Cor. Mg,O is semialgebraic, g ?: 4.:IR

These results hold also for the moduli spaces MP,n provided

that p > 4 or p = 3 and n > 9 or p = 2 and n > 6.-

}.
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EI BIERSTONE:

UNIFORMIZATION AND RECTILINEARIZATION OF SUBANALYTIC SETS

Hironaka has used his desingularization and local flattening

theorems to prove the following fundamental results: Let M

be areal analytic manifold and let X be a subanalytic sub-

set of M.

Uniformization theorem. Suppose X i5 closed. Then there is

areal analytic manifold N (dimN = dirn X} and a proper real

analytic mapping ~ : N ~ M such that ~(N) = x.

Rectilinearization theorem. Let K cM be compact. Then there

are finitely many real analytic rnappings ~i : iHm ~ M (m =

dirn M) such that:

(1) There are compact subsets Ki cf nf, such that U~i(Ki)

is a neighborhood of K in M.

(2) For each i, ~il(X) is a union of quadrants.

Elementary proofs of these results, using neither resolution

of singularities nor Iocal flattening are presented in this

talk and the following one by P. Milman. Gur approach stands

in the same relation to loeal resolution of singularities of

real or complex analytic spaees as Zariski's uniformization

theorem does to desingularization of algebraic varieties.

•

•
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P. MILMAN:

TRANSFORMING AN ANALYTIC FUNCTION TO NORMAL CROSS1NGS BY

·BLOWING-UP

In this talk w~ presented an elementary proo~ of the follow­

ing" theorem (a variant of desingularization)~

Theorem. Let M be an·analytic manifold (over TI<= JR or· ~).'

Let f E 0 (M). ( Assume t ha t f d 0 es :10 t v~n i s h identica11y 0 n

any component of M.) Then there is a countable co~lectio~ of

analytic mapping~ TIj : Wj ~ M such that:

(1) Each TI j is the composition of a finite sequence cf loqal

blowing-ups(with smoath centers).

(2) There is a locally finite open covering {Vj } .Of M. such

that TIj(Wj ) c Vj' far all j.

(3) If K is a compact subset of ~, then there are compact

subsets Lj c Wj such that K

finite by (2).)

union iso

(4) For each j, fVTI j i8 locally normal crossings on ~j.
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L. BRÖCKER:

SEPARATION OF SEMIALGEBRAIC SETS BY POLYNOMIALS AND NASH

FUNCTIONS

Let Vn be areal algebraic affine variety of dimension n.

Let A,B c VeR) be disjoint basic closed sernialgebraic sub­

sets.

Theorem. a) If n < 2, then A and B can be separated by a

polynomial.

b) If n ~ 3 there exist semialgebraic disjoint closed basic

sets which cannot be separated by a polynomial.

Part b) is proved by an explicit counterexample. Part a)

follows from the following result on abstract spaces of

orderings;

Theorem. Let (X,G) be aspace of orderings and let A,B be

open and clo~ed disjoint constructible subsets of X. Then

A and B can be separated by an element g E G iff this holds

for the restriction to all finite subspaces of X.

More generally, the Mostowski number m(A,B) is considered

for any pair cf disjoint semialgebraic subsets A,B c V(R),'

A,B.closed. This is the minimal number m such that

f E R[V) [VCT1, .... ~ vq-;) separates A and B, where the qi E R[V)

are strictly positive .. Estimates are given for the Mostowski

number m(n) = sup{m(v): dirn V = n} (where meV) =

sup{m(A,B): A,B cV(lR) }), namely n-1,::. m(n) ~ s(n)t(n) for

n >2 .. Here s(n)t(n) is the minimal number of polynomials

which describes an arbitrary closed semialgebraic set as a

union cf basic closed sets.

•
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D. TROTMAN:

ON TRANSVERSALS TO SEMIALGEBRAIC/SUBANALVTIC SETS

The notion cf transversal submanifold to an embeddeq singular

space is in terms of transversality to the strata of a Cl

4It stratification.

1 n p ) ClThm. 1. In C (JR , lR the set of transversal maps to a

stratificat"ion L of a closed subset z of lRP . is open iff E

is Whitney A-regular.

It is thus interesting to study transversals to A-regular

stratifications.

Thm. 2. The topological type of the germ at 0 of the inter-

section X nT, for T a Cl transversal at '0 to Y, where (X,Y)

are Cl A-regular strata, is independent of T.

class .C
k are sent by y to tran.s-:

We say a function f : lR
n -+lR is

x. gi(x) where gi are of ~lass Ck .
l

•
-n - n

Let y : E -+:IR be the blowing up of lR at the origin. If

(X,Y) is Whitney A-regular in IRn , y-1(X) is Verdier W-regu-

IP
n - 1 --lar.over 0 space of hyperplanes transve~se to Y.

Thm. 2 follows.

Transversals to JP~-l of

versals to Y of class Ck
+ .
n

of class C~ if fex) = L
i=l

We deduce by stratification arguments and by a 1985 (Topo­

logy) theorem that. "transverse c~ transversals -+ finitely

many homeomorphic C~ transversals" for subanalytic sets.

This provides a partial confirmation of a conjecture .of the
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author. We are also led to consider Lipschitz transversals,

Hölderian Ca transversals in this semialgebraic context.

Z. SZAFRANIEC:

ON THE TOPOLOGICAL INVARIANTS OF GERMS OF ANALVTIC·

FUNCTIONS

There is given adefinition of germs with property Ad (far

~xample, each homogeneous polynomial of degree d has pro­

pert y Ad ). Let f : ( ]Rn , 0 ) ... (lR , 0 ) be a germ wi t h proper­

ty Ad , and let f~ be the complexification of f. Let us de­

note by e(ft ) the Euler characteristic of the Milnor's

fiber of f t . The main result is:

1 1 n-l 12" X (L) e "2 X (S ) + Ci e (f~) mod 2

•

where L = r- 1 (0) nsr , r small. This theorem is a generali- ~

zation of a theorem which was proved by C.T.C. Wall

(Topology, 1983).

                                   
                                                                                                       ©



•

- 21 -

Z. DENKOWSKA:

APPLICATIONS OF SUBANALYTIC SETS

The following (already classical)

Thm. 1. Let E be a sUbanalytic (semian.) rel. compac.t sub-

set of MxN, M,N real analytic manifolds, TI : MxN ~ N the

projection. Then there is a uniform bound C for the number of

cf connected components of Ey'y E N.

permits to obtain the following result related to Hilbert's

16th problem:

Thm .. (Fran~oise" Pugh 1986) Fix' T > 0 and d E JN.• Then the

number.of limit cycles of the dynamieal system x = f(x,y),

Y = g(x,y) with f,g polynomials of deg ~d, having period

~T, is uniformly bounded by a constant B(d,T).

We obtain thi~ ,result by applying Thm. 1 to

A = {(t,f::,v) E [O,T] x IDx S : <pv(t,f::) = ~},

2where ID is the Poincare compaetification of lR , S is the

unit sphere in the spaee of polynomial vector fields of

deg ~d, and <Pv is the flow.of v.

But the estimate here is not explicit. Another subanalytic

theorem that is iikely to apply (lengths of oroits?) is

Thm. 2. Let E,M,N be as in Thm. 1. Then there exists a upi-

form bound C for the lengths of ares in the fibres Ey .
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R. SILHOL:

REAL CUBIC SURFACES (REVISITED?)

. A elassifieation of real eubie surfaees ean be made in terms

of the number of real lines and the number of eonneeted,eom-

ponents. It goes as folIows: •
type

# real line 27 15

# eompo'nents 1 1

7

1

3

1

3

2

It is weIl known that surfaees of type Fl to F4 are all bi­

rationally isomorphie (over IR) . But the fact that the sur­

faees of type F s are all birationally isomorphie seems to

be unknown or at least forgotten. This is what we prove.

The idea of the proof is to relate such surfaees to surfaees,

defined by x 2 +y2 = g(t), ga funetion regular on JPl(JR) with

4 real simple'zeros. Modulo an elementary transformation

such a surfaee i8 isomorphie (over ~} to ~: blown up in 5

points. The real part has 2 eomponents, and blowing up one

more real point gives a real'eubie surface of type F s • All

surfaees of type F s are 'obtained in this way. To see this

let W be a surface of this type and D areal line in it.

If P is a plane pas~ing through D, P n (W ...... D) is a conic.

Using classieal theory one can prove that the fibratien cf

W...... D thus obtained is cf the preceding type.

Apriori the birational isomorphism class of the surface

depends on the cross-ratio of the 4 zeros of g. Since we

•
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have 3 real lines and hence 3 fibrations, the proof redu­

ces to building a cubic surface such that 2 of the fibra-

tions correspond to 2 given cross-ratios.

B. REZNICK:

IF p(X1 , ••• ,Xn ) IS A POSITIVE SEMI-DEFINITE FORM, WHEN IS

P(X~,. I.'X~) A SUM OF SQUARES?

Let p = p(x 1 , ... ,xn ) be areal psd form of degree m and
k . k

Y(p) = {k: p(x1 , ... ,xn } is sos (= sum cf squares)}. Clearly

rk.EY(p) if k EY(P). The only ether information ·comes fram
,

explicit examples. An agiform is a psd form with shape

~1 _ un -w
C ( Al !.- + .•• + An ~- - ~-) where c > 0, Ai ~ 0, LA i= 1 and

~ = LAi ~i is a ~attice point. These occur in the litera­

ture from Hurwitz, Matzkin, Choi, Lam and Reznick. Using a

purely geometric criterion for agiforms to be sos, one can

show that there exist agiforms Ps' qs such that Y(ps) =

{s,s+1,s+2, ... } and Y(qs) = {2,4, ... ,2s-2,2s,2s+1,2s+2, ... }.

By contrast, Y(H) = ~ for the psd (non-agiform) Horn form H.

in 5 variables. Questions: Does there exist a form p in <4

variables for which Y(p) rb? If Y(p) *0, does Y(p) contain

all but finitely many k? etc. Conjecture: If p is psd then

there exists an invertible linear transformation T suCh that

for q(K) = p(Tx.) there is an odd k E Y(q). It would imply
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that every psd p can be written as sos of ferms in the

"fractional" variables (La .. x.)l/k, 1< i < n.
lJ J

K. REICHARD:

SaME REMARKS ON REAL POLYNOMIAL MAPPINGS WITH CONSTANT

DETERMINANT

A famous conj ecture says: If F : JRn -+ ]Rn is a polynomial

mapping with det(aF/ax) 6 1, then there exists a polynemial

inverse mapping. This conjecture is not yet proven. But the

following weaker spec ial case is true: If n =2 and F is as

above,.then F is injective. It fol~ows from a theorem cf

Borel that F is bijective, and so has a real-analytic in-

verse mapping.

M. SHIQTA:

NASH MANIFOLDS AND NONSINGULAR REAL ALGEBRAIC VARIETIES

A CW affine Nash manifold is by definition a CW submanifold

of IR
n

which is also semialgebraic. Let r be a natural num­

ber or w. Then a er Nash map between affine CW Nash mani-

•

•
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folds is by definition a er map with semialgebraie graph ..

Theorem. An affine e W Nash manifold is CW Nash diffeomorphic

to same nonsingular affine algebraic variety.

The compact case is equivalent to the well-known theorem of

Tognoli. The noncompact case is pastly proved by Akbulut­

King. Their famous theorem is that the interior of a compact

e W manifold is e W diffeomorphic to some nonsingular affine

algebraic variety. We see easily that this is equivalent "to

the statement that an affine CW Nash manifold which is non­

compact is CW diffeomorphic to some nonsingular affine alge­

braic variety. However the theorem does not follow automati­

cally from this because there exist two affine e W Nash mani­

folds which are CW diffeomorphic but not CW Nash diffeomor­

phic.

Fo~ the proof of theorem we need some factsabout Nash mani­

falds and same topological methods. The most important fact

is as folIows. We can construct"a topology on the set of 'er

Nash maps between affine e W Nash manifolds so that a elose

approximation of a er Nash diffeomorphism is a diffeomorphism

and that we can approximate a er Nash map by a e W ane.
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J.P. FRANCalSE:

REAL TORIl AND JACOBIANS ASSOCIATED TO A.e.l. SYSTEMS

M. Adler and P. van Moerbeke introduced the notion of alge-

braically completely integrable Hamiltonian systems. For

these systems one can compute the actions and relate the

singularities of these actians to singularities of period

mappings cf families of Riemann surfaces. Same problems of

real algebraic geometry nature arise to fin~ the real inva-

riant torii inside the complex torii (Jacobians or Prym va-

riety) or to understand the monodromy of the actions. We

gave a complete description of the three cases of integrabi-

lity of the motion of'a solid body about a fixed point as

an illustration.

F. CUCKER:

COMPUTATION OF THE ANALYTIC STRUCTURE OF A REAL A~GEBRAIC

CURVE

2Giv en apolynomia1 F ( X, Y). E Z[ X, Y1. and i t s zero set C ~ JR ,

some algorithms have recently been given which compute the

topology of C, i.e. they produce a planar graph homeomorphic

to C.

•
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In our work an improvement of this algorithmis given, which

outputs the same graph with the edges numbered in such a way

that they share the number iff they belong to the same global

analytic component.

To do so we calculate the discriminant locus, the points of

the curve lying over this set and for each of 'these points

4It the half-branches of the curve centered at it. Once we have

this information, edges of the same global component are

collected together by just a pursuit of the component in the

graph: At each critical point we follow a half-branch in the

half-branqh that gives us the whole branch.

The computatio~ of the branches (and half-branches) is per­

formed using

a) Duval' s algorithm.for rat ional 'Puiseux expansions, and

b) Goste and Roy's codification of real algebraic numbers.

E. BECKER:

SOME REMARKS ON THE REAL SPECTRUM UNDER REAL CLOSED FIELD

EXTENSIONS

Let R be areal closed field and VIR an affine real variety.

Then VeR) can be naturally identified with a dense subspace

of the compact space Max Sper R[V] =: VeR). In order tounder­

stand this compactificationone may first study varieties

over lR and investigate thereafter the behaviour of VeR)
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under real closed field extensions.

Prop. 1. Let V / lR be an integral curve.

i ) # (V ( lR)..... V( :IR » = 2· # (y ( TI{ ) - V(TI{», wher e Y isthe

smooth proj. model of lR(V) and V is the normalization

ii)

of V;

If K clR, K real closed, then V(K) and V(lR) are horneo­

morphic. •
For a more general study let KcR.be an extension of real"

closed fields,V be areal variety /K, A .- K[V], Vthe base

extension of V to R,B

•
V(:IR) .... V(K),

injective on VeR). If in addition V is a curve or V(JR)

i5 cornpact then this map is a homeomorphism;

iv)

Prop. 2. i) B is also a real algebra;

ii) Every a E Sper A extends to ß E Sper B with dirn a

dirn ß ;

i1i) If R I K is Archimedean then res : Sper B ~ Sper A induces

a surjective map res :" VeR) ~ V(K); if RIK is even dense,

reslV(R) : VeR) ~ V(K) i5 injective;

If R = lR we have a surjective map res

v) If K ~:IR then res: Max Sper lR [X, Yl -- Max Sper K[X, Yl. is

not injective.
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D. GONDARD

FIRST ORDER AXIOMS FOR CHAIN CLOSED FIELDS AND 17TH HILBERT'S

PROBLEM AT LEVEL N

Let L be the language of fields, and a an additio~al con-

stant symbol.

In the first part we give axioms in the language L(a) for

a field K to be the chain closed. Also an axiomatization cf

the theory of chain closed fields in L is given. These and

other results on the model theory of chain'closed fields

will appear in C.R.A.S. 1987. The 2
nd part is joint work

with F. Delon (Paris 7). Some results:

Thm. Let ~ be chain closed, such there is only one henselian

valuation with real closed residue field on K. For f E K(x) ,

the following are equivalent:

i ) f € L ( K ( x) ) 2
n

;

ii) for every real algebraic extension L/K, f satisfies

2n
fex) EL 'Ix EL.

Thm. For chain closed fields KcL, the following are equiva­

lent:

i) KnL2 :'K2

ii) K is relatively algebraically closed in L

iii) K -< L .
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G, BRUMFIEL:

I I A FIXED POINT THEOREM FOR .SEMI-ALGEBRAIC SETS

Theorem. Let X c]Rn be any semi-algebraic set, f : X ~ X a

continuous semi-algebraic map, tr(f*) = E(-l)i trace (Hi(X) ~

Hi (X)). Let X cSpecR JR [Xl' ... ,xn ] be the eonstruetible

assoeiated to X, and f : X~ X the map assoeiated to f. Then

if tr (f*) * 0, l' has a fixed point.

11, THE TREE OF A NON-ARCHIMEDEAN HYPERBOLIC PLANE

If A ~ (IR,+) is an ordered group, a A-tree (more preeisely,

its set of vertiees) is ametrie space d : TxT ~ A which

satisfies certain axioms such as (1) eaeh pair of point~ of

T are endpoints of a unique segment (= subspace isometrie to

an interval in A); (2) if sl' s2 are segments and ~1 n s2 =.

point then s1 U S 2 is a segment; (3) if two segments si have

an endpoint of" one in eommon, then sl n s2 is a segment.

Let F be a non-Arehimedean ordered field, and lliF 2 the hyper­

bolie plane with cross-ratio distance D(A,B) ~ 1 between

points of" lliF 2 • Define d(A,B) = log D(A,B) E lR, where

log : FZ ~ ]R is log with base a big element b > 0 (b .big

means vaEF, a~bn, some n). Then log 1.1: F* ~ JR is a

valuation with value group A c JR .

Theorem. lliF 2 /- with metrie d is a A-tree, where A -B means

d(A,B) = O.
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