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This conference, directed by E. Becker (Dortmund), L.
Brécker (Minster) and M. Knebusch (Regensburg), was the
second one on this subject held at Oberwolfach. Some  of the
major topics treated in its course have been algebraic geo-
metry over the reals, semialgebraic geometry and the real
spectrum, subanalytic geometry, gquadratic forms and ordérings
of higher level, logical and model-theoretical methods and
relations to other branches of mathematics such as Teich-
miiller theory. A feature of particularly growing interest
is the search for algorithms computing geometrical invari-
ants of real algebraic varieties. It became evident in the
course of this week that the topics centered around -the
subject "real algebraic geometry" are intimately related

to each other and. therefore cannot be isolated. The large
number of participants, most of them coming from abroad,
showed that the interest in this area of mathematics is
still increasing.
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Vortragsausziige

L. VAN DEN DRIES:

P-ADIC AND REAL SUBANALYTIC SETS

Question (Serre, +1980): Let f EZp {Xl,...,Xm} be a power

series over Zp converging on Zg, let Z(f) < zg be its zero

set, put N, = # image of Z(f) under Zg - (z/pk)m, k =
L2
0,1,2,... . Is then the Poincaré series | Nk tk rational

k=0
in t?

Denef (Invent. 1984): Yes, if f is a polynomial.

Denef, v.d. Dries (1986, to app. Ann. Math.): Yes, always.
For polynomials Denef used Macintyre's p-adic analogue of
Tarski-Seidenberg. The general problem was solved by con-
structing a p-adic analogue of the theory of subanalytic
sets. Since the proof of thé real "fiber cutting lemma"

has no p-adic analogue we invented a new technique that by-
passes fibercutting completely, and that also works in the

classical real case. We prove our central result (both in

the p-adic and in the real case) by an elimination of

quantifiers, which adds to-the flexibility in working with
subanalytic sets. In the'gggl case our theorem.can be stated
as follows. Equip I = [—i,l] with operations £ : I™ = I, one
for each power series f €IREX1,...,Xm] that converges on a

neighborhood of I™ and maps I™ into I, and also with the

2 x/y if Ixl <lyl,y#+0

operation D : I 0 otherwise,

- I given by D(x,y) = {
and finally with the binary relation <.

Formulas in the language with these basic operations and
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relation are called D-analytic formulas.

We now have:

Theorem. Each D-analytic formula is equivalent to one with-

out quantifiers.

As immediate consequencesone obtains that the definable sub-
sets of I™ are exactly the subsets of I™ that are subanalytic
in ﬂ¥n, hence that the complement and the. interior of a sub-

analytic set (in any manifold) are subanalytic, etec.

C. ANDRADAS:

ON THE STABILITY INDEX OF EXCELLENT RINGS

We develop a general theory of stability index for excellent
rings. Let A be an excellent ring, X, its real spectrum and
U c X, a basic §pen constructible subset. We define st U =
min{fk EIN: U = {x GXA-:fl(x) >0,...,f,(x) >0} and st A =
sup{st U} . Our approach follows closely the works of Broécker

and Mahé.

(A) Theorem 1: The following are equivalent: (1) st A <=
(2) st k(g) <« for all 4 €Spec A.

In fact, only a finite number of g's is needed in (2): the
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zero divisors of A, then the zero divisors of the regular

locus of A, and so forth.

Corollary 2: Let B be a f.g. A-algebra or an excellent alge-

braic extension of A. If st A <= then st B <.

(B) Next assume that A is henselian, with residue field k

and total rings of fractions K. Then

Theorem 3: dim A < st K < dim A+ stk + 1. .

Therefore from Theorem 1 we get st A <o iff st k <.

(C) Finally we apply the above results to global semiana-
lytic subsets of a complete analytic real manifold M of

dimension d.

Theorem 4: Any basic open global semianalytic subset S of
M can be written as S = {x €M: fi(x) >O,...,fs(x) >0} where
fl""’fs are aﬁalytic on M and
d(a+2)/4 if 4 is even
° = { (d+1)2/4 if 4 is odd .
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H.W. SCHULTING:

HOMOLOGICALLY AND ALGEBRAICALLY TRIVIAL CYCLES

Let X be a projective, nonsingular, n-dimensional variety
over IR, and let Zk(X) be the free abelian group generated

by the k-dimensional subvarieties of X. There is a canonical
homomorphism cl = el Zk(X) - Hk(X(IR), 2/2). We want to
compute the kernel of cly,. Define Zﬁ(X) = {z EZk(X), z ra-
tional equivalent to a cycle In.Zs, Zi(m) = 8}, Zﬁh(x) =

{g EZk(X'), z rational equivalent to. a cycle Ing Zi 5

dim Zi(lR)' <k}.

1) The solution is well known in the cases k = 0, k = n-1:-

kern(clK) = zﬁ(X) for ¥k = 0, k = n-1

2) The following example is constructed:
X = proj IRI{Xo,...,Xs1/(X} +... +X3 ~X}), hence, X(IR) = S*.
There exists a cycle z with n-+z czﬁ(X) for n>1 (but

cl(z) = 0). It will follow from 4) that erzz(X);

3) Using a theorem of Ischebeck we can prove: kern(clk) =
zf(h(x) foi" ‘every k. The main tool is ‘the classification

of non-oriented bordism.

4) Using Hironaka's methods on "smoothing" of cylces, we

I, B : n-1
prove kern(clk) = Zk if k¥ < min(3, > )

Question: Can the 3 in the above bound be dropped?
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G. STENGLE:

A MEASURE OF COMPLEXITY FOR COMPLEX POLYNOMIALS WITH APPLI-
CATIONS TO THE ANGULAR DISTRIBUTION OF ZEROS

Let P(z) be a complex polynomial of degree n. Let M(P) =
{mi,...,mk} be the set of nonzero exponents actually appear-
ing in P. The following gives an internal measure of the

additive complexity of the set M(P).

Definition. Let M,G be subsets of a commutative semigroup.
Let d(M,G) (diameter of M with respect to G) be = if for no
k one has M'e G U (G+G) VU ... U (G+...+G) (k summands), and

the minimum such k otherwise. Let YM(s) = min{d(M,G) : IG| =s}.

Theorem. There exists a constant C such that if

K(P) = min [(J+1) 1OgZYM(P)(j) +.j2]’

j>0
then any open sector of aperture w/deg P contains no more
than‘CK<P) zeros of P.

The point of this estimate is its independence of the co-
efficients and degree of P. The proof is a simple applica-

tion of Khovansky estimates;

Corollary 1. The number of zeros of P in any sector of

2
aperture w/n is no more than Ck .

Corollary 2. If the set M(P) is an arithmetic progression

then the bound of the previous Corollary is polynomial in k.
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N.L. ALLING:

FOUNDATIONS OF ANALYSIS OVER SURCOMPLEX NUMBER FIELDS

Over the field of complex numbers € the following hold-

. (A) Locally, the simple roots of @~ (X) €C[X) are analytic.
functions of its coefficients.

(B) Let ¢"(X,Y) €€[X,Y] and let (x_,y.) €¢2 with

0°Yo
(de/dY)(xo,yo) # 0. Let 9" (x,y) = 0. Locally

about (x ), ¥ is an analytic function of x.

0°Yo
(c) Letwi,...,w; EC[Xl,...,Xn] define a map from ¢ to ¢@,
taking 8 to 8, that is non-singular at 8 = (0,...,0) €c”.
Then it has an analytic inverse, defined in some neigh-
- borhood of 3, in the range space.
All of these classical theorems admit generalizations over'v

. the surcomplex number fields, and thus - a bit further re-

stricted - over the surreal number fields.

DFG 2
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T. RECIO:

THE WIDTH OF A SEMIALGEBRAIC SET AND THE COST OF AN ALGE-
BRAIC DECISION TREE

Lower bounds for the complexity of the membership problem

(to a semialgebraic set S c ]Rn) in the model of computation

of algebraic decision trees have been systematically obtain-

ed either by considering the number of connected components
of S or through the notion of "width of a complete proof"

as introduced for semilinear sets by Rabin. Several attempts

to extend this notion for the non-linear case have failed

to produce non-linear lower bounds, as remarked by Ben-Or.

On the other hand it has been shown that some problems aris-

ing in computational geometry can not be formulated with

semilinear tasks. Therefore we have presented here a general
definition of the width of a semialgebraic closed set ngn,

w(S) = min{r €N IS = igl {x €R" lfil(x) >0,... ,fir(‘x) >0},

fij €IR[x]} (a similar definition holds for open sets).

In the general case the width of the congruence class of a

semialgebraic set S is defined as wcon(s) = min{w(A)! A closed,

s.a.set , AAS of cod. > 1}. Then we have the following re-
sults:

i) The width of the congruence class of a sa.set S is a
lower bound for the cost of any algebraic decision tree
solving the membership problem for S.

ii) vs S]Rn s S.a., wcon(S) < n. Therefore, taking n as a

parameter, at best linear lower bounds can be obtained.
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iii) The width of a basic closed s.a. set is in general
smaller (and not always equal) to the t-invariant of
its complement in IRn, and smaller,than the s-invariant
of the given set.

iv). Under certain conditions on Pys--esPy € IR{x], it can
be shown that w{p, 30,...,pm30} = m and that

wcon{pl _>_0,...pm30} = m.

C. SCHEIDERER:

QUOTIENTS OF SEMIALGEBRAIC SPACES

We consider affine semialgebraic (s;a.) spaces over a real
closed base field R and s.a. maps between them. For M such
a space and E € M xM a closed s.a. équivalence relation on
it we say that the (geometrical) quotient M/E exists' if
there is an identifying map f : M -+ N to some space N such
that E = M xNM (that is, thé set of equivalence classes,
equipped with the quotient topoloéy, carries a (unique) s.a.
structure). This notion coincides with that of effective
epimorphisms (in the affine category) provided that M is
locally complete. G.W. Brumfiel has shown M/E to exist if
P1sPy ¢ E 3 M are proper. Assuming M locally éomplete we
show that M/E exists if and only if there is soﬁe subspace

K of M such that pllp51(K) :pgl(K) -+ M is proper and onto.
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(In fact, Eg := E N (KxK) is proper over K in this case,

and M/E just "is" K/EK.)On the other hand, M/E does always
exist if E 3 M are open (again M locally complete). Examples
show that the local completeness hypotheses cannot be dropp-
ed. The proofs are given within the set-up of real spectrum.
They make essential use of the féct that the theory of real
closed fields with compatible non-trivial valuation admits

elimination of quantifiers.

K. KURDYKA:

ARCWISE SYMMETRIC SEMI-ALGEBRAIC SETS

A semi-algebraic set E in R" ;s said to be arcwise symme-
tric iff for each vy : (-1,1) - IRn, analytic arc, y(-1,0) <E
implies yv(-1,1) <E. The class of all arcwise symmetric sets
in ]R" forms a class of closed sets for a noetherian topo-
logy. We call it AR-topology. This topology is between ‘

Zariski topology and strong topology. We claim that

1) If V is algebraic, dim V= k, there is a 1-1-correspondence
between AR-irreducible components of V of dim k and
connected components of a resolution of singularities of V.

2) AR-irreducible immerged components correspond to Nash

sheets of V.
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3) If E is AR-closed, f : E » R" regular injective and

proper, then f(E) is AR-closed.

We define a ring of semi-aigebraic functions on IRn, which

satisfies the following condition: If y : (0,1) » IR"is an

' analytic arc then fey is analytic. We call this ring Aa(]'Rn).

4) For each E, AR-closed in R", there exists f EAa(an)
such that £ 1(0) = E.

5) codim sing(f) > 2.

6) The ring Aakmn) is an integral domain, not noetherian,
nor factorial, but Spec Aa is a noetherian space.

7) The Nullstellensatz holds true for Aa(]Rn) (as in com-

plex case).

W, PAWLUCKI:

. SETS WITH POLYNOMIAL CUSPS IN APPROXIMATION THEORY .

UFG

A subset E of IR is said to be unifoamly polynomially cus-
pidaf (UPC), if there are three positive constants M,m,d

such that for each point x €E there exists a polynomial

n

map hy : IR - IR of deg < d, and such that:

i) hx(]0,1]) c E, hx(O) = x, and

1) aist (h (t),R'~E) > Mt", for each x €E and t €[0,1].
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Every open bounded subanalytic subset of R’ is UPC; in
particularly every open bounded semi-algebraic subset is
UPC. Let E be a UPC subset of IR". We have the following
version of Markov's inequality:

HD;"E < C-kr|a|ﬂpﬂE , where p : r"

5> 1R is a polynomial of
deg < k, a em”, iplg = sup{Ip(x)l: x €E} and positive con-
stants C,r depend only on E. Markov's inequality is used in

the proof of the following version of Bernstein's theorem:

AAssume that F is compact. Let £ : E » IR. Let Pk denote the

space of polynomials of deg < k, on IR". Then the following

conditions are equivalent:

n

1) there .exists a C” extension ¥ : R" - IR of f,

2) for every r >0: 1lim kr°distE(f,Pk) = 0 (where

K-

. ar ?
dlstE(f,Pk) = 1nf‘{l|f-p||E : pEPLY).

J. BOCHNAK:

' 2
ALGEBRAIC MAPPINGS INTO ™

Working jointly with W. Kucharz we got several results
concerning the structure of real algebraic (i.e. regular)
mappings between real algebraic sets. Here is a sample of
results (all spaces are supposed to be compact and connect-

ed).
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Th. 1. Let M be a C” surface. Then the following conditions

are equivalent: '

i) M is homeomorphic to Sl, IP2(B) or the Klein bottle.

ii) For each nonsingular real algebraic set X, diffeomorphic
to M, the set R(X,Sl) is dense in Cm(X,Sl) (in C” topo-

logy).

Notation. Given a nonsingular real algebraic set, R(X,S")
(resp. Cw(X,Sn)) denotes the set of regﬁlar (resp. ¢”) mapp-

ings from X into s™.

Th. 2. Let M be a C” surface. Then the following conditions
are equivalent:

i) M is nonorientable of odd genus; _

ii) for each nonsingular real algebraic set X diffeomorphic

to M, the set R(X,SQ) is dense in Cm(X,SZ).

Th. 3. Let M be a C~ surface. Assume that M is either orient-
able, or nonorientable of even genus. Then there is a non-
singular real algebraic set X diffeomorphic to M, such that

each f GR(X,Sz) is homotopic to a constant.

Th. 4. Let M be an orientable 4-dimensional C” manifold.’

The following are equivalent:

i) The signature o(M) of M is 0;

ii) there is a nonsingular real algebraic set X diffeo-
morphic to M, such that each f € R(X,su) is homotopic

to a constant.

Th. 5, 6, 7, ... ete.
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J.J. ETAYO:

N-GONAL CYCLIC REAL ALGEBRAIC CURVES

Let C be a projective irreducible non-singular algebraic
curve defined over IR, whose real part C(IR) is Zariski-
dense in C..We denote by p the genus of C and by k the
number of connected components of C(IR). C is called
N-gonal cyclic if there exists a birational isomorphism
¢ of C, of order N, such that C/¢ is rational, and

®(C(IR) = C(IR) and (C/@)(IR) = C(IR)/w|C(]R) .

We study here the existence of such a curve according to
the values of the couple (p,k) distinguishing whether
C~C(IR) is connectedvor not. Moreover the characterization
we obtain allows us to decide in an effective way the

branching orders of the projection C(IR) - C(IR)/eo.

In a second step we calculate, given the number N, the
minimum genus of an N-gonal cyclic curve, and determine

the topological types of the curves achieving this bound.

The technique we use involves Klein surfaces and NEC groups.
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M. SEPPALA:

COMPLEX CURVES WITH REAL MODULI

The moduli space M8 of smooth complex algebraic curves of
. genus g, g > 2, is a quasiprojective variety defined over Q.
M8 can be embedded in a projective space IPN(C) in such a
way that the complex conjugation in IPN(tB) , restricted to
Mg, is the mapping Mé - Mg, {c) » [C). Here C i»s the complex

conjugate of the curve C.

We show, applying the above observation, that the real part

of Mg, Mg(m) is the moduli space of genus g converings of

real algebraic curves.

Using Teichmiiller theory we can'analyze the topological,
analytic and algebraic structures of M&(IR) and its various

parts.

Use the notation

. » It complex isomorphism classes of real algebraic
R 1 curves of genus p with n distinguished points

Thm. M%R’o is the closure of the regular part of Mg(IR) pro-

vided that g-_>_ %
Cor.'M%R’O is semialgebraic, g > 4.

These results hold also for the moduli spaces MPs R provided

that p > 4 or p = 3 and n>9 or p = 2 and n >6.

DFG Deutsche
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E. BIERSTONE:

UNIFORMIZATION AND RECTILINEARIZATION OF SUBANALYTIC SETS

Hironaka has used his desingularization and local flattening
theorems to prove the following fundamental results: Let M
be a real analytic manifold and let X be a subanalytic sub-

set of M.

Uniformization theorem. Suppose X is closed. Then there is

a real analytic manifold N (dim N = dim X) and a proper real

analytic mapping ¢ : N » M such that ¢(N) = X.

Rectilinearization theorem. Let K <M be compact. Then there

are finitely many real analytic mappings ®; h¥n > M (m=

dim M) such that: -

(1) There are compact subsets Ki of Bfl, such that Uwi(Ki)
is a neighborhood of K in M.

(2) For each i, wgl(x) is a union of quadrants.

Elementary proofs of these results, using neither resolution
of singularities nor local flattening are presented in this
talk and the following one by P. Milman. Our approach stahds
in the same relation to local resolution of singularities of
real or complex analytic spdces as Zariski's uniformization

theorem does to desingularization of algebraic varieties.
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P. MILMAN: -

TRANSFORMING AN ANALYTIC FUNCTION TO NORMAL CROSSINGS BY

‘BLOWING-UP

In this talk we presented an elementary proof of the follow-

ing theorem (a variant of desingularization)”

Theorem. Let M be an-analytic manifold (over IK= IR or C).

Let £ €0(M). (Assume that f does not vanish identically on

any component of M.) Then there is a countable collection of

analytic mapping§ LI wj -+ M such that:

(1) Each nj is the composition of a finite sequence of local
blowing-ups (with smooth centers).

(2) There is a logally finite open covering {Vj}vof M. such
that nj(wj) c Vj’ for all j. ‘

(3) If XK is a compact subset of M, then there are compact

J J
finite by (2).)

subsets L. < W. such that K = Uy nj(Lj). (The union is
5 .

(4) For each j, fonj is locally normal crossings on W

i

DFG Deutsche
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L. BROCKER:

SEPARATION OF SEMIALGEBRAIC SETS BY POLYNOMIALS AND NASH
FUNCTIONS

Let V® be a real algebraic affine variety of dimension n.

Let A,B c V(R) be disjoint basic closed semialgebraic sub- - .

sets.

Theorem. a) If n < 2, then A and B can be separated by a
polynomial.

b) If n > 3 there exist semialgebraic disjoint closed basic
sets which cannot be separated by a polynomial.

Part b) is proved by an explicit counterexample. Part a)
follows from the following result on abstract spaces of

orderings:

Theorem. Let (X,G) be a space of orderings and let A,B be
open and closed disjoint constrgctible subsets of X. Then

A and B can be separated by an element g € G iff this holds
for the restriction to all finite subspaces of X. ‘
More generally, the Mostowski number m(A,B) is considered
for any pair of disjoint semialgebraic subsets A,B < V(R),’
A,B.closed. This is the minimal number m such that

f €R[V][V§;,.”,Vﬁ;] separates A and B, where the q; €RIV]
are strictly positive. Estimates are given for the Mostowski
number m(n) = sup{m(V): dim V= n} (where m(V) =

sup{m(A,B): A,BcV(IR) }), namely n-1< m(n) < s(n)T(n) for
n>2. Here s(n)t(n) is the minimal number of polynomials

which describes an arbitrary closed semialgebraic set as a

DFG 5. ..union of basic closed sets. ©®
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D. TROTMAN:

ON TRANSVERSALS TO SEMIALGEBRAIC/SUBANALYTIC SETS

The notion of transversal submanifold to an embedded singulér
space is in terms of transversality to the strata of a C1

. stratification.

Thm. 1. In C. (W™, ]®P) the set of transversal maps to a C-
stratification I of a closed subset Z of rP -is open iff I

is Whitney A-regular.

It is thus interesting to study transversals to A-regular

stratifications.

Thm. 2. The topological type of the gefm at O of the inter-
section X NT, for T a01 transversal at ‘O to Y, where (X,Y)

are C1 A-regular strata, is independent of T.

Let v : E » IR" be the blowing up of R" at the origin. If
(X,Y) is Whitney ‘A-fegular in ®", vy 1(X) is Verdier w-regu-

. lar over IP“E.;I = space of hypér;planes transverse to Y. .
Thm. 2 follows.

1

Transversals to IPS' of class C¥ are sent by y to trans-

versals to Y of class C We say a function f :R" 5 R is

k
Xy gi(x) where g; are of class C .

ne~15+4 %

of class le if f(x) =
: 1

i
We deduce by stratification arguments and by a 1985 (Topo-
logy) theorem that "transverse Cl+ transversals - finitely

many homeomorphic 01+ transversals" for subanalytic sets.

This provides a partial confirmation of a conjecture of the

DFG Deutsche
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author. We are also led to consider Lipschitz transversals,

H5lderian C% transversals in this semialgebraic context.

Z. SZAFRANIEC:

ON THE TOPOLOGICAL INVARIANTS OF GERMS OF ANALYTIC
FUNCTIONS

There is given a definition of germs with property Ay (for
example, each homogeneous polynomial of degree d has pro-

perty Ad). Let f : (IRn,O) -+ (IR,0) be a germ with proper-
ty Ad, and let fc be the complexification of f. Let us de-
note by e(fc) the Euler characteristic of the Milnor's

fiber of fC' The main result is:
1 1 n-1 1
5x (L) = 5x (87 7) + 3 e(fg) mod 2

where L = f-l(o) nsr, r small. This theorem is a generali-
zation of a theorem which was proved by C.T.C. Wall

(Topology, 1983).
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Z. DENKOWSKA:

APPLICATIONS OF SUBANALYTIC SETS

The following (already classical)

. Thm. 1. Let E be a subanalytic (semian.) rel. compact sub-

set of MxN, M,N real analytic manifolds, m : MxN - N the
projection. Then there is a uniform bound C for the number of

of connected components of Ey,y EN.

permits to obtain the following result related to Hilbert's

16th problem:

Thm. . (Frangoise, Pugh 1986) Fix T >0 and d € IN. Then the
" number.of limit cycles of the dynamical system x = f(x,y),
¥ = g(x,y) with f,g polynomials of deg <d, having period

<T, is uniformly bounded by a constant B(d4,T).

We obtain this result by applying Thm. 1 to

A = {(t,g,v) €[0,T] xDxS$ : ¢, (t,8) = £},
2

. where ID is the Poincaré compactification of IR™, § is the

UFG

unit sphere in the space of polynomial vector fields of

deg <d, and ¢, is the flow.of v.

But the estimate here is not explicit. Another subanalytic

theorem that is likely to apply (1ehgths of orbits?) is

Thm. 2. Let E,M,N be as in Thm. 1. Then there exists .a uni-

form bound C for the lengths of arcs in the fibres Ey.
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R. SILHOL:

REAL CUBIC SURFACES (REVISITED?)

- A classification of real cubic surfaces can be made in terms

of the number of real lines and the number of connected. com-

ponents. It goes as follows:

type ' Fi1 F2 PF3 Fu Fs
# real line 27 15 7 3 3

# components 1 1 1 1 2

It is well known that surfaces of type F; to F, are all bi-

rationally isomorphic (over IR) . But the fact that the sur-

faces of type Fs are all birationaily isomorphic seems to

be unknown or at least forgotten. This is what we prove.

The idea of the proof is to relate such surfaces to surfaces,

defined by x2+y2 = g(t), g a function regular on ]Pl(IR) with

4 real simple zeros. Modulo an elementary transformation
such a surface is isomorphic (over C) to IPg
points. The real part has 2 components, and blowing up one

blown up in 5

more real point gives a real cubic surface of typé Fs. Ali
surfaces of type Fs are obtained in this way. To see this
let W be a surface of this type and D a real line in it.
If P is a plane passing through D, P n(W~D) is a conic.
Usiné classical theory one can prove that the fibration of
W ~D thus obtained is of the preceding type.

A priori the birational isomorphism class of the sufface

depends on the cross-ratio of the 4 zeros of g. Since we
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have 3 real lines and hence 3 fibrations, the proof redu-
ces to building a cubic surface such that 2 of the fibra-

tions correspond to 2 given cross-ratios.

B. REZNICK:

IF P(Xyr+00sX,) IS A POSITIVE SEMI-DEFINITE FORM, WHEN IS
P(xll‘,...,xl,f) A SUM OF SQUARES?

Let p = p(xl,...,xn) be a real psd form of degree m and
Y(p) = {k: p(x?,...;xg) is sos (= sum of squares)}. Clearly
rk € Y(p) if k € Y(p). The only other information comes from
explicit examples. An aéiform is a psd form with shape

Un

uj . ; .
c(A1 X="+ ...+ An x=" - iﬂ) where ¢ >0, Aj_zo, in = 1 and

w = in uy is a lattice point. These occur in the litera-
ture from Hurwitz, Motzkin, Choi, Lam and Reznick. Using a

‘ purely geometric criterion for agiforms to be sos; one can
show that there exist agiforms Pg» Qg such that Y{ps) =
{s,s+1,s+42,...} and Y(qs) = {2,4,...,25-2,25,25+1,2542,...}.
By contrast, Y(H) = & for the psd (non-agiform) Horn form H.
in 5 variables. Questions: Does there exist a form p in <l
variables for which Y(p) = 6? If Y(p) #0@, does Y(p) contain
all but finitely many k? etc. Conjecture: If p is psd then

there exists an invertible linear transformation T such that

for q(x) = p(Tx) there is an odd k €Y(q). It would imply
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that every psd p can be written as sos of forms in the

"fractional” variables (Zai. Xj)l/k,

1 <1i«<n.
j <i<n

K. REICHARD:

SOME REMARKS ON REAL POLYNOMIAL MAPPINGS WITH CONSTANT
DETERMINANT

A famous conjecture says: If F : R"

- R’" is a polynomial
mapping with det(3F/3x) = 1, then there exists a polynomial
inverse mapping. This conjecture is not yet proven. But the
following weaker special case is true: If n=2 and F is as
above,. then F is injective. It follows from a theorem of

Borel that F is bijective, and so has a real—énalytic in-

verse mapping.

M. SHIQTA:

NASH MANIFOLDS AND NONSINGULAR REAL ALGEBRAIC VARIETIES

A C¥ affine Nash manifold is by definition a C® submanifold
of R" which is also semialgebraic. Let r be a natural num-

ber or w. Then a C¥ Nash map between affine C* Nash mani-

>

o®




UFG

Deutsche

-25_

folds is by definition a ¢’ map with semialgebraic graph.

Theorem. An affine C“ Nash manifold is c® Nash diffeomorphic

to some nonsingular affine algebraic variety.

The compact case is equivalent to the well-known theorem of
Tognoli. The noncompact case is pastly proved by Akbulut-
King. Their famous theorem is that the interior of a compact
c” manifold is c® diffeomorphiq to some nonsingular affine
algebraic variety. We see easily that this is equivalent to
the statement that an affine C“ Nash manifold which is non-
compact is c% diffeoﬁorphic to some nonsingular affine alge-
braic variety. However the theorem does not follow automati-
cally from this because there exist two affine c® Nash mani-
folds which are c” diffeomorphic but not c¥ Nash diffeomor-
phic.

For the proof of theorem we need some factsabout Nash‘mani-
folds and some topological methods. The most important fact
is as follows. We can construct a topology on the set of ¢¥
Nash maps between affine ¢“ Nash manifolds so that a close

approximation of a C¥ Nash diffeomorphism is a diffeomorphism

and that we can approximate a ¢’ Nash map by a c® one.
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J.P. FRANCOISE:

REAL TORII AND JACOBIANS ASSOCIATED TO A.C.1., SYSTEMS -

M. Adler and P. van Moerbeke introduced the notion of alge-
braically completely integrable Hamiltonian systems. For
these systems one can compute the actions and relate the
singularities of these actions to singularities of period
mappings of families of Riemann surfaces. Some problems of
real algebraic geometry nature arise to find the real inva-
riant torii inside the complex torii (Jacobians or Prym va-
riety) or to understand the monodromy of the actions. We
gave a complete description of the three cases of integrabi-
lity of the motion of a solid body ébout a fixed point as

an illustration.

F. CUCKER:

COMPUTATION OF THE ANALYTIC STRUCTURE OF A REAL ALGEBRAIC
CURVE

Given a polynomial F(X,Y) €2[X,Y] and its zero set C EIR2,
some algorithms have recently been given which compute the
topology of C, i.e. they produce a planar graph homeomorphic

to C.
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In our work an improvement of this algorithmis given, which
outputs the same graph with the edges numbered in such a way
that they share the number iff they belong to the same globai
analytic component.
To do so we calculate the discriminant locus, the points of
the curve lying over this set and for each of these points
. the half-branches of the curve centered at it. Once we have
this information, edges of the same global component are
cpllected together by just a pursuit of the component in the
graph: At each critical point we follow a half-branch in the
half-branch that gives us the whole brancﬁ.
The computation of the branches (and half-branches) is per-
formed using
a) Duval's algorithm for rational Puiseux expansigns, and

b) Coste and Roy's codification of real algebraic numbers.

‘ E. BECKER:
SOME REMARKS ON THE REAL SPECTRUM UNDER REAL CLOSED FIELD
EXTENSIONS '

Let R be a real closed field and VIR an affine real variety.
Then V(R) can be naturally identified with a dense subspace
of the compact space Max Sper R{V] =: V?R). In order to under-
stand this compactification one may first study varieties

over IR and investigate thereafter the behaviour of VER)
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under real closed field extensions.

Prop.

i)

ii)

1. Let V/IR be an integral curve.

B (V(R)~ V(R) = 2+ # (Y(R)-V(R), where ¥ is the

smooth proj. model of IR(V) and V is the normalization

of V;

If KR, K real closed, then VZK) and VZ]R) are homeo- ‘

morphic.

For a more general study let K <R.be an extension of real.

closed fields,V be a real variety /K, A := KIV], V the base

extension of V to R,B = R[V] = KIV] R .

Prop.

ii)

iii)

iv)

v)

DFG Deutsche
Forschungsgemeinschaft

2. i) B is also a real algebra;

Every o €Sper A extends to B € Sper B with dima =

dim B ;

If RIK is Archimedean then res : Sper B -»Sper A induces
a surjective map res : V?R) - VZK); if RIK is even dense,
res|j(gy ° V(R) - V/(\K) is injective; .

If R = IR we have a surjective map res : VEIR) - VZK),

injective on V(R). If in addition V is a curve or V(R)

is compact then this map is a homeomorphism; '
If KgIR then res : Max Sper IR [X,Y] —» Max SperKI[X,Y] is

not injective.
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D. GONDARD

FIRST ORDER AXIOMS FOR CHAIN CLOSED FIELDS AND 17TH HILBERT'S
PROBLEM AT LEVEL N '

Let L be the language of fields, and o an additional con-
' stant symbol.

In the first part we give axioms in the language L(a) for

a field K to be the chain closed. Also an axiomatization of

the theory of chain closed fields in L is given. These and

other results on the model theory of chain closed fields

will appear in C.R.A.S. 1987. The 2nd part is joint work

with F. Delon (Paris 7). Some results:

Thm. Let K be chain closed, such there is only one henselian -
valuation with real closed residue field on K. For f €K(x),
the following are equivalent: '

. 2n

i) f €Z(K(x))" ;

ii) for every real algebraic extension L/K, f satisfies

21’1
‘ £(x) €L° V¥x €L.

Thm. For chain closed fields K cL, the following are equiva-
lent: )

i)  knL® = k2

ii) K is relatively algebraically closed in L

iii) K<L
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G. BRUMFIEL:

I. A FIXED POINT THEOREM FOR SEMI-ALGEBRAIC SETS

Theorem. Let X «R" be any semi-algebraic set, £ : X » X a
continuous semi-algebraic map, tr(f,) = ):(-1)i trace (Hi(X) -
Hi(X)). Let 3;(<:SpecR Bi[xl,...,xn] be the constructible
associated to X, and f : X > X the map associated to f. Then

if tr(f,) #0, f has a fixed point.

11. THE TREE OF A NON-ARCHIMEDEAN HYPERBOLIC PLANE

If A < (IR,+) 1s an ordered group, a A-tree (more precisely,
its set of vertices) is a metric spéce d : TxT » A which
satisfies certain axioms such as (1) each pair of points of
T are endpoints of a unique segment (= subspace isometric to
an interval in A); (2) if 5,8, are segments and s, Ns, =
point then s, Us, is a segment; (3) if two segments s; have

an endpoint of one in common, then 54 Nsy is a segment.

Let F be a non-Archimedean ordered field, and B{F2 the hyper-
bolic plane with cross-ratio distance D(A,B) > 1 between

points of D{F2

. Define d(A,B) = log D(A,B) € IR, where
log : F; » IR is log with base a big element b >0 (b big
means va €F, a 5bn, some n). Then log |.| : F* - R is a

valuation with value group A < IR.

Theorem. B{F2/~ with metric d is a A-tree, where A ~B means

d(A,B) = 0. -
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