
MATHEMATISCHES FORSCHUNGSINSTITUT

Tag u n g s b e r ich t 20/1987.

Gruppentheorie

3.5. bis 9.5.1987

Die Tagung fand unter der Planung der Herren O.H.Kegel (Freiburg)

und K. W. Gruenberg (London) statt (letzterer konnte' leider 'nl'cht an­

wesend sein). In insgesamt 48 Vorträgen wurden den 53 Teilnehmern

aus 12 Staaten unter anderem Resultate über' endlich präsentie.rte

Gruppen, einfache Gruppen, endliche auflösbare Gruppen,' "Fi t:ti'ngklas­

sen in unendlichen lokal au~lösbaren Gruppen,' Automorphism,en. v~n

freien Gruppen und Produkten, Darstellungstheorie " v-eralle~'ine'i:nerte

lineare Gruppen, und universel~e Strukturen vorgestellt. Die Themen­

liste war sehr vielfältig; für weitergehende Informationen"muß daher

auf die nachfolgenden Vortragsauszüge verwiesen w~rden. Das'u~~ang­

reiche Tagungsprogramm regte die Teilnehmer z~ zahlreichen interes­

santen und ausgedehnten Diskussionen an. ,Leider w~r 'es 'den~ ~i~iela­

denen sowjetischen Kollegen nicht möglich,' an der Ta~un~ ~eilz~~eh­

men.

Vortragsauszüge

Z.Arad:

Table algebras and applications to finite group theory

Recently, several resul ts were proved about p!oduqts.. of, ~rr~q~c~ble

characters and products of conj ugacy clas ses in tini te. g:r,?up.s.~.~mon­

strating, sometimes, an analogy between the~. The main: .g.oa~, ~~our

research (jointly with H.Blau) is to introd,uce a, ne,w .con~::ep:t ,twh:ich

we call table algebras and then to study.properties:of ,t~~~~ ~l~e­

bras. Table algebras are in some sense generaliz.at.~ons,of ~~!1:it.e

groups. If G is a finite group then the table algebras gener~~~~

either by the conjugacy classes or by the irreducible cha~~ct~!$

over the field of complex numbers are examples of table alg~b~~s.

Every general theorem about table algebras can be app~~ed ~o:~ theo­

rem about characters and also to a theor~m ~bout,conj,u~ac~. c~~~~es

in finite groups. The main goal of our research is to develope a new

theory about table algebras and to apply it to finite group theory.
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-~ J'''C':.B~id~1~man:.'.' ,.- '--,
~ Fitti~rig~ ~iasses of §1-groups
~~~~_-...- ..---'

An ~1-group is one possessing a finite normal series in whieh the

factors are abelian groups of finite rank whose torsion subgroups

are ~ernikov groups. A Fitting class of ~1-groups is ~ subclass ~ of

~1 such that:

(F1) If G€,4 and Aase G, then AE.l.

(F2) If G€g1 is generated by ascendant ~-subgroups, then GE~.

Let ~ be a Fitting class of g1-grou_ps. (F2) ensures that the j oin of

ascendant ~-'subgroups of G is a normal ~-subgroup GX of G. GX is

called the ~-radical cf G. The class ~ cf lccally nilpctent·~~- 4It
groups is a Fitting class of ~1-groups. Also GM is just the Hirsch­

Plotkin radical of G. Let p be a pri:me. For G~S1' the p-socle of G

is Soc (G) = < MIM a minimal normal p-subgroup of G > • If G hasp
no minimal normal p-subgroups, then Soc (G.) = 1. C(p) =

. p
= (G€g1 I Socp(G) ~ Z(G» is a Fitting class of ~1-groups, and if

G €g1 then GC(p) = CG(Socp(G» •

A subgroup X of. G€g1 is called an ~-injector of G provided that

X"A is a maximal ~-subgroup 'of A for each ascendant subgroup A cf G.

The following theorems are considered.

Theorem 1. Let ~ be a Fitting class of g1-groups and let G€g1. If

G/GX is finite, then G has A-injectors and any two ~-injectors are

con}ugate. Theorem 2. Let &be a Fit~ing class of g1-groups such

that B~~. Then there is a polycyclic group Gwhich does not have

~-injectors. Theorem 3. Let! be a Fitting class of g1-groups

containing ~ and le.t .G €,§1. Suppose tha t G has anormal subgroup M

such that M/GX is finite and M contains all ~-subgroups of Gwhich

eontain GX . TEen G has ~-injectors and any two such subgroups are.

conjugate-; and InjX(M) = InjX(G). Theorem 4., Let ~ be a

Fitting class cf ,§,1-groups such that every ,§1-group G has a unique

con j u g a c y class 0 f ~ - in j. e c tor s • I f G€ ,§ 1 and X EIn j X(G), t h e n

XG/Gx is finite and Injx(XG) = InjX(G) =

Let G€g1. By Theorem 1 G has a unique conjugacy class of C(p)­

injectors. Also G has anormal subgroup N such that N/GN is finite

and N contains all the H-subgroups of Gwhich contain G~~ Hence G

has a unique conjugacy class cf ~-injectors. This was fIrst estab­

lished by M.Tomkinson (see Proc.Edinburgh Math.Soc.1979).
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D.. Blessenohl:

Regular elements in Galois extensions

In a finite Galois extension L/K an element x will be called com­

pletely regular if x serves as a generator for the MU-module L for

all U ~ G : = Gal (L/K) and M the fixed field of U.. One can show that

complet~ly regular elements always exist.. The proof of this theorem

(joint work with K.. Johnsen in Kiel) for infinite K is a variation of

a proof_given by Emil Artin for the existence of a normal basis for

L/K. If K is a finite field we can restriet ourselves to the case

that G is a cyclic q-group for some prime q. The case Char K = q is

easy. If Char K f q, one. has to look closer on the struct·ure of L as

a KiG i -mo.dule where G = GO> G, > .•• > Gn _1 > Gn =, and K = KO < K1 <

< ••• < Kn _1 < Kn = L'O By a comparison of the direct decomposi tionsof

T = Ker Tr L/ K into the irreducible KiG i -submodules for O;i~n-1

n-1 and induction for K , the theorem is proved'O
n-

A.Brandis:

Modules and crossed homomorphisms of finite groups, especially p­

solvable groups

Let G be a p-solvable group and P, the projective hull of the "tri­

vial representation of G over the prime fieldF "'O Let d{ be a prin-
p

; cipal series of G and A the direct product of all splitting p-chief-

factors of d(,'O A chief-factor L/K is aG-module by (xK)g = g-1 xgK ..

So A is aG-module .. Me show the existence of a 11 canonical 11 . cro"ssed

"homomorphism W of G onto A; ker W = D is a p-prefrattinisubgroup of

G'O The group ring JF [A] is made aG-module by ao g = agw (g)'O This

module is called W TA] V • Then we get:

Theorem. (a) There Pi s a G-epimorphism ~: P 1 --+ W [A] 1/!' ker ~ -

;; p 1 (D)JD 8 D W [G] , where J D is the radical of PW [D]
A P ~

(b} w:p,JG ~JA,w ' the augmentation i~eal of ITpLA] with the

11 0 " structure. (c) There is a G-epimorphism n:JA W ----.A given
n 'by a-' ---+ a . (d) Let T be the composed mapping: P,JG ---+- A

2
th en ker T = l? 1J G •

So we get a new proof of Gaschütz' s theorem: P, J G/P,JG2 ~ A .

Moreover all composition factors of rrp[AJ w are composition factors

of IFp [A] I so we get new information on the structure of P, .

Especially we get a very simple proof of the theorem of Green and

HilI.
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R.Brandl:

Groups with thin lattices of subgroups

The width of a lattice is defined to be the maximum possib1e cardi­

nality of its antichains. For a group G, let w(G)" (resp. wn(G» de­

note the width of the lattice of all (normal) subgroups of G.

Theorem. Let n be a positive integer. Then there exist finitely

many finite groups H1 , •. ,Ht with the following property. If w(G) =

= n, then G is a spli textension of a normal Hall subgroup H ~ H.
1

(same i) by a locally cyelie torsion group Q. If Q is infinite, then

there exists exaetly one subgroup of type poo in Q, and it is a di-

reet summand of G. Corollary 1. For every given n there exist ~

only finitely many non locally cye1ie p-groups of width n.

Corollary 2. The derived 1ength of a soluble group is bounded by a

function of its width.

Finally, relations between finite p-groups G satisfying wn(G) =p+1

and groups of maximal elass are discussed.

B.Brewster:

Non-conjugate Fitting functors

A subgroup functor f on a elass ~ of finite groups assigns to each

group G€J) a set of subgroups f(G) of G such that if cx:G -+.G is

an injective homomorphism, then f(G cx ) = {X cx I X e.f(G)}. In two re­

cent paper~ BeidIeman, Hauck and I (MZ 182 (1983),359-384 and Proc.

Cambr.Phil.Soc. (1987) 101, 37-55) studied a particular type subgroup­

functor. We w~re trying to analy~e how ~-injectors for Fitting

class ~ behaved in solvable groups without dependence on the class.

We called a subgroup functor f a Fitting funetor provided f satis­

fies (A) For N <I G and Xef(G), X1"\ N e. f(N) ;

(B) For N <J G and Y€.f (N), there is X ef (G) such that . X ,,·N =.Y •~
The primary examples are inj ectors and' radicals of Fitting elasses

but others were produced too. A Fitting functor f satisfies the

Frattini argument provided for every group G €. 3), K <J G and U e. f (G) ,

G = K· JNG(U nK). Dur experience indicates that if extra properties

are imposed on f, then f tends to satisfy the Frattini argument. We

say f satisfies the cover-avoidance property provided each .U€f(G)

either covers ~r avoids each chief factor of G. Certainly a,Fitting

functor whieh satisfies the Frattini argument has the cover-avoi­

danee property. Unfortunately, we know only two types of construc­

tions which produce Fitting functors which da not satisfy ~he

Frattini argument.

,'"
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(1 ) If fand h are Fi'tting functors wi th domain 1) then for G~.al

f"h(G) {U"V Iu Ef(G), V€.h(G)} is a Fitting functor on-~ whieh

in general does not have the eover-avoidanee property.• In partlcular,

if f (G) = Sy12 (G), f r'\ f does not have the eover·-avoidanc.e property.

(2) If f is a subgroup functor on an sn -closed class (ß' such that r­
sa tisfies condi tion (A) in defini tion of a Fi tting functor, then:'

f ( G) = {V·1 3 B<l <J G, Be 'S wi t h V6. f ( B ~ } isa Fit t i ng fun e tor Cal s 0

<J<J may be replaced by ~). Note f sa tisfies (B) because i t .satis­

fies (*): For N<3 G and U e.f(N) , U€f(G) •.

(3) If f satisfies the cover-avoidanee property on ~. (fini te sol-

vable groups), p is a prime and U E. f (G) such tha t pli U1 then
o (G) < U • : ;'.

p =
Corollary. If f is a Fi tting functor on ~ whieh has the cover"-

a voidance property and satisfies (*), then' f-( G) = { 1} for, all- ..G 6. A •
.....

R.M.Bryant:

Automorphisms of free groups

Let Fn,c be the free nilpotent group of class c on n generator$

x 1 , •• ,xn (n~_2). Thus F ~F Iy +1(F) where F is free. Le·t:T:"ben,c n c n n
the subgroup of Aut(F ) consisting of those automorphisms inducedn,e
from Aut (F ). Let 0 be the automorphism of F satisfying . x 1 0 =."n n,c
= x 1 [x 1 ' x 2 ' x 1] and xi Ö = xi (i ~2 ) • Supp 0 se _t h a ~ n ~ %+ 1 • " ·Th e n .

Au t ( Fn , c) = <T, ö>. He n ce, f 0 r n~ 4 and n ~ %+1, Au t (Fn , c) .: isa

3-generator group. (Joint work with C.K.Gupta)

K.Buzasi: • -A ....

..... . '-

Structure of crossed group algebras of infinite groups over the

real field
• ,. ~:.. I •

Let D be the infini te dihedral group D = (a)· (b), where (a) i·s:_' the

infinite cyclic group, (b) the cyclic group of o~der 2, and R ~he

field 6f real numbers. We study the structure of a crossed grou~

algebra A of the group D over R defined by the relations A~iR;a,b);

Aa = aA, Ab = bA, b- 1ab = a- 1 , b 2 = -1 (A E.R). We show that.::t·he<

algebra A is not a ring of prin~ipal left ideals~ We shall,de~~ribe

all the left ideals of A and examine the conditions of their isomor­

phism. We investigate the structure of A-modules and show that every

fini tely generated torsion -free A-module is ei ther isomorph'ic"tö a

left ideal of A or is a free A-module. . .
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D.J.Collins:

The automorphism group of a free product of finite groups
n

Theorem. Let G * G. be a free product of finite groups. Then
i=1 1

the automorphi8m group Aut G has a torsion-free subgroup of finite

index. o. Th~s i8 established by embedding Aut G in Aut C(G)
n - n

where C(G) is the kernel of the natural map from I * "G. --. TI G.• ,
i=1 1 i=1 1

Since C(G) is well-known to be free, of finite

rank when all Gi are finite, the theorem follows from th~ correspon­

ding result for free groups of finite rank.

M.Concier:
The groups Gk,l,m

For positive integers k,l,m, the group Gk,l,m i8 defined by

Gk,l,m = (A,B,C I Ak = BI = Cm = (AB)2 = (BC)2 = (CA)2 = (ABC)2 = 1 >. We

consider the .question: How 8mall can k,l and m be made, while main­

taining the property that all but finitely many alternating groups

An ~nd symmetrie groups.Sn oceur as quotients of Gk,l,m? One

_ approach is to make k as sma~l as possible, then 1, and ~hen m~ and

here the best r~sult we, have so fa:r;- is (k,l,m) = (3,7,168). Another

approach is to ~ake all of k,l and m small, and in this talk we show

how (k,l,m) may be taken as (6,6,6); in-other words, all but finite­

ly many A and S can be generated by thr"ee elements A,B, C, all of
n n 222 2

order 6, satisfying also (AB) = (Be) = (AC) = (ABC) = 1 .

M.Dixon:

Fitting classeß in infinite groups

~he infinite groups in question are periodic locally soluble gr9ups...

~ith min-p for all primes p. The work on Fitting elasses and injee-~

tors in such groups is just starting. If one restriets oneself to

hyper-(locally nilpotent) groups then injectors exist for a number

of th~. standard Fi tting classes, but no general resul t has yet been

obtairie.a~ An example exists in which the ..g -inj ecto'rs ar"e 'n()n~iso-... n
mo~phic~ Hnwev~r locally nilpotent "injectors are ~lways isomorphie r
and have a certain conjugaey property~

A.Espuelas:

Regular orbits, fixed-point-f~ee action and character degrees

Theorem. Let G be a solvable group and let H/K be a chief factor of

G. Suppose that A is a p-subgroup cf G acting faithfully on H/K and                                   
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C tVC -free when p is ei ther 2· er a Mersenne prime. Then H/K contains
p p

a regular A-orbit, i.e. there exists vE.H/K with CA(v)= 1.

This provides evidence for the following COnj.8ctures:

A. If A is a nilpotent f.p.f. automorphism group of the solvable

group G, then f(G) ~ n(A). (Here f(X) denotes Fitting length and

n(X) denotes composition length). .

B. Let A be a group of order pn acting f.p.f. on each A-invariant

p'-section of the p-solvable (resp. solvable) group G. Then Ip(G) ~

< n+1 (resp. f(G) ~ 2n+1). (Here lp(X) denetes p-length.)

A consequence about character degrees: Let G be a primitive solva­

bl e gr 0 up • Su pposethat F ( G) isa p - g r 0 up, p 0 d d. Ta ke P ,€ S ( G) .
- p

Then b(P) ,= max {W(1) I \!J E.Irr(P)} = IG:F(G) Ip .

S.Franciosi:

Trifactorized soluble minimax groups

Suppose that the soluble minimax group G has a tripIe factorization

G = AB = AC = Be where A, Band C are subgroups. The following- is

proved: (a) If A and Bare nilpotent and C is locally nilpotent,

then G is locally n~lpotent and hence hypercentral. (b) If A and

Bare nilpotent and C is locally supersoluble, then G is locally

super soluble and hence hypercyclic.

The proof uses the validity of these results for finite ~roups

(Kegel 1965) and some homological results. (joint work with

B.Amberg and F. de Giovanni)

F. de Giovanni:

Automorphisms and normal subgroups

The automorphisms of a group Gwhich leave every normal subgroup of

G invariant form anormal subgroup AutnG of the automorphism-group

of G. When G is a nilpotent group, the structure of AutnG can be

described and in many cases AutnG is itself nilpotent. Some infor-.

mation can be obtained also for the group AutsnG of the automor­

phisms of a soluble group Gwhich leave every subnormal subgroup of

G invariant. (joint work with S.Franciosi)

B.Hartley:

Free subgroups in unit groups

The following theorem was discussed: Theorem. Let G be a finite

group and U = U'(~G) the unit group of the integral group ring ~G.                                   
                                                                                                       ©
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Then U has a subgroup U0 of fini te index such tha t if N <] U and N

has no non-abelian free subgroup, then . N n U0 ~ Z (U), the centre cf

U. Further , U = U0 unless some non-abelian quotient of G is isomor­

phie to a subgroup of the real quaternions lli.

The proof is a quite 'straightforward consequence of the weIl known

fact that U ean be viewed as an arithmetic group, together with

Tit's theorem and a density theorem of BoreI. In fact, the first

part of the theorem holds for ~rbitrary arithmetic subgroups pr
reductive algebraic Q -groups, and" henee for uni t groups of i!­

orders in finite dimensional'semisimple Q-algebras for example •

'..

•

•P.Hauck:

Supersoluble subgroups of symmetrie groups

(joint work with M.Bianehi, A.Gillio Berta Mauri, Milano)

All maximal ~upersoluble~subgroupsof symm~tric groups of finite

degree are classified. One of the eonsequenees of this result is the

following: The symmetrie group Sn eontains exactly one conjugacy

elass of maximal supersoluble transitive subgroups if and only if

n e. M or n e. 2M where M= {m €.lN if p, q are prime s dividing m , then

p daes not divide q-1 } •

H.Heineken:

Th~ subnormal ~mbedding of relatively complete groups

A group A is said to be eomplete with respec~ to a Fitting class F,

if (i) Z(A) = 1, and

(ii)' if U i8 a' subgroup of Aut (A) eontaining Inn(A)", then

the F-radieal of U 1s Inn(A)

The following statement holds: If A is complete with respeet to

some Fitting elass F ~hieh is elosed with 'respect to "epimorphic ima­

ges and is a subno~mal subgroup of the finite group G, if f~rther­

more A is not isomorphie to the 2,p -.Hall subgroup of Hol CC k)

with p = 3 mod 4, . then AG/F (AG) i's' t·li'.e:·:(r~:~ect· product of .the· ~.~." .. ,

conjugates of AF(AG)/F(AG) .and the.n~lpotent:residual of AG is the

direet product of the conjugates of the.nilpotent residual cf A.

This result (obtained in joint work wi~h P.Soules) generalizes in

part the result for complete groups obtained earlier together. with

J:C.Lennox.
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T.C.Hurley:

Free products and stability groups

(joint work with M.Ward)
. .

Let G = Y*X be the free product of an arbitrary non-trivi.al group Y

and a free group X, freely generated by the set A. We i~~estiga~e

the structure of G via what we term basic subgroups of G, whic? hav~

analogous properties to the basic commutator elements in a fr~~'

group. In particular, there exists aseries X,Y,Y 1 ,Y2 , .. ,Y;, ... of

subgroups of G such that each element w of G has a· unique expression

w = xYY1 ••• ynwn +1 with xeX, yE.Y, yiE.Yi for i=1 ,2, •• ,n and -wn +·1E.

E. [Y'n+1X] (and [Y'n+1X] is actually equ~l to [~n,XJ ).' Ex.plic~it

bases for the groups Yi and [Y, nX] are given, so tha t their .s:~.ruc­

tures are completely known. The connection between stability g~9ups

and GI [Y, X] G is shown, and when Y is al~o free' then. GI [i, X] G
m .... -m·:-. '-.

is the rtfree stability group". The structures ,are used to de~ermine

the exact class of the stabilitY.group of a ~eries cf subgro~~;: We
• L !.

also speculate on hew these structures may be useful in the i~~esti-

gation of the solvability cf a set of equa~ions"over ~ gr~up. r!he
equations w1 = 1 , ..• , wr = 1 with wi E. H*X. (X. ~ree) ar~ .s?lvable

over H i f H ~ H*X -+ (H*X ) / <w1 ' •• , wr >H*Xis ir: j e~ t i v~·. ) .:'

L.G.Kovacs:

Primitive subgroups of wreath products iri product action I'

Gi yen a primi tive subgroup G in a - (fini te) symmetrie group Sym J1

with soc G not regular, one may want to a~~ount'for '~he ~~~~r~ups

W of Sym (2 such that W~ G, soc W = soc G, and W _is ,a wreatr

product in product action. Ta this end, let H denote a po~nt stabi­

lizer in G, and K a maximal normal subgroup of soc G. Form'the

intersection P of the maximal normal subgroups Ki of soc G such

that H"K i = H "K. For each X with (soc G) ING(Hf\ K) ~ X.< G'",,'dq:

(1 ) Form the orbi t space (2X: = Q/ coreXP ; . depote ~_y ! _~~d. MX _.~·~e

restriritions of X and soc G to QX. Let i X be the number cf a~l A
X

such that X ~ AX ~ lN
Sym

n
X

(MX) but AX is not a wreath produC;f""in

product action.

(2) Form the group G+X of permutations .ind,:-!c.ed b.y, G on _,the-' <oset

space G/X J and let bX be the numb~r of all -BX \o/i th G+X.~ .BX. ~",

~ Sym G/X •

There are precisely L aXbX subgroups W of the required kind; name­

1y, the Ax wr BX in product action.
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P.H.Kropholler:

Splittings of Poincare duality groups

Ir G is an n-dimensional Poincare duality group and S is a polycyc­

lic subgroup of Hirsch length n-1 then it is common for G to split

as a free product G = GO *S G1 , or HNN -extension G = G2 *S,$ ; where

S plays a rOle. I intend to describe some theorems which show when

these splittings can occur. The results are based on a splitting

theorem cf Peter Scott.

K.Kurzweil: .

Praefrattinigruppen und simpliziale Komplexe mit einer guten Strate~

gie

Wir sagen, daß ein simplizialer Komplex K = Kn (d. h. K~2Q) ein

Komplex mit einer guten Strategie (non-erasive) ist, wenn für eine

beliebige Teilmenge ~ Sn es immer möglich' ist, mit weniger als I~I

Fragen der Form "Ist ~€n Element von 6?" zu entscheiden, ob 11

in K liegt. Sei H eine Untergruppe der auflösbaren, endlichen.

Gruppe G. Wir ordnen dem Inte~vall [G/H] = {H ~ A ~ G} einen Komplex

K = K(G:H) auf folgende Weise zu: ~. sei die Menge aller Nebenklassen

Hg f H von H in G, die maximalen Elemente von K seien die maximalen

Elemente von [G/H]. Dann besi tzt K(G: H) genau dann eine gute

Strategie, wenn die Euler -Charakteristik X(K) = 1, oder wenn die

H-Praefrattinigruppen von Gungleich H sind. Dabei sind H-Prae­

frattinigruppen von G eine natürliche Verallgemeinerung der von

Gaschütz eingeführten Praef.rattinigruppen (H = 1 ). Sie kann man' z. B.

in unserem ·Kontext· definieren als die minimalen Elemente der

Menge {U e. [G/H] I X(K (G:U)) f 1 }. Sie haben analoge Deck- und

Meide-Eigenschaften und sind insbesondere unter G konjugiert.

J.Lafuente:

Chief factors and projective indecomposable modules

The abelian p-crowns c/n of a finite group Gare canonically embed­

ded in the second term pJ/PJ2 of the lower Loewy series of the

principal indecomposable projective module P over the group algebra

GF(p) G, and there is a canonical bijective correspondence between

the set of the conjugacy classes of supplements of CID in G and the

set of supplements of the image of ein in PJ/PJ2. This permits us

to clarify the relation of this term pJ/PJ 2 of P with the normal

structure of G.
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F.Leinen:

Amalgamation of soluble groups

Let ~ be either the class of all finite soluble n-groups, or the

class of all such groups of ~erived length Sn. B. Maier has shown

that there are either 2~· (isomorphism type~ of) countable exi­

stentially clesed locally-~ groups, er one which is .unique with

regard to an additional requirement. All of this depends just on the

question , whether or not amalgamation of ~-groups over any A G ~

can be controlled by some A ~ B E. K in the sense that any two !­
supergroups of B can be amal"gamated over A (wi thin the class !).
For this reason we st~dy amalgamation of ~-groups. We give a

necessary and sufficient condition which shows that the heart of

the problem actually i8 amalgamation of operator-groups (!-groups

acting on abelian groups). Using tensor products for the amalgama­

tion of operator-groups, we obtain results about amalgamation of

finite soluble n-groups over supersoluble. groups, and about amalga­

mation of metabelian groups.

F.Levin:

The conjugacy problem for free centre-by-metabelian groups

(with C.K.Gupta- and W.Herfort)

We show that it is recursively solvable •.

A.Lichtman:

On linear g~oups over fields of fractions of enveloping algebras,

Let L be a Lie algebra over a field K, U(L) its universal envelope.

P.M.Cohn proved that U(L) can be embedded in a (skew) field. We de­

note this field by D, D* is its multiplicative group.

Theorem. The group D* is isomorphie to the direet prod~et K* x D1 '

where the group D1 i8 "~esidually torsion free nilpotent if ehar K

= 0 and is residually nilpotent p-group ef bounded exponent if

eha r K = P > 0 • Corolla r y • - Let L be a 80lubl e - b Y- f ini ted i me n s ional"

Lie algebra, .6 be the field of, fractions of U(L). Then the eonelu­

sion of the Theorem is- true for the group 6*.

M.W.Liebeck:

The elassification of fi~it~' simple Moufang loops

A Moufang loop is a loop .. satisfying the identity . (xy)(zx) =

(x(yz»x. These were introduced by R.Moufang in connection ~ith
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geometry. Properties. (1) Moufang's theorem: Every Moufang loop

is di-asscciative ~hat is, any two elements generate a subgroup.

(2) There is a Jordan-Hölder theorem: Every finite Moufang loop is

built from a unique set of simple Moufang loops (where a simple Mou-

fang loop is one with no proper normal subloops or, equivalently, no

proper homomorphis images). Examples of simple Moufang loops.

( a ) Simp 1 e gr 0 ups. ( b ) Let ,~ be t he 8 - d im e n s i 0 na1 s pli t Cay1 e y

algebra over GF (q) wi th norm function n: t' -. GF (q). Then

M(q) = {xe~ I n(x) = 1 }/ <-1> is a non-associative simple Moufang

loop (L.J.Paige 1956).
Theor~m. If M is a finite simple Moufang loop, then either M is a

simple group or M~ M(q) for some prime power q. •

The proof uses.work of S.Doro (1977), which reduces the study of

simple Moufang loops to consideration of simple groups with triality

that is, simple groups G with automorphisms o,p of order 2,3

resp e c t ively s u c h t hat <0 , p> ; s3 and f or' e very g € G ,

[g,o] [g,o]P[g,o]P
2

= 1.

A.Lubotzky:

The diameter of the finite simple groups

Theorem A. There exist constants k,c€lli such that every finite

simple non-abelian group G has k generators, with respect to, every

element of G can be written as a word of length at most c.ln(IG/).

( k < 11 and probably less).

This theorem is not true for the cyclic groups. Fo~ the symmetrie

groups the proof is non-trivial but elementary (note that the stan­

dard generators give a diamater of n 2 while n·log n = log (n!) is

needed). The groups of Lie type (except of Suzuki and Ree which are

done by ad-hoc methods) are proved by a reduction to the special •

case: Theorem B. The diameter of SL 2 (p) with respect to the

generato~ and (~~) is O(log p).
Theorem B is a very special case of Theorem A, but it is the heart

of it. We ean prove it either as a corollary to the Ramanujan con­

jeeture (as proved by EiehIer) coneerning the number cf solutions of

quadratic forms in four variables, or as a eorollary to a d~ep theo­

rem cf Selberg , concerning the eigen-values of the Laplaeian' opera­

tor of various nari thmetic" hyperbolie surfaees. Both methods· come

from the theory of automorphic forms and are based on the Riemann

hypothesis for finite fields of Weil. Thus illustrating another

interesting eonnection between the theory of automorphie forms and

finite simple groups.

'-
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0'. Macedonska:

On induced automorphisms

It is known from Andreadakis and Bachmuth ~hat for a free 3-nilpo­

tent group (finitely generated) G = F/Yn (F), the map Aut F ----+­

--+ Aut G is not onto. We prove that in the countably genera~ed

case this map is onto.

B.Maier:

Universal nilpotent groups

If K is a class of groups then GSK is called universal if . H c:........,. G

V HE.li wi th IHI ~ IGI. Assume ! = LX for a countable' set ~.or'

isomorphism types of finitely generated groups. GG~ is called

closed if V A.Be.~ (3 H€K A :::::::~:::tH ~. A~""G where

arro~s denote embeddings. The class of closed

groups in K is cofinal in Ä in each power. Theorem. If ~ is-

first-order axiomatizeable and has a countable universal group, -then

there exists a unique countable elosed universal homogeneous'group G

-in Ä, where homogeneous means that any two isomorphie subgroups from

! which have the same supergroups from ! in Gare conjugated by an

automorphism of G. Proposition 1. There exists no countable uni-

versal group in the elass lic of nilpotent groups of c'lass '·-;.e. (c.~2).

Proposition 2. There exists no countable universal group in:the

elass ~c,p of groups -in ~c whose torsion subgroups are p-groups

(c~2). Proposition 3. If G is closed in the elass ~~ of ~roups in

~c whose torsion subgroups have exponent n and if the prime ~ivtsors

of n are > c, then C = T x Cn where Gn is closed in N+ (torsio~-=c
free ~c -groups) and the torsion subgroup T of G is clo-s~d in ~~ ,,~n,

where ~n is the Burnside variety of groups 6f exponent n.' ~

Corollary. There is a unique countable elosed group in l!j ':, :Lf -2,fn .

Proposition 4. The number of eountable closed grou'ps in' ~~ isO 2~~

Remark. There .exists a unique countable closed group'in the ciasses

L~. !:!,2" L~. !:!,2" ~n. !:!,~. L~p' L!:!,+ and L(finiteiy ·p~eseritei:l) .'

The groups in the first and last case are simple, the groups"iri LEp
and L~+ are characteristically simple.

B.H.Neumann:

Commutator laws

This is areport on joint work with I.D.Macdonald, in partial re­

sponse to a question asked by Luise-Charlotte Kappe about the 'exi­

stence of " new " commutator laws in 4 variables. Some results have
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been submitted for publication, but we are still trying to find more

complete results.

R.E.Phillips:

Groups of finitary transform~tions

Let JK be a field, V a vector space on JK and g e.. GL(V, lK); g is

finitary if [V,gJ = {v(g-1) I v e: V} is finite dimensional. The

group of finitary transformations is FGL(V,JK) Dur main contribu-

tion is the following Theorem. Let G be a periodic subgroup of

FGL(V,JK) and suppose that either char(JK) =0 or G is a p'-group

and char(lK) =p. Then •

(i) G is a subdirect product of irreducible JK-finitary groups.

(ii) If G is an irreducible subgroup of FGL(V,JK) then G has a

normal subgroup N such that N is a subdirect power of a finite-

dimensional ~-linear group and GIN is a .transitive group 'of fini-.

tary permutations.

(iii) If G is irreducible and V is infinite dimensional then G' is

the unique minimal normal irreducible subgroup of G.

A key fact necessary for the 'proof of this Theorem is a result of

J.I.Hall which asserts that the only periodic infinite sim~le graups

in FGL(V,JK), char JK = 0, are alternating groups (and in this case

V is the natural module for such an alternating group).

S.J.Pride:

Groups given by presentations in which each defining relator in-
. .'

volves exactly two generators

Let G = <~ ;!:,> where each element of ~ is cyclically reduced and

involves exactly two elements of ~. Let r be the graph with vertex~

set ~ and edge set E = {{x,y} : some element of ~ involves both x anP

y}. For {x,y} €. E let G{x,y} = <x,y; ~{x,y}>, where !:{x,y} con­

sists of all elements of ~ involving x and y. We call G{x,y} an:

Uedge group". Under rather mild restrietions on rand the edge

groups we obtain aseries of resul~s concerning the structure of G,

namely: the embeddability of· the edge groups into G; the diagramma­

tic asphericity of Gi the structure of the relation module of G; the

(co)homology of G in dimensions ~ 3; torsion in G. Some of these re­

sults were obtained jointly with R.Stöhr. Dur theorems have been

generalized in two different directions, by M.Edjvet, and by E.

Fennessey. In particular, Fennessey's work concerns the case when

G = <Ai (i €. I) ; ~> where the AlS are non-tr i vial groups and each· R ~ ~

is a cyclically reduced element of ~ A. involving terms from
i E.I 1
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exaetly two factors.

E.F.Robertson:

Symmetrie presentations and same simple groups

In this talk I will discuss joint work with C.M.Camppell. Suppose we

are given a group G with presentation G = <a
1

,a
2

I r
i

(a
1
,a

2
) = 1 for

1~i~m > with the eondition that r i (a2 ,a 1 ) = 1 in G for 1;i~m.

For eaeh n; 2 .define Sn (G) by Sn (G) = < a 1 ,a2 ,·· ,an I
r i (a S (1),aS (2» = 1 for 1~i~m and all ee.sn > where Sn is the

symmetrie group of degree n. Such a group Sn(G) is said to be a

group with a symmetrie presentation. The alternating groups An and

the groups PSL(2,p) have such symmetrie presentations. I eonsider

three examples:

(i) G1 (p) <8 1 ,a2 a~=a~= (a~a~)2= 1, 1~i~P21, P odd>
. 1/· 2 ' 1

(ii) G2 (p) <a 1 ,.a 2 a~ = a~ = (a~a2 l) = 1 1~i~T' P odd>

(iii) G3(P~ <a 1 ,a 2 a~ = a~ = 1, a1a~ = a2a~ p odd>

The groups Sn(G 1 (p» and Sn(G 2 (p}) are in certain eases simple

groups. For example S2(G2 (P» is P8L(2,p), P prime, 8
3

(G
1

(5»

i s 8L. ( 2 , 16), S4 ( G1 ( 5 ) ) i s PSp ( 4 , 4) ., and S 5 (G 1 (5) ) i s

PSU(4,4). Both finite and infinite groups oecur in the class

Sn(G
3

(p» and we classify these groups. Certain eonjeetures will

also be given. As an example we eonjeeture that S3(G 2 (P» is

PSL(2,p2) if I"2$GF(p).

M.Ronan:

Buildings and Kae-Moody groups

In a reeent joint paper with J.Tits a simple construction of buil­

dings is given. As a eonsequence one ob~ains groups of Lie ~ype,

such as E~ over any field, independently ~f the theory of algebraie

groups and Lie algebras. One also obtains the buildings for all

groups of Kac.-Moody type, including unon-split" forms arrived at by

Galois de8cent. The eonstruction works at a' combinatorial level and

i8 very straightforward; no information about subgroups, such as the

structure of B,is needed. There a~e;h~weve~ many open questions:

Can one adapt the construetion to obtain the affine building of a

p-adic group; and do such buildi~gs and 'groups exist for other, non­

affine diagrams ?
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G.Rosenberger:

The Tits alternative for one-relator quotients of free products of

cyclics

(joint work with B.Fine and F.Levin)

For a finitely generated group H, the Tits alternative says that H

either eontains a free subgroup of rank 2 or a solvable subgroup of

finite index. We ask whether the Tits alternative holds for the one-

I t d t f 1 . G . I elenre a or pro uc 0 cye les == <a 1 ,··, an a 1 == ... == an ==

== Rm(a 1 , .. ,an) == 1 > with n~2, m~2, e i ==0 or ei~2 for i==1, .. ,n

and R(a 1 , .. ,an ) a cyclically reduced word in the free product on

a 1 , •. ,an whieh involves all a 1 , .. ,an .

Theorem 1. Suppose one of the following holds:

(i) n~3; (ii) n=2 and e i =0 far i=1 or i=2 •

(iii) n == 2 and m~ 3". Then the Ti ts alternative holds for G. 0
If n==2 and both generators hav~ finite order then G is called a

generalized triangle group and ean be written in the form G==

== <a, b I a P = bq
= Rm(a, b) = 1> with 2~p~q and R(a, b) =

= aP1bq1 •.. aPkbqk with 1~k and 1 ~ Pj < p, 1 ~ qj < q for ~=1, •. ,k.

By a theorem of G.Baumslag, J.Morgan and P.Shalen (preprint) G has a

free subgroup of rank 2 if 1 + 1 + .1 < 1. If m> 3 then the Ti ts alter-p q m = -
native holds for G by Theorem 1. If m==2 then the corresponding

question seems to be fairly diffieult in general and we only have

the following partial result. Theorem 2. If n = m = 2 and 1 ~ k ~ 2

then the Tits alternative holds for G. Conjecture. The "Tits

alternative holds for all- k ~ 1 •

P.Rowley:

Parabolie systems and a==n
By extending the ideas of parabolic systems and Dynkin diagrams, _

using the groups of Lie type as a model, it is possible to view manllJ

of the sporadic finite simple groups as having a "parabolic system".

In this talk we will consider parabolic systems whose diagram is of

the form ~ ...~ (examples of such groups occur in M24 ,

• 1 and M).

O.Talelli:

On pairs of groups with periodic cohomology

(joint work with R.Bieri)

Let G be a group and ~ = {Si~G I 1~i~m} and consider the short exact

sequence of ~G-modules 0 --:,- l\S ~ q:> i!: (GISi)~ ~ -+- 0 where
= 1
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E: xS. t----i" 1. Dafini tion. (G,g) is called periodic if the "i!G-
1.. '( i ( ) ~ i +q ( _ )module ß.s. has periodic cohomology i. e. ExtZG ßg,- - Ext ilG 6g,-

for i ~ 1-).

J. G finite. Theorem A. If (G,g) is p'-periodic then G is p-

periodic iff Si is p-periodic for all 1~i~m.

Theorem B. (G,~) is p-periodic iff one of the following.h61ds:

(i) G is p-periodic; (ii) S. = G and S. is p-periodic for all
1 J

j fi; (iii) Si t G for all i and there is a p~Sylow suhgr.oup P of

G such that (0:) lNG(P) < S. (ß) P" S~ i8 periodic .. for all-= 1 1

x4 Si ; (y) P"S3 is periodic for all ye.G and .jfi·.

11. G a finitely generated accessible group.. Theore~..- If . (G,g)

i s periodic then G is the fundamental group of a graph (~,.X) .of

groups where all the edge groups are finite and {Gv ; Gv infinite} =

= {S~i; S.~.s infinite} .
1 1-

M.J.Tomkinson:

Quasi-injective groups

G is quasi-injective if every homomorphism ~ from a subgroup H of G

into G extends to an endomorphism ~ of G. A characterization of

finite quasi-injective groups was given by D.Berchoff and G.Wallis~

We give a similar ~haracterization for locally finite quasi-injec­

tive groups and also for'soluble quasi-injective groups. The main

interest lies in the extra condition which is needed in the locally

finite ease, i.e. that G is the extension of a nl-group K by a n­

group such that every maximal n-subgroup complements K.

B.A.F.Wehrfritz:

Some matrix groups over finite dimensional division algebras

Extending work of A.Lichtman we partially describe the subgroups of

GL(n,D) for D a finite-dimensional division algebra .. (For example,

if such a subgroup of GL(n,D) is soluble its derived length is

bounded in terms of n and the number of factors of the degree of D

over i ts centre.) If this degree is a prime power and if n = 1 ,

the conclusions are especially precise.
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Z[w] and Fischer groups

I.

Theorem 1. The following conditions

(ii) V (a, b) €. B, a f b ,

Let M be a free rank n module over Z[w] (where w = e
21Ti

/
3 ) and

1 e t <t> : MxM --+. K be' an Hermit i an f 0 r m. F or p e. ~, M : = {m ~ M
P

<t>(m,m) == p}. We suppose that <t> is positive non-degenerate and that

M2 contains a base B of M.
are equivalent: (i) M1 = 0 ;
<t> (a, b) E. { O} v K* •

If aE.M
2

, .we have the reflection ra:m t--+ m-<!>(m,a)a it is an

isometry of 4>. We put D = { r a I a€.M 2 } and G == <D> · . •

Theorem 2. If the equivalent conditions of Theorem 1 are satisfied,

then D is a set of 3-transpositions of G (and G is a Fischer group).

Moreover the possibilities for·G and <t> are determined.

Berichterstatter: F.Leinen
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