Tagungsberichdt 20/1987.

Gruppentheorie

3.5. bis 9.5.1987

Die Tagung fand unter der Planung der Herren O.H.Kegel (Freiburg)
und K.W.Gruenberg (London) statt (letzterer konnte leider nicht an-
wesend sein). In insgesamt 40 Vortridgen wurden den 53 Teilnehﬁern
’ aus 12 Staaten unter anderem Resultate iiber endlich pr'eisentie"'it&e

Gruppen, einfache Gruppen, endliche aufldsbare Grepben,“Fifiiﬁgklas—
sen in unendlichen lokal aufldsbaren Gruppen, Automorphismen ﬁon
freien Gruppen und Produkteﬁ, Darstellungstheorie,Avérallgemeiherte
lineare Gruppen, und universelle Strukturen vorgestellt. Dle Themen-
liste war sehr vielfdltig; fiir weitergehende Informationen’ muB daher
auf die nachfolgenden Vortragsaussziige verwiesen werden. Das’ umfang-
reiche Tagungsprogramm regte die Teilnehmer zu zahlreichen interes-
santen und ausgedehnten Diskussionen an. Leider war ‘es den’ elngela—
denen sowjetischen Kollegen nicht mdglich, an der Tagung'ﬁellqueh-

men.

Vortragsausziige

2. Arad: : _ S ; -
Table algebras and applications to finite group theory o

Recently, several results were proved about products of 1rreduc1ble
characters and products of conjugacy classes in flnlte groups demon-
. strating, sometimes, an analogy between them. The maln goal. of our
research (jointly with H.Blau) is to introduce & new concept which
we call table algebras and then to study . properties of these alge—
bras. Table algebras are in some sense generallzatlons of flnlte
groups. If G is a finite group then the table algebras generated
either by the conjugacy classes or by the irreducible characters
over the field of complex numbers are examples of table algebras.
Every general theorem about table algebras can be applied to .a theo-
rem about characters and also to a theorem about»conjeéacyicieeses
in finite groups. The main goal of our research is to develobe.e new
theory about table algebras and to apply it to finite group theory.
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Sq,-groups

"An §1-group is one possessing a finite normal series in which the
factors are abelian groups of finite rank whose torsion subgroups
are ernikov groups. A Fitting class of §1 -groups is a subclass X of
S, such that:

(F1) If GEX and A asc G, then A€X.

(F2) 1If GeS, is generated by ascendant X-subgroups, then Ge€X.

1

Let X be a Fitting class of §,-groups. (F2) ensures that the join of
ascendant X-subgroups of G is a normal X-subgroup GX of G. GX is
called the X-radical of G. The class N of locally nilpotent §,- .

groups is a Fitting class of §1—groups. Also GN is just the Hirsch-
Plotkin radical of G. Let p be a prime. For GéS1 , the p-socle of G
is Socp(G) = <M| M a minimal normal p-subgroup of G> . If G has
no minimal normal p-subgroups, then Socp(GA) =1. c(p) =

= '(G€§1 | Socp(G) <2(G)) is a Fitting class of §,-groups, and if
G€sy then Gy = CG(Socp(G)) . ,

A subgroup X of GGQ1 is called an X-injector of G provided that
XnA is a maximal X-subgroup of A for each ascendant subgroup A of G.
The following theorems are considered.

Theorem 1. Let X be a Fitting class of §1-groups and let Ge§1. If
G/GX is finite, then G has X-injectors and any two X-injectors are
conjugate. Theorem 2. Let X be a Fitting class of _§_1-groups such
that N¢X. Then there is a polycyclic group G which does not have
X-injectors. Theorem 3. Let X be a Fitting class of §1 -gréups
containing N and let ,Ge§1 . Suppose that G has a normal subgroup M
such that M/GX is finite and M contains all X-subgroups of G which

contain Gy . Then G has X-injectors and any two such subgroups are

conjugate, and Ian(M) = Injx(G) . Theorem 4. Let X be a
Fitting class of §1 -groups such that every §1-group G has a unique
cgnjugacy class of ;—inj'ectoré. If GeS, and Xelnj)_g(G) , then
X /Gé is finite and Ian(X )=Injé(G) .

Let GE€S
injectors. Also G has a normal subgroup N such that N/GN is finite

4+ By Theorenm 1 G has a unique conjugacy class of C(p)-

.

N Hence G

and N contains all the N-subgroups of G which contain GN
has a unique conjugacy class of N-injectors. This was first estab-
lished by M.Tomkinson (see Proc.Edinburgh Math.Soc.1979).

DFG Deutsche
Forschungsgemeinschaft ©




UFG

Deutsche

D.Blessenohl:
Regular elements in Galois extensions

In a finite Galois extension L/K an element x will be called com-
pletely regular if x serves as a generator for the MU-module L for
all UgG:= Gal(L/K) and M the fixed field of U. One can show that
completely regular elements always exist. The proof of this theorem
(joint work with K.Johnsen in Kiel) for infinite K is a variation of
a proof given by Emil Artin for the existence of a normal basis for
L/K. If K is a finite field we can restrict ourselves to the case
that G is a cyclic gq-group for some prime q. The case CharK=q is
easy. If CharK#$q, one has to look closer on the structure of L as
a KiGi-mo.dule where G =G0> Gy>.nn? Gn-1 > Gn= 1 and K= Ko< K1 <

< ves <Kn-1 <K, =L. By a comparison of the direct decompositions of

T = Ker TrL/K into the irreducible KiGi—submodules for 0;i§n-1

n-1 and induction for Kn-1 the theorem is proved.

A.Brandis:

Modules and crossed homomorphisms of finite groups, especially p-

solvable groups

Let G be a p—solvabie group and P1 the projective hull of the tri-
vial representation of G over the prime field ]Fpﬂ. Let ‘{ be a prin-

; cipal series of G and A the direct product of all splitting p-chief-

factors of ¥ . A chief-factor L/K is a G-module by (xK)g=g_‘l

So A is a G-module. We show the existence of a "canonical" crossed

xgK .

‘homomorphism ¥ of G onto A; kerdy =D is a p-prefrattinisubgroup of

G. The group ring IF_[A] is made a G-module by aeg =aby(g) . This
module is called IF ]EAJID . Then we get:

Theorem. (a) There is a G-epimorphism ﬁ):P.] — TF [A]lIJ , ker ¢ =
e P1(]3)JD e le[G] , where J is the radical of T [D] .

(b) lIJ:P.]JG —J, v the augmentation ideal of ler[’A] with the

’
"o gtructure. (c) There is a G-epimorphism w:J — A , given

ALY
by a-1-'sa. (d) Let T be the composed mapping: PJ,— A,

_ 2
then ker T = P1JG .
So we get a new proof of Gaschiitz's theorem: P1JG/P1J62 = A
Moreover all composition factors of IFp[AJw are composition factors
of TF_[A], so we get new information on the structure of P‘l .
Especially we get a very simple proof of the theorem of Green and

Hill.
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R.Brandl: &

Groups with thin lattices of subgroups

The width of a lattice is defined to be the maximum possible cardi-
nality of its antichains. For a group G, let w(G) (resp. wn(G)) de-
note the width of the lattice of all (normal) subgroups of G.
Theorem. Let n be a positive integer. Then there exist finitely
many finite groups H,,..,H, with the following property. If w(G) =
=n, then G is a split extension of a normal Hall subgroup HEHi
(some i) by a locally cyclic torsion group Q. If Q is infinite, then
there exists exactly one subgroup of type pw in Q, and it is a di-
rect summand of G. Corollary 1. For every given n there exist .
only finitely many non locally cyclic p-groups of width n.
Corollary 2. The derived length of a soluble group is bounded by a
function of its width.

Finally, relations between finite p-groups G satisfying wn(G) =p+1
and groups of maximal class are discussed.

B.Brewster:
Non-conjugate Fitting functors

A subgroup funétor f on a class D of finite groups assigns to each
group GE€D a set of subgroups f(G) of G such that if a:G — G is
an injective homomorphism, then £(G*) = {X* | X€£(G)} . In two re-
cent papers Beidleman, Hauck and I (MZ 182 (1983),359-384 and Proc.

" Cambr.Phil.Soc.(1987) 101, 37-55) studied a particular type subgroup-

functor. We weére trying to analyze how F-injectors for Fitting
class ¥ behaved in solvable groups without dependence on the class.
We called a subgroup functor f a Fitting functor provided f satis-
fies (A) For NaG and Xef(G) , XnNef(N);

(B) For NaG and Yef(N), there is X€f(G) such that. XnAN=Y. .
The primary examples are injectors and radicals of Fitting classes
but others were produced too. A Fitting functor f satisfies the
Frattini argument provided for every group Ge€ D, K<G and Ue £(G),
G=K-]NG(UnK) . Our experience indicates that if extra properties
are imposed on f, then f tends to satisfy the Frattini argument. We
say f satisfies the cover-avoidance property provided each Uef(G)
either covers or avoids each chief factor of G. Certainly a Fitting
functor which satisfies the Frattini argument has the cover-avoi-
dance property. Unfortunately, we know only two types of construc-
tions which produce Fitting functors which do not satisfy the
Frattini argument.

Deutsche
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(1) If f and h are Fitting functors with domain D then for Céﬁ),
£An(G) = (UnV ] UEF(G), VEh(G)) 4is a Fitting functor on D which
in general does not have the cover-avoidance property. In particular,
if £(G)=8yl,(G), fnf does not have the cover-avoidance property.
(2) If T is a subgroup functor on an s,-closed class B such that T
satisfies condition (A) in definition of a Fitting functor, then-
£(G) = {v| 3 BaaG, BeB with VeT(B)} is a Fitting functor (also
44 may be replaced by <) Note f satisfies (B) because it satis-
fies (*): For NaG and Uef(N) , UEfF(G) . :

(3) If f satisfies the cover-avoidance property on 2’ (flnlte sol-
vable groups), p is a prime and U€f(G) such that p| |U|, then
0,(6) <U. I
Corollary. If f is a Fitting functor on A which has the cover-
avoidance property and satisfies (¥), then f£(G)={1} for.all GeA&.

;

R.M.Bryant:
Automorphisms of free groups

Let F be the free nilpotent group of class ¢ on n generators
1,..,x (n>2). Thus Fn =F /Yc+1(F) where F_ is free. Let. T be
the subgroup of Aut(F ) consisting of those automorphlsms induced
from Aut(F ). Let § be the automorphism of Foe
= x4 [x1,x2,x1] and  x; 6-x (ix2). Suppose.tha’g n;%ﬂ .. ~Then"
Aut (P ) =<T,6>. Hence, for n24 and n:5+1, Aut(F,
3-generator group. (Joint work with C.K.Gupta)

satisfying - Xy § =

,c) ~is a

K.Buzdsi: C T R
Structure of crossed group algebras of infinite groups over the
real field ‘

Let D be the infinite dihedral group D= (a)-(b), where (a) is:the
infinite cyclic group, (b) the cyclic group of order 2, and R the
field of real numbers. We study the structure of a crossed group.
algebra A of the group D over R defined by the relations A= (R,a,b);
Aa=aA, Ab=Dbx, b'1ab= a”t , b2 = -1 (LER). We show that. the:
algebra A is not a ring of principal left ideals. We shall describe
all the left ideals of A and examine the conditions of their isomor-
phism. We investigate the structure of A-modules and show that every
finitely generated torsion-free A-module is elther 1somorphlc to a

left ideal of A or is a free A-module.

o®
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D.J.Collins:
The automorphism group of a free product of finite groups

n .
Theorem. Let G = x Gi be a free product of finite groups. Then

the automorphism group Aut G has a torsion-free subgroup of finite
index. . This is established by embedding Aut G nin Aut C(G)
where C(G) is the kernel of the natural map from , 3 Gy —» 17‘ Gy -
Since C(G) is well-known to be free, of finite i=1

rank when all Gi are finite, the theorem follows from the correspon-

ding result for free groups of finite rank.

~ . >

M.Conder: _ : .

The groups Gk’l'm
For positive integers k,l1,m, the group Gk'l’In is defined by
¢krlom —ca,B,c a¥ =Bl =c™= (4B)% = (BC)? = (CA)2 = (ABC)? =1 > . We

consider the question: How small can k,l1 and m be made, wﬁile main-

taining the property that all but finitely many alternating groups

k,1,m ,

An.and symmetric groups‘Sn occur as quotients of G One

. approach is to make k as small as possible, then 1, and then m, and

here the best result we‘have‘so far is (k,1,m) = (3,7,168). Another
approach is to make all of k,1 and m small, and in this talk we show
how (k,1,m) may be taken as (6,6,6); in-other words, all but finite-
ly many An and S, can be generated by-three elements A,B,C, all of
order 6, satisfying also (AB)2- (BC)2 (AC)2 (ABC)2 =1

M.Dixon: .
Fitting classes in infinite groups

The infinite groups in question are periodic locally soluble groups
with min-p for all primes p. The work on Fitting classes and injec-.
tors in such groups is just starting. If one restricts oneself to

hyper-(locally nilpotent) groups then injectors exist for a number
of the standard Fitting classes, but no general result has yet been
obtaiﬂed; An example exists in which the ‘Sn-injectdrs dre non-iso-
mofphic; Howeveér locally nilpotent ‘injectors are always isomorphicr

and have_a certain conjugacy property.

-

A.Espuelas: )
Regular orbits, fixed-point-free action and character degrees

Theorem. Let G be a solvable group and let H/K be a chief factor of
G. Suppose that A is a p subgroup of G acting falthfully on H/K and

Deutsche .
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¢ ~C_-free when p is either 2 or a Mersenne prime. Then H/K contains
a regular A-orbit, i.e. there exists v €H/K with CA(v)= 1.

This provides evidence for the following conjectures:

A. If A is a nilpotent f.p.f. automorphism group of the solvable
group G, then £(G) <n(A). (Here f(X) denotes Fitting length and
n(X) denotes composition length).

B. Let A be a group of order pn acting f.p.f. on each A-invariant
p'-section of the p-solvable (resp. solvable) group G. Then lp(G)g
< nt1 (resp. f£(G)¢ 2n+1). (Here lp(X) denotes p-length.)

A consequence about character degrees: Let G be a primitive solva-
ble group. Suppose that F(G) is a p-group, p odd. Take P€ Sp(G).
Then b(P) = max {w(1) | v €Irr(P)} = |G:F(G)|p .

S.Franciosi:
Trifactorized soluble minimax groups

Suppose that the soluble minimax group G has a triple factorization
G=AB=AC=BC where A,B and G are subgroups. The following is
proved: (a) If A and B are nilpotent and C is locally nilpoﬁent,
then G is locally nilpotent and hence hypercentral. (b) If A and
B are nilpotent and C is locally supersoluble, then G is locally
supersoluble and hence hypercyclic.

The proof uses the validity of these results for finite groups
(Kegel 1965) and some homological results. (joint work with
B.Amberg and F. de Giovanni) : :

F. de Giovanni:
Automorphisms and normal subgroups

The automorphisms of a group G which leave every normal subgroup of
G invariant form a normal subgroup AutnG of the automorphism group
of G. When G is a nilpotent group, the structure of AutnG can be
described and in many cases AutnG is itself nilpotent. Some infor-.
mation can be obtained also for the group AutsnG of the automor-
phisms of a soluble group G which leave every subnormal subgroup of
G invariant. (joint work with S.Franciosi)

B.Hartley:
Free subgroups in unit groups

The following theorem was discussed: Theorem. Let G be a finite
group and U=U(ZG) the unit group of the integral group ring ZG.
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Then U has a subgroup Uo of finite index such that if N<4U and N ~
has no non-abelian free subgroup, then 'Nr\Uo§ Z{U), the centre of

U. Furthera U =Uo unless some non-abelian quotient of G is isomor-
phic to a subgroup of the real quaternions H.

The proof is a quite straightforward consequence of the well known

fact that U can be viewed as an arithmetic group, together with

Tit's theorem and a density theorem of Borel. In fact, the first

part of the theorem holds for arbitrary arithmetic subgroups of
reductive algebraic @ -groups, and hence for unit groups of #- .

orders in finite dimensional “semisimple dQ-algebfas for example.

P.Hauck:
Supersoluble subgroups of symmetric groups

(joint work with M.Bianchi, A.Gillio Berta Mauri, Milano)

All maximal supersoluble subgroups of symmetfic groups of finite
degree are classified. One of the consequences of this result is the
following: The symmetric group Sn contains exactly one conjugacy
class of maximal supersoluble transitive subgroups if and only if

" nEM or née2M where M={mé€N | if p,q are primes dividing m, then

p does not divide g-11} .

H.Heineken:

" The subnormal émbedding of relatively complete groups

A group A is said to be comblete with respect to a Fitting class F,
if (i) 2z(A)=1, and
(ii) if U is a subgroup of Aut(A) containing Inn(A), then
the F-radical of U is Inn(4). .

The following statement holds: If A is complete with respect to
some Fitting class F which is closed with respect to~epimoréhic ima-
ges and is a subnormal subgroup of the finite group G, if further-
more A is not isomorphic to the 2,p -.Hall subgroup of Hol(C )
with p=3 mod 4, then AC/F(a¥) is the'direct product of the . -
conjugates of AF(AG)/F(AG) ‘and the,nilpoteht:iesidual of A is the »
direct product of the conjugates of the nilpotent residual of A:

This result (obtained in joint work Qiph P.Soules) generalizes in

part the result for complete groups obtained earlier together with
J.C.Lennox.

Deutsche
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T.C.Hurley:
Free products and stability groups

(joint work with M.Ward) .

Let G=Y#X be the free product of an arbltrary non- tr1v1a1 group Y
and a free group X, freely generated by the set A. We 1nyest1gate
the structure of G via what we term basic subgroups of G, which have

analogous properties to the basic commutator elements in a free
group. In particular, there exists a series X.Y,Y1,Y2...,YA,... of
subgroups of G such that each element w of G has a unique expression
WEXYYqee oYWt with x€&X, yeY, yiEYi for i=1,2,..,n and -wn4d€
€ [Y,n+1X] (and [Y,n+1XJ is actually equal to [¥H,X])f Explicit
bases for the groups Y and [Y, X] are given, so that their struc-
tures are completely known. The connectlon between stability groups
and G/[Y, X]G is shown, and when Y is also free then. G/[Y XJG

is the "free stability group". The structures are used to determlne
the exact class of the stability group of a series of subgroups. We
also speculate on how these structures may be useful 1n the 1nvest1-
gation of the solvability of a set of equations. over a group. (The
equations w, =T, eee vy =1 with Wy € HxX (X free) are solvable

over H if H < HxX -—>(H*X)/<w1,..,w SH¥X is 1nJect1ve )

L.G.Kovdécs:
Primitive subgroups of wreath products in product action'

Given a primitive subgroup G in a (finite) symmetric groupf'Sym‘Q
with soc G not regular, one may want to account for ‘the éoﬁgfoups
W of Sym @ such that W2G, soc W = soc G, and W is a wreath
product in product action. To this end, let H denote e p01nt stabl-
lizer in G, and K a maximal normal subgroup of soc G. Form the
intersection P of the maximal normal subgroups Ki of soc G such
that HaK, =HnK. For each X with (soc G) IV, (HAK) <X <G, -do:
(1) Form the orbit space Qy 3= Q/coreXP denote by X and MX the
restrictions of X and soc G to QX' Let a, be the number of all A

X X
such that YgAxg N (MX) but Ay is not a wreath produc_t in
product action. .

Sym Q

(2) Form the group G+X of permutations 1nduced by G on the coset
space G/X, and let by be the number of all B yloh' GvXé'sz
< Sym G/X. ' ‘

There are precisely [} aXbX subgroups W of the requ1red klnd _name-
ly, the AX wr BX in product action.

o
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P.H.Kropholler:
Splittings of Poincaré duality groups

If G is an n-dimensional Poincaré duality group and S is a polycyc-
lic subgroup of Hirsch length n-1 then it is common for G to split
as a free product G=GO*S G1 , or HNN-extension G=02 *S.d) ; where
S plays a réle. I intend to describe some theorems which show when
these splittings can occur. The results are based on a splitting

theorem of Peter Scott.

K.Kurzweil:

Préefrattinigruppen und simpliziale Komplexe mit einer guten Strate.
gie

Wir sagen, daB ein simplizialer Komplex K=K, (d.h. KS—.ZQ) ein

Komplex mit einer guten Strategie (non-erasive) ist, wenn fiir eine

beliebige Teilmenge A €Q es immer mdglich ist, mit weniger als |Q]
Fragen der Form "Ist a€Q Element von A ?" 3zu entscheiden, ob A

in K liegt. Sei H eine Untergruppe der aufldsbaren, endlichen.

Gruppe G. Wir ordnen dem Intervall [G/H] = {H<A <G} einen Komplex
K =K(G:H) auf folgende Weise zu: 2 sei die Menge aller Nebenklassen
Hg$4H von H in G, die maximalen Elemente von K seien die maximalen
Elemente von [G/H] . Dann besitzt X(G:H) genau dann eine gute
Strategie, wenn die Euler-Charakteristik x(K)=1, oder wenn die
H-Praefrattinigruppen von G ungleich H sind. Dabei sind H-Prae-
frattinigruppen von G eine natiirliche Verallgemeinerung der von
Gaschiitz eingefiihrten Praefrattinigruppen (H=1). Sie kann man- z.B.
- in unserem Kontext - definieren als die minimalen Elemente der
Menge {UE€[G/H] | x(K(G:U))#$1} . Sie haben analoge Deck- und
Meide-Eigenschaften und sind insbesondere unter G konjugiert.

J.Lafuente:

Chief factors and projective indecomposable modules

The abelian p-crowns C/D of a finite group G are canonically embed -
ded in the second term PJ/PJ2 of the lower Loewy series of the
prindipal indecomposable projective module P over the group algebra
GF(p) G, and there is a canonical bijective correspondence between
the set of the conjugacy classes of supplements of C/D in G and the
set of supplements of the image of C/D in PJ/PJ2. This permits us
to clarify the relation of this tern PJ/PJ2 of P with the normal
structure of G.

Deutsche
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F.Leinen:
Amalgamation of soluble groups

Let X be either the class of all finite soluble m-groups, or the
class of all such groups of derived length <n. B.Maier has shown
that there are either 2°* (isomorphism types of) countable exi-
stentially closed locally-X groups, or one which is unique with
regard to an additional requirement. All of this depends just on the
question, whether or not amalgamation of X-groups over any A€X
can be controlled by some AgBéé in the sense that any two X-
supergroups of B can be amalgamated over A (within the class X).
For this reason we study amalgamation of X-groups. We give a
necessary and sufficient condition which shows that the heart of
the problem actually is amalgamation of operator-groups (X-groups
acting on abelian groups). Using tensor products for the amalgama-
tion of operator-groups, we obtain results about amalgamation of
finite soluble m-groups over supersoluble groups, and about amalga-

~mation of metabelian groups.

Deutsche

Theorem. The group D*is isomorphic to the direct product K*¥xD

F.Levin:
The conjugacy problem for free centre-by-metabelian groups

(with C.K.Gupta and W.Herfort)
We show that it is recursively solvable..

A.Lichtman:
On linear groups over fields of fractions of enveloping algebras

Let L be a Lie algebra over a field K, U(L) its universal envelope.
P.M.Cohn proved that U(L) can be embedded in a (skew) field. We de-
note this field by D, D¥ is its multiplicative group.

1
where the group D1 is-residually torsion free nilpotent if char K =
= 0 and is residually nilpotent p-group of bounded exponent if

char K=p>0. Corollary. -Let L be a soluble-by-finite dimensional
Lie algebra, .A be the field of fractions of U(L). Then the conclu-
sion of the Theorem is true for the group A%,

M.W.Liebeck: o
The classification of fiﬁité'simple Moufang loops

A Moufang loop is a loop. satisfying the identity Axy)(zx) =
= (x{yz))x . These were introduced by R.Moufang in connection with

Forschungsgemeinschaft © @
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geometry. Properties. (1) Moufang's theorem: Every Moufang loop

(2) There is a Jordan-Hélder theorem: Every finite Moufang loop is
built from a unique set of simple Moufang loops (where a simple Mou-
. fang loop is one with no proper normal subloops or, equivalently, no

‘
} is di-asscciative - that is, any two elements generate a subgroup.
!
!
]
)
]

proper homomorphis images). Examples of simple Moufang loops.

(2) Simple groups. (b) Let & be the 8-dimensional split Cayley
algebra over GF(q) with norm function n:& —»GF(q) . Then

M(q) = {xe® | n(x)=1}/<-1> is a non-associative simple Moufang

‘ loop (L.J.Paige 1956).

! Theorem. If M is a finite 31mple Moufang loop, then either M is a

? simple group or M= M(q) for some prime power q.

| The proof uses.work of S.Doro (1977), which reduces the study of
simple Moufang loops to consideration of simple groups with triality
- that is, simple groups G with automorphisms o,p of order 2,3
respectively such that <o,p>3= S3 and for every g€G,

[g. 0] [g.0)° [g.0]°" =

A.Lubotzky:
The diameter of the finite simple groups

1

i Theorem A. There exist constants k,c€IN such that every finite

i simple non-abelian group G has k generators, with respect to, every .

| element of G can be written as a word of length at most c¢-1n{|G|).

“(k <11 and probably less).
This theorem is not true for the cyclic groups. For the symmetric
groups the proof is non-trivial but elementary (note that the stan-
dard generators give a diamater of n2 while n-logn= log(n!) is
needed). The groups of Lie type (except of Suzuki and Ree which are
done by ad-hoc methods) are proved by a reduction to the special
case: Theorem B. The diameter of SL (p) with respect to the
generators 01 and 1 ? is O(log p).
Theorem B is a very special case of Theorem A, but it is the heart
of it. We can prove it either as a corollary to the Ramanujan con-
jecture (as proved by Eichler) concerning the number of solutions of
quadratic forms in four variables, or as a corollary to a deep theo-

rem of Selberg, concerning the eigen-values of the Laplacian opera-

tor of various "arithmetic" hyperbolic surfaces. Both methods come
| from the theory of automorphic forms and are based on the Riemann
hypothesis for finite fields of Weil. Thus illustrating another
interesting connection between the theory of automorphic forms and

finite simple groups.

|
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; 0.Macedorska:
On induced automorphisms

i It is known from Andreadakis and Bachmuth that for a free 3-nilpo-
tent group (finitely generated) G= F/Yn(F)- the map Aut F —>
— Aut G is not onto. We prove that in the countably generated

case this map is onto.

B.Maier:

Universal nilpotent groups

If K is a class of groups then GE€K is called universal if HesG
' V HeK with |H| < |G| . Assume K=LX for a countabie set X of
isomorphism types of finitely generated groups. Ge€K is called’

. B . .
closed if Y A,BeX (IHeK AL RH = A’i\"c ) where
arrows denote embeddings. The class of closed

groups in K is cofinal in K in each power. Theorem. If K is.’

first-order axiomatizeable and has a countable universal group, then
there exists a unique countable closed universal homogeneouS'gfoup G
-in K, where homogeneous means that any two isohorphic subgroups from
X which have the same supergroups from X in G are conjugated by an
automorphism of G. Proposition 1. There exists no countable uni-
versal group in the class gc of nilpotent groups of class <c (022).
Proposition 2. There exists no countable universal group in the
class gc' of groups ‘in gc whose torsion subgroups are p-=groups
(c22). Proposition 3. If G is closed in the class gg of groups in
gc whose torsion subgroups have exponent n and if the prime~§ivisors
of n are >c¢c, then G=Tx G® where G" is closed in g: (tdrsioh-
free gc-groups) and the torsion subgroup T of G is closed in gengn,
where gn is the Burnside variety of groups of exponent n.

‘ Corollary. There is a unique countable closed group in ggﬁ. if 24n .

Proposition 4. The number of countable closed groups in - gg ié'ZR;.

LE, N,ALE, N,nB", NI, LE, . I8" and L{finitely presented) .

|

| = -

‘ Remark. There exists a unique countable closed group in the classes
i

| The groups in the first and last case are simple, the grdupS*in' Lgp

and L£+ are characteristically simple.

B.H.Neumann:
Commutator laws

This is a report on joint work with I.D.Macdonald, in partial re-
sponse to a question asked by Luise-Charlotte Kappe about the ‘exi-
stence of "new" commutator laws in 4 variables. Some results have

DFG ' ’
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been submitted for publlcatlon, but we are still trying to find more
complete results.

R.E.Phillips:
Groups of finitary transformations

Let X be a field, V a vector space on K and g€GL(V,X); g is
finitary if [V,g] = {v{(g-1) | vEV)} is finite dimensional. The

group of finitary transformations is FGL(V,X) . Our main contribu-
tion is the following Theorem. Let G be a periodic subgroup of
FGL(V,X) and suppose that either char(X)=0 or G is a p'-group
and char(KX) =p. Then : .
(i) G is a subdirect product of irreducible K-finitary groups.

(ii) If G is an irreducible subgroup of FGL(V,X) then G has a
normal subgroup N such that N is a subdirect power of a finite-

dimensional I-linear group and G/N is a transitive group of fini-.
tary permutations. )
(iii) If G is irreducible and V is infinite dimensional then G' is
the unique minimal normal irreducible subgroup of G. -

A key fact necessary for the proof of this Theorem is a result of
J.I.Hall which asserts that the only periodic infinite simple groups
in FGL(V,X), charX=0, are alternating groups (and in'this case
V is the natural module for such an alternating group).

S.J.Pride:
Groups given by presentatlons in whlch each defining relator in-

volves exactly two generators

Let G=<x; r> where each element of r is cyclically reduced and
involves exactly two elements of x. Let T' be the graph with vertex ,
set x and edge set E={{x,y} : some element of r involves both x an

vy} . For {x,y}€E 1let G{x,y}=<x,y;r{x,y}>, where r{x,y} con-
sists of all elements of r involving x and y. We call G{x,y} an:
"edge group". Under rather mild restrictions on T and the edge
groups we obtain a series of results concerning the structure of G,
namely: the embeddability of the edge groups into G; the diagramma-
tic asphericity of G; the structure of the relation module of G; the
(co)homology of G in dimensions 2 3; torsion in G. Some of these re-
sults were obtained jointly with R.Stohr. Our theorems have been
generalized in two different directions, by M.Edjvet, and by E.
Fennessey. In particular, Fennessey's work concerns the case when

G = <Ai (ie1) ; r> where the A's are non-trivial groups and each. RE€r

is a cyclically reduced element of ¥ A; involving terms from
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: exactly two factors.

E.F.Robertson:
Symmetric presentations and some simple groups

In this talk I will discuss joint work with C.M.Campbell. Suppose we
are given a group G with presentation G= <a1,a2| ri(a1,a2) =1 for
1<¢igm> with the condition that ri(az,a1)= 1 in G for 1<i<m.
For each n2>2 define Sn(G) by Sn(G)= < a1.a2,..,an|
r. (86(1)'36(2)) =1 for 1<i<m and all 6€S > where S is the
symmetric group of degree n. Such a group S (G) 4is said to be a
‘ group with a symmetric presentation. The alternating groups An and

the groups PSL(2,p) have such symmetric presentations. I consider
three examples:

(i) G1(p) = <a1,a2| a?= ag= (a % ')2 1, 1§i§B%l, p odd > ,
(311) G, (p) = <a,.a, | af=ab= (a} 1/1) , 15151, p odd>
2 1r8p 1 8y = ay = taqd e P

(iii) GB(p) = <a1,a2| ag==ag , a1a§= a2a1, p odd > '

The groups Sn(G1(p)) and Sn(Gz(p)) are in certain cases simple
groups. For example S2(G2(p)) is PSL(2,p), p prinme, SB(G1(5))
is SL{2,16), SA(GT(S)) is PSp(4,4), and SS(G1(5)) is
PSU(4,4) . Both finite and infinite groups occur in the class
Sn(GB(p)) and we classify these groups. Certain conjectures will
also be given. As an example we conjecture that 33(62(p)) is
PSL(2,p°) if VZE&GF(p).

M.Ronan:
. Buildings and Kac-Moody groups

In a recent joint paper with J.Tits a simple construction of buil-
dings is given. As a consequence one obtains groups of Lie type,
such as Eé over any field, independently qf the theory of algebraic
groups and Lie algebras. One also obtains the buildings for all
groups of Kac-Moody type, including "non-split" forms arrived at by
Galois descent. The construction works at a combinatorial level and
is very straightforward; no information about subgroups, such as the
structure of B, is needed. There are-however many open questions:
Can one adapt the construction to obtain the affine building of a
p-adic group; and do such buildings and groups exist for other, non-
affine diagrams ? A ' '
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G.Rosenberger:

The Tits alternative for one-relator quotients of free products of

. cyclies

- 16 - ’
|

|

| (joint work with B.Fine and F.Levin)

\

For a finitely generated group H, the Tits alternative says that H

‘ either contains a free subgroup of rank 2 or a solvable subgroup of
finite index. We ask whether the Tits alternative holds for the one-
relator product of cyclics G = <ag,.. a, | a?‘ = ... = agn =

| = R™(aq,..,a,)=1>  with n22, m22, e;=0 or e,22 for i=1,..,n

and R(a.],..,an) a cyclically reduced word in the free product on

a1...,an which involves all a.l,..,an .

Theorem 1. Suppose one of the following holds: -

(1) n23; (ii) n=2 and ei=0 for i=1 or i=2; ‘

(iii) n=2 and m> 3. Then the Tits alternative holds for G. 0O

If n=2 and both generators have finite order then G is called a

| generalized triangle group and can be written in the form G=

= <a,b| aP=b3=R"(a,b) =1> with 2§p§ci and R(a,b) =

= aPp%1, . aPkp9k  with 1<k and 1 <pj<p, Tsa <q for j=1,..,k.

By a theorem of G.Baumslag, J.Morgan and P.Shalen (preprint)'G has a

1+2+24<1. If m23 then the Tits alter-

native holds for G by Theorem 1. If m=2 then the corresponding

free subgroup of rank 2 if

question seems to be fairly difficult in general and we only have
the following partial result. Theorem 2. If n=m=2 and 1<kg?2
then the Tits alternative holds for G. Conjecture. The Tits

. alternative holds for all-k21.

P.Rowley:
Parabolic systems and oo

By extending the ideas of parabolic systems and Dynkin diagrams,

| using the groups of Lie type as a model, it is possible to view man'
1 of the sporadic finite simple groups as having a "parabolic system".

| In this talk we will consider parabolic systems whose diagram is of
the form o—o0 ... o—o=0 (examples of such groups occur in M24 ,

| .1 and M).

0.Talelli:
On pairs of groups with periodic cohomology

(joint work with R.Bieri)

Let G be a group and S = {SigGI 1<igm} and consider the short exact

sequence of £G-modules O —> Ag —> ® Z(G/Si) £5 Z —0 vwhere
i
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€:xS,~—»1. Definition. (G,8) is called periodic if the G-

- . - Y. i ~ i+ .
module Aé has periodic cohomology (i.e. EXtEG(Aé_'_) =Extqu(A§-,—)
for i>1).

I. G finite. Theorem A. If (G,S8) is p-periodic then G is p-

periodic iff Si is p-periodic for all 1<igm.

Theorem B. (G,S) is p-periodic iff one of the following. holds:

(i) G is p-periodic; (ii) $;=G and S. is p-periodic for all
j¥is (iii) S;#G for all i and there is a p:Sylow subgroup P of
G such that (a) NG(P)<S;; (B) PnSY is periodic for all
x¢Si; (v) PI\S?]., is periodic for all yeG and j#i-.

II. G a finitely generated accessible group. - Theorem C. If ' (G,S)

is periodic then G is the fundamental group of a graph (;,X) of
groups where all the edge groups are finite and {GV ;3 G infinite} =
= (sil;s,eS infinite} .

M.J.Tomkinson:
Quasi-injective groups

G is quasi-injective if every homomorphism ¢ from a subgroup H of G
into G extends to an endomorphism ¢ of G. A characterization of
finite quasi-injective groups was given by D.Berchoff and G.Wallis.
We give a similar characterization for locally finite quasi-injec-
tive groups and also for soluble quasi-injective groups. The main
interest lies in the extra condition which is needed in the locally
finite case, i.e. that G is the extension of a w'-group K by a m-
group such that every maximal n-subgroup complements K.

B.A.F.Wehrfritz:
Some matrix groups over finite dimensional division algebras

Deutsche
Forschungsgemeinschaft

Extending work of A.Lichtman we partially describe the subgroups of
GL(n,D) for D a finite-dimensional division algebra. (For example,
if such a subgroup of GL(n,D) is soluble its derived length is
bounded in terms of n and the number of factors of the degree of D
over its céntre.) If this degree is a prime power and if n=1 ,
the conclusions are especially precise.
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F.Zara:

Hermitian forms over Z[w] and Fischer groups

Let M be a free rank n module over 'ZIw] (where w=:e2"i/3 ) and
let ¢:MxM —» K be an Hermitian form. For p€Z, M :={méeM |

¢(m,m)=p) . We suppose that ¢ is positive non-degenerate and that

M2 contains a base B of M. Theorem 1. The following conditions
are equivalent: (i) My=0; (ii) VY (a,b)€EB, a%$b,
6(a,b) E{0}u K¥.

If a€M2 , .we have the reflection r im > m- o(m,a)a §
isometry of ¢. We put D= {ra] a€M,} and G=<D>. .
Theorem 2. If the equivalent conditions of Theorem 1 are satisfied,
then D is a set of 3-transpositions of G (and G is a Fischer group).
Moreover the possibilities for -G and ¢ are determined.

it is an

Berichterstatter: F.Leinen
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