)

MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagung s b ericht 24/1987

Darstellungstheorie endlicher Gruppen

31.5. bis 6.6.1987

This meeting was organized by Prof. B. Huppert (Mainz) and Prof.
G.0. Michler (Essen). Since the first conference on representation
theory of finite groups at the Oberwolfach Institute in 1983, the
subject has seen a lot of progress in various directions.

A number of talks wereAdevoted to new results in classical cha-
racter theory, in particular to degree problems in ordinary and
modular representation theory, and to representations of Chevalley"
groups. Several reports were given on a new view on Clifford theo-
ry and on the structure of permutation modules, which are also a
new tool in coding theory. Furthermore, recent progress on Galois
groups and on the isomorphism problem for integral group rings was
presentéd. The participants also got a survey of cohomological
methods in group representation theory and of computer algebra,
which both have become important new topics in the last years.

The conference was attended by 51 participants from Australia,
Danmark, England, France, Ireland, Switzerland, USA, USSR, and
West Germany. Apart from the lectures, the discussions during the
breaks and in the evening were an inQaluable part of the meeting;
in particular, the participants from western countries had a
chance to get some information on the recent research in the USSR
from their Russian colleagues.
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J. ALPERIN: Loewy structure of permutation'modules for p-groups

The theorems of Jennings and Hill on the structure of k[P] ,
P a finite p-group, k a field of characteristic p , are genera-
lized to the Kk[P)-module kI where 0 is a set on which P
acts transitively, so answering, in the case of Hill's theorem, a
question of Peter Neumann.

D. BENSON: Specht modules and cohomology of mapping class groups .

Let Mn denote an oriented 2-ménifold of genus g with n

punctures and kK boundary components, and rt

+
g,k = To ToP (M7 })

denote the group of connected components of the group of orienta-
tion preserv1ng self homeomorphisms of M k(t:he mapping class

group). Using recently developed diagrammatlc methods in modular

representation theory (due to myself and Jon Carlson), and the

theory of Specht modules, I obtain the cohomology ring of 'I‘g o
4

with coefficients in any field. The interesting characteristics
are 2,3 and 5. For example, we have
HY(I3 oo Fy) = kia,B,5,1)/(B5,aB,8°,a’+s%,a5%+5°) .

As intermediate results we obtain information about the cohomoloqy

of l‘0 o the case of interest is n = 6 because there is a
short exact sequence
6 0
1—»Z/Z—>F0,0—>1‘2'0—»1 .

Since the cohomology of Fg 0 is expressed in terms of Specht mo.
’
dules for En (the symmetric group), the diagrammatic methods are

applied for modules for 26 .
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F. BERNHARDT: Groups with only few p-modulér character degrees

If G is a finite solvable group, then it is conjectured that -
the derived length of G is bounded by the number of character
degrees of G over the complex field € . This conjecture was
proved if the group has only at most four character degrees or if
|G] is odd. ' .

Looking at a p-modular analogue it is true that, assuming
OP(G) trivial, the derived length of G is bounded by four if

the number of p-modular Brauer characters is less or equal to two
and also there are such examples.

H. BLAU: Table algebras

A table algebra is defined as a commutative algebra over the
complex numbers with a specified basis which satisfies certain
properties. It generalizes both the character ring and class alge-
bra of a finite group, and permits a unified proof of various ana-
logous theorems concerning both of these objects. Joint work with
Z. Arad on the general theory of table algebras and its applica-
tions to finite groups will be discussed.

J.F. CARLSON: Exponents of modules and maps

Let G be a finite group and let R be a P.I.D. of characte-

~ristic 0 .Let L and M be RG-lattices. If a}L - M then

exp(a) is a generator for the ideal of all r € R such that ra
factors through a projective. Also exp(M) = exp(IdM) . Suppose

that (1,...,(r are homogeneous elements in H*(G,R) such that

the radical of the ideal that their reductions module P generate
is the annihilator of the cohomology of M/PM for every prime
ideal P C R . Such a set can be found with r = CG(M) . Then

q exp((i) 2 exp(M) . In case M = R we have that
i

T exp(f;) 2 IGI .
1

o



Suppose that R is a complete d.v.r. with prime element w7 .
If exp(M) = v® then M has property E provided

«271 . EthG(M,M) = Soc EthG(M,M) (Tate cohomology). Joint work

with A. Jones shows that property E is preserved under the Green
correspondence for absolutely indecomposable lattices. The work
suggests that the height-zero conjecture might be provable by pu-
rely local methods.

E.C. DADE: Compounding Clifford theory .

We present Clifford theory as a single, thoroughly natural
equivalence between the subcategory Mod(FG|V) of Mod(FG) gene-
rated by the module VG induced by a simple module V over FN ,
where N 4 G , and the category Mod((FG)') of all modules over

the endomorphism ring (FG)' = EndFG(VG) . If, in addition,

NS¢ MJIdG and W is a simple FM-module lying over V , then we
easily obtain a commutative diagram of equivalences of categories
. defined by Clifford theory
’ Mod (FG|W) ® Mod((FG)J)
R

a
Mod((FG)'|W') = Mod((FG')g,) .

R

where (FG)y = EndFG(wG) , etc. Since the two vertical equivalen-

ces here are induced by Clifford theory for V and FG , while

the top and bottom equivalences are Clifford theory for W and

FG and for W' and (FG)' , this says that "Clifford theory pre-
serves Clifford theories". ) .

P. FERGUSON: Applications of prime characters

If x is a quasi-primitive irreducible character of G , let
Z(x) » F*(x) , and M*(x) be defined by 2(x)/ker(x) =
= 2(G/ker(x)) , F (x)/ker(x) = F’(G/ker(x)) , and
M*(x) = F*(x)/Z(x) . X 1is a prime character if x is a quasi-

primitive irreducible character, is irreducible and

*
XF (x)
M*(x) is homogeneous. I discuss the following:

DFG Deutsche
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Theorem 1 If x is a quasi-érimitive irreducible character of
A A A
G , there is an extension (G,7) of G such that kerw C G'NZ(G)

n
and x factors uniquely (up to associates) as x = igl Py where
(pl,pz,...,pn) is an admissible set of prime characters.

As an application, I indicate a proof of the following theorem:

Theorem 2 Suppose Xx is a quasi-primitive irreducible charac-
ter of G of odd degree. If ¥ € Irr(S) where S is a univer-
sal covering group of a non-Abelian composition factor of G and
¥(1) |x (1) , assume %{%%W is not induced from a proper subgroup

of S and if ¥(1) = p* , then _p{l%é%% , then x is a

primitive character of G .

B. FISCHER: The character-table of 36(2)

Eg(2) contains a parabolic subgroup NK where N d NK ,

IN| = 216 , K= 05(2) . The character-table of NK was computed

for a table of a certain subgroup of the monster. Since it was
known it could be used for the computation of the character-table
of E6(2) . I have to thank S. Black and J. Janisczcak for their

help.

P. FLEISCHMANN: Periodic simple modules for Chevalley groups in
the describing characteristic

Let k be an algebraically closed field of char p>0 ,
q-= pn , G a finite group and M a kG-module. If QI(M) =
= Q(M) , for some i>1 , then- M is called periodic (0 is the
Heller operator). ST:= Steinberg module. Now the following holds
for the non-twisted Chevalley groups:

Deutsche
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A, (q): Periodic simple modules # St exist and are classified
(Jeyakumar 1979). A (q), n22, D (a), Eg(qa), E,(q), Ea(q),
F4(q): no periodic simple modules # ST exist! (Janiszczak 1985)

Same result holds for Bz(q) ’ Gz(q) (Janiszczak and Jantzen

1987) .
And for twisted Chevalley groups: 2Az(qz) , periodic simple

modules # ST exist and are classified (Fleischmann 1986).
2 3 s
2a(a®, m3, %pj(d®, 14, ZEi(d®, p,(q’) , no simple - @)

2m+1

riodic modules exist (# ST) . 232(2 ) , Suzuki groups: perio-

dic simple modules # ST exist and are classified. 2Gz(3zm+1) ’

- Ree groups: no periodic simple modules ¥ ST exist.

D. GLUCK: Prime factors of character degrees of solvable groups

Let 0(G) be the maximum number of primes dividing any one
character degree of G and let p(G) be the set of primes which
divide some character degree of G. For G solvable, Huppert has
conjectured that |p(G)|[<20(G) . In this joint'work with 0. Manz,
we show that |p|<30+32 for every solvable group, considerably
improving earlier results of Isaacs and of Gluck, We also obtain
|p1{20+32 when G is solvable with no normal nonabelian Sylow
subgroups. '

R. GOW: Reduced K-degrees of irreducible characters

This is a report of joint work with B. Huppert. Let G be a
- finite group and K a field of characteristic 0 . Let L be a
splitting field for G containing K and let x € IrrL(G) . We

define the reduced K-degree of x to be te(x) = x(1)/me(x) ,

where mK(x) is the Schur index of x over K . We propose to

Deutsche -
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study how information about the set of numbers tx(x) can lead to

group-theoretic information about- G . When K =1 , our problem
is just'the classical character degrees problem investigated by
several researchers in the past twenty years. )
We give two examplés of the sort of results we have proved.
Problem 1 Suppose that t.(x) =1 or k>l for all

X € IrrL(G) . What can be said about G ? We investigate this pro-

blem using the following result:

Thompson-type theorem Suppose that there exists a prime p
such that pltK(x) for all x € IrrL(G) with tK(x) # -1 . Then

G has a normal p-complement.

Using this theorem, we prove that if G is a group described
in Problem 1 and w7 is the set of prime divisors of k , ‘G has
a normal w-complement N , N is certainly metabelian and G/N
is nilpotent. ’

Problem 2 suppose that ty(x) =1 or a prime number for all

x € IrrL(G) (not always the same prime). What can be said about

G ? Using the classification of simple groups, we show that G is
solvable, and has derived length at most 4 , a bound that can be
attaihed by certain groups of even order. ’

G. HISS: Modular representations of Chevalley groups in special
characteristic

Let G be a group with a split BN-pair, i.e. 'B,N{G = <B,N> ,
B=UH, UBUMHS=1; N=N(H , BWN=H, N/H=W, the

Weyl group of G .
Let r be a prime and D a Sylow r-subgroup of H . Suppose
the following conditions are satisfied:
1. D is a Sylow subgroup of G
2. CG(D) =H .

In this situation we determine the decomposition matrix of the
principal r-block of G . Two corollaries should be mentioned (k
denotes a splitting field of characteristic r):

Deutsche
Forschungsgemeinschaft

o




UFG

-8 -

Corollary 1. The permutation module over X on the cosets of
B is completely reducible. Its constituents are exactly the
simple kG-modules in the principal block. The unipotent characters
in the principal series are irreducible modulo r .

Corollary 2. The Green correspondents of the simple kG-modules
in the principal block are exactly the simple kN-modules which
have H in their kernel, i.e. the simple kW-modules.

The proof is a straightforward application of Green correspon-
dence. L. Puig has obtained these results independently by using

his theory of source algebras. ‘

I.M. ISAACS: Characters and solvable groups

Because of the fairly extensive theory of characters of sol-
vable groups which has been developing in the past fifteen or so
years, it has become possible to answer for solvable groups cer-
tain questions which are (as yet) intractible for arbitrary
groups. (For example, the McKay conjecture and the Brauer height
conjecture have been proved for solvable groups.)

Recently, in the work of P. Ferguson, the following quesfion

has arisen: If HC G and © € Char(H) where ef = ax for some

primitive x € Irr(G) , does this imply that H =G ?

For solvable groups, it turns out that it is relatively easy to
answer this question affirmatively. (This was done independently
by Ferguson and myself.) To demonstrate some of the techniques of
solvable character theory, and in partichlar faqtorization theory,
this lecture presents (in some detail) a proof of this result.

A.V. IVANOV: Non rank 3 graph with 5-vertex condition

ordinary graph with t-vertex condition is defined. The graph
with t-vertex condition is also the graph with t'-vertex condition
for every 2  t'< t . The examples of such graphs are regular
graphs (t = 2) , strongly regqular graphs (t = 3) , rank 3 graphs
(vt) .

Deutsche
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The graph G with 5-vertex condition is constructed. Its para-
meters are (v, k, A\, u, a, B) = (256, 120, 56, 56, 784, 672) and
20

|Aut(G)| = 2 . 32 *« 5« 7 . Two subgraphs 61 and G2 of graph

G are the graphs with 4-vertex condition. Their parameters are
(120, 56, 28, 24, 216, 144) , (135, 64, 28, 32, 168, 192) ,

respectively and |Aut(Gi)| ='|Aut(Gz)| = 212.32.5.7 . All these

graphs are not rank 3 graphs.
Up to now all examples of non rank 3 graphs with t-vertex con-
dition were known for t ¢ 3 only.

W. KIﬁMERLB: Sylow subgroups and isomorphic integral group rings

Theorem 1. Assume ZG = ZG" . Let P € SY1,(G) and

P* € Sylp(G*) . Suppose that P is abelian. Then P = P* .

The result can be extended to Hamiltonian Sylow subgroups. The
proof uses for p > 2 the classification of the finite simple
groups. One crucial point of the proof is that the integral group
ring of a finite group determines the chief factors.

Theorem 2. Assume ZG = ZG* . Let

1=Ky¢K...dK_ 4K =6

be a chief series of G . Then G* has a chief series

*
1=L@L...d L 4L =G

such that Li+1/Li = Ki+1/xi , 0<€i¢n-1 .

Theorem'l was proved in joint work wfﬁh S. Sandling (Manche-
ster). Theorem 2 was proved by R. Lyons (Rutgers University) and
R. Sandling, and independently by me. It is written up in a joint
paper.

o
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E.A. KOMISSARTSCHIK: Intersections of maximal subgroups in simple
groups of order less than 10% ana associated amalgams

Let G be a finite group and H and K be subgroups of G .
Problem 1. Describe HI n K for all g€ G .
Result 1. List of intersections of all pairs of maximal subgroups
in simple groups of order less then 10° excluding PSL(2,q) .
The natural generalization of the Problem 1 is

Problem 2. Let Gl""’Gn , n2 3 , be subgroups of a group G .
Describe all residually connected amalgams (G‘:l, ...G:n) ' for all .
93 from G , such that G 1is generated by G1 , 1 ¢i<n.

Result 2. List of all residually connected amalgams for

(1) G = Jl , and

(2) G = U4(2) with the additional assumptions that all G; are

n
maximal subgroups of G and QG is nontrivial.

L.G. KOVACS: The Grothendieck ring of F SLy (@)

Consider the homomorphism of the commutative polynomial ring
Z[x,y) to the Grothendieck ring of FPSLs(p) which maps " x to

the natural module-and y to its dual. This homomorphism is sur- -
jective and its kernel is the ideal generated by the two polyno-

mials -

xP - x + PR(x,y) and yp -y + pR(y,x) ' .
where

Rex,y) =3 SRR «Hend e 2

with summation over all non-negative 1i,j,k such that
i+ 2j+3%k=p# i . A similar result holds for FqSLa(q) when-

ever q is a power of p .

o®
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B. KQLSHAMMER: Morita equivalent blocks and clifford theory

Clifford theory is concerned with the relationship between re-
presentations of groups K,H,G occurring in a finite group exten-
sion )

1—K—H—G—1 .

Let B be a (G-stable) block of K , and let A be a block of
H covering B . J. Alperin has proved recently that A and B
are isomorphic if and only if their Brauer correspondents are. We
generalize his result, replacing isomorphism by a Morita equiva-
lence satisfying a certain natural condition. When A and B are
Morita equivalent, questions about A can often be reduced to
questions about B . Thus our reduction process complements other
tools in Clifford theory such as the Fong-Reynolds correspondence.

P. LANDROCK: Ideals and codes in group algebras

Let C be a right ideal in a group algebra F[G] , F 'of
char p, and define the divisor d of C as the greatest common
divisor prime to p of all the cardinalities of subsets of G
which form the support of some non-zero elemené of " C . Then there
exists a subgroup H of G with d dividing the order of H ,
such that furthermore C is contained in the permutation ideal
(hEH h) F[G] . H is called the induction kernel of C and the

result above is insp1red from work by H.N. Ward in coding theory
This may alsc be used to explain how to determine the set of sub-
groups (X) of G such that SH # 0 for some simple module S .
In particular, we get an improved version of the Nakayama Rela-
tions for ideals. '

o
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O. MANZ: Brauer characters of q'-degree

We denote by 1IBr(G) the set of Brauer characters w.r.t. the
prime p and let q be a prime different from p . As a modular
analogue of Ito's theorem we prove

Theorem 1. Suppose that G is p-solvable and q { B(1) for
all p € IBr(G) . .

a)Then the g-length lq(G) is at most 2 and the g-factors in

every g-series are abelian. (This is equivalent with Q € 5y1q(G)

being at most metabelian.)
b)If furthermore q { p-1 and (p,q) # (2,3) , then
1q(G) 1. )

Question. Is it in general true that Q € Squ(G) is at most

metabelian if g { B(1) for all B € IBr(G) ?

A "local" version of Theorem 1 above is the following:
Theorem 2. Let N4 G, a € IBr(N) , G/N solvable and

gt B(l)/a(1) for all B € IBr(Gla) . Then for Q € Squ(G/N) ’

we have dl(Q) ¢ {g ’ g E g .

All results mentioned above are joint work with Tom Wolf
(Athens, Ohio).

B.H. MATZAT: Zopfe und Galoissche Gruppen

Die Fundamentalgruppe des s-fachen Produkts der Riemannschen
Zahlenkugel, aus dem die schwache Diagonale (bestehend aus den
Elementen mit zwei oder mehr gleichen Komponenten) herausgeschnit-
ten ist, heiBt die reine Hurwitzsche Zopfgruppe. Durch das Studium
dieser Zopfgruppe erhdlt man Rationalitédtskriterien fair Galoiser-

weiterungen N/C(tl,...,ts) , die auBerhalb t, = tj fur i # 3j

(geometrisch) unverzweigt sind.

Unter Verwendung dieser Kriterien konnte unter anderem erstma-
1ig bewiesen werden, daB auch die groBte der Mathieugruppen,
My, s als Galoisgruppe Gber Q@ realisierbar ist.

Deutsche
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W. PLESKEN: Applying representation theory: a soluble quotient al-
gorithm

To design feasible algorithms to compute the biggest finite so-
luble quotient group of a finitely presented group in case it
exists has been an open problem in computational group theory ever
after the spectacular success of the nilpotent quotient algorithm.

Given a finitely presented group G and an epimorphism e of
G onto a "known" group H . To test whether e can be lifted to
an epimorphism onto an extension of a simple H-module by H
amounts to solving linear equations. Is H soluble one can find
the simple modules and the cocycles describing the extensions al-
gorithmically. This way one obtains a soluble w-quotient algo-
rithm, where w7 is a finite set of primes. The proper choice of
7 can be made if the irreducible H-modules are known for the va-
rious quotient groups H of G which occur. '

L. PUIG: Generalization of Brauer's second main theorem to virtual
modules

Let G be a finite group, A an interior G-algebra, M an
A-module and x the character of M . For any pointed group HB

on A , denote by xB the character of the OH-module i.M where

i€ep and if K1 is a pointed subgroup of Hp denote by pg

the Brauer character of the kcH(x)-module s1(i)A(K1)s1(j) where

j € ¥ . In "Pointed groups and construction of characters" we

prove (*) x%(us) = ) vz (s)x® (u) where a € P,(G) , u€G,,

s € CG(u)P , and € runs over LPA(u) . In particular, for any

local pointed group Q& on A such that Qa C Ga , we get

**) x®) = 3 8% x®(u) where ueq, n’=9% (1) ana ¢ runs

over LP,(u) . Conversely, if for any local pointed subgroup Q5

6

of G, we choose a virtual character A of Q in such a way

o
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that (**) holds, then (*) defines a virtual character of G . Our
main purpose here is to prove analogous statements replacing the
ring of C-valued cen-tral functions on G by the Green ring of G
over Q , virtual characters by virtual modules, and values of
virtual characters by "residues" of virtual modules on the
subgroups H of G such that H/O,(H) is cyclic.

G.R. ROBINSON: On permutation modules '

In this talk, G denotes a finite group, p a prime, k an
algebraically closed field of characteristic p , S a Sylow p-
subgroup of G . We discuss various connections between the struc-
ture of permutation modules (and their endomorphism rings) of G
and the group-theoretic structure of G .

In section 1, on fusion, I discuss the following result (and
related ones). .

Theorem: The vertices of the non-projective summands (in the
principal p-block) of Indg (K) constitute a conjugation family

|
|

for S in G .

In section 2, on simplicial complexes and related topics, T
discuss (among other things) the following result related to a
conjecture of Quillen. . :

Theorem: Let Ap be the simplicial complex associated to the

poset of non-trivial p-subgroups of G . Suppose that p 2 5 ,
that O(G) = 1 , and that the components of G are of characte-
ristic 2-type. Then Ap is not contractible. ’

I also discuss the following result (proved joinﬁly with R.
Knérr) .

Theorem: Let B be a block of kG , and for a simplex
q € Ap , let Bc be the Brauef correspondents (i.e. blocks of

ch) (which are defined). Let G, act on B, by conjugation.

(o]

Then -1)|C|Indg (Bc) is a virtual projective module.
(o]

cEAp/c (
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This result relates to a cbnjecture of Alperin, and has appli-
cations to groups for which Alperin's conjecture has been veri-
fied.

K.W. ROGGENKAMP: News on the isomorphism problem

This is a report on joint work with L.L. Scott. The following
result and its consequences are discussed:

Theorem: Let R be an unramified extension of the p-adic in-
tegers. G 1is a p-constrained group with op,(G) =1 . Lét

a: RG — RG be an augmented automorphism with
a(I(Op(G))TG) c I(Op(G))‘[G - I(X) is the augmentation ideal of

the subgroup X of G . Then there is a unit u in. RG such

that a(G) = ucGu t .

Corollary 1: Let G be as above. Then the Zassenhaus conjectu-
re is true for ZG . (In particular, ZG =~ ZH implies G =~ H .)

Corollary 2: Let G be a finite group with a normal Sylow p-
subgroup. Then the defect group of the principal block B° of RG
is uniquely determined - up to conjuqécy - by By -

Corollary 3: Let G be a solvable group. Then for every prime

P ., the group G/Op,(G) is determined by ZG ; in particular, the

Sylow p-subgroups are determined.

A.V. ROMANOVSKII: On the finite linear groups with Frobenius sec-
tion

Related to the results of Brauer, Leonard and Sibley on finite
linear groups is the following theoren.

Theorem 1. Let a finite group G have a faithful complex cha-
racter ¢ and CG(x) Cc PcG(P) for each non-trivial element of

some non-normal Sylow p-subgroup P of G . Then

o
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1) If every irreducible constituent of character ¢ is of degree
less than (|P|-1)/2 , then G = Sz(q) .

2) If ¢(1) € (|P|-1)/2 , then either G = Sz(q) or

G/Z(G) =~ PSL(2,|P}) .

This result has been obtained together with N.A. Romanovskaja.
The proof is based on the theory of exceptional characters and not
the classification of simple finite groups.

Following result has been obtained by the author and
A.A. Jadchenko.

Theorem 2. Let G be a p-solvable group with an abelian Sylow .
2-subgroup. Let G have a faithful representation of degree
2p - 2 over the complex number field. Then G has a normal Sylow

p-subgroup.

'

G. SCHNEIDER: Dixon's character table algorithm revisited

Let ¢; , 1¢ i ¢ k denote the classes of a finite group and
X3 the characters. The algorithm given by J. Dixon in 1967 for

the automatic computation of group characters can be significantly
improved by using the equation

lcrl * xi(xr) k
X3 (1) T X3 (Xe) = g2y X3(Xg) ¢ Cpge -
The Crgt are the class multiplication constants, i.e. the number

of solutions in G to the equation X, * X, =X, X, € cr ,

xg € cs and fixed X, € Ct . The characters are therefore row ei-

genvectors of the class matrix M = (crst)s,t and can be obtai-

ned by successive computation of eigenspaces of various class ma-
trices.

The new approach allows to predict whether a class matrix will
split an existing space into smaller subspaces without having to
determine the matrix. In addition, not all columns of a matrix
have to be computed. An algorithm was presented that finds the
characters that span a 2-dimensional space without the need of a
class matrix.

Deutsche
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The performance of the new algorithm was demonstrated by giving
the CPU-time requirements of various test cases. An implementation

is available to the users of the CAYLEY system.

G. SEITZ: Restrictions of irreducible representations to subgroups

Let G be a finite classical group over a field of r® ele-
ments. In view of a recent result of Aschbacher, the problem of
determining the maximal subgroups of ‘G reduce to finding
triples (X,Y,V) , where X,Y are quasisimple groués, X<Y,
and both X,Y are absolutely irreducible subgroups of G . Here
V is the natural module for G .

Let X = X(pa) be of Lie type in characteristic p . For
p = r (the generic case) a great deal of work has been done and
this case is now in reasonably good shape. Here we consider the
cross~characteristic case, p # r . »

The most likely candidate for Y is ¥ = ¥(p®) , also of Lie
type in char p , and we assume this to be the case. Hence, we
have the embedding X(pa) < Y(pb) <G = G(rc) . We have the follo-
wing ' i :

Theorem Assume pa >3 and Y is of classical type. Then
there is a subgroup C < Y such that X ¢ C and the pair
(C/Z(C) , ¥/Z(Y)) 1is one of the following:

1) (PSp,, (a@),PSL (@) (a = ")
2) (PR__, (@), (@)

3) (6,(Q),B,(Q))

4) (PSp,, (a°),PSp, . (a))

In particular, if Y is minimal, then (X/Z(X) , Y/2(Y)) is
one of the pairs 1) - 4).

For most of the types 1) - 4) a suitable V does exist but we
have been unable to determine all possible V's . :

&
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U. STAMMBACH: Resolutions as multiple compiexes

(PhD Thesis of R. Schmid)

Over a finite abelian group the (minimal) resolution of the
field k can be described as the total complex of a multiple com-
plex. Schmid has shown that this result generalizes to the case of
a p-solvable group with abelian p-Sylow subgroup. In principle the

" resulting complex can be used to calculate the cohomology of such
a group.

Some time ago J. Alperin raised the question whether there al-

ways is a resolution that can be written as total complex of a

multiple complex. Recently Benson and Carlson have shown that this
is indeed the case. Their proof however is not constructive. Re-

garding their multiple complex as iterated double complex, Schmid
has proved that the associated spectral éequences have the proper-

ty that E2 = E, . As a consequence the cohomology groups can be

calculated as iterated homology. This shows that the cohomology
groups obey very strong periodicity rules.

R. STASZEWSKI: On the Loewy structure of the modulgr group algebra
over a finite p-group

Let P be a finite p-group and K an arbitrary field of cha-
racteristic p , p a prime. In 1941, S. Jennings proved the fol-.
lowing about the dimensions of the Loewy-factors

? i+1 g
Jkp) /3 (xp) Tt | Let kyi= P and & :i= [“n-1'P]F§ , where m -
= lll

is the least integer with pm 2 n . Then nlz xzz...z K1> K

1+1
is a central series with elementary abelian factors. If

a . .
. +1
Ik /Kppq| =2 P N and dlmK(J(KP)l/J(KP)l ) =i ¢; , we have
1 d s :
I (1+t“+..f+t“(P 1),'n iZo Sy t5 (in Z[t]). From this we

easily have Cf = Cgy ¢ and for quite some time, the question

circulated whether the Loewy-series is even monotonic, which means
C4.; § c4 (1L i< s/2) . In 1986, Stammbach~Stricker and Manz-
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Staszewski independently found counterexamples, but in all of
them, the prime p was either 2, or 3, or 5. Searching for coun-
terexamples in a systematic manner, C. Leedham Green and the
author first proved some conditions which the sequence dl'dz""

has to fulfill whenever this sequence arises from a group and
afterwards wrote a computer program which constructs all di-se-

quences which might arise from a group and calculates the ‘ci's

(up to a certain order of the group). By this method, it was shown
that there is no counterexample P with |P| 1715 , P} |1117 or
| P} |1719 , Wwhereas the smallest counterexamples are of order

25 , 35 or 55 , respectively.

A. TURULL: Central extensions as Galois groups

Report of joint work with Nuria Vvila

An can be realized as the Galois group of some regular exten-

sion E of Q(x) for every "rigid" triple of conjugacy classes
of Sn . For triples that contain the. class of n-cycles we calcu-

late the obstruction to the embedding of E into some extension
with Galois group ﬁn , the non-split central extension of A, by

22 .

T.R. WOLF: Variations on McKay's conjecture

Let P be a Sylow p-subgroup of a finite group G . McKay's
conjecture proposes that G and NG(P) have the same number of

irreducible (ordinary) characters of p'-degree. Okuyama and Wajima
have proved this (and the more refined block-by-block AlperinMcKay
conjecture) for p-solvable G .

Let g be a prime (equal to or different from p) and let Q
be a Sylow g-subgroup of G . We show that if G is (p,q}-sepa-
rable, then G and NG(Q) have the same number of Brauer charac-

ters (for the prime p) of q'-degree. Furthermore, p and gq may

o®
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be replaced by sets of primes w and p , provided G 1is w-sepa-
rable and p-separable. From this follows the Alperin-McKay conjec-
ture for w-blocks of w-separable groups as well as an unpublished
result of Isaacs regarding the number of w-special characters of a
r-separable group.

A.E. ZALESSKII: Eigenvalues of matrices of complex representations
of finite Chevalley groups

Let G = G(pa)v be a Chevalley group and let F be a field of
characteristic £ # p . If ¢ is a representation of G then
deg ¢(G) denotes the degree of the minimal polynomial of ¢(g) .

Theorem 1. Let G be indecomposable in a non-trivial direct
product. Assume that g € 6, |g| = p and deg ¢(g) < p where
dime > 1 . Then G € (A (p?) , %A, (p) , C,(p) (m21)) . Further-

’

more, if 1 is not an eigenvalue of ¢(g) then
2 2
G € (A, (P7) , "Ay(P) 4 Cy(P) + Cy(P)) -
Theorem 2. Let F=C, G€ (G,(p%) , P> 2, 26,(3%) ,
F4(pa) ’ 2F4(23) ’ Es(pa)} and let g € G be semisimple. If ¢

is an arbitrary representation of G over € with dim¢ > 1
then ¢(g) has eigenvalue 1 . ’

Berichterstattung; Christine Bessenrodt
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