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Tag u n g s b e r ich t 24/1987

Darstellunqstheorie endlicher Gruppen

31.5. bis 6.6.1987

This meeting was organized by Prof. B. Huppert (Ma~nz) and Prof.
G.O. Michler (Essen). Since the first conference on representation
theory of finite groups at the Oberwolfach Institute in 1983,-the
subject has seen a lot of progress in various directions.

A number of talks were devoted to new results in classical cha­
racter theory, in particular to degree problems in ordinary and
modular representation theory, and to representations of Chevalley·
groups. Several reports were given on a new view on Clifford theo­
ry and on the structure of permutation modules, which are also a
new tool in coding theory. Furthermore, recent progress on Galois
graups and on the isomorphism problem for integral group rings was
presented. The participants also got a survey of cohomological
methods in group representation theary and of computer algebra,
which both have become imp~rtant'new topies in the last years.

The conference was attended by 51 participants from Australia,
Danmark, England, France, Ireland, switzerland, USA, USSR, and
West Germ~ny. Apart from the lecture~, the discussions during the
breaks and in the evening were an invaluable part of the ~eeting;

in particular, the participants fram western countries had,a
chance to get some i~formation on the recent research in the USSR
from their Russian colleagues.
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J. ALPERIN: Loewy structure of permutation modules for p-groups

The·theorems of Jennings and HilI on the structure of k(P] ,

P a finite p-group, k a field of characteristic p, are genera­

lized to the k[P]-module kO where 0 is a set on which P

acts transitively, so answering, in the case of Hill's theorem, a

question of Peter Neumann.

D. BENSON: Specht modules and cohomology of mapping clas~ qroups ~

Let Mn denote an oriented 2-manifold of genus q with nq,k

punctures and k boundary components, and T~,k = V o TOP+(M~,k)

denote the group of connected components ·of the grou~ of orienta-
. n .

tion preserving self homeomorphisms of M k(the mapping classg, .

group). Usinq recently developed diagrammatic methods in modular

representation theory (due to myself and Jon Carlson), and the

theory of Specht modules, ·I obtain the cohomology ring of . T~,o

with coefficients in any field. The interestinq characteristics

are 2,3 and 5. For example, we have
* 0 2 2 4 "3 5H (T 2 ,o' ~2) = k[a,ß,6,1]/(ß6,aß,ß ,a +6 ,a6 +6 ) •

As intermediate results we obtain information ab~ut the cohomoloqy

of r~,o ; the case of interest is n = 6 because there is a.

short exact sequence

1~Z/2~T~,o~r~,o~1 •

Since the cohomology of r~,o is expressed in terms of Specht mo4lt

dules for In (the symmetrie group), the diagrammatie methods are

applied for modules for I 6 •
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F. BERNHARDT: Groups with only few p-modular character deqrees

If ·G i8 a finite solvable qroup, then it i8 conjectured that .

the derived length"of G is bounded by the number of character

deqrees of G over the complex field C . This conjecture was
proved if the qroup haa only at most four character degrees or if

IGI is odd.
Lookinq at a p-modular analogue it i6 true that, assuming

o (G) trivial, the derived lenqth of G 1s bounded by four ifp

the number of p-modular Brauer characters 1s less or equal to two

and also there are such examples.

B. BLAU: Tahle algebras

A table algebra i6 defined as a commutative algebra over the

complex ~umbers w~th a specified basis which satisfies certain

properties. It generalizes both the character ring and cla~s alge­

bra of a finite gro~p, and permits a unified proof of varioua ana­

lagous theorems concerninq both of these objects •. Joint work with

z. Arad on the general theorY of table alqebras an~ its applica­
tions to finite groups will be diseussed.

J .• F. CARISO~: ExpoD.ents of modules and maps

Let G be a finite group and let R be a P.I.c. of characte­
ristie o. Let Land M be RG-lattices. If a:L ~ M then
exp(a) is.a generator for the ideal of all r € R such that ra

factors through a projective. Also exp(M) = exp(I~) • Suppose

that 'l' ••• "r are homogeneous elements in H*(G,R) such that

the radical of the ideal that their reductions module P generate
i5 the annihilator of the cohomoloqy of M/PM for every prime

ideal P ~ R • Such a set can be found with r = CG(M) . Then

n exp('i) ~ exp(M) • In case M = R we have that
i

IJ exp (C i ) ~ IGI·
i
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Suppose that R is a complete d.v.r. with prime element v •

If exp(M) = va then M has property E provided
a-1 A 0 A 0

V • ExtRG(M,M) = Soc ExtRG(M,M) (Tate cohomology). Joint work

with A. Jones shows that property E is preserved under the Green

correspondence for absolutely indecomposable lattiees. The work

suggests that the height-zero conjeeture might be provable by pu­
rely loeal methods.

E.C. DADE: Compounding Clifford theory

We present Clifford theory as ~ single, thoroughly natural

equivalence between the subcategory Mod(FGIV) of Mod(FG) gene­

rated by the module vG induced by a simple module V over FN,

where N ~ G , and the category Mod«FG) ') of all modules over

the endomorphism ring (FG) , = EndpG(VG) • If, in addition,

N ~ M ! G and W is a simple FM-module lying over V, then we

easily obtain a commutative diagram of equivalences of ".categories

. defined by Clifford theory

Mod(FGIW) ~ Mod«FG)W)
\\ ~I

Mod ( (FG) , IW') ~ Mod ( (FG' ) w' )
where (FG)w = EndpG(WG) , etc. since the two vertical equivalen­

ces here are induced by Clifford theory for V and FG, while

the top and bottom equivalences ~ Clifford theory for Wand

FG and for W' and (FG) , , this says that "Clifford theory pre­

serves Clifford theories".

P. FERGUSON: Applications of prime characters

If ~ is a quasi-primitive irreducible character of G, let

Z(~) , p*(~) , and M*(~) be defined by Z(~)/ker(~) =

= Z(G/ker(~» , F*(~)/ker(~) = F*(G/ker(~» , and

M*(~) = F*(~)/Z(~) • ~ is a prime character if ~ is a quasi­

primitive irreducible character, ~F*(~) is irreducible and

M*(~) is homogeneous. I diseuss the following:
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Theorem 1 If ~ 1s a quasi-primitive irreducible character of
G I there is an extension (G,v) of G such that kerv ~ G1nz(G)

n
and ~ factors uniquely (up to associates) as ~ = i~l Pi where

{Pl,P2 , ••• ,Pn} is an admissible set of prime characters.

As an application , I indicate a proof of the followinq"theorem:

Theorem 2 Suppose ~ is a quasi-primitive irreducible charac­
ter of 'G of odd degree. If + € Irr(S) where S is a univer­

sal covering qroup of a non-Abelian composition factor of G and

~(1)1~(1) , assume ~~~tt 1s not 1nduced from a proper subgroup

of Sand if t(l)'= pr , then _ptl~~~1 ' then ~ 1s a

primitive character of G.

B. FISCHER: The character-table of E6 (2)

E6 (2) contains a parabolic subgroup HK where N ~ NK I

INI 2
16

K ~ DS (2,) • The character-table of NK was computed

for a table of a certain subqroup of the monster. since· it was

known it could be used for the computation of the character-table

of E6 (2) • I have to thank S. Black and J. Janisczcak for their

help.

P. FLE:ISCHMANH: Periodie simple modules tor Chevalley qroups in
the describing characteristic

Let k be an alqebraically closed field of char p>O I

q = pD G a finite qroup and M a kG-module. If Oi(M)

O(M) for some i>l I then· M i8 called periodic (0 i8 the
Heller op~rator). ST:= steinberq module. Now the following holds
for the non-twisted Chevalley groups:
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A1 (q): Periodic simple modules ~ st exist and are classified

(Jeyakumar 1979). An(q), n~2, Dn(q), E6 (q), E7 (q), Ea(q),.

F4 (q): no periodic simple modules ~ ST exist! (Janiszczak 1985)

Same result holds for" B
2

(q) , G
2

(q) (Janiszczak and Jantzen

1987).

And for twisted Chevalley groups: 2A2 (q2) , periodic simple

modules # ST exist and are ~lassified (Fleischmann 1986).
2 2 2 2 2 2 3 3
An(q), n~3, Dl(q), 1~4, E6 (q), D4 (q) I no simple pe-~

riodie modules exist (~ST) • 2B2(22m+1) , Suzuki groups: perio­

die simple modules # ST exist and are classified. 2G2(32m+l),

Rea groups: no periodic simple modules # ST exist.

D. GLüCK: Prime factors of character degrees of solvable groups

Let a(G) be the maximum number of primas dividing any"one

character degree of G and let p(G) be the set of primes which

divide some character degree -of G '. For G solvable, Huppert has

conjectured that Ip(G) 1~2a(G) • In this joint·work with o. Manz,

we show that lpl~30+32 for every solvable group, considerably

improving earlier results of Isaacs and of Gluck~ We also obtain

Ipl~2a+32 when G is solvable with no normal nonabelian Sylow

subgroups.

R. GOW: Reduced K-degrees of irreducible characters

This is areport of joint work with B. Huppert. Let G be a

finite group and K a field of characteristic 0 Let L be a

splitting field for G containing K and let ~ € IrrL(G) • We

define the reduced K-degree of ~ to be tK(~) ~(l)/mK(~)

where mK(~) is the Schur index of ~ over K. We propose to
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stu~y how information about the set of numbers tK(~) can lead to

group-theoretic information about· G • When K = L , our problem

is just- the classical character degrees problem investigated by

several researchers in the past twenty years.

We give two exampl~s of the .sort of results we have proved.

Problem 1 Suppose that tK(~) = 1 or k>1 for all

~ € I~rL(G) • What can be said about G? We inv~stigate this pro­

blem usinq the following result:

Thompson-type theorem Suppose that there exists a prime p

such that pltK(~) for all ~ € IrrL(G) with tK(~) ~ -1 • Then

G has anormal p-complement.

Using this ~heorem, we prove that if G is a group described

in Problem 1 and v is the set of-prime divisors of k, ·G has

anormal v-complement N, N is certainly metabelian and GIN

is nilpotent.

Problem 2 Suppose that tK(~) = 1 or a prime number for all

~ € IrrL(G) (not always the same prime). What can be said-about

G ? Using the classification of simpl~ groups, we show that G is

solvable, and has derived length at most 4, ~ bound that can pe

attaihed by certain groups of even order.

G. HISS: Modular representations of Chevalley graups in special

characteristic

Let

B = UH

G be a group with a split BN-pair, i.e.

U~B,UnH = 1 N· = NG(H) BnN = H ,

B,N~G = <B,N> ,

N/H = W , the

Weyl group of G.

Let r be a prime and 0 a Sylow r-subqroup of H. Suppose

the fallowing conditions are satisfied:

1. D is a Sylow subgroup of G

2. CG (D) H.

In this situation we determine the decomposition matrix of the

principal r-block of G. Two corollaries should be mentioned (k

denotes a spli~tinq field of characteristic r):
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Corollary 1. The permutation module over k on the cosets of

B is completely reducible. Its constituents are exactly the

simple kG-modules in the principal block. The unipotent characters

in the prlncipal series are irreducible modulo r.

Corollarv 2. The Green correspondents of the simple kG-modules

in the principal block are exactly the simple kN-modules which

have H in their kernel, i.e. the simple kW-modules.

The proof is a straightforward application of Green correspon­

dence. L. Puig has obtained these results independently by using

his theory of source alqebras. ~

I.M. ISAACS: Characters and solvable groups

Because of the fairly extensive theory of characters of sol­

vable groups which has been developing in the past fifteen or so

years, it has become possible to answer for solvable groups cer­

~ain questians which are (as yet) intractible for arbitrary
graups. (For example, the McKay conjectu~e and the Brauer height
conjecture have been proved for solvable groups.)

Recently, in the work of P. Ferguson, the following question

has arisen: If H ~ G and e € Char(H) where eG = a~ for same
primitive ~ € Irr(G) , does this imply that H = G ?

For solvable groups, it turns out that it is relatively easy to

answer this question affirmatively. (This was done independently
by Ferquson and myself.) Tc demonstrate some cf the techniques of

solvable character theory, and in particular factorization theory,

this lecture presents (in same detail) a praaf ~f this result. ~

A.V. IVANOV: Non rank 3 graph with 5-vertex condition

Ordinary graph with t-vertex condition is defined. The graph

with t-vertex condition is also the graph with t'-vertex condition

for ~very 2 ~ t'~ t • The examples of such graphs are regular

graphs (t 2), strongly regular graphs (t = 3) , rank 3 graphs
(Vt) •
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The graph G with 5-vertex condition is constructed. Its para­

meters are (v, k, ~, ~, a, ß) = (256, 120, 56, 56, 784, 672) and

IAut(G)I = 220 • 32 • 5 • 7 • Two subgraphs G1 and G2 of graph

Gare the graphs with 4-vertex condition. Their parameters are

(120, 56, 28, 24, 216, 144) , (135, 64, 28, 32, 168, 192) ,
respectivelyand IAut(Gi) I =·.IAut(G2 ) I = 212 .32 _5_7 • All these

graphs are not rank 3 graphs.
Up to now all examples of non rank 3 graphs with t-vertex con-

~ dition were known for t ~ 3 only.

w. KIMMERLE: Sylow suhqroups and isomorphie inteqral qro~p rings

Theorem 1. Assume ZG ~ ZG* • Let P E sylp(G) and

* * *P E SYlp(G ) • Suppose that P is abelian. Then P ~ P

The result can be extended to Hamiltonian Sylow subgroups. The

pro6f uses for p > 2 the classification of the finit~ simple
groups. One crucial point of the proof i8 that the integral group
ring of a finite group determines the chief factors.

*Theorem 2. Assume ZG ~ ZG • Let

1 = KO~ Kl···~ Kn-l~ Kn = G

be a chief series of G. Then G* has a chief series
*1 = L04 L1 ••• 4 Ln _14 Ln = G

such that Li+1/Li ~ Ki+1/Ki ' O~i~n-1 •

Theorem 1 was proved in joint work with s. Sandling (Manche­
ster). Theorem 2 was proved by R. Lyons (Rutgers University) and
R. Sandling, and independently by me. It is written up in a joint

paper.
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E.A. KOMISSARTSCHIK: Intersections of maximal subgroups in simple

groups of order less than 106 and as~ociated amalgams

Let G be a finite qroup and Hand K be subgroups of G.

Problem 1. Describe "Hg n K for all 9 € G .

Result 1. List of intersections of all pairs of maximal subgroups

in simple groups of order less then 106 excludinq PSL(2,q) •

The natural generalization of the Probl~m 1 is .

Problem 2. Let G1 , ••• ,'Gn , n ~ J , be subqroups of a qroup G •

Describe all residually connected amalgams for all•
9i tram G, such that G is generated by Gi' 1 ~ i ~ n .

Result 2. List of all residually connected amalgams tor

(1) G - J 1 ' and

(2) G - U4 (2) with the additional assumptions that all Gi are

n
maximal subgroups of G and q Gi i8 nontrivial.

L.G. KOVACS: The Grothendieck ring of

•
Consider the homomorphism of the commutative polynomial ring

7l[x,y] to the Grothendieck ring of IFp SL3 (p) which maps' x to

the natural· module·and y to its dual. This homomorphism is sur­

jective and its kernel 1s the ideal qenerated by the two polyno­

mials

xp - x + pR(x,y) and yP - Y + pR(y,x)

where

R(x,y) = I 'ttj;T-~l! Xi(_y)j € Z[x,y)

with summation over all non-negative i,j,k such that

i + 2j + 3k P ~ i . A similar result holds for IF qSL3 (q) when-

ever q 15 apower of p.
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B. KüLSHAMMER: Morita equivalent blocks and ·Clifford theory

Clifford theory is concerned with the relationship between re­

presentations of groups K,H,G occurring in a finite group exten­

sion
l--+K~H--tG-+1

Let B be a (G-stable) block of K I and let A be a plock of

H eovering B. J. Alperin has proved recently that A and B

are isomorphie if and only if their Brauer correspondents are. Wee generalize his result, replacing isomorphism by a Morita equiva­
lence satisfying a certain natural condition. When A and Bare

Morita equivalent, questions about A can often be redueed to

questions about B. Thus our reduction process complements other

tools i~ Clifford theory such as the Fong-Reynolds correspondence.

P. LANDROCK: Ideals and codes in group algebras

Let C be a right ideal in a group algebra F[G], F ·of

char P, and define the divisor d of C as the greatest common

divisor prime to p of~ all the eardinalities of subsets of G

which form the support of so,me non-zero element of ~ C . Then there

exists a subgroup H of G with d dividing the order of H I

such that furthermore C is contained in the pe~utation ideal

(h~H h) F[G] • H is called the induction kernel of C and the

result above 15 inspired from work by B.N. Ward in coding theory.

This may also be used to explain how to determine the set·of sub­

groups {X} of G such that SB ~ 0 for some simple module S.

In particular, we get an improved version of the Nakayama Rela­

tions for ideals.
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o. MANZ: Brauer characters of ql-deqree

We denote by I~r(G) the set of Brauer characters w.r.t. the

prime p and let q be a prime different from p • As a modular

analogue of Itols theorem we prove
Theorem 1. Suppose that G 18 p-solvable and q ~ P(l) for

all ß E IBr(G) •
a)Then the q-length lq{G) i9 at most 2 and the q-factors in

every q-series are abelian. (This 1s equivalent with Q E sylq{G)

being at most metabelian.)
b)If furthermore q ~ p-l and (p,q) ~ (2,3), then

lq(G) ~ 1 •

auestion. Is it in general true that .Q E sylq(G) is at most

metabelian if q ~ ß(l) for all ß E IB~{G) ?
A IIloea1" version of Theorem 1 above is the following:

Theorem 2. Let N ~ G, a E IBr(N) , G/N solvable and

q ~ ß(l)/a(l) for all ß E IBr(Gla) • Then for Q E SYlq{G/N) ,

we have dl(Q) ~ {2, q ~ 5
3, q ~ 3 •

All results mentioned above are joint work with Tom "Wolf

(Athens, Ohio).

B.B. MATZAT: Zopfe und Galoissche Gruppen

~

Oie Fundamentalgruppe des s-fachen Produkts der Riemannschen

Zahlenkugel, aus dem die schwache Diagonale (bestehend aus den ~

Elementen mit zwei oder mehr gleichen Komponenten) herausgeschnit­
ten ist, heißt die reine Hurwitzsche Zopfgruppe. Durch das studium

dieser Zopfgruppe erhält man Rationalitätskriterien für Galoiser­

weiterungen N/~(tl, ••• ,ts) , die au8erhalb t i = t j für i ~ j

(geometrisch) unverzweigt sind.
Unter Verwendung dieser Kriterien konnte unter anderem"erstma­

1ig bewiesen werden, daß auch die größte der Mathieuqruppen,

M24 ' als Galoisgruppe über ~ realisierbar ist.
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w. PLESKEN: App1ying representation theory: a soluble quotient a1­

qorithm

To design feasible algorithms to compute the biggest finite so­
luble quotient group of a finitely .presented group in case it
exists has been an open problem in computatienal group theory ever

afte~ the spectacular suceess of the n~lpotent quotient algorithm.
Given a finitely presented group G and an epimorphism ~ of

G ento a "known" group H. To test whether e. can be lifted to
an epimorphism ento an extension of a simple H-module by H
amounts to solving linear equations. Is H soluble one can find
the simple modules and the cocycles describing the extensions al­
gorithmieally. This way one obtains a soluble v-quotient.algo­
rithm, where v is a finite set of primes. The proper ehoice of
v can be made if the irreducible H-modules are known for the va­
rious quotient groups H of G whieh oceur.

L. PUIG: Generalization of Brauer's second main theorem to virtual
modules

Let G be a finite group, A an interior G-alqebra, M an

A-module and ~ the character of M. For any pointed group H
ß

on A, denote by ~ß the eharacter of the OH-module i.H where

i € ß and if K
1

is a pointed subgroup of Hß denote by .~

the Brauer charaeter of the kCH(K)-modul~ Sl(i)A(K1)Sl(j) where

j € 1 • In npointed groups and construction of eharaeters" we

prove (*) ~~(us) = ~ .: (s)xe.(u) where a E PA(G) .' U € Gp ,

S € CG(U)p , and ~ runs over LPA(U) • In particular, for any

loeal pointed group Q6 on A such that Q6 C Ga ' we get

(**) X6
(U) = ~ m~ ~~(U) where U € Q m: .~ (1) and ~ runs

over LPA(U) • conversely, if for any loea1 pointed subgr~up Q6

of G we choose a virtual eharacter A6 of Q in such a waya
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that (**) holds, then (*) defines a virtual character of G. Our

main purpose here is to prove analogaus statements replacing the

ring of' C-valued cen-tral functions on G by the Green ring of

over Q, virtual characters by virtual modules, and values of

virtual characters by' "residues" of virtual modules on the

subgroups H of G such that H/Op(H) is cyclic.

G.R. ROBINSON: On permutation modules •In this talk, G denotes a finite group, p a prime, k an

algebraieally closed field of characteristic p, 5 a Sylow p­

subgroup of G. We discuss various connections between the struc­

ture of permutation modules (and their endomorphism rings)' of G

and the group-theoretie structure of G.

In section 1, on fusion, I diseuss the following result (and

related ones).
Theorem: The vertices of the non-projective summands (in the

principal p-block) of Ind~ (K) eonstitute a conjugation family

for S in G.

In section 2, on simplicial complexes and related topics, I

discuss (among other things) the following result related to a

eonjeeture of Quillen.

Theorem: Let 6 p be the simplieial complex associated to the

poset of non-trivial p-subgroups of G. Suppose that p ~ 5 ,

that O(G) = 1 , and that the components of Gare of charaete-

ristic 2-type. Then 6p is not contractible. •

I also diseuss the following result (proved j01ntly with R.

Knörr) •
Theorem: Let B be a block of kG, and for a simplex

~ € 0p , let Bc be the Brauer eorrespondents (i.e. blocks of

kGc) (which are defined). Let Gc act on Bc by conjugation.

Then ~ (-1) ICIIndG (B) is a virtual projective module.
CEAp/G Gc C
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This result relates to a conjecture of Alperin, andohas appli­

cations to groups for which Alperin's conjecture has been veri­

fied.

K.W. ROGGENKAMP: News on the isomorphism problem

This is areport on joint work with L.L. Scott. The following

result andits consequences are discussed:

Theorem: Let R be an unramified extension of the p-adic in­

teqers. G is a p-constrained group with 0p,(G) = 1 • ~t

a: RG ~ RG be an auqmented automorphism with

a(I(Op(G»TG) C I(Op(G»tG - I(X) is the augmentation ideal of

the subgroup X of G. Then there is a unit u in. RG such

that a(G) = UGU-1 .

Corollary 1: Let G be as above. Then the Zassenhaus conjectu­

re is true for ZG. (In particular, ZG ~ ZH implies G ~ H .)

Corollary 2: Let G be a finite group with a normal Sy~ow p­

sUbgroup. Then the defect group of the principal block Bo of RG

is uniquely determined - up to conjugacy - by BO •

Corollary 3: Let G be a solvable group. Then for every prime

p , the group G/op,(G) is determined by ZG ; in particular, the

Sylow p-subgroups are determined.

4It A.V.ROMANOVSKII: On the finite linear qroups with Frobenius sec­

tion

Related to the results of Brauer, Leonard and sibley on finite

linear groups i5 the following theorem.

Theorem 1. Let a finite group G have a faithful complex cha­

racter ~ and CG(x) ~ PCG(P) for each non-trivial element of

same non-normal Sylow p-subgroup P of G. Then
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1) If every irreducible constituent of character ~ is of degree

less than (IPI-l)/2, then G ~ sz(q) •

2) If ~(1) ~ (IPI-l)/2 , then either G ~ Sz(q) or

G/Z (G) ~ PSL(2, IPI) •
This result has been obtained together with N.A. Romanovskaja.

The proof is based on the theory of exceptional characters and not

the classification of simple finite groups.

Following result has been obtained by-the author and

A.A. Jadchenko.

Theorem 2. Let G be a p-solvable group with an abelian Sylow ~
2-subgroup. Let G have a faithful representation of degree

2p - 2 over the complex number field. Then G has anormal Sylow

p-subgroup.

G. SCHNEIDER: Dixon's character table algorithm revisited

Let Ci' 1 ~ i ~ k denote the classes of a finite group and

)(i the characters. The algorithm given by J. Dixon in 1967 for

the automatic computation of group characters can be signifieantly
improved by usinq the equation

ICr I • )( i (xr )
Xi(1) • ~i(Xt)

The erst are the class multiplication constants, i.e. the number

of solutions in G to the equation xr ~ Xs = xt ' xr € er '

Xs € Cs and fixed xt € Ct • The characters are therefore row ei-~

genvectors of the class matrix Mr = (Crst)s,t and can be obtal-

ned by successive computation of eigenspaces of various class ma­

trices.
The new approach allows to predict whether a class matrix will

split an existing space into smaller subspaces without having to

determine the matrix. In addition, not all columns of a matrix

have to be computed. An alqorithm was presented that finds'the

characters that span a 2-dimensional space without the need of a

class matrix.
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The performance of the new algorithm was demonstrated by giving

the Cpu-time requirements of various test cases. An implementation

is available to the users of the CAYLEY system.

G. SEITZ: Restrictions of irreducible representations to subgroups

Let G be a finite classical gr~up over a field of r C ele­

ments. In view of arecent result of Aschbacher, the problem of

determininq the maximal subqroups of G reduce to findinq

triples (X,Y,V) , where X,Y are quasisimple groups, X < Y ,
and both X,Y are absolutely irreducible subgroups of G. Bere

V is the natural module for G.

Let X = X(pa) be of Lie type in characteristic p. For

p = r (the generic case) a great deal of work has been done and

this case is now in reasonably good shape. Here we consider the

cross-characteristic case, p ~ r •

The most likely candidate for Y i8 Y = y(pb) , also of Lie

type in char p , and we assume this to be the oase. Hence, we

have the embeddinq X(pa) < y(pD) < G G(rc ). We have the follo­

winq

Theorem Assume pa > 3 and Y i8 ~f classical type. Then

there is a subgroup C < Y such that X ~ C and the pair

(C/Z(C) , Y/Z(Y» is one of the following:

1) (PSP2n (q),PSL~n (q» (q = pb)

2) (POn - 1 (q),POn (q»

3) (G
2

(q),B
3

(q»'

s'
4) (PSP2n (q ), PSP2ns (q»

In particular, if Y is minimal, then (X/Z(X) , Y/Z(Y» is

one of the pairs 1) - 4).

For most of the types 1) - 4) a suitable V does exist, hut we

have been unable to determine all possible VIS
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u. STAMMBACH: Resolutions as multiple complexes

(PhD Thesis of R. Schmid)
Over a finite abelian group the (minimal) resolution of the

field k can be described as the total complex cf a multiple com­

plex. Schmid has shown that this result generalizes to the case of

a p-solvable group with abelian p-Sylow subgroup. In principle the

resulting complex can be used to calculate the cohomoloqy of such

a graupe

Same time aga J. Alperin raised the question whether there al- ~

ways is aresolution that can be written as total complex of a

multiple complex. Recently Benson and Carlson have shown that this

is indeed the case. Their pro9f however is not constructive. Re­

garding their multiple complex as iterated double complex, Schmid

has proved that the associated spectral s'equences have the proper-

ty that E
2

= Em • As a consequence the cohomology groups can be

calculated as iterated homology. This shows that the cohomoloqy

groups obey very strang periadicity rules.

R. STASZEWSKI: On the Loewy structure of the modular group algebra

ovar a finite p-group

Let P be a finite p-group and K an arbitrary field cf cha­

racteristic p, p a prime. In 1941, S. Jennings proved the fol-.

lowing about the dimensions of the Loewy-factors

J(KP)i/J (KP)i+l . Let K 1 := P and Kn := [Kn-1'P]~~ ,where m .

is the least integer with pm ~ n • Then Kl~ K2~ ••• ~ K l > K l +1 = 141t
is a central series with elementary abelian factors. If

d
IKn/K n+1 I =: p n and dimK(J(KP)i/J (KP)i+l) =: ci ' we have

1 ( 1) d n 5 ;
n~l (l+tn+ •• ~+tn p-) = i~O Ci t 4 (in Z[t]). From this we

easily have ci = c s - i ' and for quite some time, the question

circulated whether the Loewy-series is even monotonie, which means

c i - 1 ~ ci (1 ~ i ~ 5/2) • In 1986, stammbach-Stricker and Manz-
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staszewski independently found counterexamples, hut in all of

them, the prime p was either 2, or 3, or·S. Searching for coun­

terexamples in a systematic manner, c. Leedham Green and the

author first proved some conditions which the sequence d1 ,d2 , .•.

has to fulfill whenever this sequence arises from a group and

afterwards wrote a computer program which constructs all di-se-

quences which might arise from a group and calculates the ci's

(up to a certain order of the group). By this method, it was shown

that there 1s no counterexample P with IPI 1715 , IPI 11117 or
IPI 11719 , whereas the smallest counterexamples are of order
2 5 , 35 or 55, respectively.

A. TURULL: Central extensions as Galois groups

Report of joint work with Nuria Vila

An can be realized as the Galois gro~p of some regular exten-

sion E of Q(x) for every "rigid" triple of conjugacy classes

of sn. For triples that contain the. class of n-cycles we calcu-

late the obstruction to the embedding of E into ~ome extension
A

with Galois group An' the non-split central extension of An by

Z2 ·

T.R. WOLF: Variations on McKay's conjecture

Let P be a Sylow p-subgroup of a finite group G. McKay's

conjecture proposes that G and NG(P) have the same number of

irreducible (ordinary) characters of p'-degree. Okuyama and Wajlma

have proved this (and the more refined block-by-block AlperinMcKay

conjecture) for p-solvable G.

Let q be a prime (equal to or different from p) and let Q

be a Sylow q-subgroup of G. We show that if G is (p,q}-sepa­

rable, then G and NG(Q) have the same number of Brauer charac-

ters (for the prime p) of q'-degree. Furthermore, p and q may
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be replaced by sets of primes v and p , provided G is v-sepa­

rable and p-separable. From this follows the Alperin-McKay conjec­

ture for v-blocks of v-separable groups as well as an unpublished

result of Isaacs regardin9 the number of v-special characters of a

v-separable group.

A.E. ZALESSKII: Eigenvalues of matrices of complex representations
of finite Chevalley groups

Let G = G(pa) be a Chevalley group and let F be a field of

characteristic f ~ P • If ~ is a representation of G then

deg ~(G) denotes the degree of the minimal polynomial of ~(g) •

Theorem 1. Let G be indecomposable in a non-trivial direct

product. Assume that g ~ G, 191 = p and de9 ~(g) < p where
22-

dim ~ > 1 • Then G € (A1(p ) , A2 (p) , Cn(p) (n~l)} • Further-

more, if 1 is not an eigenvalue of ~(9) then

<:7 E {Al (p2) , 2 A2 (p) , Cl (p) , C
2

(p)} •

Theorem 2. Let F ~, G € (G2 (pa) , p > 2 , 2G2 (3 a )

a 2 a aF4 (p) , F4 (2) , Es(p)} and let 9 € G be semisimple. If ~

is an arbitrary representation of G over ~ with dim ~ > 1

then .(9) has eigenvalue 1.

Berichterstattung: Christine Bessenrodt

•
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