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~Die Tagung wurde von A. Florian (Sal~burg) und G. Fejes

T6th (Budapest) geleitet. Sie wurde von 36 Teilnehmern besucht,

von denen 33 Vorträge hielten.

In den Vorträgen wurden verschiedene metrische und kom­

binatorische Eigenschaften von diskreten Mannigfaltigkeiten

geometrischer Objekte untersucht. Die Themen der Vorträge

gliederten sich in drei gröBere Gruppen: Packungen und Uber-·

deckungen, Theorie der konvexen Polytope und kombinatorische

Geomrtrie. Eine kleinere Gruppe von Beiträgen beschäftigte

sich mit Raumzer~egungen. Eine erfreuliche Entwicklung ist

darin zu sehen, daß Probleme aus der Theorie der linearen

Pro9ranunierung und aus "computational geometry" behandelt

wurden.

4It Die Anzahl der Teilnehmer war ideal, und daher gab es

genügend Zeit zur Arbeit in kleineren Gruppen. Dabei sind

einige Probleme in internazionaler Zusammenarbeit gelöst

worden. Es ist jedoch zu beda~, daß mehrere der Eingeladenen

nicht kommen konnten. So warwen die sovjetische und indische

Schulen d~r diskreten "Geometrie, die besonders die Beziehungen

zur Geometrie der Zahlen pflegen, überhaupt nicht vertreten.
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Vortragsauszüge

I. BARANY:
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L,

Convex'bodies, coverings by cups, random polytopes

d .
Let KeRbe a convex compact set with int K # C/J. Denote by

Kn the convex hull of n po'ints choosen from K randomly

and independently and according to the uniform distribution.

Define, further, K(t) for t > 0 as the set of points x EK

for which there exists a halfspace H with x E· Hand

vol (HnK) ~ t. The main result is that there are constants c 1
and c

2
depending on d only such that

c
1

vol K(t) < Exp vol(K:-K
n

) < c 2 vol K(t).

For the proof we use an economic cap-eovering of K(t). The

results are joint with David Larman.

u. BETKE:

Geometrie aspects of a new linear prograrnming algorithm

Ta solve LP: min cTx, Bx=b, x~O we eonsider the affine plane

E(t)={xIBx=b, cTx=t} and the positive ortant s={xlx~O}. We

define d(t)=d(E(t) ,S) where d( , ) denotes euclidean distance.

Ap~arently ~he smallest zero t o of d(t) gives the solution of

LP. Here we show tha~ the exact t o can be computed in finitely

many step's by Newton's algorithm and obtain thus an algorithm

for LP. 4It
A.. BEZDEK:

On common transversals

A finite family A of convex sets in th~ plane is said to have

property T if the family admits a common transversal, that is,

if there is a straight line which intersects every ~ember of A.

The family A has property T(m) if every m-membered subfamily

of A has property T. L(k) will mean that the family splits
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into k subclasses such that"each has property T. With

K. Bezdek we proved the followings.

Th. 1. If a finite farnily of congruent, disjoint circles

satisfies T(3), then there exists a line which in-

tersects every circle except at most 18.

Th. "2. F·or any N~b "there is an arrangement of N congruent,

disjoint circles having T(3) but not T(N-1) .

Th. 3. In case of a finite family of homothetic convex sets

T(3) implies L(4) and T (4) implies L(3) .e Th. 4. If a finite family of translates of a convex set has

T(3) ·then it has L (2) tao.

K. BEZDEK:

Covering curves by translates of a convex.set

In this joint paper with R. Connelly we investigated arnong others

the following problem: What conditions will insure that one·con­

vex set can be translated inta the other? For instance Wetzel

showed that for a g~ven acute triangle, if a closed curve has

length equal to or less than the pedal triangle, then the closed

curve can be translated inta the given triangl~. Another example

is when the covering set isa circular disk of diameter 1/2. Then

any closed (planar) curve af length one or less can be translated

inta the disk. With the help of the technique of ·the sO"called

billiard triangles ~e proved-the following.

Theorem: Let X be any compact convex set of constant width 1/2

in the pl~ne. Then any closed curve of length one or less·in the

plane can be covered by a translate of X. Furthermore, if Y

is any compact convex set such that any closed curve of length

one or less can be covered·by translates of Y, then the length·

of perimeter of Y is equal to or larger than rr/2 with equal­

ity if and anly if Y has constant width 1/2.

We looked at 9ther related problems and generalizations regarding

translation covers, and meritioned several more results that we

could obtain with our technique.
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ST. BILINSKI:

Windschiefe archimedische polyeder höheren Geschlechtes

Die klassische Theorie der Platonischen Körper wurde in einigen

der letzten Jahrzehnten schon ~ehrere Male und von mehreren

Authoren im Sinne der topologisch-kombinatorischen und der

affinen Geometrie verallgemeinert. Es scheint aber, dass die

elementare Theorie.der klassischen Archimedischen Polyeder in

diesem Sinne noch nicht erweitert wurde.

Es wird versucht diese Theorie auf die topologische und affine

Archimedische Polyeder zu verallgemeinern mit dem Eauptziel,

die hinreichende Existenzbedingung für das Polyeder {CiP} zu

finden. Um diese Idee zu realisieren wäre aber notwendig über

etwas reicheren Anschauungsmaterial von mehreren verallgemein­

erten Archimedischen Polyeder zu verfügen. Bis jetzt waren zu

diesem Zweck schon einige besonde~e Polyederfamilien, z.B. die

Familie der quasiregulärer Polyeder aus der Menge aller verall­

gemeinerten Archimedischen Polyeder untersucht.

Jetzt wird die Familie der windschiefe~ Polyedern

{(3,3,3,3,n) iP}i n=4,5,6, •.• betrachtet, 'welche für n·=4 und

n=5 die zwei bekannten elementaren windschiefen Archimedischen

Polyeder enthällt.

-T. BISZTRICZKY':

On the convex hulls of convex sets

Let S be a set of points in the plane, no three collinear and 4It
n~4. Then there 'exists a smallest integer f(n) such that if

ISI~f(n), then S contains the vertices of a convex n-gon. It

is known that f(n) ~ 2n -2 and" conjectured that f(n)=2 n - 2 . The

conjecture has been proved for n=4 and 5.

This prob~em is generalized as follows. Let F be a family of

pairwise disjoint ovals (compact convex sets). Three ovals are

collinear if one is in the convex hull of the other two. Let

D=conv (UA) •
AEF

Then X E F is a vertex of D if X ct conv ( UA)
AEF'{X}
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and. D is an n-gon if it has n· vertices.

Theorem: Let

collinear and

such that if

n .. gon.

F be a family of mutually disjoint ovals no three

n~4. Then there exists a smallest integer g(n)

IFI>g(n), then F contains the vertices of an

Let

Let

We rnention tha~ g(n)~f(n), g(4)=5, g(5)=8 and conjecture t~at

g(n) =f (n) •

G. BLIND:

Ein" Kreisüberdeckungsproblem auf der Sphäre

Untersucht wird, welcher Teil der Sphäre s2 von n kongruenten

Kreisen {K1,~•. ,Kn} einfach bedeckt werden kann: dabei sind ~ei

gegebenem n E:N die Mittelpunkte der Kreise und der Kreisradius

v~riabel. Vora~sgesetzt wird, daß kein Kreismittelpunkt im

Inneren eines anderen Kreises liegt.

Gezeigt wird: Ist M die von {K 1 , •.• ,Kn } einfach bedeckte

Teilmenge der 52, so gilt für ihren Flächeninhalt
TI n "" 1

IMI ~ 12(n-2)F('6 n-2)' mit F(a):=a-n+2arcco~---a Diese
4cos2

Schranke ist für. n~ und für n=3, 4, 6, 12 scharf: in den

Fällen n=4, 6, 12 liegen die Kreismittelpunkte in den Ecken eines

regulären tetraeders bzw. Oktaeders bzw. Ikosaeders, und Jed~r'

Kreis wird von den 3 bzw. 4 bzw. 5 benachbarten Kreisen in den

Ecken eines regulären 6-Ecks bzw. 8-Ecks. bzw. 1Q-Ecks geschnitten.

4It M.N. BLEICHER:

Tightly packing a convex s~t with similar sets

Let K be a d-dimensional convex body, n~2_, an integer and .e.~O.

Ad ,.e. = sup{Ld (Ki) .e. n
K -.,;;.....:..-;;;..1i=- : K => U K., K. n K. = 0, i'" J', and K - Kl.' } •

n d(K) ~ 1 1. 1. J

a~'.e. = inf{K~'.e.}" ·ß~'.e. = SUP{K~'.e.}. We wish tö determine

the values. of a and ß, and the cases, if any, of equali ty .

K" K2 , ... ,Kn are said to be packed tightly in K 1ff
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d On p p L..

K ,'-= (Ld(Kir')/d(K)--. In 197·1 Beck and Bleicher (Äcta Math.
,n i 2 1 2 1
~ung. 22) proved O 2 ' = 1 and ß2 ' = 2 with equality for ß

iff K is an isoceles right trianle or a parallelogram with

side ratio V2, and equality for 0 iff K has constant

width or is a regular polygon. Here we show that for the
. . . d l (d-l) /2 . h· l' iff

non~tr1v1al case, O~l<d, ßn ' =n , W1t equa 1ty

K is an n-rep-tile (n-similarity tile), and thus K is a poly­

tope. For d = 2, K has at most five edges, with five edges

possible only if n ~ 6. It is conjectured that pentagons are
21-

not possible. It is also shown that 5/4;0 (X3 I :0 61/3 - 9 with e
equality only for the circular disc.

KAROLY BÖRÖCZKY:

Packing problems

Let P be a packing of the space An with unit balls. Let

{Oi}" and {DVi } be systems of the centres of balls and of

Dirichlet-voronoi cells, respectivily. The centre of a support­

ing sphere is denoted by Cn.

A k-dimensional sphere (l~k~n) is ~alled a k-supporting sphere

if it lies on the boundary of a supporting sph~re and contains

k+l point of {Oi} which do not lie in a (k-2)-dimensional

subspace. ck denotes the centre of a k~supporting sphere.

ck affiliated to DV. if O. - lies on the previous
J k J

k-supporting sphere (C €DV.) .
J

The k-dimenSional closeness of the point-system {ai} is

defined by

p(n,k) •

Theorem: The 2-dimensional closeness of a packing of unit balls

in 3-dimensional Enclidean space is at least~, and equality

holds only for the space-centred cubic lattice where the edge-
4 .

length of the cube is V!.
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J. CHALK:

Exponential sums and volurnes of sum-sets

The .classical inequalities (asymptotic formula) of Vinogradov,

~raell and Tietävänem are dependent upon upper bounds for

V(S+C) -V(S) ,

where V denotes the Jordan contant of a convex set ~n RN

and S+C denote the vector sum of Sand C.

R. CONNELLY:

Uniformly stahle cirele paekings

A paeking is finitely stahle if every finite number of packing

elements is held fixed by the rest. For e~ample the square
, r

lattice packing of equal eircles in the plane is finitely

stable. The following zig zag paeking is not finitely stabl.e:

Related to this nation is the. following definition.

A packing is ~-uniformly finitely stable if there is no other

rearrangement moving a finite nurnber af packing elements less

than t. Thm (Barany, Dolbilin): The elose packing of equal

eircles in the plane with disjoint holes is uniformly finitely

stable. Theorem (with A.~ezdek): The square lattice packing

of :equal circles in the plane is not uniformly finitely stable.

The idea is to use the zig zag packing to replace a piece of the

squarf:! packing.
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H.E. DEBRUNNER:

.Dissection-theoretical analogoues of Schläfli's forrnula for

.the volume of orthoschemes

Several geometrical dissections of regular simplexe~ ahd cross­

polytopes in spharical, euclidean and hyperbolic n-space are,

considred. They exhibit in a purely combinatorial way volume

relations previously deduced by L. Schläfli (Theorie der viel­

fachen Kontinuität, § 29 and § 31) and by H.S.M. Coxeter with

use of differential formulas. ;

G. FEJES TÖTH:

Packina and coverina r-convex domains with unit circles

Let h(x) be the area of the intersection of a circle of unit

area and a' regular hexagon of area x concentric with the

circle. For positive values of d we give a function r(d),

4<r(d)<17, so that the following holds:~

If R is the complement of the union of a set of circtes of

radius r(d) and S is a system of unit circles such that

the density of S with respect to R equals d and each

component of R is met by at least two elements of S, then

the density 0 of the part of R which is covered by the

circles of S with respect to R is at most df(l/d).

L. FEJES TÖTH:

Densest packing of translates of a domain

•

It is known that the density of a· packing of translates of a convex

domain cannot exceed the density of the densest lattice-packing.

An interesting field of research presents itself by trying.to

find non-convex domains which share this property with convex

domains. A few initial results in this direction have been

discussed.
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A. FLORIAN:

On ametrie for the class of convex bodies

Let

of

be the class of all non-empty compact ..convex subsets

Define a distance function on K2 by setti~g

·' where p(M) denotes the perameter of M. This definition is

extended to Kn by

where

(1)

W(K) 1 J w(K,u)da
Isn-ll 1Sn-

•

is the average width of K. It is shown that (1) is infact

ametrie on Kn . Some properties of this metric are developed.

e.g., it is proved that (Kn,pw) is a complete a~d 10ca1ly

compact space, and ametriesegment spaee as defined by K. Menger.

H. HARBORTH:

Paeking with regular n-qons

Packings of K .regular n-gons in the plane are diseussed, where

every n-gon has an edge in common with'one of the other n~gons,

and the p~eking is connected by edges.~

(1) The numbers of different shapes (polynominoes) are hopeless

to determine.

(2) The strict Newtonian number N (maximum number of n-gons,
n

which have an adge in common with a fixed n-gon): N
3

=N7 =3,

N4=Na=Ng=N13=N14=N19=4, Nn =6 for n=O(mod6), Nn =5

otherwise.

(3) Maximum number Bn(K) of common edges:

B4 (K)=2K-{2v'K}, B6(K)=3K-{~}=Bn(K)

B3(K)=2K-{!(K+~)},
for n=O(mod 6).
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Conjecture: Bn {K)=B4 {K} ,for n=4,8(mo~ 12}; Bn (K)=B 3 (K)

otherwise.

(4) Minimum area of the convex hull: For triangles only sausages'

(in 'linear sequence) are possible only for K=3 and K=5

(ßß,ßßß). For squares only sausages are ~ossible only for

K a prime number. 'For K=3 sausages exist only for

n:l(mod 2) if K=7,13,19, for 'n=4(mod 6) if K=4,10,16,

for n=2imod 6) if K=8,l4;20,26,32,38. For 5-gons the

minimum area is conjectured to occur as foliows:

with the only
exception:

•
A. HEPPES:

Packing with rounded figures

One of the weIl known results of discrete geometry is the upper

bound for the packing density of equa~ circles on the sphere

(see e.g. L.Fejes T6th, Lagerungen in der Eben~, auf der Kugel

und im Raum, 1953). It can be reformulated in the following

manner:

If k>l circles of radius rare packed on the sphere, then

the surface area of ·the uncovered part is at least 2.(k-2) .t,

where t denotes the surface area of the domain surrounded by

three mutually touching circle:s of radius r. •

It will be shown that the validity of this theorem can be ex­

tended to cases when the domains we pack are not circles and

not necessarily congruent. The domains in question have a simply

connected interior and a boundary that consists of a finite

sequence of (convex er cencave) circular ares of radius r that

join under non-convex (inner) ängles.

This estimate is sharp in innurnerable cases, and ~roves to be

useful in deriving density estimates in even more general cases.

                                   
                                                                                                       ©



•

- 11 -

E. HERTEL:

A problem of discrete geometry (Vertex-invariant embedding of

regular simplexes in cubes and the geometry of Hamming space)

Let (R,G) be a general-Kleinian space, that means, RF~ is

a set with a group G of transformations of R onto R.. In

case that R is a metric space any co11ection M of subsets

of R is said to be discrete if M is loca11y finite, that
. .

is, such that every bounded set meets only a finite numbe~ of

~-elements. The group G is said to be discrete if each. orbit

Gx (xER) consists of isolated points. Discrete geometry is

the theory of discrete (or fipite) systems M of geometrie

objeets the theory of discrete (or finite) groups G of trans­

formations the theory of discrete (or finite) spaces R res­

pectivelr·

The talk discusses a nice example for discrete geometry in

this sense narne1y the eonnection between the vertex-invari~nt

embedding of a regular d-simplex in the d-cube and the geo~etry

of the finite space {O,l}d with the-Hamming metrie.

A. IVIC WEISS:

Same infinite families of finite incidence-polytopes

A type of partially ordered struetures called incidence-paly­

tapes generalize the notion of po1ytopes in a cornbinatorial

sense. We diseuss the possibility of constructing-n-dimensional

incidence-polytopes {Pl,P2} with preassigned facets PI and

vertex-figures P2. In particular when the facets are taken to­

be isomorphie to the rnaps {2q,4}4 and {2q,3}6 (on surfaces

of genus (q;l) and (q-I)2 respectively) and their duals

we obtain several infinite families of finite ineidence-po~ytopes.
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G.KERT!SZ:

Packing with translates of a special domain

Let S be a eonneeted union of two translates of a convex

domain. Then thedensity of the densest paeking of trans­

lates of S equals the density cf the densest iattice-packing

of translates of S.

w. KUPERBERG:

Paekings and coverings of

For every convex plane body K (not neeessarily centrally

symmetrie), let d(K) 'and D(K) denote the packing and

the eovering density of K, respectively.

Theorem 1: For every K, d(K) ~ V!/2=O.866025 ••.

Theorem 2: For every K, D(K) ~ 8(2V!-3)/3=l.237604 .••

The proofs of these theorems are constructive, and the packings

and coverings that this construct~on produces are of a so

called binary-lattice type. Some packings and covering with

odd-sided regular polygons are presented to illustrate the

methode

E. MAKAI JR:

A lower bound on. the nurnber of sharp shadow boundaries of

convex polytopes (joint contribution with H. Martini)

The results of our joint paper (same title, submitted to Period.

Math. Hungar.) will be presented. Let P be a convex polytope

in Rd fd~2), with n facets. We consider light sources x

outside P, hut on no facet hyperplane of P. By illumination

from x same subset I(x) of Bd P will be illuminatedj"its

boundary (relative to Bd P) will be called the shadow boundary

of P w.r.t. x. This is a (d-2)-cornplex C(x) (a subcomplex of

•
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pr. Denote alP) the number of all such subcomp1exes, as, x­

varies arbitra~i1y (under the above re'striction). We prove

2
alP) ~ 2d - 2 E (n-~+l)_l, with equality if and only if P is a

i=O 1

(d-2)-fold pyramid· over a planar convex (n-d+2)-gon. If Q

is an unbounded convex polytopal set with n(~3) 'faocts, we"
2 n-l

have for a(Q) defined· in the same way a(O) ~ E ( .. ) -1,
i=O 1

~ while if the intersection of Q with the infinite hyperplane

2
has dimension t(Sd-3) a(Q) ~ 2d - t - 3 E (n-d~t+2)_1~ The cases

i=O 1

of equal~ty are characterized.

P. McMULLEN': '.

Realizations of regular polytopes

In a talk in Salzburg a couple of years ago, it was·shown that

the equivalence classes under congruence of realizationsin '
~

euclidean spaces of a regular polytope form' a closed. cohvex '

cone. But the, theory p~esented then was incomplete, and con-.

sequently to some extent incorrect. The earlier account can now

be supplemented.I and a finer description of the structure of

the realization 90ne given. In particular, there are ~ew numer-·

ical relationships between the symmetry group and realization

cone of the polytope.

B. MONSON:

Flexible uniform polytopes

Th~ regular icosahedron {3,S} i5 quite rigid in I :IR
3 ; but

embedded in m4 it looses its rigidity and can easily be

folded" into a (starry) {3 ,S/2l. In ]R6 it is·.even poss'ibYe

this folding so that at each stage 'the (skew) icosahedron is
regular. Likewise-consider a {3,3,·S}-· and {3,3,5/2} _with

\.

\...

s-·
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concentric circumspheres of radii T and 1. When embedded

in ]R8 these po1ytopes can be simultaneously folded and un­

fo1ded into a concentrie {3,3,5/2} and {3,3,5}. At eaeh

stage "the . (skew) "po1ytopes are regular; "ha1f-way" they are

inscribed in the ES' po1ytope 421 • These and many other

examp1es follow at once from 'A Family of Uniform Polytopes.

with Symmetrie Shadows', Geornetriae Dedieata, 1987(?). A

simple manipulation of Coxeter diagrams provides the orthogonal

projections necessary to start the folding.

J. PACH:

Regions enclosed by convex plates

Let fl, ... ,fm be (partia1ly defined) piecewise linear fune­

tions of d variables whose graphs consist of n d-simplices

altogether. We show that the maximal number of d-faces compris­

ing the'upper envelope (i.e. the pointwise maximum) of these

functions is o(nda(n)), where a(n) denotes the inverse"of"

the Ackermann function, and that thi~ bound is tight in the

worst case. "lf, instead of the upper envelope~ we consider any.

single connected component C enclosed by n d-slmpliees in

E
d +\ then we show that the overall combinatorial comp1exity

of the boundary of C is at most o(nd +1- €(d+l)) for same

fixed constant e(d+l»O.

R. POLLACK:

Hadwiger's transversal theorem in higher dimensions

Hadwiger's transversal theorem states that if n disjoint

convex compact sets Bl, .•• ,Bn in the plane have the property

that every 3 can be met by a directed" iine consistent with the

order l, •• ~~n, then there is a line which meets all of thern.

We (J.E.Goodrnan and myself) prove that if n "separated"

convex compact sets Bl, ••• ,B eRd and a labelied configuration
d-ln

of points C={PI, ••. ,Pn}cR have the property that any d+l

•

•
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of the sets can be met by an oriented hyperplane consistent

with th~ "ord~r type of eil then there iso a hyperplane which

mee1;.s Cl:1l of them. I1Separatedl1 means that no d of the sets

are met by a
1
d-2 flat. Two configurations {Pl, .•. ,Pn } and

- d-l
{Ql, ••• ,Qn} have th~ same "order type l1 in R if any

corresponding d of·them (P. , ••• ,P.) and Q. , ••• ,Q. )
.11 1 d 1 1 .1d

have the same orientation. These are the natural gen~ralizations

of disjointness in the plane and order on the Line. The key

element in the proof iso an exeh~nge lemma for minimal Radon

partitions.

G. PURDY:

Inequalities involving points' lines and planes

Given n points in, R3 forming ! lines and p. points, we

discuss the evidence for our conjecture that n-!+p~O if the"

points do not all lie on two skew lines or one plane. We also

can prove this in C3 if no three points are eollinear. and

n is sufficiently large, using an inequality due to

F. Hirzebruch.

Given n points in R3 and t arbitrary planes, we can show

that the number of incidences I satisfies I~c(log n)1/4n 3/4 t 3/4

if no three points are eollinear, but we t~ink that
I~c n3/4t3/~.

P. SCHMITT:

Polymorphie prototiles

A prototile 1s called k-morphic if it admits precisely k

distinct tilings of the plane (see GRUNBAUM-SHEPHARD, Tillings

and patterns. 1986). Since neither· the types of the tilings

. admitted nor"the combined i~cidence symbol provide'a satisfactory

elassification ·the following definition is proposed:

Two prototiles T and T' are topologically equivalent iff:

                                   
                                                                                                       ©



- 16 -

(a) The ti1ings li={Ti1 , Ti2 , ... } admitted by T and

the tilings li={Ti1 , Ti2 , .•. } admitted by T' are

topologica11y equivalent (i=l, · · · ,k): h i : Ti .... Ti

(b) there exists a homemorphism h:T....T' such that for each

homemorphism h i : Ti .... Ti Tik .... T ik and each k there 'are

homeomorphisms ~ and ~ sueh that the following diagram

is commutative:

using some examples of dimorphie prototiles obtained by cutting

a centrally symmetrie Z-formed prototile into two congruent

ha1ves it is shown how their types can be' distinguished.

J.J.SEIDEL:

Nice sets in Enc1idean md

-Measures of strength t in V=lRd generalize spherieal;.

t-designs and amahrre formulae for the unit sphare S. In

the case of finite support Y on p concentric spheres

p
M:= U r.s, the definition amounts to the isometry of the

i=1 1

spaces pole(Y)

lower bound for

and po1e (M), for t=2e.

IYI, as a consequence of

This imp1ies a

Joint work with A. Neumaier and with P. Deisarte.

                                   
                                                                                                       ©



- 17 -

G.C. SHEPHA~D:-

Rigid plate frameworks

~his l~cture· gave a" partial answer to'a problem posed 'by

~. Ehrenfe.ucht and J. ~ycrelski in .1981" (American Math. Monthly

unsolved proplem 6367) •

A plate framework· in the planE?- is a. collection.of plates

pivolted tagether that satisfies the ~ollowing conditions:

(i) Each plate is "a regular n-gon, and all plate~ are mutually

congruent.

(ii) The number of plates is fi~ite.

(ii1) No two plates coincide.

(iv) Every vertex of .a plate is a pivot.

(v) Every pivot is a vertex of ~~actly two plates.

(vi) No two pivots· coincide.

The problem is to find ~late frameworks which are rigid. (In

answer to the original problem, a constructiön was given for·

a plate framework-with 2n n-gons that was not rigid.) The

following theorem was proved:

Theorem: There exist infinitely many rigid plate prameworks

using triangles, and also infinitely many such frameworks:

using squares.·

It is not known if there exist any ri~id plate fr~eworks using

n-gons for n i; 5.

Generalisations to three dimensional plate frameworks were

also briefly mentioned.

J.B. WILKER:

Tiling :IR3 ,with circles and disks

A collection of circles or of disks gives a tiling of m3 if
, 3

each point of m belangs to one and only one af the sets in

question. We review a number of .constructions and results ~elec­

ted to give same idea of the constra1nts that these tilings can

~ satisfy. For ~xample, while it 1s not possible to tile the plane

-,
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with homeomorphs of the closed unit disk: it is possible to tile

3-space with hexagonal polyhedral tiles of this sorte

J.M. WILLS:

On finite packing and·covering

The main probiens of finite packing and covering in Euclidean

d-space Ed are: Determine for a given k E:N A) the minimal

volume of all convex bodies, into which k uni t-balls can be

packed, B) the maximal volume of all convex bodies, which can ~

be covered by k unit-balls.

It turns out that the expected answer for d ~ 5 is completely

diff~rent from that for d ~ 4. Für d ~ 5 it is conjectured (L. Fejes

T6th, J.M. Wills) that linear arrangements of balls (sausages) are

best possible. For d ~ 4 there is no such elegant statement .But

the socalled sausage-catastrophes (1983) and the space-conjecture

(1987) describe the expected behaviour in a satisfactory way.

In the talk we give some new results, which support the above

conjectures.

T. ZAMFIRESCU:

Hamiltonian lattice graphs

This joint work with Cristina Zamfirescu desribes sufficient con­

ditions for a grid graph to be ~amiltonian. Here a grid graph is

a subgraph of the usual planar infinite lattice graph which

(i) is connected, (ii) has connected complernent, (iii) has connec~

ted intersection with any vertical or horizontal infinite path. 11'
For one of the three main types of grid graphs our conditions are

close to a characterization.

Berichterstatter: G. Fejes T6th
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