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ONE PARAMETER SEMIGROUPS

AND
‘ DIFFERENTIAL OPERATORS
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This conference, which was organized by Rainer Nagel (Tubingen),
Jerome A. Goldstein (New Orleans) and E. Brian Davis (London), was
the first one on this subject to be held at Oberwolfach. The
fifty-one participants represented thirteen countries. The
thirty-nine scheduled talks treated many topics ranging from the
theory of analytic, integrated, sub-Markovian and C-semigroups to ]
the application of semigroups to nonlinear evolution equatioms, .
reaction-diffusion systems, semilinear parabolic and el}iptic
systems, population dynamics, pertubation theory, scattering
theory and Markov processes. Mid-afternoons and evenings were
\ devoted to private discussions, and the time thus spent was
)~ Nextremely productive. For the younger mathematicians this
’ conference was a unique opportunity to consult with some of the
world's foremost authorities in the field. The large number of
participants and the diversity of the applications of the theory
| demonstrate both the interest in and the importance of this area

of mathematics.
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Vortragsauszuge

W. ARENDT:
KATO'S INEQUALITY FOR SUBMARKOVIAN SEMIGROUPS

This is a joint work with Ph. Benilan (Besancon). Let 2 be
locally compact, J = { j: R—> R convex, j(0) =0} , SL: =
{j € J:J semilinear} . Note that j oue Cj Q) . Wheneve?
u € Co(ﬂ).
(A) Let T :Co(ﬂ) — Co(ﬂ) be linear. Then T > 0 iff
joTu ¢ T(jou) (ue C(R)) for all § € SL . '
Theorem 1 TFAE:
(1) T is submarkovian (i.e. T » 0, UTH < 1)
(i1) 3J(Tu) < T(jou) (u e co(n)) for all j € J
(1ii) There exists j € J/SL s.t. j(Tu) < T(jou)
(u e co(n)).
(B) Let T = (T(t))t>0 be a semigroup on CO(Q) with generator A.
Theorem 2 If 1 is submarkovian and j € Jnc} then for all
u € D(A), 0 < p e D(A")
(®y) J(3' o u) Au dy < [ jou dAp.
An example shows that (Kj) for all j € JnC1 does not imply that
T 1s positive or contractive. However, converse versions of

Theorem 2 can be obtained under additional assumptions.
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Theorem 1: Let (T(t))

H. AMANN:

ELLIPTIC SYSTEMS AND ANALYTIC SEMIGROUPS

We discuss the problem of the generation of analytic semigroups by
general elliptic systems under appropriate generél boundary
conditions. We showed the main step in the derivation of the
resolvnt estimates, namely the estimation of H: + 2n -norms for a
half-space problem. " This is done by using the theory of analytic

semigroups and a characterization of Besov spaces by means of

analytic semigroups.

C.J.K. BAITY:
TAUBERIAN THEOREMS AND STABILITY OF SEMIGROUPS

£ o0 be a bounded Co-semigroup on a Banach
space X with generator A, and suppose that Ro(A*) n iR = ¢
and o(A) n iR is countable. Then IIT(t) xI — 0 as t — =,

for all x in X.

The proof of this theorem depends on estimating a contour

integral, and applying a transfinite induction. The estimate may

also be used to prove the following Tauberian theorem:
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Theorem 2: Let f: [0,»] — X ©be bounded and strongly measurable

with Laplace transform g. Suppose that the singular set E of
g 1s (Lebesque) null and that
sup sup | f; eins £(s) dsl < =.

in€E t>0
then

t -its

1 foe £(s) ds - g(1€) 1 — 0 as t — =

for all regular points if.
Theorem 2 is an analogue of a Tauberian theorem for power series
due to Allan, O'Farrell, and Rousford. It is possible to 1lift
Theorem 2 to obtain a Tauberian theorem for Laplace-Stieltjes

transforms, which includes Theorem 2, the power series version,

and versions to Dirchlet series.

PH. BENILAN, M.G. CRANDALL AND A. PAZY
APPLICATION OF THE NONLINEAR THEORY TO LINEAR EVOLUTION EQUATIONS

In the nonlinear theory we consider the equation in a Banach space

(*) fe %% + Au on [0;T[

when A: X — P(X), f € L;oc(IO,T[;X) and define a mild solution
of (*) as a continuous u: [0,T[— X which can be approximated by
solution of the discretisation of (*) by an implicit scheme,

namely
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for all ¢ > 0, 0 < T < T , there exist
t, =0 <t Koo Ct 1 <TX t <T

Koy ooy Xos Yis cees ¥ € X s.t.

X, X
yi,e ?i—_—i'_-l——-l-Axi for 1 =1, «ee, n
i i-1

LR PR 1u(t) - xin < e for t e [:1_1, ci], i=1, ¢ee, n
and

ti

T f 1 £(t) -y, 1dt < e.

t i

i-1
In the case when A is linear, that is the graph of A
(= {(x,y) € XxX; ye€ Ax}) 1is a linear subspace of X x X, we

have the following characterizations

Theorem Let A : X — P(x) be linear,
Lloc
Then the following properties are equivalent:
(i) u is a mild solution of (*).
‘ (11) u is an "integerated solution" of (*) in the sense

u(t) = f; u(s)ds is a classical solution of
F(t) € U'(t) + AUCt) with F(t) = u(0) + [ £(s)(ds) where
A is the operator (linear) whose graph is the closure of

£eLl ({0, T(; X) and u e C ([0,T[; X).
i the graph of A.
|
\
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(i11) u is a "weak solution" of (*) in the sense
2 v, w®) > =< w, ue)> = < v, £(6) > tn D'(10,TD)
for any.w € A*v, that is w, v e X* s.t.
<w, x>=<v,y> for all y € Ax.

Some applications of these characterizations are given.

K.N. BOYADZHIEV:

STRONG STABILITY OF CONTRACTION C, SEMI-GROUPS ON HILBERT SPACE
Let eTA,t > 0, be a completely non-unitary contraction on the
Hilbert space H. Consider the condition:

Vo (A - i - a)_l x—> 0 whena >0, a — 0
for all x € D(A) u D(A*) and a.e. B € R.
This condition implies:

etA x = 0 (t — =) for all x € H,

and in a certain sense, the converse is also true. The proof is

based on the Nagy-Foias functional model for completely non-—

unitary Hilbert space contractions.
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0. BRATTELI:
HEAT SEMIGROUPS AND INTEGRATION OF LIE ALGEBRAS

Let B be a Banach space,G of a finite dimensional Lie algebra with
. universal covering Lie group G, and let V be a representation of G
as (unbounded) closed operators on B such that

B n D(V(xl) V(xz) ces V(xn))

= 0
© n2l x...X €6
1 n -
is dense in B. Let xj, ..., Xy be a basis for the vector space

of G and define the corresponding Laplacian by

d 2
A=- I V(xi) .
i=1

We say that V integrates if there exists a strongly continuous

representation U of G as bounded operators on B such that

V(x) = d—‘:' 1] (exp(t:x))lt=O for each x € G.

Theorem (Bratteli-Goodman-Jorgensen—-Robinson 87) The following

two conditions are equivalent

1. V integrates

2. (A) The V(x), x € G, are weakly conservative, i.e. for each
. x € G or there exists aM > 1, w > 0 such that

1L +a v(x)N" a1 > b‘l_1(1-|m|w)n 1al for all a € B_,

n=0,1, 2, ¢e., a € R

(B) A 1is closable and A generates a continuous semigroup

St = e—tA. V

(c) St B < B_ fort> O'.

(D) For each x € G there is a C > 0 such that
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1V(x) 5,0 ¢ C 712

for 0<t < 1.

Condition (C) can be replaced by S, B < B, (Robinson 87). 1f G

is a C*-algebra and each V(x) is a derivation, then if -A is
dissipative V(x) is automatically conservative on D(A), i.e.
1(1 + @ V(x)) a 0 > O0al for all a € IR a € D(a), and hence

condition (A) may be replaced by: e.':A

is a contraction semigroup
and D(A) 1is a joint cone for all V(x), x € G. (Bratteli-
Jorgensen 87). Note that a derivation § on a C*-algebra G 1is
not automatically conservative, even when the resolvent

(1 -a 6)_l exists as a bounded operator for all a €R (Batty—

Bratteli-Robinson 87).

COULHON:

DIMENSIONS OF A SEMIGROUP AND EMBEDDINGS BETWEEN LIPSCHITZ AND

SOBOLEV SPACES

This talk is about a joint work with Laurent Saloff-Coste. Let

2
(Tt)t>0 be a submarkovian symmetric semigroxﬁp on L7(X,£). If
‘there exists C > 0 such that lthfIl o SC t 2 Iflll, for all
f e Ll(x,g). , we say, following Varopoulos, that (Tt): > G is of

dimension n. We consider some similar notions of dimension for
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t small and t going to infinity, which we call local dimension,
d, and dimension at infinity, D, of the semigroup. We consider
the classical Besov and Sobolev norms associated to a semigroup,
e.g.
a
P»q ‘o 1= q dt q1/q
AANCIRS| I ZQHAthlp) T ]

for 0 <a < 2, and L:(f) = IAzflp, where -A is the generator of
(Tt)t >0
that the relations between the scales of Besov and Sobolev spaces
in T, established by Taibleson, remain true in our setting.

Supposing that (Tt) is of dimension n, we study embeddings of

t>0
Sobolev spaces L: into Lipschitz and LP spaces, according to the
position of a p with respect to n. We treat the case when the
local dimension and the dimension at infinity differ, by
introducing appropriate spaces. We finally show that

Lz n Lq c1”. These results put together draw a fairly complete
picture of the different Sobolev embedding theorems for spaces
associated with a semigroup which has two dimensions, according as
d<D<+w, D{(d+=, ord<D=+wm, This applies to spaces
of functions on a unimodular Lie group, since Varopoulos showed

that the heat semigroup generated by a sublaplacian on such a

group indeed has two dimensions.
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E.B. DAVIES:
HEAT KERNEL BONDS AND LOG SOBOLEV INEQUALITIES

Log sobolev 1inequalities are closely relatedl to LP — 19
boundedness of the heat kernel. This may be used to prove a
uniform bound on the heat kernels of many second order elliptic
operators on manifolds. By using weighted LP spaces one may get a
gaussian upper bound on the heat kernels, which are close to
optimal in many cases. Applications to Laplace-Beltrami operators

are of particular interest.

G. DI BLASIO
REGULARITY RESULTS FOR SOME ANALYTIC SEMIGROUPS

Let A: D(A) € X — X be the infinitesimal generator of an
analytic semigroup S(t) on a Banach space X. We denote by

D (6 €]0,1{, 1 < p < =) the interpolation space (X,D(A))

9,p . e,p
between D(A) and X. Then if we set uo(t) = S(t)x and ul(:) =

I; S(t-s)f(s) ds, for x€ X and f € LI(O,T;X), we can prove the
following regularity results

(1) u € Cc(0,T;X) n we’l(o,'r;x) n Ll(O,T;Da l) 0<8< 1.
’
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€ T;D !
(11) if x € Du,l’ then u Cc(0,T; a,l) and ugs Au_ €

0 0

wlo,150 0 Lo, Tsn, -

(1i1) v, € c(0,T;X) n WB’I(O,T;X) n Ll(O,T;De Pr0<e<l.
’
l - - L]
(iv) if fe L (O’T’Da,l)’ then u, € C(O’T’Da,l)’ uls Aule
Ll(o,'r;nu |) and Au € w10, 1;%).
’
. (v) if £ € W*1(0,T;X) then u, € C(0,T;D ), ul, Au €
1 a,l 1 1
W“’I(O,T;X) and u} € Ll(O,T;D ).
1 a,l
Since the function u = u, + oy is the solution of the Cauchy

problem (C.P) u'(t) = Au(t) + £(t), u(0) = x, properties (1)-(v)
give regularity results for solutions of (C.p)
Now let A be the t! realization of an elliptic operator in R™.

Then the following characterization can be proved

WOl ife < 1/2

D, . = s 1R ife =1/2

9,1

20-1,1

wewh!@) : Duew &Y if 8 > 1/2

i
Therefore using (i)-(v) we obtain regulatity results for solutions

of parabolic equations in Ll(Rn).
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0. DIEKMANN:

PERTURBATION THEORY FOR DUAL SEMIGROUPS (WITH APPLICATIONS TO

STRUCTURED POPULATION MODELS)

This 1is a story about suns and stars. Let T0 be a strongly

continuous semigroup with generator A0 on a non-reflexive Banach
% *

space X. Define x° = D(AO) and let C : Xe + X  be linear and

bounded. The variation-of-constants equation

Te(t)xe = :l‘oe(';)xe + f; To*(t“‘t)c Ts(l’)xodt

(where the integral 1is a weak * Riemann integral) yields a

"perturbed" strongly continuous semigroup 'r0 on xe which can be
extended to the whole space x* by the intertwining formula

™(t) = (A1-a%) ’r"(t)(«u-A")'l

where D(AY) : = D(A;) and A* = A; + C . In general T* is not a
dual semigroup. However, introducing Xo* and X09 as well as
Te* and Teo we have
%, o) = 1, (e ete.
where the pairing [ , ] between Xee and X* is defined by
[xee, x*] = lim % < xee, f; T; (r)x*dt >

t+0

The variation-of-constants equation can be used to prove
linearized stability for semilinear problenms. A motivating
example from physiologically structured population theory is

discussed in some detail. The lecture is based on joint work with
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~ Ph. Clement, M. Gyllenberg, H.J.A.M. Heymans, J.A.J. Metz, and

H.R. Thieme.

G. GREINER

SEMILINEAR BOUNDARY CONDITIONS

We consider initial-boundary value problems in Banach spaces of
the following form

Q = Au + F(t,u) ; Lu = &(t,u), u(0)=u0
where A : D(A) + X 1s closed linear, F:IRx X + X is continuous
L : D(A) + 3X is a linear A-bounded surjection, ¢ R, x X > X
is continuous. Moreover, it is assumed that the homogenous linear
problem 1is well-posed, 1i.e., the restriction Ao = AlkerL

generates a Cy-semigroup (To(t)).

Assuming that & is Frechet differentiable and D&(t,x)oA is
bounded one can prove all the results concerning existence,
uniqueness, blow up, regularization, dependence on initial data,
and linearized stability respectively which are well-known for

initial value problems (i.e. in case L=0, &=0).
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If Ay generates an analytic semigroup one can prove existence and
uniqueness if the following conditions are satisfied. There exist
0<a<B<1l such that D((-AO)B) 2D(A); F : D((-a)") > X and

¢=D((—A0)u) * 3X are both locally Lipschlitz; uj € D((-Ao)a) .

SEMIGROUPS AND NONSTANDARD ANALYSIS

Methods from Nonstandard Analysis, especially Loeb integration
theory, has been applied by Leif Arkeryd from Goteborg to
construct a solution for the nonlinear Boltzmann equation. The
linear Boltzmann equation, .especially the neutron transport
equation, is a paradigma for a strongly continuous semigroup of
positive operators. The following problem is posed: If we know
the spectrum of the neutron transport operator A being

o(A) = {Ao =0} u{re €: Reac< Al} for some Al <o, is it
possible to describe the asymptotic behavior of the semigroup
[U(t) : £t >0], as t = = ? If A, =01s an eigenvalue of
multiplicity one and eigenprojection P, then the semigroup splits
into an asymptotic part exotP and a transient part (I-P) U(t).
What is the asymptotic behavior, as t — «, of this asymptotic

part? A. Huber [1987] proposed to replace the "continuous"
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semigroup [U(t) : t> 0] by the "discrete" nonstandard semigroup
- *
[(I-hA) 3 : j€Nj, where O0< hs= 0. Then, in the nonstandard

world we have (I-hA)7J P, for all j > jo' for some j, € *IN\nl

I. HERBST

SOBOLEV SPACES, KAC-REGULARITY, AND THE FEYNMAN-KAC FORMULA

Given a Borel set M c I8 let ﬁ;(M) = L2(M) n m! () =

(get? () veet? @, L2 = e e L? ()
f =0 a.e. on M°} ., The space ﬁi(M) arises naturally. For

example for t > 0 and n — «

— M P

t(A-ny ) _s  tG
e MC e M

where GM is the Laplacian with form domain ﬁi(M), and PMf = XM*f

with M* = {x € M PX(YM >0) = 1}. Here is the

M
"penetration time" of Brownian motion into MS (Stroock's

definitfon):y, = inf {t > 0 : fg X (x) ds >0} If M =D is
M

open

1 ~1 ~l =
HO(D) < HO(D) < HO(D)

where Hi(D) is the "usual" Sobolev space. If Ty is the hitting

time for M® then

~1
ucl,(n) = H (D) <==> 1) = v, PRoaus. <om> PX(r < @, x (1p)eD*)=0

Forschungsgemeinschaft
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for all x € D. Also

ity = 81D <==> m({ x € aD: P*(x > 0) = 1}) = 0
[+] [+ T)-

with m = Lebesgue measure. In general

tCy

e TPyE(x) = Ex(f(xt); Ty > )

P. HESS:
ON DISCRETE STRONGLY ORDER—-PRESERVING SEMIGROUPS

In the order-bounded closed subset D of a suitable Banach lattice
X the discrete-time strongly order-preserving semigroup (S")nelN
is considered. In particular the question of stabilization is
studied: when is it true that S"x — q (n — =), with Sq = q? A
sufficient condition is given and the result is applied to
periodic-parabolic initial-boundary value problems. A passage to
the 1limit in the period yields results also for continuous-time
strongly order-preserving semigroups and extends well-known work
of M. Hirsch. Finally perturbation results (asymptotically

autonomous discrete-time dynamical processes) are presented.
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R.M. KAUFFMAN

A STRONG CONTRACTIVITY PROPERTY FOR SEMIGROUPS GENERATED BY

DIFFERENTIAL OPERATORS

We study the question of semigroups in Lz’p(Rk) generated by the
restriction A of L to C; (1]5) where L is a formally positive
partial differential expresion of arbitrary order, and p is C
weight function which may be very small at infinity, and which is
computed in terms of the coefficient of L. It is shown that often
in the discrete spectrum case —A generates an analytic semigroup

u_ in Lz,'p» such that “:f €

¢ for all t > 0. For the heat

L

2,1/p
equation in Ilg, with appropriate coefficients, this means that
temperatures which are initially very large at |x[== become

immediately very small at infinity.

F. KAPPEL

A UNIFORMELY DIFFERENTIABLE APPROXIMATION SCHEME FOR DELAY

EQUATIONS

Using spline functions an approximation scheme for delay equations

is developed which is uniformly differentiable in the sense that

Ferschungsgemeinschaft
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there exists a fixed exponential sector in the complex. plane which
contains the spectra of all appfoximating infinitesimal
generators. Using the fact that a differentiable semigroup can be
obtained by integration of the resolvent along the boundary of an
exponential sector, we can prove optimal convergence rates for our
scheme. The results presented in the talk are joint work with K.

Ito(Brown University).

J. KISYNSKI

MARKOV SEMIGROUPS GENERATED BY DIFFEROINTEGRAL BOUNDARY SYSTEMS OF

VENTCELI-WALDENFELS

Let (Nt) be a Feller semigroup on a compact ¢® manifold M

t>0
with boundary, generated by an elliptic differointegral boundary

system (W,l,8) of Ventcel'-Waldenfels. Let D = ]IXO,w;MA) be

the Skorochod space, and (Px)xeM the Markov system of
A

probability measures on I, corresponding to the transition

semigroup (Nt) Under assumption of ellipticity of all the

t20°
considered systems (W,l,§), for a €(0,1), we prove continuity of
the map

W,T,8,%)eL(c2 ), c® y)xLc? oy, ¢ (am) )x c“(aM)xMA-»P"eP (D

where P(ID) = {Borel probability measures on I}, the spaces of
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operators being equipped with their norm topologies, and P(ID
with topology of weak convergence of measures.As a consequence of
this result, we can prove (in rigorous measure theorgtical
formulation) that before the time of first exit from M\3M the

behaviour of the Markov process generated by (W,T,8) is

independent of T and 6. Importance of the former result can be .

confirmed by some calculations concerning Brownian motion on r®

submitted to Feller's boundary conditions at O.

M.A. KON
SEMIGROUPS GENERATED BY ELLIPTIC OPERATORS

(1) We consider semigroups generated by elliptic operators
A= T b (x) p%,
Ia'<m
2%
ax®
We assume that the leading term of A is positive and with smooth

where a 1is a multiindex and D* = (%)Ial

coefficients, and that for |a| < m,
r
b €L “,
u .
where % + ]al < m (these are analoges of appropriate LP
a
conditions for the potential of a Schrodinger operator to yield an

operator with most standard regularity properties).

Forschungsgemeinschaft
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Theorem: A generates a semigroup e"tA yhich is analytic in the

right half t-plane. This semigroup maps P — 19 for all q > p,
including q =« .

(i1) Let L: deno;:e the space of functions with s derivatives
in P (s may be any real number). SchrSdinger semigroup
mappings between these spaces have recently been studied by Simon

and others.

n
Theorem: Let V(x) € Lzloc , 1 <p<w, s>0,and A=-4+V
on . Then e tA: LPe P ‘s bounded iff V e LP .
: s+2,loc s,loc

This 1s proved using a Leibnitz rule for fractional derivatives,
and some lemmas on the composition properties of functions in
Sobolev spaces. This can be partially extended to higher order

operators.

(111) Here we consider the case V(x) € Lp, where p < % « In
this case (where the potential is an unbounded relative to the
Laplacian), essentially any kind of smoothing can occur. That is,
there exist such highly singular potentials whose semigroups are
infinitely smoothing in the scale of Sobolev spaces, and others in

this class whose semigroups add only two derivatives to functions.
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B. KUMMERER

DILATIONS OF SEMIGROUPS AND NON—COMMUTATIVE MARKOV PROCESSES

In classical probability theory to a Markov process there

corresponds a semigroup of transition operators and conversely, to

any such semigroup there corresponds uniquely a Markov process..

If the process is stationary with state space @ , inducing there
is an invariant probability measure yu , then the transition
operators may be realized as doubly stochastic operators on

L (a, £, .

In developing a theory of stationary Markov processes which is
suitable also for quantum mechanical applications we generalize
LQ(Q,Z,u) to a pair (M,$¢) consisting of a Wr—algebra equipped
with a faithful normal state ¢ . The notion of a Markov process
is reformulated in terms of. a éilation‘ for the semigroup of
transition operators. A doubly stochastic semigroup T, of
transition operators on (M, ¢ ) is also called a dynamical system

M, ¢, T).

Theorem (Kummerer-Maassen). For a dynamical system (Mn,tr,Tt)

(Hn the nxn-matrices, tr the normalized trace on Mn) the following
conditions are equivalent
(a) (M, tr, T.) admits a Markov process generating an algebra of

the form MnGD 7@, £, u)

o
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For all t>0 : Tt € co~Aut(Mn) . the convex  hull of
automorphisms of M .

*
There exists a weak —continuous convolution semigroup S, on

Aut (Mn) such that Tt = a dSt(a)

fAut(Mu)

Lt
T, =e where L(x) = i(hx - xh) + } a,xa, -
t ) § 13 .

%(a?x + ajx) + E kk (ui X u

adjoint, Uy unitary, A

1" x) where h, aj are self-

L€ ® for all j,k.

T, = elt where L can be approximated by generator of the form

*
zk>0 A (uk X w - X), u, unitary, Ak > 0 for all k.

The implication (e)=>(a) can be generalized to the following:

Theorem: For a dynamical system (M,¢,Tt) the following conditions

are equivalent:

(a)
(b)

(¢)

Deutsche
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(M’¢’Tt) has a dilation
for all tg, (M,¢,Tt ) has a dilation in discrete time
0

x uj(TJ - jd)t
'l?t = weak —limj e for all t » 0 where for all j

the discrete dynamical system (M,¢,Tj) has a dilation and

(aj)j S R.
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R. LEIS:
| SCATTERING PROBLEMS IN THERMOELASTICITY

The linear systems of elasticity and thermoelagticity are
.—A formulated first. Initial-boundary value problems in 119 are
solved using semigroup approach. The solutions obtained have
finite total energy. Afterwards the asymptotic behavior of the
solutions for t — = is discussed with emphasis on exterior
boundary value problems. The free space case with homogeneous
isotropic medium~can be calculated explicitly, and one noticeé
that the equations split into a vibrating component and into. a
component with damping. Special boundary value problems can also
be treated. Finally more results on the corresponding nonlinear
equations are indicated concerning the existence of global
solutions for small and smooth data. An exterior boundary value
problem in ® has been studied by Jiang and the free space

problem in l'R" has been treated by Racke.
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G. LUMER:

SINGULAR MULTIPLICATIVE PERTURBATION, OPERATORS OF FINITE TYPE AND

"WELIGHTED" NORMS

We study a very general class of ("homotopy-like")
perturbations. We give general stability results concerning the
density of the image of the perturbed operators (stability of
"8(e) = 0", B(+) an appropriate deficiency index) for singular
and nonsingular perturbations. We give applications to singular
multiplicative perturbations of generators of contraction
semigroups, which extend considerably results known so far
(example: Theorem. Let A be the generator of a contraction
semigroup on X (Banach space), B € B(X) be accretive with I(B%*)
dense. Then BA pregenerates a contraction semigroup on X iff it
is dissipative). We extend some of the latter results to
generators of "finite type" (operators which "less some constants"
are dissipative). One way in which operators of finite type arise

naturally in applications is by using weights (weighted norms) on

usual function spaces, and studying operators which in the

original spaces (without the weights) are dissipative.
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. N. MANDOUVALOS

HEAT KERNEL BOUNDS AND DISCRETE GROUPS

This is work done jointly with E.B. Davis. We have obtained sharp
upper and lower bounds for the heat kernel on hyperbolic space

*! for all n>l and for real and complex time. We have used
these bounds to obtain upper bounds for the heat kernel on

hyperbolic manifolds of the form T'\H “'”’, where T 1is a

H n+l‘

Kleinian group on The most important of our results are

described in the following two_ theorems. (We use the notation
f~g for functions f and g when there is a constant ¢>0 such that

c-lf.(s) < g(s) < cf(s) for all s).

Theorem 1. Let L < 0 be the hyperbolic Laplacian on m !
L t

and Kn+1(t,p) be the kernel of the operator e n+l , t>0. If

n+1

n>] 1is any integer then

2 2
K, (6,p) ~ e (/2 e =7 40)=(n0/2)

(l+o+t)n/2» - 1(l+p), uniformly for

0<p<®and 0t <=, where p is the hyperbolic distance in
ll-ln+l. A
Let now w = (x,y) € ! x e ®, y> o0,

|x-x'|2+ (Zﬂ')z
o(w,w') = vy be the standard point-pair invariant

in H n+l and let Con(n+l) be the group of isometrics of ]Hm'l.‘

Let T be a discrete subgroup of Con(n+l) and &(T') be the

invariant 6§(T) = inf{s>0 'Er e 8P, y)¢ +=}.  Let also
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e-up(x,vx)’ a>8(Tr), and p(x,y) = minp(yx,y) Dbe the

YeT
distance function in TN\M ™1, Then the following theorem

2
ua(x) = YET

holds.

Theorem 2. Let I be a geometrically finite Kleinian group on

H'*1. Then the following hold for the heat kernel

ﬁ(t,x,y) of T WL,

(1) I£0<8(r) ¢35, 0<t<wand 0< e <=, then
2

n ~ 2
o<k (:,x,y)<ce:"“+1”2e‘°z - Ze)te-p(x,y) /4(1+s)t“a(X)“a(y)’
(i1) '1f %< (') <n, 0<t<m, a>6(l)and 0 < e <ew, then

0<ﬁ(t,x,y)<Cet-(n+l)/2 -[6(1‘)(n—6(1‘))-25]t.

uu(x)ua(y)e
e-;(X,y)2/4(1+e)t.

Moreover if a > n then uu(x) — 1 as x approaches an end and

p(x,a)r/2

ua(x)~ [ as x approaches a cusp of rank r, where a is

any point in HO2, I particular ua(x) is bounded if a > n

and the manifold has no cusps.

I. MIYADERA:
SEMIGROUPS AND EXPONENTIALLY BOUNDED C-SEMIGROUPS
We first discuss the relationship between semigroups and

exponentially bounded C-semigroups. It is shown that if

{T(t); t > 0} 1is a semigroup of classes (C(k)) of growth order

o®
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a , then {CT(t); t » 0} becomes an exponentially bounded C-
semigroup with a suitable C and its C-complete infinistesimal
generator coincides with the complete infinitesimal generator of
{T(t); t > 0}.

Next, a characterization for the C-complete infinitesimal
generator of an exponentially bounded C-semigroup is given, and

then the generation of semigroups 1is discussed. By using our

. generation theorem, it is shown that the known generation theorems

for semigroups of the above-mentioned classes are obtained in a

unified way.

HOW TO INVERT A 2X2-MATRIX

Systems of linear evolution equations often lead to operator
matrices A = (: :) or a product Banach space E x F. If D is

invertible one obtains the inverse of A as

-1 a7t " aa7lep?
L T -1, -1

=D "Ca D (F+CA "BD )
for A: = A - BD_IC. It is shown how the above formula can be used
in order to compute the spectrum o(A) for A with unbounded
entries.

o0&
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B. NAJMAN:
RESOLVENT ESTIMATES FOR SINGULARITY PERTURBED ELLIPTIC OPERATORS

Let Q@ be a smooth bounded domain, A an elliptic operator of
order 2m, B an elliptic operator of order 2m', m > m', and let
Ae =e¢A+B. Let 1 < p<=» and let 1 ns,p be the norm of the
Lebesque space H®’P(Q) . The estimate

"“'s,p <C(e, s, t, A) (II(AE + 1) “':,p + "“":,p)
is proved for A from a sector of the complex plane,

C(e, s, t, A) explicitly given.

F. NEUBRANDER:

C-SEMIGROUPS AND THEIR APPLICATION TO THE COMPLETE SECOND ORDER

PROBLEM

A natural way to study well posedness of the complete second order
equat'ion
u"(t) - Bu'(t) - Au(t) = 0 ; u(0) = x, u'(0) =y
is to reduce it to a first order system w'(t) = Mw(t);
w(0) = (x,y), M = (2 g) on E x E where one has to construct a

phase-space Fy € E x E on which MIF generates a C_-semigroup
0
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on Fo. For unbounded, closed operators A,B on an arbitrary

Banach space E the construction of these phase-spaces is often

difficult if not 1mpbssib1e. We show how the theory of
"integrated semigroups” (i.e. C-semigroups with C = R(AO,A)n) can

be used to bypass these difficulties.

S. OHARU
NONLINEAR PERYURBATIONS OF ANALYTIC SEMIGROUPS

Relatively continuous perturbations of analytic semigroups in
Banach spaces are discussed from the point of view of the
nonlinear semigroup theory. Necessary and sufficient conditions
are gi;en for a semilinear operator A + B to be the full
infinitesimal generator of a nonlinear semigroup which provides
mild solutions of the semilinear evolution equation u' = Au + Bu,
where the linear operator A generates an analytic semigroup in a
Banach space X and B 1is continuous with respect to the. graph
norm of a fractional power of -A. First, . nonlinear
quasidissipative perturbations of analytic contraction semigroups
are treated and a Hille-Yosida type theorem for nonlinearly
perturbed quasicontractive analytic semigroups is presented.

Next, locally Lipschitz continuous perturbations of bounded

Forschungsgemeinschaft
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analytic semigroups are investigated. The 1local Lipschitz
continuity is stated in terms of a lower semicontinuous functional
on X. Finally, applications to semilinear partial differential

equations are examined.

N. OKAZAWA:

HOLOMORPHIC FAMILIES OF M-ACCRETIVE OPERATORS IN A REFLEXIVE

BANACH SPACE

First we present LP generalizations of some fundamental estimates
in Lz(n?) such as the Hardy and Rellich inequalities (we assume

2 < p {w): Setting A=-4, B = le-z, we have
| InCau,|ulP20)| < 252 Re(au,|u|P™ W),
B2 (n-2) 2 (Bu, u|P%u) < Re(Au,|u|P %), m > 2,

¢ —l)m;m—z ) 1Bul < lAull, m > 2p.
p
Then we consider properties of the family of operators A + «B .‘

with complex k¥ in a reflexive Banach space X. Two abstract
theorems and two examples will be given.
Example 1. X = LP(0,»), A =d/dx, B = |xl_1.

Example 2. X = LP(I!P), A=-A, B = lx|-2.

DF Deutsche
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D. PFEIFER:

THE PROBABILISTIC REPRESENTATION THEORY FOR ONE-PARAMETER

SEMIGROUPS

It is shown that most of the known product representaiion formulas
for (Co)-semigroups {T(t); t > 0} on a Banach space X are of the
form

() BTN £ = (D) (£ex)

when N > 0 1is an integer valued random variable with expectation
E(N) =&, Y > O a real random variable with E(Y) =y , and t =

EY (N,Y fulfilling some regularity conditions). There wN

denotes the probability generating function (p.g.f.) of N, and
E(.) means quasi-weak Pettis_integration (of the quasiweak random
operator T(%)). It is also shown that if for a general
representation function ¢ it is analytic in some internal

[0,8), 8§ > 1, with non-negative coefficients, then y 1is already
a p.g.f. of some random variable N. Investigations concerning the
role of convergence in (1) are also made, either specifying
smoothness conditions on f or by means of the modified modulus of

continuity.

©
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M. PIERRE:
ABOUT GLOBAL EXISTENCE FOR REACTION-DIFFUSION SYSTEMS

We are interested in studying global existence of solutions for
reaction-diffusion systems which present two main properties:

(@) >The nonnegativity of the initial data is preserved.

(2) The total mass of the components is nonincreasing in time.
Propert;es (1) and (2) lead to an a priori estimate of the Ll-
norms of the solutions uniformly in time. It is well-known that
existence of an a priori uniform L”-bound 1is a sufficient
condition for global existence of solutions. Our goal is to try
to understand how a similar bound in Ll can be exploited. This is
motivated by applications tobmany situations of interest where no
L"-bounds are expected: let us menciqn for instance the case
when the initial data and the source-terms are L!-functions.

We describe on a 2x2 system the techniques that can be used:
Under an extra structural assﬁmption, the reactive terms can be
bounded 1in Ll This yields compactness of approximate
solutions. The convergence then follows from the uniform

integrability of the nonlinear terms.

Forschungsgemeinschaft
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Y. PINCHOVER:

ON POSITIVE SOLUTIONS OF PARABOLIC EQUATIONS WITH PERIODIC

COEFFICIENTS IN SOME UNBOUNDED DOMAINS

We determine all the minimal positive solutions of the parabolic

equation Lu = 0 in ® x R_ (or ¥ x B, where L has time

1ﬁdependent coefficients or L has coefficients which are
periodic in the space and the time variables.
Assuming further that L is in divergence form we obtain an
integral representation theorem for solutions of the following
problem

Lu=0,u>0inFx R, u=00n3 (Fx R)

where F 1is a convex cone or a cylinrical domain in.R“.

J. PRUSS:
ANALYTIC RESOLVENTS FOR LINEAR VOLTERRA EQUATIONS Ol?: SCALAR TYPE

Consider equations of the form

(D) u(t) = g(e) + f:; a(t-s)Au(s)ds , t>0

- in a Banach space X, where A is a closed linear densely defined

Deutsche
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operator in X, a € Lloc (R,) is a scalar kernel and
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gecC (ug,x). By means of complex analysis methods, we

characterize those A and a(t) for which (I) admits an analytic
resolvent S(t) and obtain the complete analogue of Hille's theorem
on generation of amalytic semigroups. As an application of this
result.we study integrability properties of the resolvent for (1)

which are important for the solvability behavior of

(1) u(t) = g(e) + [5 a(t-e)Au(s)ds , te R

the limiting equation associated with (I).

R. RACKE:
GLOBAL SOLUTIONS TO SEMILINEAR PARABOLIC SYSTEMS FOR SMALL DATA

We consider semilinear parabolic systems u, + Au + £f(u) = g,
u(0) = uy, -A  being the generator of an analytic semigroup with
spectrum o(A) in the right half plane. For appropriate small data

(g,uo) global solutions are obtained if O belongs to the resolvent

set and local existence is proved if 0 € g(A). The inverse-
function theorem is used in a class of functions which are Hlder
continuous with respect to time t. The asymptotic behaviour of
the solution is given too.

As first application we prove the exiétence of global

(respectively local) solutions to the Navier-Stokes equations in

DF Deutsche .
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Lp—spaces in bounded (respectively unbounded) domains. Secondly
we consider the case where A is an elliptic operator of order 2m
and f has bounded growth. Thirdly a quasilinear example whei'e the
nonlinearity involves derivatives of the same order as A is
studied. Then an example of a nonautonomous nonlinearity is given
and finally the convergence of solutions of the ti-.me—dependent
system to solutions of the stationary (semilinear elliptic) one is

derived for 0 € p(A).

D.W. ROBINSON:

INTEGRATION OF LIE ALGEBRAS, THE HEAT SEMIGROUP, LIPSCHITZ SPACES,

ETC.

Let (B,G,U) denote a continuous isometric representation of the
Lie group G by linear operators U(g), g € G, on the Banach
space B. Further let Bn denote the Cn-elements of the
representation and II.IIn the corresponding C,—norm. An
operator K 1is defined to be a Lipschitz operator if

B_ < D(K) and _

n(q(g)ml(g)"1 -K)al < clg| a1, , aeB, lg] <1,
for some c¢ » 0. It follows that the closure of a dissipative

Lipschitz generator generates a contraction semigroup. This

o &
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result incorporates and extends many well-known and seemingly
disparate results in PDE's, harmonic analysis and mathematical
physics. We will discuss the proof of the theorem together with

some its applications.

DIRICHLET FORMS AND SEMIGROUPS ON TOPOLOGICAL VECTOR SPACES

Let E be a locally convex Hausdorff topological vector space
which is Souslin; u a probability measure on its Borel sets. We
study forms of the type A

1) E(u,v) = £-§—§- g—l‘: du on L3(E;w)

where K € E\{0}, -::—: means Gateaux derivative of u in the
direction k and the domain D(_E_k) of E, is taken to be the
u-classes in LZ(E;u) which are induced by

E_C:: ={u : E— IR there exist Liy ey L€ E'

and f € C: (R™) such that u(z) = £(L(2), ..., L (2)),

z € E}.

1f we suppose the (E,, D(E,)) is well-defined (i.e. "respects
p~classes") the first crucial question is whether it 1is

closable. We have proved the following necessary and sufficient

condition (on u):

Deutsche
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Theorem: Let Eo be a closed linear subspace of E such that

E=Ey+ R kandw : E— Eg the natural "projection". Let
p: Eg x B (I — [0,1] be a kernel such that for all u: E— R,
measurable and bounded, .

[ u(z) u(dz) = [] u(x + sk) p(x,ds) v(dx),
E EOR .

where v is the image measure of y under =. Then (&,D(_E_k)) is
well-defined and closable if and only 1if for y - a.e., x'€ Eo,
p(x,d8) = p(x,s) ds for some measurable function p(x,.) :

R-— I which satisfies Hamza's condition:

(H) p(x,.) = 0 ds—a.e. on IR\R (p(x,s))
where
T tte -1
R(p(x,*)) : = {t € R: [ p(x,8) ds < + = for some € > O}.
t-e

This fheorem provides many examples of sub-Markovian semigroups on
L2(E;u') for very genmeral y . It is namely easy to see that a
countable sum (E,D(E)) of closable forms o.f type (1) - is
closable. 1Its closure (E, D(E)) is then a Dirichlet form, i.e.
u e D(E) = |u| € D(E) and E(|u|, [u]) < E(u,u). The semigroup
Tt = etA, t > 0, generated by the negative definite self-adjoint
operator A associated with z (note that D(E) is dense in.
LZ(E;U)) is therefore sub-Markovian, i.e. 0 € u < 1 =>

0< Tt u<l p-a.e., t > 0. This in turn impl‘i‘es that * (under
some additional assumption on E) there exists an assoclated Markov

process - with state space E. Furthermore, the theorem has

applications both to finite dimensional situations 1like e.g.
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operators in divergence form on an open set in I and to infinite
dimensional settings, in particular to quasi-invariant measures
like Gaussian measures or measures in 2-dimensional Euclidean
quantum field theory. 1In these cases the theorem also implies a

Cameron-Martin-Girsanev-Maryana type formula.

W. SCHEPPACHER

HYPERBOLIC EQUATIONS WITH DELAY IN THE BOUNDARY CONDITIONS

We consider the hyperbolic system

w.o=Aw +Uw+ Vw
t X

where A = diag (A_ , A+ .

AO), U and V are appropriate matrices.
These equations are models for flexible structures (i.e. strings,
beams, antennas ...).We assume that we observe the structure at

the boundary and feed this information back into a control

strategy, where we suppose that there is some delay. It is shown
that this problem gives rise to a Cy-semigroup on an appropriately

chosen state space.
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WOLF VON WAHL

APPLICATIONS OF THE THEORY OF SEMIGROUPS WITH NON-DENSELY DEFINED

GENERATOR

This is a report on joint work with E. Sinestrari. Let us
consider a parabolic equation

u' + A(t)u = £, u(0)=¢

.over a cylindrical. domain ([0,T] x Qe mrttl

_ - . a - a/2m,a -
A(t) = |a|§2m au(t,x)D ) ay € c ({o,T] x R),1is uniformly

'strongly elliptic, f is in c“/z“"“([o.'r]xﬁ) . We impose

Dirichlet-0-conditions on 3% and assume that the compatibility

Deutsche
Forschungsgemeinschaft

contiitions of order 0 and 1 hold in t=0. We then show that the so
called Schauder estimates (due to Solonnikov) can be proved easily
by application of abstract semigroup theory (with non-densely
defined generator) and Schauder-theory for elliptic equations.
Finally semilinear equations u' + A(t)u + M(u) = f are treated

where M has quadratic growth with respect to |D™u].
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GLENN WEBB
INVESTIGATION OF A NONLINEAR INTEGRODIFFERENCE EQUATION

A discrete nonlinear semigroup is used to investigate a nonlinear
integrodifference equation. The equation has the form

N (0 = fnk(x,y)f(Nt(y))dy, xeaqe®, t = 0,1,2,... . The
model applies to populations that grow and disperse in separate
phases. The growth phase is a nonlinear process that allows for
the effects of local crowding. The dispersion phase is a linear
procegs that distributes the population throughout its habitat.
The issues of survival and extinction are studied by analyzing the
existence and stability of nontrivial equilibria. A comparison of

various dispersion strategies is made. The analysis used recent

results from the theory of positive operators in Banach lattices.

Berichterstatter: Gisele Ruiz Rieder
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