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This eonferenee, whieh was organized by Rainer Nagel (Tubingen) ,

Jerome A. Goldstein (New Orleans) and E. Brian Davis (London), was

the first one on .this subject to be held at Oberwolfaeh. The

fifty-one participants represented thirteen eountries. The

.t'hirty-nine seheduled talks treated many topies ranging from the

theory of analytie, integrated, sub-Markovian and C-semigroups to

the applieation of semigroups to nonlinear evolution equations,

reaetion-diffusion systems, semilinear parabolie and el~iptic

systems, population dynamies, pertubation theory, scattering

theory and Markov processes. Mid-afternoons and evenings were

devoted to private diseussions, 'and the time thus spent was

extremely produetive. Por the younger mathematieians this

conferenee was a unique opportunity to eonsult with some of the

world' s foremost authorities in the field. The large number of

participants and the diversity of the applieations of the theory

demonstrate both the interest in and the importanee of this'area

of mathematics.
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Vortragsauszuge

v. AREHDT:

KATO'S INEQUALITY FOR SUBKARKOVIAN SEMIGROUPS

This is a joint work with Ph. Benilan (Besaneon). Let 0 be

~I

10cal1y compact, J = { j: lR-. IR convex, j (0) = 0 } , SL: =

{j € J : j semilinear}. Note that j 0 U € Co (0). Whenever

u € C (n).
o

(A) Let T :Co(O) ~ Co(O) be linear. Then T) 0 iff

joTu ( T(jou) (u € Co(O» for all j € SL •

Theorem TFAE:

(i) T 1s submarkovian (i.e. T ) 0, DTß ( 1)

( i i ) j (Tu) ( T( j ou ) (u € Co (n ) ) f 0 r all j € J

(iii) There exists j € J/SL s.t. j(Tu) ( T(jou)

(u € Co(O».

(B) Let T = (T(t»t>O be a 8emigroup on Co(n) with generator A.

Theorem 2 If T is submarkovian and j € Jnc~ then for all

U t: D(A), 0 ( lJ € D(A')

(Kj ) J(j' o u) Au dlJ ( J jou dAlJ·

An example shows that (Kj ) for all j E Jnc 1 does not imply that

T i8 positive or contractive. However, converse versions of

Theorem 2 can be obtained under additional assumptions.
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H. AMANN:

ELLIPTIC SYSTEMS AHn ANALYTIC SEKIGROUPS

We discuss the problem of the generation of analytic semigroups by

general elliptic systems under appropriate general boundary

conditions. We showed the main step in the derivation of the

resolvnt estimates, namely the estimation of HS + 2n -norms for a
p

half-space problem. This is done by using the theory of analytic

semigroups and a characterization of Besov spaces by means of

analytic semigroups.

C• .J.:K. BAlTY:

TAUBEJUAN THEOREMS AHn STABILITY OF SEKIGROUPS

Theorem 1: Let (T(t»t ) 0 be a bounded Co-semigroup on a Banach

space X with generator A, and suppose that Ra(A*) n ilR= ~

and a(A) n ilR is countable. Then DT(t) xO ~ 0 as t ~ ~,

for all x in X.

The proof of this theorem depends on estimating a contour

integral, and applying a transfinite induction. The estimate may

also be used to prove the following Tauberian theorem:
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Theorem 2: Let f: [0 ,co] -+ X be bounded and strong1y measurable

with Laplace transform g. Suppose that the singular set E of

g is (Lebesque) null and that

sup sup 0 J~ eins fes) dsO < co.
in€E t)O

then

Jot e-its fes) d (i ) 0,s - g t 0 -+- as ,t -+ co •for all regular points it.

Theorem 2 is an analogue of a Tauberian theorem for power series

due to Allan, O'Farrel1, and Rousford. It 1s poss1ble to lift

Theorem 2 to obtain a Tauber1an theorem f or Lap1ace-Stiel tj es

transforms, which inc1udes Theorem 2, the power series version,

and versions to Dirchlet ser1es.

PB. BENILAH, M. G. CRANDALL AN» A. PAZY

APPLlCATION OF TIIE BOHLIREAB. TIIEORY TO LINEAR. EVOLUTION EQUATIORS

In the nonlinear theory we consider the equation in a Banach space X

(*) f E: du + Au
dt on [O;T[

and def1ne a mild solutionwhen A: X-t- 1P(X), f E: L10c([O,T[;X)

of (*) as a continuous u: [O,T[-+ X wh1ch can be approximated by

solution of the discretisation of (*) by an imp1icit scheme,

namely
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( = {(x,y) E X x X; Y E Ax}) is a linear subspaee of X x X, we

In the ease when A is linear, that is the graph of A

and

for all E > 0, 0 <T < T , there exist

have the following eharaeterizations

Theorem Let A : X -+ P(x) be linear,

1f E Lloe([O' T[; X) and u E C ([O,T[; X).

Then the following properties are equivalent:

(i) u is a mild solution of (*).

-e (ii) u is an "integerated solution" of (*) in the sense

U(t) J~ u(s)ds is a elassieal solution of

F(t) E U'(t) + AU(t) with F(t) = u(O) + J~ f(s)(ds) where

A i8 the operator (linear) whose graph is the elosure of

the graph of A.
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(iii) u is a "weak solution" of (*) in the sense

d: < v, u(t) > - < w, u(t)~> = < v, f(t) > in D'{]O,T[)

*for any W E A v, that is w, v € X* s.t.

< w, x > = < v, y > for all y E Ax.

Some applications of these characterizations are given.

K.H. BOYADZBIEV:

STRONG STABILITY OF CONTRACTION Co SEMI-GROUPS ON HILBERT SPACK

Let eTA, t > 0, be a completely non-unitary contraction on the

Hilbert space H. Consider the condition:

la (A - i8 - a)-l x -+ 0 when a > 0, a -+ 0

for all x E D(A) u D{A*) and a.e. 8 E R.

This condition implies:

etA x -+ 0 (t -+ =) for all x E H,

and in a certain sense, the converse is also true. The proof is

based on the Nagy-Foias functional model for completely non-

unitary Hilbert space contractions.

•
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O. BRATrELI:

BEAT SEKIGROUPS AHD INTEGRATION OP LIE ALGEBRAS

Let B be a Banach space,~ of a finite dimensional Lie algebra with

universal covering Lie group G, and let V be a representation of G

as (unbounded) c10sed operators on B such that

BOl)

is dense in

n~l n G D(V(x1) V(x2) ••• v(x »
xl ••xn~ _ n

B. Let xl' ••• , xd be a basis for the vector space

!:J. = -

of G and define the corresponding Laplacian by

d 2
L V(x i ) •

i=l

We say that V integrates if there exists a strong1y continuous

representation U of G as bounded operators on B such that

V(x) = d~ U (exp(tx»lt=o for each x ~ G.

Theorem (Bratteli-Goodman-Jorgensen-Robinson 87)

two conditions are equiva1ent

1. V integrates

The following

2. (A) The V(x), x ~ Q, are weakly conservative, i.e. for each

x ~ G or there exists a M ) 1, W ) 0 such that

n -1 n
0(1 + a V(x» an) M (l-Ialw) OaO for all a ~ B

OD
,

n = 0, 1, 2, ••• , a ~ lR.

(B) !:J. 18 c10sable and ~ generates a continuous semigroup

S = -tA
t e

(C) St B C BOl) for t > O.

(D) For each X ~ G there 1s a C > 0 such that
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for 0 < t < 1.

Condition (C) can be rep1aced by St B ~ B4 (Robinson 87). If ~

is a C*-aigebra and each V(x) 18 a derivation, then if -6. i8

dissipative V(x) is automatiea11y conservative on D(A), i.e.

0(1 + a V(x» a D ) DaO for all a E ~ a E D(A), and henee

eondition (A) may be replaeed by: e-t
6. is a eontraetion semigro~p

and D(6.) is a joint eone for all V(x), x E G. (Bratteli-

Jorgensen 87). Note that a derivation Ö on a C*-algebra .Q. is

not automatieally eonservative, even when the resolvent

{I - a 6)-1 exists as a bounded operator for all a ElR (Batty-

Bratteli-Robinson 87).

COULBON:

DIMENSIONS OF A SEMIGROUP AHD EKBEDDIRGS BE1.'WEKN LIPSCBITZ AND

SOBOLEV SPACES .~,

This talk is about a joint work with Laurent Saloff-Coste. Let

2
(Tt)t)O be a submarkovian symmetrie semigrow on L (X,~). If

"2"there exist8 C > 0 such that OTtfO < C t BfO I , for all

f E LI(X,~). , we say, following Varopoulos, that (Tt)t ) 0 is of

dimension n. We eonsider some similar notions of dimension for
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t small and t going to infinity, which we call local dimension,

d, and dimension at infinity, D, of the semigroup. We consider

the elassieal Besov aod Sobolev norms assoeiated to a semigroup,

e.g.

AP,q (f) = [ I~ (tl ~ DAT fU )q dt ]l/q
a 0 a t p t

for 0 < a < 2, and LP(f) = OA2fD , where -A 1s the generator of
a p

Using the Littlewood-Paley-Stein funetion g, we show'

that the relations between the seales of Besov and Sobolev spaees

in JRl, established by Taibleson, remain true in our setting.

Supposing that (Tt)t>O is of dimension n, we study embeddings of

Sobolev spaces LP into Lipsehitz and LP spaees, aecording to the
a

position of a p with respeet to n. We treat the ease when the

loeal dimension and the dimension at infinity differ, by

introdueing appropriate spaees. We finally show that

LP n Lq
C L

oo
•

a
These results put together draw a fairly eomplete

pieture of the different Sobolev embedding theorems for spaees

assoeiated with a semigroup which has two dimensions, according as

d < D < + 00, D < d < + 00, or d < D = + 00. This applies to spaces

of functions on a unimodular Lie group, since Varopoulos showed

that the heat semigroup generated by a sublaplacian on such a

group indeed has two dimensions.
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B.B. DAVIES:

BEAT UR.HEL BORDS AHn LOG SOBOLEV DlEQUALITIES

Log sobolev inequalities are closely related to LP ~ Lq

boundedness of the heat kernei. This may be used to prove a

uniform bound on the heat kerneis of many second order elliptic

, operators on manifolds. By using weighted LP spaees one may get a

gaussian upper bound on the heat kerneis • whieh are elose to

optimal in many eases. Applications to Laplaee-Beltrami operators

are of particular interest.

G. DI BLASIO

REGULARITY RESULTS PaR SOME ANALYTIC SEMIGROUPS

Let A: D(A) .=. x -.. x be the infinitesimal generator of an

br

analytie semigroup Set) on a Banaeh spaee X. We denote by

De •p (8 .::]0.1[. 1< p '< co) the interpolation ~paee (X.D(A»e.p

between D(A) and X. Then if we set uo(t) = S(t)x and u
1
(t) =

Jt S(t-s)f(s) ds. for x.:: X and f.:: L1(O.T;X). we ean prove theo

fol1owing regularity results

(i) Uo .:: C(O.T;X) n we•1
(0.T;X) n L1(0.T;OS.I) 0 < e < 1.
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(ii) if x € D
a
,l' then Uo € C(O,T;Da ,I) and uo' AuO €

Wa ,I(O,T;X) n L1(0,T;Da ,I).

(iii) u
1

€ C(O,T;X) n wß,I(O,T;X) n L
1
(0,T;08,1)' 0 < e < 1 •

1(iv) if f € L (O,T;Da ,I)' then u1 € C(O,T;Da ,I)' ui, Au 1€

L1(O,T;Da,l) and AU 1 E wa,l(O,T;X).

(v) if f € wa,I(O,TjX) then u
1

€ C(O,TjDa ,I)' ui, AU 1f

Wa ,I(O,T;X) and ui € L
1

(O,T;Da ,I)·

Since the function u = Uo + u 1 is the solution of the Cauchy

problem (C.P) u'(t) ·Au(t) + f(t), u(O) = x, properties (i)-(v)

give regularity results for solutions of (C.p)

Now let A be the LI realization of an elliptic operator in Rn.

Then the following characterization can be proved

W2s ,I(Rn ) if S < 1/2

B1 ,I(Rn) if e = 1/2

Therefore using (i)-(v) we obtain regularity results for solutions

of parabolic equations in L1(Rn).
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o. DIEKHANN:

PEB.TURBArIOIi TBEORY POil DUAL SEMIGROUPS (VITH APPLlCATIORS TO

STRDC'lORED POPULATION MODELS)

This 18 a story about suns and stars. Let TO be a strongly

where

continuous semigroup with generator AO on a non-reflexive Banach

e--*- e *
space X. Define X = D(AO) and let C: X + X be linear and

bounded. The variation-of-constants equation

8 8 0 8 t * 8 eT (t)x = Ta (t)x + Jo TO (t-T)C T (T)X dt

(where the integral is a weak * Riemann integral) yields a.

"perturbed" strongly continuOu8 semigroup T0 on Xe which can be

extended to the whole space x* by the intertwining formula

TX(t) = (>..I-Ax ) T8 (t)(lI_Ax )-1

x * * *D(A ) : = D(AO) and A : = AO + C. In general TX i8 not a

dual semigroup. However, introducing X
e* and XfJS as weIl as

Te* and Tee we have

[T
9S

(t)x
es, x*] [xse , TX(t)x*] etc.

where the pairing ,] between X98 and X* 1s defined by

[xiS, x*] = 1im t < xse , J~ T~ (T)x*dt >
t.O

The var1ation-of-constants equation can be used to prove

linearized stabil1ty for semilinear problems. A motivating

example from phys1010gically structured population theory is

discussed in some detail. The lecture 1s based on joint work with
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Ph. element, M. Gyllenberg, H.J.A.M. Heymans, J.A.J. Hetz, snd

H.R. Thieme.

G. GREIRER

SEMILlREAlt. BOORDAllY CORDITIOHS

We eonsider initial-boundary value problems in Banach 8paees of

the following form

ü = Au + F(t,u) j Lu = ~(t,u), u(Ö)=uO

where A: D(A) + X i8 elosed linear, F:mx X + X i8 eontinuous

L : D(A) + ax i8 a linear A-bounded surjeetion, ~ :~ x X + X

is eontinuous. Moreover, it is assumed that the homogenous linear

problem is well-posed, i.e., the restrietion AO := A(kerL

generates a Co-semigroup (TO(t».

Assuming that ~ is Freehet differentiable and I»(t ,x)oA is

bounded one ean pr~ve all the results eoncerning existence,

uniqueness, blow up, regularization, dependenee on initial data,

and linearized stability respectively whieh are well-known for

initial value problems (i.e. in ease L=O, t=O).

                                   
                                                                                                       ©



14

J. IIEJTKAHEK:

SEMIGROUPS Alm NONSTAHDARD ANALYSIS

positive operators. The following problem i8 posed: If we know

If Ao = 0 1s an eigenvalue of

A. Huber [1987] proposed to replace the "continuous"

Methods from Nonstandard Analysis, especially Loeb integration

theory, has heen applied by Leif Arkeryd from Goteborg to

If Ao generates an analytic semigroup one can prove existence and

uniqueness if the following conditions are satisfied. There exlst

o < a < B < 1 such that D«-AO)B) ~ D(A); F : D«-AO)Q) ~ X and

~:D«-AO)a) ~ ax are both locally Lipschlitz; Uo e D«-AO)Q) •

[U(t) : t ) 0], as t -+ = ?

linear Boltzmann equation, .especial1y the neutron transport

construct a solution for the nonlinear Boltzmann equation. The

the spectrum of the neutron transport operator A beiog

a (A) == {A 0 = O} U {A e C: Re A ( Al} f or same Al < 0, 1s i t

possible to describe the asymptotic behavior of the semigroup

equation,. 18 a paradigma for a strongly continuous 8emigroup of

multiplicity one and eigenprojection P, then the semigroup splits
A t

into an asymptotlc part e 0 P and a transient part (I-P) U( t).

part?

What is the asymptotic behavior, as t -+ =, of this asymptotic
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semigroup [U(t) : t) 0] by the "discrete" nonstandard semigroup

[( I-hA)-j : j E *N] 1 where 0 < h = O. Then, in the nonstandard

wor1d we have (I-hA)-j =P, for all j ) jo' for some jo E *1N~

I. HERBST

SOBOLEV SPACES, KAC-REGULARITY, AHD TRE FEYHMAH-KAC FORKULA

Given a Borel set Me nP let H1(M) = L2(M) n H1
(HP)

0

{f E L2 (nf) : V f E L2 (JRi)} , L 2(M) = {f E L2
(IR'):

f = 0 a.e. on Me} The spaee ii1(M) arises natura11y. For
0

example for t > 0 and n -+ =
s

-+­
e

where ~ is the Laplaeian with -1
PMf = XM*fform domain Ho(H), and

with M* {x E nf: pX(YM > 0) = I}. Here YM is the

"penetration time" of Brownian motion into Me (Strooek's• definition):YM = inf {t > 0 : J~ X (x) ds > O}.
MC s

open

If M = D is

HI(D) c iil(D) C R1(D)
000

where H~(D) i8 the "usual" Sobolev 8paee. If TM is ~he hitting

time for MC then
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for all x E D. Also

RI(D) = RI(D) <==> m({ x e
o 0

with m'= Lebesgue measure.

aD: pX('[ > 0)
D

In general

I}) = 0

P. HESS:

ON DISCIlETE STRORGLY ORDEB.-PRESERVING SEKIGROOPS

In the order-bounded closed subset D of a suitable Banach lattice

X the discrete-time strongly order-preserving semigroup (Sn)neIN

is considered. In particular the question of stabilization i5

stud1ed: when is it true that Snx -+ q (n -+ m), with Sq = q? A

sufficient condition 18 given snd the result is applied to

periodic-parabolic initial-boundary value problems. A passage to

the limit in the period yields results also for continuous-time

strongly order-preserving semigroups and extends well-known work

of M. Hirsch. Finally perturbation results (asymptotically

autonomous discrete-time dynamical processes) are presented.
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R.K. KAUFFHAH

A STROHG CONTRACTIVITY PROPERTY FOR SEKIGROUPS GEHERArED BY

DIFFE1lEMTIAL OPERATORS

We study the question of semigroups in L2,p<Rk ) generated by the

restrietion A of L to c~ (nf) where L is a formally positiv~

partial differential expresion of arbitrary order, and p is C

weight function whieh may be very smal1 at infinity, and which is

eomputed in terms of the eoefficient of L. It is shown that often

in the diserete speetrum ease -A generates an analytic semigroup

for all t > O. For the heat

equation in nt-, with appropriate coefficients, this means that

temperatures which are in1tia11y very large ~t Ixl~ become

1mmed1ate1y very sma11 at infinity.

F. KAPPEL

A OHIFORMELY DIFPERENTIABLE APPROXIMArION SCBEME FOR DELAY

EQUATIONS

Using spline function8 an approximation scheme for delay equations

is developed which i8 uniformly differentiable in the sense that
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there exists a fixed exponentia1 sector in the complex. p1an~ which

contains the spectra of all approximating infinitesimal

generators. Using the fact that a differentiab1e semigroup can be

obtained by integration of the reso1vent a10ng the boundary of an

exponential sector, we can prove optimal convergenc~ rates for our

scheme. The resu~ts presented in the talk are joint work with K.

Ito(Brown University).

J. KISYHSKI

MA1tKOV SEHIGR.OUPS GERERATED BY DIFFEROIHTEGRAL BOUHDARY SYSTEMS OF

VENTCELI-VALDEHFELS

Let (Nt)t ) 0 be a FeIler semigroup on a compact C~ manifold M

with boundary, generated by an elliptic differointegral boundary

system (W,r ,6) of Ventcel '-Waldenfels.

the Skorochod space, and (px)X€M the Markov system of
b.

probability measures on ~ corresponding to the' transition

Under assumption of ellipticity of all the

considered systems (W,r,ö), for Q €(O,1), we prove continuity of

the map

(W,r,6,x)€L(C2+a(M),C
Q

(M»xL(C2+a(M),c
Q

(aM»x cQ(aM)XMb.~Px€P (ID)

where p( ID) = {Borel probability measures on ID}, the spaces of
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operators being equipped with their norm topologies t and P{ ID)

with topology of weak convergence of measures.As a consequence of

this result t we can prove (in rigorous measure theoretical

formulation) that before the time of first exit from M\aM the

behaviour of the Markov process generated by (Wtftö) is

independent of fand ö. Importance of the former result can be.

confirmed by some calculations concerning Brownian motion on lR+

submitted to Feller's boundary conditions at O.

H.A. KOR

SEKIGROUPS GEHKIlATED BY KLLIPTIC OPERATORS

(i) We consider semigroups generated by elliptic operators

A = E
lal<m

where a 1s a mult1index and Da = (~)Ial ~.
i axa

We assume tbat the leading term of A 1s positive and with smooth

coeff1cients, and that for lai < mt
r

bEL Qt
a

where n + Ja I < m (these are analoges of appropr1ate LP
r
a

conditions for the potential of a Schrodinger operator to y1eld an

operator with most standard regularity properties).
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Theorem: A generates a semigroup e-tA which is analytic in the

right half t-plane. This semigroup maps LP ~ L
q

for all q ) Pt

including q = ~ •

(ii) Let LP denote the space of functions with s derivatives
s

in may be any real number). Schrödinger semigroup

mappings between these spae~s have reeently been studied by Simon

and others.

Theorem:

on JRl.

.!!.+e
Let V(x) € L2

loe t 1 < p < ~, s) 0t and A = - 6 + V

Then e-
tA

: LP € LP+2 1 "is bounded iff V € LP •s t oe s,loe

This is proved using a Leibnitz rule for fraetional derivatives t

and some lemmas on the eomposition properties of functions in

Sobolev spaces.

operators.

This can be partial1y extended to higher order

(iii) Here we eonsider the ease V(x) € LP
t where p <I. In

this ease (where the potential is an unbounded relative to the

Laplaeian), essentially any kind of smoothing can oceur. That is,

there exist such highly singular potentials whose semigroups are

infinitely smoothing in the seale of Sobolev spaees t and others in

this elass whose semigroups add ooly two derivatives to functions.
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B. KlDIMERER

DILATIONS OF SEHIGROUPS ARD ROH-Q)MKUTArlVE HARKOV PROCESSES

In classical probability theory to a Markov process there

corresponds a semigroup of transition operators and conversely, to

any such semigroup there corresponds uniquely a Markov process.,

If the process is stationary with state space

is an invariant probability measure p,

a ~ inducing there

then the transition

operators may be realized as doubly stochastic operators on

In developing a theory of stationary Markov processes which is

suitable also for quantum mechanical applications we generalize

Lco (O,E, p) to a pair (M,~) consisting of a Wr-al.gebra equipped

with a faithful normal state ~. The not ion of a Markov process

is reformulated in terms of. a dilation for the semigroup of

transition operators. A doubly stochastic semigroup Tt of

transition operators on (M, ~ ) i8 also called a dynamical system

Theorem (Kummerer-Maassen). For a dynamical system (Mn' tr,T
t

)

(Mn the nxn-matrices, tr the normalized trace on Mn) the. following

conditions are equivalent .

(a) (Mn' tr, Tt ) admits a Markov process generating an algebra of

the form M 0 Lco (0, E, lJ)
n
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the convex hul1 of

automorphisms of Mn.

(c) There exists a weak*-continuous convo1ution semigroup St on

Aut (Mn) such that Tt = fAut(M ) a dSt(a)
n

(d) Tt = eLt where L(x) i(hx - xh) + J ajxaj -

1 2t<ajx + a
j

x) + i Ak (ui x ui - x) where h, aj are se1f-

adjoint, uk unitary, Ak e nt for all j,k.

(e) Tt = eLt where L can be approximated by generator of the form

*Lk)O Ak (uk x ~ - x), ~ unitary, Ak ) 0 for all k.

The implication (e)=)(a) can be generalized to the following:

Theorem: For a dynamical system.(M,~,Tt) the following eonditions

are equivalent:

(a) (M,~,Tt) has a dilation

(b)

(e)

for all t o' (M,~,T ) has a dilation in discrete time
t o

__ weak*-lim aj(Tj - jd)tT
t

j e for all t ) 0 where for all

the discrete dynamical system (M,~,Tj) has a dilation and

(aj)j .= ~.
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R. LEIS:

SCAl'TERING PROBLEMS IN TllERKOELASTICITY

The linear systems of elasticity and thermoelasticity are

formulated first. Initial-boundary value problems in ~ are

solved using semigroup approach. The solutions obtained have

finite total energy.

solutions for t -+ "m

Afterwards the asymptotic behavior of the

is discussed with emphasis on exterior

boundary value problems. The free space case with homogeneous

isotropie medium can be calculated explicitly, and one notices

that the equations split into a vibrating component and into. a

component with damping. Special boundary value problems can also

be treated. Finally more results on the corresponding nonlinear

equations are indicated concerning the existence of global

solutions for small and smooth data. An exterior boundary value

problem in li has been studied by Jiang and the free

problem in ~ has been treated by Racke.

space
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G. LUMER:

SINGULAR HDLTIPLICATIVE PE1I.T01UlATION, OPERATORS OP PINITE TYPE AHD

"VEIGBTED" NORMS

We study a very general class of (nhomotopy-liken)

perturbations. We give general stability results concerning the

density of the image of the perturbed operators (stability of

"S(·) = 0", S{·) an appropriate deficiency index) for singular

and nonsingular perturbations. We give applications to singular

multiplicative perturbations of generators of contraction

semigroups, which extend considerably results known so far

{example: Theorem. Let A be the generator of a contraction

semigroup on X (Banach space), B ~ B(X) be accretive with l{B*)

dense. Then BA pregenerates a contraction semigroup on X iff it

i8 dissipative). We extend some of the latter results to

generators of "finite type" (operators which "less same constants"

are dissipative). One way in which operators of finite type arise

naturally in applications is by using weights (weighted Darms) on

usual function spaces, and studying operators which in the

original spaces (without the weights) are dissipative.
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. N. MAHDOUVALOS

BEAT lCERREL BOUHDS AliD DISCRETE GROUPS

This is work done jointly with E.B. Davis. We have obtained sharp

upper and lower bounds for the heat kerneion hyperbolic space

nP+ 1 for all n>1 and for real and complex time. We have used

these bounds to obtain upper bounds for the heat kerneion

hyperbolic manifolds of the form r, lH n+l, where r is a

Kleinian group on m n+1. The m08 t important of 0u:r resul ts are

described in the following two theorems. (We use the notation

f-g for functions fand g when there is a constant c>O such that

c-1f(s) < g(s) < cf(s) for all s).

Theorem 1. Let L
n

+
1

< 0 be the hyperbolic Laplacian on lH n+l
Ln+1t

and K
n

+
1
(t,p) be the kernel of the operator e ,t>O. If

n>l 1s any integer then

K (t ) _ t-(n+1)/2 -(n
2
t/4)-(p2/4t )-(np/2)

n+l ,p e

(1+P+t)n/2 - 1( l+p), un1formly for

o < P < ~ and 0 < t < ~, where p 1s the hyperbolic distance in

mn+1•

Let now w = (x,y) ~ 11fl+l, x € Jil, y > 0,

22
a(w,w') =

lx-x' I + (y+y') be the standard point-pair invariant
4yy'

in lH n+l and let Con(n+1) be' the group of isometr1cs of lH n+l.

Let r be a discrete subgroup cf Con(n+l) and ö(r) be the

invariant 6(r) = inf{s>O :ylr e-SP(Yx,y)< +m}. Let also
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~ (x)2 = l e-ap(x,yx) a)ö(f) and p(x,y) = mlnp(yx,y) be the
a y f " y€.r

distance function in r "lH n+1 Then the following theorem

holds.

Theorem 2. Let r be a geometrically finite Kleinian group on

nP+1• Then the following hold for the heat kerne!

K( t ,x,y) of r IR n+1:

n
(i) If 0 < ocr) < 2' 0 < t < ~ and 0 < E <~, then

2 _ 2

O<-K -(n+1)/2 -(~ - 2E)te-P(x,y) /4(1+e)t ll (x)ll (y).
(t,x,y)<Cet e 4 ~a ~a

(i i) .If ~ < Ö(r) ( n, 0 < t < oa, a > ö(r) and 0 < e < ~, then
q

O<K(t,x,y)<C t-(0+1)/2 11 (X)ll (y)e-[ö(f)(n-Ö(r»-2e]t.
_ 2 e a a

e-p(x,y) /4(1+E)t.

Moreover if a ) n theo lla(X) -+ 1 as x approaches an end and

II (x)- eP(x,a)r/2 as x approaches CI cusp of rank r, where a i8
CI

any point in lH n+2. In particular lJ
eI

(x) 1s bounded 1f CI > n

and the manifold has 00 CUsps.

I. KlYADERA:

SEKIGROUPS AND EXPOHKNTIALLY BOUNDED C-SEKIGROUPS

We first d1scuss the relationship between semigroups and

exponential1y bounded C-semigroups. It is shown that if

{T(t); t ) O} is a semigroup of classes (e(k» of growth order
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becomes an exponentially bounded C-

sem1group with a suitable C and its C-complete 1nfinistesimal

generator coincides with the complete infinitesimal generator of

{T(t); t ) O}.

Next, a characterization for the C-complete infinitesimal

generator of an exponentially bounded C-semigroup is given, and

then the generation of semigroups 1s discussed. By using our

,generation theorem, it 1~ shown that the known generation theorems

for semigroups of the above-mentioned classes are obtained in a

unifled way.

R. HAGEL:

ROll TO IRVERT A 2X2-MATRIX

Systems of linear evolution equations often lead to operator

matrlces A = (A B) or a product Banach space E x F. If D is
- C D

invertible one obtains the inverse of A as

-1

( ~1 -1
-0 C6

-6-IBO-l

-1 -1 -1)o (F + C6 BD )

for A: = A - BD-1C. It is shown how the above formula can be used

in order to compute the spectrum O'(~) for A

entries.

wi t h unbounded
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B. NAJHAN:

RESOLVEHT ESTIMATES PaR SINGULARITY PERTURBED ELLIPTIC OPERATORS

Let n be a smooth bounded domain, A an elliptic operator of

order 2m, B an elliptic operator of order 2m', m > m', and let

Ag = gA + B. Let 1 < p < ~ and let

Lebesque space HS'P(O). The estimate

o be the norm of the
s,p

DuO <C(€, s, t, A) (O(A + A) uD + DuO )
s,p € t,p t,P

is proved for A from a sector of the complex plane,

C(€, S, t, A) explicitly given.

P. BEUBRANDER:

C-SEKIGROUPS ARD "l'IIEIR APPLlCATION TO TBE COKPLETE SECOND ORDER

PROBLEM

A natural way to study weIl posedness of the complete second order

equation

u"(t) - Bu'(t) - Au(t) = 0 ; u(O) = x, u'(O) = y

is to reduce it to a first order system w'(t) = Mw(t);

o I)w(O) = (x, y), M = (A B on E x E where one has to construct a

phase-space FO C E x E on which MI F generates a Co-semigroup
o
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on FO• For unbounded, closed operators A,B on an arbitrary

Banach space E the construction of these phase-spaces Is often

difficult if not impossible. We show how the theory of

"integrated semigroups" (i.e. C-semigroups with C = R(Ao,A)n) can

be used to bypass these difficulties.

s. OHnD

RORLlREAR PERTURBATIONS OF ANALYTIC SEKIGROUPS

Relatively continuous perturbations of analytic semigroup~ in

Banach spaces are discussed from the point of view of the

nonlinear semigroup theory. Necessary and sufficient conditions

are given for a semilinear operator A + B to be the full

infinitesimal generator of a nonlinear semigroup which provides

mild solutions of the semilinear evolution equation u' = Au + Bu,

where the linear operator A generates an analytic semigroup in a

Banach space X and B is continuous with respect to the· graph

norm of a fractional power of -A. First,. nonlinear

quasidissipative perturbations of analytic .contraction semigrDups

are treated and a Hille-Yosida type theorem for nonlinearly

perturbed quasicontractive analytic

Next, locally Lipschitz continuous

semigroups is presented.

perturbations of bounded
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analytic semigroups are investigated. The local Lipschitz

continuity is stated in terms of a lower semicontinuous functional

on X. Finally, applications to semilinear partial differential

equations are examined.

N. OKAZAWA:

HOLOKORPHIC PAMILIES OF M-ACCRETIVE OPEKATORS IR A REFLEXIVE

BARACH SPACE

First we present LP generalizations of some fundamental estimates

in L2(nr) such as the Hardy and Rellich inequalities (we assume

2 < P < ~): Setting
-2

A = - 11, B = lxi , we have

I Im(A~,luIP-2u)1 <~ Re(Au,lul
p

-
2

u),

.E.:.!. 2 I p-2 I Ip-22 (m-2) (Bu, ul u) < Re(Au, u u), m ) 2,
p

(p-l)m~m-2P) DBuD < DAuO, m ) 2p.

P

Then we consider properties of the family of operat"ors A + KB

with complex K in a reflexive Banach space x. Two abstract

theorems snd two examples will be given.

Example 1. X = LP(O,~), A = d/dx, B lxi-I.

Example 2. X = LP(nf), A = -fi, B = Ixl-2•
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D. PFEIFER:

THE PROBABILISTIC REPRESENTATION THEORY FOR OHE-PARAMETER

SEKIGROUPS

It is shown that most of the known product representation formulas

for (Co)-semigroups {T(t); t ) Q} on a Banach space X are of the

form

when N ) Q is an integer valued random variable with expectation

E(N) = ~, Y ) 0 areal random variable with E(Y) = y

(N,Y fulfilling same regularity conditions}.

and t

denotes the probability generating function (p.g.f.) of N, and

E(.) means quasi-weak Pettis integration (of the qua5iweak random

operator It i5 also shown that if for a general

•
representation function ~ it Is analytic in some internal

[o,ö], Ö > 1, with non-negative coefficients, then ~ 15 al ready

a p.g.f. of same random variable N. Investigations concerning the

role of convergence in (1) are also made, either specifying

smoothness conditions on f or by means of the modified modulus of

continuity.
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M. PIERRE:

ABaßT GLOBAL EXlSTEHCE FOR. REACTION-DIFFUSIOtl SYSTEMS

We are interested in studying global existenee of solutions for

reaetion-diffusion systems whiehpresent two main properties:

(1) The nonnegativity of the initial data i8 preserved.

(2) The total mass of the eomponents is noninereasing in time.

Properties (1) and (2) lead to an apriori estimate of the L1­

norms of the solutions uniformly in time. It is well-known that

existenee of an apriori uniform L=-bound is a suffieient

eondition for global existenee of solutions. Dur goal is to try

to understand how a similar bound in LI can be exploited. This is

motivated by applieations to many situations of interest where no

L=-bounds are expeeted: let us mention for instanee the ease

when the initial data and the souree-terms are L1-funetions.

'Ne deseribe on a 2x2 system the teehniques that ean be used:

Under an extra struetural assumption, the reaetive terms ean be

bounded in L1. This yields eompaetness of approximate

solutions. The eonvergenee then follows from the uniform •integrability of the nonlinear terms.
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Y. PINCHOVER:

ON POSITIVE SOlmIOHS OF PARABOLIC EQUATIOHS VITR PERIODIC

COEFFICIENTS IN SOME UNBOUHDED DOHAINS

We determine all the minimal positive solutions of the parabolic

equat ion Lu = 0 in JR1 x m. (or nP x lR). where L has time

independent coefficients or L has coefficients which are

periodic in the space and the time variables.

Assuming further that L is in divergence form we obtain an

•

integral representation theorem for solutions of the following

problem

Lu = O. u ) 0 in F x II!.... u = 0 on a (F x m._)

where F is a convex cone or a cylinrical domain in.Rn •

J. PRUSS:

ANALYTIC RESOLVEHTS FOR LINEAR VOLTERRA EQUATIONS OF; SCALAR TYPE

Consider equations of the form

(I) u(t) = g(t) + Jt a(t-s)Au(s)ds • t)O
o

in a Banach space X, where A is a closed linear densely defined

operator in X, a € L~oc (~) is a scalar kernel.and
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By means of eomplex analysis methods, we

eharaeterize those A and a(t) for whieh (I) admits an analytie

resolvent S(t) and obtain the eomplete analogue of Hille's theorem

on generation of analytie semigroups. As an applieation of this

result we study integrability properties of the resolvent for (I)

which are important for the solvability behavior of

(I') u(t) = g(t) + I~a(t-s)Au(s)ds t E ~

the limiting equation assoeiated with (I).

R. RACKE:

GLOBAL SOLUTIONS TO SEMILIHEAR PAltABOLIC SYSTEMS POR SMALL DArA

We consider semilinear parabolic systems ut + Au + f(u) = g,

u(o) = uo' -A being the generator of an analytic semigroup with

spectrum a(A) in the right half plane. For appropriate small data

(g,uo) global solutions are obtained if 0 belongs to the resolvent

set and loeal existenee is proved if 0 E: a(A). The Inverse­

f~nction theorem is used in a class of functions which are Hölder

continuous with respect to time t. The asymptotic behaviour of

the solution 1s given too.

As first application' we prove the existence of global

(respectively loeal) solutions to the Navier-Stokes equations in

e)
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Lp-spaces in boun~ed (respectively unbounded) domains. Secondly

we consider the case where A is an elliptic operator of order 2m

and f has bounded growth. Thirdly a quasilioear example where the

nonlinearity involves derivatives of the same order as A is

studied. Then an example of a nonautonomous nonlinearity is given

and finally the convergence of solutions of the time-dependent

system to solutions of the stationary (semilinear elliptic) one is

derived for 0 € p(A).

D.W. ROBINSON:

INTEGRATION OF LIE ALGEBRAS , THE IIEAT SEMIGROUP, LIPSCHITZ SPACES ,

ETC.

Let (B ,G, U) denote a continuous isometrie representation of the

Lie group G by linear operators U(g), g E: G, on the Banach

space B. Further let Bn denote the Cn-elements of the

represent~tion and D.D
n

the corresponding Co-norm. An

operator K is defined to be a Lipschitz operator if

BOl) ~ D(K) aud

D(U(g)KU(g)-1 -K)aD , cJgJ oa0
1

for some c ) o. It follows that the closure of a dissipative

Lipschitz generator generates a contraction semigroup. This

                                   
                                                                                                       ©



36

result ineorporates and extends many well-known and seeming1y

disparate tesults in PDE' s, harmonie analysis and mathematical

physics. We will discuss the proof of the theorem together with

same ita applieations.

M. R.OCDEIl:

DllUCRLET POlIIIS Alm SEKIGROUPS ON TOPOLOGICAL VECTOR SPACES

Let E be a loea11y convex Hausdorff topologiea1 vector spaee

which is Sous1io; ~ a probability measure on its Borel sets. We

study forms of the type

•

(1)

where

E (u v) = I au av d on L 2(E;p)
=k' E ak ak ~

du
K E: E\{O}, dk means Gateaux derivative of u in the

direction k and the domain D(~) of !k 1s taken to be the

p-classes in L2(E;p) whieh are indueed by

{u E -+ ~ there exist LI' •• , Lm € E'

and f E: c~ (IR n ) such that u(z) = f(L1(Z), ••• , Lm(z»,

Z E: E}.

If we suppoae the (.!g, D(~» is well-defined (i.e. "respects

u-classes") the first erucial question i8 whether it is

closable. We have proved the following necesaary and sufficient

condition (on u):
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Theorem: Let EO be a clo8ed linear subspace of E such that

E = EO + lR k and 1r E -.. EO the natural "proj.ection". Let

p: EO x B (nQ -.. [0,1] be a kernel such that for ail u: E~ R,

measurable and bounded,

I u(z) ~(dz) = 11 u(x + sk) p(x,ds) v(dx),
E EaR

where v 18 the image measure of ~ under n. Then ~,D(!k» i8

well-defined and closable if and only if for y - a.e., x"t: EO'

p(x,da) = p(x,s) ds for same measurable function p(x,.) :

lR-+ m+ which satisfies Hamza's condition:

(H)

where

p(x,.) = a ds-a.e. on ~R (p(x,s»

t+e; -1
R(p(x,'» : = {t t: IR: I p(x,s) ds < + CD for some e: > O}.

t-e;

This theorem provides many examples of sub-Markovian semigroups on

2 •
L (EiP) for very general ~ • lt i8 namely easy to see that a

countable surn (!.,D(!.» of closable forms of type (1)· is

closable. lts closure (~, D(!» Is then a DIrichlet form, i.e.

U t: o(§) =+ lul t: D(~) and !( lul, lul) < :§:(u,u). The semigroup

tAT
t

= e ,t) 0, generated by the negativ~ definite self-adjoint

operator A associated with E (note that D(!.) 18 dense in.

L2(EiP» is therefore sub-Markovian, i.e. 0 < u < 1 =)

This in turn implies that' (under

same additional assumption on E) there exists an associated Mark~v

process - with state space E. Furthermore, the theorem has

applications both to finite dimensional situations like e.g.
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operators in divergence form on an open set in nP and to infinite

dimensional settings. in particular to quasi-invariant measures

like Gauss1an measures or measures in 2-dimensional Euclidean

Cameron-Martin-Girsanev-Maryana type formula.

quantum field theory. In these cases the theorem also implies a

•
w. SCHEPPACHER

HYPERBOLIC EQUATIONS WITR DEUY IN TBE BOUNDARY COliDITIONS

We consider the hyperbolic system

w =Aw +Uw+Vw
t x

where A = diag (A • A+ • AO). U and V are appropriate matrices.

These equations are models for flexible structures (i.e. strings.

beams. antennas ••• ).We assume that we observe the structure at

the boundary and feed this information back into a control

strategy. where we suppose that there is some delay. It 1s shown

that this problem gives rise to a Co-semigroup on an appropriately

chosen state space.
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VOLP VON WAHL

APPLlCATIOHS 01' THE mEORY 01' SEMIGROUPS VITa NOH-DEHSELY DEFlHED

GENERATOR

This 1s areport on joint work with E. Sinestrari.

consider a parabolic equation

u' + A(t)u = f, u(O)=~

Let us

-over a cyl~ndrical.domain [0, T] x 0 c: 'IR n+ 1 .
A(t)

. a
€ ca / 2m ,a([O,T] x 0),1s uniformlyIalt 2m aa ( t , x)D , a.....

a

strongly elliptic, f 18 in Ca / 2m ,Q([O,T]x 0) We impose

Dirichlet-O-condition8 on an and assume that the compatibility

conditions of order 0 and 1 hold in t=O. We then show that the so

called Schauder estimates (due to Solonnikov) can be proved easily

by application of abstract semigroup theory (with non-densely

defined generator) and Schauder-theory for elliptic eq~ations.

Finally semilinear equations u' + A(t)u + M(u) = f are treated

where M has quadratic growth with respect to InIDuI·
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GLENH VEBB

INVESTlGATIOR OF A ROHLlREAR IHTEGIU)DIFPEREHCE EQUATIOR

A discrete nonlinear semigroup is used to investigate a nonlinear

integrodifference equation. The equation has the form

Nt +1(x) = Jak(x,y)f(Nt(y»dy, x ~ n c: IIP, t = 0,1,2,... The

model applies to popu~ations that grow and disperse in separate

phases. The growth phase i8 a nonlinear process that allows for

the effeets of loeal erowding. The dispersion phase is a linear

proeess that distributes the population throughout its habitat.

The issues of survival and extinction are studied by analyzing the

existence and stability of nontrivial equilibria. A eomparison of

various dispersion strategies i8 made. The analysis used recent

results from the theory of positive operators in Banach lattiees.

Berichterstatter: Giseie Roiz lieder
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