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MATHEMATISCHES FORSCHUNGSI~STITUT OBE~WOLFACH

Tag u n 9 s b e r ich t 6/1988

Universelle Algebra

7.2. bi~ t3.2~1988

Die Tagung fand unter der Le~tung von Herrn G. Grätzer

eWinnipeg) und Herrn R. Wille (Darmstadt) statt. v~n den

Teilnehmern kamen 12 aus Deutschland, 24 aus neun anderen

europäischen Ländern, 13 aus Nordarnerika, und je einer aus

Australien und von der Elfenbeinküste. Die 43 Vorträge haben

alle wichtige Bereiche der universellen Algebra umfaßt, mit

besonderen Schwerpunkten in Verbänden, Varietäten, Clones

und algebraischer Logik. Das Programm.wurde du~ch'eine sehr

.~ erfolgreiche "Problem Session" ergänzt.· Die Liste der 42

'vorgeschlagerie~ Probleme ist am Ende dieses Berichtes zu finden.

Die Teilnehmer haben die Tagunq in ehrendem Gedenken an

Evelyn Nelson durchfUhrt, die zu der Tagung eingeladen war

und am 1. August 1987 verstorben ist.
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Vortragsauszüge

·....
M.H. ALBERT:

Ehrenfeucht's conjecture and,universal algebra

Ehrenfeucht's Conjecture states that if M is a finitely

genera ted free monoid, and L any subset of M, then there

is a'finite subset T of L such that if two endomorphisms

f, 9 of ~ agree on T then they agree on L. Ehrenfeucht's

------conjecture~is-equi-va-lent-to-the-s-t-a~rnentthat any sys~em_~~_' _

equations in finitely many 'variables over a free monoid has a

finite equivalent subsystem. He prove that this latter eon-

dition is'satisfied in a .varie~y Iff every finitely gen~rated

free algebra has the Asce~ding Chain Condition on its eon-

gruence lattice. As M can be embedded (as a monoid) in a

group with this property this proves Ehrenfeucht's conjecture.

M.K. BENNETT:

Bolyai-Lobaschewski geometries

A Bolyai-Lobaschewski space ~s an incidence space lHilbert's

incidence axioms hold) satisfying: n given P +I, there are

at least two lines through P' parallel to I" . A model for
•

a B-L space can be obt~ined as follows: Let 0 be an ordered

division ring and X a bounded open convex subset of on.

Take as points the vectors in X and as lines the intersections

of X with the affine lines in On. The flats of sUch a

B-L space form a complete, algebraic, atomistic, geometrie,

weakly modular lattice in which every coatom has a cornplementary

coatom. Several possible approaches to characterizing.th~

l~ttlces of flats of B-L spaces are discussed - particularly
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recapturing Ubetweenness" fram callinearity, and embedding

such geometrie latt1ees iota projective geo~~tries.

J. BERMAN:

Free spectra of finite algebras

Let ~ be a finite algebra with universe A, iAI= k. The

free spectrum of ß 1s the function sen) = the card1nality

of the free algebra on n free generators for the variety

generated by ~. A general project is to Inyestigate h~w

algebraic properties of ~ are related to numerical proper­

ties of sen). The talk provides examples of same results

of this nature and will coneentrate on gap theorems for

free s~ectra.

W.J. BLOK:

The "log1e of algebra

For a wide elass of deductive systems (protoalgebraic anes)

one can sho~ that 1f- they possess a Deduction Detachrnent

Theorem, then their lattice of theories 1s distributive. On

the algebraic side, any.variety with Equationally Definable

Principal Congruences 1s congruence distributive. These two

assertions amount ta the same statement for protoalgebraic

deductive systems which are algebraizable (in apreeise sense),

since these have a DDT lf and only if their assoei~ted

variety has EDPC. We present a more general nation of proto-

algebraic deductive system which encompasses the old one,

as weIl as quasi-equational logie. Many results canbe

transferred to the more general systems. As a by-product we
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obtain some' theorems 'on quasivarieties, which earlier had been

established for varleties only. For example, if the relative

principal congruences of a quasivariety are definable by

equations, then the lattice of relative congruences of any

algebra in the quasivariety 1s distributive.

B. BOSBACH:

A lemma on representability of lattice-ordered algebras

-~~--An-a-lgebra-A~i-s-called_lat_t_i@-9rderedif it 1s of type
---~ ~ - -~---- -~------~--

(A,V,A,f i ) and if in addition t~e operations f i "behave

weIl" w.r.t. ~ . A term p !s called linearly composed

if it 1s a variable x or if it is of the form

f(Xl, ••• ,ij(X'Yl' ••• 'Y~)' ..• '~n) where f Is a fundamentai

operation and q is (already) Ilnearly cornposed.' A i9

called r~presentable If .1 t i8 a subdlrect product of ..totally

ordered factors.

Lemma. A lattice ordered algebra is re9resentable 1ff it

satlsfles: ~(a)A ~(b) ~ ~(b)V~ta).

This lemma (and a corresponding one for po-algebras) applies

to all 10- (and po-) aigebras considered so far - sometifues

by changing the type. Moreover it .solves problems stated by

Fuchs and Evans.

P. BURMEISTER:

An application of formal concept analysis to partial algebras

"Attribute exploration" (AE) is a special method in formal

concep~ analysis based on results of Duquenne & Guigue~ and

Ganter. AE roughly means: Let M be a finite set of attributes

for the objects in a class K (like symmetry, etc. for (the

                                   
                                                                                                       ©



-5-

class of) all binary relations). Let ·G I be a finite subset

of "starting objects", I K: =f (9 ,m) ~ K )( M/"g has mU
}. In a

systematic way one i5 asked to decide in the n-th step

whether every 9 t K having all attributes from some An<; M

also has those from some Bn~M. One.has either to accept

A
n
-+ Bn as an U implication n valid in K or to provide a

"counterexample u 9
0

E K having all attributes in An but

4It not allof Bn " When the program stops, G:= G'u{counter­

examples gn~~ K "separatesll M, i.e., (G,M-,IG:=GJ<..Mf1I K)

is a· context fully describing the concept lattice of (K,M, IR) •

The listof accepted irnplications i5 minimal and cornplete.

This method has been appli~d to investigate properties of-

homomorphisms between partial algebra~.

S.D. COMER:

O-varieties of multi-valued algebras

A function f:A-a"B is a O-morphism of multi-valued algebras

<A,~) ioto <B,u'/ if for every ~t: n of type n ahd

. x 1 ' • • • , xn+1 c:; A

A class of multi-valued algebras 15 called a n-variety if it is

closed under the formation of subalgebras (S), direct products
2 .

(P), and D-morphism images (Q ). ~he classes of multi-valued

algebras studied in the literature (e.g., hy~ergrou~s, jain

spaces, and palyqr?u~s) are all exam~les of D-varieties. The

nation of a mv-law is described and it is shown that the

models of a collection of mv-laws 1s a D-variety.
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s. CRVENKOVIC (joint work with R. MADARASZ):

Relation algebras and same decidabllity oroblems

In general,- the unsolvability of the Ioeal word pro~lem, for

a variety, does not imply undecidability of equational theory.

Forthe varie.ty of relation algeb'ra~ (RA) we can prove the

following. 1. The ioeal word problem for RA i9 unsolvable.

(In the proof we use an embedding (~) of a semigroup 'with

unsolvable ward problem into the semigroup reduc~ of .a

- --- -----relatror.---aI.-gebra--;--)--2-;-The-c·la~s--S,,-of-RA,-obtained-int~~ 1

proof of 1., i5 not elernentary.

If we use the fact that for every variety the decidability

of the theory of quasi-identities 1s equivalent. to the

solvability qf the global word problem, then 1. and some

properties of RA imply a simple proof of the theorem of

Tarski that Eq(RA) 15 undecidable.

B.A. DAVEY (joint work with R. QUACKENBUSH and D. SCHWEIGERT):

Monotone clones and the variet1es they determ1ne

I am interested in applying duality theory and tame-congruence

theory to the study of varieties generated by finite algebras, ~,

~, whose clone of term functions 15 a monotone clone. That i9

there 19 an order ~. on P such that for all nE fN the n­

ary term functions on f are precis~ly the order-preserving

maps from pn to P: such algebras are said ~o be order

primal.
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H. DOBBERTIN:

Congruence lattices of lattices

All known partial solutions of the famous problem "ls every

distributive algebraic lattice K representable as the

congruence lattice of same lattice?" can be obtained by

applying Schmidt's Lemma (1969). The answer 1s known to be

positive if one of the following condit1ons holds:

(1) K C
, ,the sernilattice of compact elements-cf K; 15

locally countablei (2) IKc, = K,; (3) RC is a latticei

(4) K is completely distributive. Surprisingly there 15 a

elose connection between the above question and a, certain

problem-arising in the theory of countable Boolean algebras.

"I conjecture that the suff'icient condition of Schmidt's

~emrna for representing a distributive algebraic lattice K

as congruence lattice of some lattice 1s not always satisfied.

I even conjecture th~t there 1s a non-representable distribu­

tive algebr~ic lattice K.

H. DRASKOVICOVA:

~ Varieties ofmodular median algebras

We call a set A with one ternary operation

median .algebra (rn.rn.algebra, and denote it by

the following identitles are satisfied in A:

( 2 ) ( (ade) bc)= (ac (bcd) ) .

(xyz) modular

(A; ( ») if

( 1 ) (abb) = b,

Denote by U the variety of m.m.algebras given by the

identity (U) «xyz)xt) = (xy(zxt».

Denote by W the 4-element m.m'-algebra «(a,b,c,d}i ( ) ),

where a=(abc), b=(bca), c=(eab) and d=(adb)=(ade)=(bde).
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We prove that the algebra Wand the 1dentity (U) form.
a splitting pair in the lattice of all varieties of

m.rn.algebras.

J. DUDEK:

The minimal extension of seguences

Let ~ be an algebra. By Pn(~) we denote the number of

essentiaily n-ary polynomials over A. First, we deal with ~

____. the'Minimal Extension Property of sequ~nces 1ntroduc~d by
-~--~-~----~

G. Grätzer in 1969 and we also give some resurtson~p~---­

sequences characterizing the corres!'onding varieties-; e. g.:

Theorem. Let V(.) be the variety of idempotent commutative

groupoids. Then we have

(i) (G,.) e.V(.) and P2 (G,. >=2 imply that (G,. > cont~1ns

isomorphically as a subgroupoid the Idempotent groupold

A= ({1 ,2,3, 4} I .) where xy=l +max (x,y) for x,y ~ 3 (x;!y) and

4 otherwise.

(ii) The sequence (O,O'~' ... ,Pn(A), •..) 1s the minimal

extension of <0,0,2) in V(.).

(i i 1) I f (G,.) € V ( • ), then (G I • )

,an affine space over GF(3) or else

G. EIGENTHALER:

1s either a semilattice or

n-1
Pn(G,.)~ 3 for all n~ 4••

Commutative compositlon semiqrouos of polvnom1als

Let v be a variety, Aey and 'X a set, then a y-poly­

nom1al algebra A(X,y> in X over A 15 defined to be a

coproduct AlLF (X,y), where F"(X,y) denotes the' free V-

algebra with free generating set x.

X={X 1 ,··· ,xkl, and E= (Pl'··· ,Pk) ,

Let X be finite, say.

k
g={Q1, ..• ,Qk) E A(X,!> ,
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then the composition EDg is defined 1n the following way:

(where a" · • • , an E A) representi~q Pi' qi resp.,

then Eog=(r" ••• ,rk ) where riEA(X,y)' is represented by

the term t 1 (a" ••• ,an ,u" .•• ,uk ). Thus we obtain a semi-
, k

group (A(X,y) ,0) w1th identity (X1 ' .•. ,Xk ). The problem

4It of f1nd1ng commutat1ve subsem1grou9s of (A(X,Ylk,al has

been treated - up to now -'only for V be1ng the variety

of commutative rings·with identity. In this case A(X,y)' 15

th~ classical polynom!al ring A[X 1 , ••• ,xk] in k indeter­

minates over A.

,
E. GEDEONOVA:

The construction of lattices with soecial covering graphs

·A fin! te connected graph G= (V , H) . 15 an S-graph if to

every vertex vEV there exists a graded partially ordered

set (V,~V) with least el.ement v, such that the covering

graph of (v,~v) is lsomor~hic to G. An S-graph 15 a

eS-graph if <Y ,~v) 1s a graded lattice for each v € V.

4It If the cover1ng graph of a latt1ce 1s anS-graph then th1s

latt1ce 15 called an S-lattice. It 1s given a construction

of S-lattices of arbitrary length fram the one-element

lattice. It turns out that the covering graphs of these

lattices have a specia~ praperty, we call them ST-graphs.

We show that every ST-graphis constructable from the ane-

element graph. Every eS-graph and every planar S-graph 15

an ST-graph. But we da not know, if the cover1ng graph of

every S-lattice i5 an ST-graph, and we da not know if

every ST-graph 15 a covering gra~h of same lattice.

                                   
                                                                                                       ©



-10-

G. GRÄTZE~ (joint work w1th E. FRIED):

Pasting infinite lattices

Let A, B, S be latt1ces, A·f'\B s. Then L 19 a pasting

of A and B over S iff L = AU Band every amalgamation

'of A and· B over' S contains L as a sublattice (in the

natural way). Results:

1. ~ and e are closed under pasting (i.e., if A and

B are modular (distributive), then so 15 L).
~--------------­--....-.-.,......--~

2. Two s'tructure 'theorems for-pasting; generaflzfng~tne-----

results of Slav{k, pay, and Jezek for the finite case.

G. HAUSER BORDALO:

Forbidden intervals in classes of lattices

In the present work we enlarge .a class of finite distributive

lattices.that can be characterized by forbidden intervals. We

then study the representatlon qf these lattices as subalqebra

lattices of finite mono~unary algebras. Since these unary

algebras are defined on the poset o~ join-irreducibles; it 1s

possible, us1ng duality, to define the maps between unary

algebras that correspond to the 0-1 lattice homomorphisms. Ne 4Il
then give results obtained in the characterization of these

maps using the algebraic structure on J(L). We also give

some results'about the congruence lattice of such algebras

and its connections with the subalgebra lattice.

c. HERRMANN:

Decidability of module theories

Burris, McKenzie, and Valeriote reduced the question of
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decidability of the first order theo~y of a variety generated

by a finite algebraic structure to that of R-Mod (the class

of all R-modules) for a finite ring to be canstructed fram A.

Burria observe~ that Th(R-Mod) 18 decidable if R is of

finite representation type - actually it coincides with

Th(~-mod) of all finitely qenerated R-modules. If R i9 of

wild ~epresentation type then, using results af Hutchinson

ahd Slobodskoi, one sees that .both Th(R-Mod) and Th(R-mod)

are undecidable. For R being the path algebra of- a quiver

a complete answer· has been given by Prest: R i9 af wild

type If and only if Th (R-Mod) -l"s undecidable. The proaf 19

based upan Nazarova's characterizatlon of "wild" by farbid~en

quivers and the explicit classlficatlon of indecomposables

in R-mad in the caseof finite and "tarne" type (due to

Ringel and others), which 19 extended to algebraicatly compact

alias pure injective indecomposables.

J. JEZEK:

Bounded equational theories

An equatlonal theory T 19 called bounded if the auto­

morphism group of the term algebra partitions the T-equi­

valence classes into finitely many orbits. The set af bounded

equatianal theories of a"g~ve~ type i8 a filter in the lattice

df all equatianal theories. Every bounded equational theory

has only finitely many extensions, and is the equational

theory of a finite algebra. If the ty~e 1s finite then every

bounded equational theory 1s finitely based. We 1ntroduce

special bounded equat1ona~ theor~es which we call well-placed;

they can be described in a oiee way. In case of the type
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containing a single operation ~ymbol we prove that an

equational theory is bounded iff it extends a well-placed

equational theory, and that an absorpt1v~ equation~l theory

is bounded 1ff it 1s a well-placed theory; all the maximal

bounded equational theories are described.

H.K. KAISER:

Interpolation and aporoximation by means of polynomial

functions

Let (A,D..,7/ be a topological universal algebra and kE: IN.

Fk(A) denotes the set of all k-ary functions over A. On

Fk(A) we define the operations WEn pointwtse and we endow

Fk(A) with the product topology. Pk(A). denotes the sub­

algebra of k-ary polynomial functions over A. Then· (A,n,7)

15 said to have the approximation property 1f, for all k6~,

Pk(Ar "i5 dense in Fk(A).

Theorem: A topological universal algebra <A~,7) has the

approximation property 1ff (i) for every nontrivial con-

- 2gruence e of I.... A ,Q...) we have G = A; (ii) there are

p, t :A2~A having the approximation property such that

p(x,x)=p(y,y) and

there is an ~ €A

t(p(x,yl,y)=x

2
and a q : A --i' A

for all x,yE..Aj (ii1)

having the approximation

property such that q. i8 not constant and q(a,x)=q(x,a)=a

for all XE A.

T. KATRINAK:

Projective p-algebras

A p-algebra 1s an algebra of the form (L;V,A,*,O,l),

{LiV,I\,O,l) 1s a pounded latt~~e ang
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pseuqocomplement opera tion on L, tha t means, a" b == 0

if a~d only if ·b ~ a". There are· necessary and sufficient

conditions giv~n for a p-algebr~ t~ be (weak) 9rojective.

Essentially .sim~le~ conditions at~ obtained fot a· firiftely

generated p-algebra to be ~rojective. One.of the equlvalent

conditions says that a finitely generated p-algebra Is

projective if and only if it can be ernbedded into .a free

p-algebra.

D. KELLY (joint work with R. PADMANABHAN):

'Self-du~l"varieties of lattice~

The dual of a lattice polynomial" p, -derioted by p, 1s

obtained f~om ~ by repl~cing j~in b~ meet an~'meet by

join simultaneously.

I. -Bases relative to

v
;,J

finitel~ ba~ed vaii~ty of lattices~

variety of äli l~ttices~

(A>' If Y, containsorily modular lattices, then ';L has

a basis relative to L of the"frir~: {p'= ~}.
,.J'

(B) Many ~'s da not have a ielattve ba~is of the f~rm ~p=~}.

11. Absolute 6ases.

.(A) k has an independent basis cf the form f p=x~" P=x}.

(8) v has an inde:gendent basis'of the form:
"-J

. ~ p=x, AJ

q=r J~p=x, q=r,

E.W. RISS:

E-minimal alqebras of tvoe one

It Is a basic problem in universal algebra to decid~ whether .

the variety generated by a given finite algebra Is. residually

small.,It has been solved by Freese and McKenzie for the

congruence modular case. We provlde a todl to investigate this
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question in the gen~r~l setting. For a subset N of a finite

algebra A cons~der the restrietion of every unary poly-

nomial h(~,c1, ... ,cn) of A to N that preserves ~ and

denote py. G(N) the qr~up of these such restrictions that are

permuta~iorts of 'N; Call two such permutations equivalent if

they c~n be o~tain~d u~ing the same h but, (possibly) different

constants 'Ci .. lf cer~ain natural technical restri~tio~s hold

for N, then this eq~~v~~ence ~s a corigruence relation!on G(N)',

____.~we denote· by .. E (N) the. corr.esponding normal subgroup of G (N) •
~ ---~---~-.-~~.-~~----- -- ~--'---

lt can.b~ proved, unde~ t~~se restrict~ons, that if V(A). 1s

residuallY"small, the~ E(N) must be Abelian.

H. -J. KRE01~SKl:

Algebraic. specification of oartial data types

The concept of data types plays'an import~nt part. in software

~evelopment. E?~ational~y specified, total initial algebras

are appropriate formaliz~tions ~~ data types in many cases.

But· what abOut parti:al operations that a"re sometimes very

convenient and som~~imes unavoi4able? In this talk, we intro-

duce ~nd d~scuss a.method for ~pecifying algebras with

partia~ 'functions while maint~ininq the sirn!?ler framework of

total· algebras and co~v~ntio~al specif~cations. For this

purpose, an ordinary al~ebraic specificatiori SPEC is equipped

with a subspecificati~ri ~ASE, and each SPEC-algebra is

equipped with a BASE-homomorphism distinguishing a BASE-part

of the·SPEC-algebra. Then one can restriet the SPEC-algebra

to its BASE-part 'yielding a SPEC-algebra with operations that,

may be partial. As the main re~ult, it turns out that one can

get all computable functions in this way.
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I.A. MALCEV:

Ouasicells of iterative algebras.

Let PA be the set of all operations on a set A, ~A the

it,erative Post algebra over A, B~A. An elementary

quasicell .1(B' is a subalgebra of- 11A satisfying the

conditlon ftE: 1(B~ Im f~B. A quasiceil is a tinion of ele-e mentaty quasicells. All.quasicells are subaigebras of the

Slupe~ki algebra. In the leeture various prope~ties of the

quaslcells are eonsidered and in particular i t, .is showri how'

to solve th~ c6mpleteness problem using identities. E.g.!, the

following theorem 1s !?roved: A subalqebra t1I ~.1'~ 0, 1 , i} 15 a

quasicell of the form J({O,1)UX~O,2~ iff (li Vf~1J'i imfp{1,2~;

. (2) v4 t::I= ~~1<-lf}t1(/()= 3J1<fJt169; (3) # ~lf'(\f-'('f( t.l x ; xl,." (x ,xl,

1<\f'(x,x) ,'f'(x,x») ,t('t(t(~,y) '"'t(y,y» ,;'l'(l'(y,y) i1f'(Y,Y» j)

't('Y('t('I'(x,x) ,,,",(x,x» ,lf/(4--'(Y ,y) ,V--(y iY») ,'+'(\}'('k<~,x) ,'/-'(x,x) ~ ,

~'4'(y,y),'t(y,y»» •. '

G. McNULTY:

Combinator!al cronerties of terms wi th ,aoplications in

equational logie

This work is still ,in progress, however th~ themes of

equat~onal legie such ·as finite axiomatizabllity, undecidability,

and term rewriting systems - as weIl as vari6us results about

the lattice of equational th~ories, all employ combinatorial­

propertie~ of terms ta- good advantage. My br~sentation_.would

be direeted at isolatinq and d~ve16ping. tnese combinatorial

properties.

-I
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P.P. PALFY:

Modular subaigebra lattices

We derive same consequenges of the'modularity.of Sub(An ) "

the subalgeb~a lattiGe of the direct product Ax ••• XA.

If 'Sub(A?) 15 modular,. then. A 1s .H,amiltonian and has
. 3

the congruence extension prop~rty. If 'Sub(A) i5 distributive,

then ~ is str~nqly Abelian (~.e., satisfies the strang

. 4
term con4itian). If ·Sub(A) is modular, then A ·~s

- ---'-~eriaD(T~-~saf1Sfre-s-.the-term-cOn~-1ct;..10n)-.-ThOUgh_ln_~.__. . _

gen~ral the ~ubalgeb~~'lattice~f a·tacto~ algebra doesnot"

belang to the lattiG~ var1ety generate~ by the subalgebra

lattice of ~he original algebr~1 we are able to prove that

Sub(A/6) .is'mqdular (~istriput~ve) I whenever Sub(.A) 15

. ~odular' (distributive) ~

H.A. PRIESTLEY:
I

Natural dualities for varieties of distrfbuti~e-Iattice~

ordered algebras and' equational bases

In his monograph, 'Antimorphic Action,· W.H.Cornish shows that

many varleties of 'distributlve-lattlce-ordered algebras (e.g. I e'
many subvariet1es of Ockham algebras) >. are of the following

form: ~SP(~), where ~ 1s a finite alryepra whose dual space

can be regarded as an ordered monoid (M=M+UM-,.,~). Elements

of M+ and M- define via duality operations on P which

are respectively endomorphisms and.dual endomorphisms. One may

then in many cases set up a natural duality (in the manne~ of

Davey-W~rner, Clark-Krauss) with schizophrenie object a subset

of 2M which 1s determined by (M,~). This leads to a
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description of the free algebras in Q = US,(~). Further, the,

identities of Q are encoded in the 'schizophrenie object. The

duality theory can "be extended to handle subvarieties 9f Q,

and provides an algorithrn for writ.ing down equational hases

for these subvarieties.' These ideas are illustrated by

discussion of varieties of double MS-algebras.

~ P. PUDLAx:

Same results about the length of proöfs

I shall discuss same results on K~~is~l's ~onject~rei

'3k Vn PA~<f(Sn(O» =t PAJ-,yx ~(X');

. where PA 19 Peano· arithrne"tic, '~ denötes provabil~,ty

by a. proof with ~ k proof lines. I -',shall consider a ·uni­

fica~ion problem used by M. Baa~ to p~ov~ Kreisel's

conjecture: "Given pairs of terms (t~ ;5 1 ) ; .•• ',(tk~skl,

decide Yllhet her th~re exi·st suhsti tutions .' Ö, fr1 ' · · · , tt"k: '

s. t.: tt00"i - sftS for 1=1, ~ .. ,k."

I shall show that

(1·) the general tiroblem can be reduced. to the case k=2;

(2) if k=l, then the,ex.1stenc.e of cf,crl,,~ .• ,fTk is decidable.

(in general the decidability 15 not known~ .If 11: were,

decidable, t~en one could ~sti~ate th~ lerigth of a ~ro6f of

VxCf(x) from k -and Cf in Kreisel' s conjecture" .. )

R .. W. QUACKENBUSH (joint,'work with J .. JEfEK):

Directoids: Algebraic models .for. up-directed sets

Let (u;~) be an up-dlrected set (so .,that Va,bG U, a~ c

and b~c for some cf;U); define· on U' by a-b=b-a=b'

.1f a ~ band otherw1se a. b is same uPger bound. of' a and b;
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(U;e) ,'ls c~lled ~ ~irec~oid. The c~as~ o~ all directoids

forms ~ variety, 2 •~,. ~ith basis' x =::X, °o(xy)y~xy, x(xy)=xy

and x ( (xy) z~ = (xy) z. Let eil be the variety of commutative

direct~~ds. 'I~ o<u~~) satisfies \Ix .<f~'u~ x~;.) 1s a

semil~ttice~ then 0 iÖ;e) i, called a joinoid. The class of

all joinoids forms 0 a variety ;; defined by (xy) (xz) ~

(u(xy)') '(xz) ~elative tao 2J; 't!.J is the variety of cammu,tative

. . ,joinoi"d~~'o Both J and e3 are locally finite; but nelther' 1s

----fin±tely-gene~a.ted.~Let-~-'?--a~--':b.;~E-._!--Lthe c0!!!Outativ_~e__~~ _
j

directoid on F ~uch t~~t . ab=l, and t' iS the directoid

on F such that ab=1 and ba=c. V([) and V(!') are

finitely'ba~ed v~rieties. Every variety of .directoids i5

either trivial, sem11attices,· or cont~iris .V(~). Every non­

comrnutativ~ variety' of directoids contains V(~I).

A. RO~OWSKA:

Ordinal oroducts of modals.
A ~ode is an algebra ~f·type ~;~~~ which 19 idempotent

and entropic· (~ach singleton 1s a subalgebra and each ope-

ration W;Alofl'_A of ..0.. is a homomorphisml. Examples include .e
semilattices, CIM-groupoids, convex sets~ A modal is an

algebra (A,+,~ witn (join) semilatt~ce reduct (A,+) and

mode reduct (A,~) such t~~t the distributive laws

x, · .. (x j +xj) · · . xtv't4J = x, ... x j ... x'JtW+x, ... xj. • .xt.vrW hold

for all w in Q.., , ~ j ~ W'"C. Examples include modals of·

5ubalg~bras of modes, distributive bi~emilattices, real

numbers with the operation of max and the mode reduct

(R,(D,'». For mod~l~ (D,+,n.) and (E,+,.D...), the ordinal

9roduct DoE is (DXE,~,~), whe~e ~ is defined lexico-
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graphically. The ma~n theorem gives ~ sufficient conditi6n

for the ordinal product DoE to be a modal.

I~G. ROSENBERG:

Primality criterion for finite partial algebras

We give a primali,ty criterlon for finite partial alqebras

on . A. based on the full list cf maximal' partial clones on

A. One of them iso the setof every~here or nowhere defi.ned

operations on- A. The others are'of the form J?019' for

special relations ~iven helow, where Pol~ consists of.

all partial operations on -A preserv~n~ an h-ary 9.

~he relations have acertain reflexivity to which we ~ssoci­

ate' the least such .h-ary relation on -lo,.:~. ,h-1I containin.9

(O, •.. ,h-l), calle~ the model of ,. The·relation 1s

coherent if there .19 a homomorph!sm fram ~ onto it·s m9dei.

An .h-ary relation ~,on Ä determine's' a 'max~mal partIal

clone if ~~~~Ah, 0< h~ lAI and ~ is'either totcilly

, symmetrie and reflexive or coherertt~ .

4It J. SCHMID:

~ome natural quas1varieties ~~'6-semil~ttices

of 'p~seml1attices, where

We study tWQ series { B }.-n and l~nl (n>O) of 'quasivarieties

~n = nsp{ßnl iS.the semantical'and

f n the syritactical analogue of the n-th Lee class of distri­

butive p-lattices (i.e., f
n

Is defined by the formal

analogue - necessarily a. quasi-1dentity - .. of .the n-th Lee

identity) .. \'1e show that:

(1) f, {'\ (~n "~n-') ~ (lt for n >0,

(li) f n is the largest quasivariety o~ p-semila~t~~es not
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i\
,containing Bk for k >n,

(ii1) '~n may ,be axio~atlzed,.~~ a single although involved

quasiidentity within the class 'cf all p-semilattices.

1\ '
Here Bk ~tands for'the k-atcm Boolean algebra augrnented

by a new greatest ele~ent.

0.' SCHWEIGERT (joint work with. E. GRACZYNSKA):

Hypervarieties of a given type

-~~,-~~For-a given, type -1:'~(n~;nl~nl'~)-of-P()S-i-tive-number_s _

we associate hyperyariables F
1

of arity n
1

and define

recursively ~ype~t~rms of type .~~ By adding a~ extra ~ub­

stitution to Tar~ki~s rule we define a hyperequational logie

and proye ~ comple~eness theorem. A variety V of type ~

15 called solid if ev~ry transformation of the identities

cf V give hyperident{ties which hold for V. By·this

concert we c~n ~hqw that for a set Z. of'hyperidentities

of type _~' -which Is closed under hyp~requational lqgicthere

exists asolid variety of type "t:' which has L as hyper-

iden~it~es. 'Furtherm~re, we consider t~e following operator

ID onclasses of alg~bras of type "t' = (n" °2 , . · · , n3" . · · ) .­

Let ~ be an algebra of type ~ then ~ = (A;t~,t2, ..• t1' ... )

where t 1 ,is an n1~ary term i5 an ,algebra contained in

Ne prove that V 1s asolid variety Iff V=nSfD(V).

V. SLAVIK (joint work with J. JEZEK):

The free lattices over join~trivial partial lattices

We have proved that .the free lattice over a join~trivial

partial lattice P is finite iff P is finite and satis-
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fies the following four conditions:

(1) P contains no three-element 'antichain:

(2) I f a ') b, c > d are two' incomparable chains then

ea=b for some e" c (ar symmetrically):

(3)If a isincamparablewithachain b..(c<d<e tl:)en

fe~ d for sorne f ~ a;

(4) If a is incomparable with Ci chain b<c<d<e<:f

. 'then gf=e for same 9 > a.

H.G. S';rONE:

Ideal homamofohisms cf join semilattice$

.Ideal preserving homomorphisms .of jo~n semilattices 'play

a central role in endornorphism re~resentatien theory~ since

each homomorphism of algebras induces·ari ideal homomorphism

öf .their subalgeb~a join,semilatticesi ~nd bcnver~~ly.

Ideal homomorphisms are used here to ch~r~cterlze abstractlr

these monoids [~J. for"which f Is a~ e~domorphism of an

~lg~bia with an.ar~itraril~·givensubalgeb~a la~tice ~~­

~hese are preci$ely those mono,ids' (f] for which there' is

some ideal homornorphism of the join semiiatti.ce g:L-..L

such that the Cayley diagrarn. for . [gJ' 1s a .. suitable"

'homomorph~c image cf that for" [fJ~

A. SZENDREI:

Strlctly simple algebras and'minimal varieties'

An algebra Is called.strictly simple if it 15 finite, simple

and. has no nontiivial proper subalgebras. O~e of the main

proplems concerninq strictly simple aige~ras i5 which of
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them g.~nerate mini~al varieties·'. Recently. it was proved

that every idempotent strictly simple algebra generates a

minimal variety. This suggests the investi~ation of strictly

simple algebras 'havi~g '''suffiq{~~tly many" trivial sub~

algebras. Iri the ~a~~ several results on Abelian stri9tly

simple algebras with at. ~east two trivial .subalgebras

are discussed.

·-------~i

algebr~s without a~y proper s~~~lgebra (usin~ of cour~e

infin~tely many operations). Kollar proved that the

congruenee lattice of·a finltely generaied pseudosirnple

algebra" must be ~ chain of type G.Jg +1 where Cl 1s a

limit ordinale It 1s possible to get any of these congruence

lattices with our construetion. The main idea 1s to con~

struet first same endomorphisms of the alge~ra and then to

seleet fo~. basic operations those which admit these mappings

as endomorphisrns.
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J. TÜMA:

Grouo extensions and .lattice representations

I have been developing methods for construeting partition

and congruence lattice representations, and proved the

following theorem: Every algebraic latt!ce is isomorphie

to an interval in the ~ubqroup lattice of an· infinite group.

~. . The method has aiso. some potential to construct finite

lattice representatians •. Us10g the me~hod I recent~y faund

a new proof of the finite partition lattice representation

t~eare~. The representat10ns constructed in this prodf are

on much sma~ler sets than in the originai proof. The new

proof '19 based on combinatorial group 'theory,'name~y on

P. Haills Basis Theore~ and the Kurosh'Rewr~tirig ~roces~.

M. VALERIOTE (joint work 'with' R. McK~NZIE).:

Decidable varietles

We present and diseuss the following theorem:

Let V be ~ Ioeally finite variety of .finite typ~~ Then·

v: 19 decidable (has a recursive ~~rst order theory) iff

'V 15 equal to .J~ 0J@ fi, where ~ i5 a· decidable strongly

Abelian variety, ~ 15 an'affirie~ decid~ble.variety ~nd

~ 15 a decidable discriminator variety.

Consequences and baQkground of. this theorem are disc~ssed.

G.H. WENZEL:

Tolerances on lattices

Toleranzen auf Verbänden sind ref lexive, symmetrische ,.'

binäre Relationen, die mit den Operationen V ·und A ver-
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trägl~c~ sind. Sie ergeben. sich in natürlicher Weise als

Quotienten von Konaruenzen. Ist a eine solche Toleranz. - ~ - .., .

. dann. 1st die. ~enge L/9 der e-Blöcke wieder ein Verband

(Cz~dli, 1982). ~an kann den Beweis konstruktiv geben und

das Auswahlaxiom ver~~iden. Der zweite Isomorphiesatz lä~t

sich au~. Toleranzen erweitern, und die dabei aUft~etende~.

Idee~.haben Re~evanz bzg~. ~ines ~uf McKenzi~ zucilckgehenden

Problems: .11 Se~en .V,. W Verbandsvarletäten und Ilt(Voli) die

_____v_o_m_ v~r~e~ätenpro4ukt . V~W ~rzeugte Varietät. Ist

LEiH (\10 tv) äqtitvaie~t ~ur. Existenz einer Toleranz a von L,

die LJ6 ~ V (a"ls Blockrnenge) und L/9 E- W (als Verband)

erfU~lt?" G. Gr~tzer ~n~ E. Fried zeigten 1987, daß die

Antwort auf d~e g~stellte Frag~ i.a. negativ ist.

R. WILLE:

Tensor products of comolete lattlces in formal con'cept

analysis

The tensor produc~ of co~plete lattices L.
]

(j E. J) 15

defined to be the co~cept lat~ice of the context

({;fJ.~j'j~Lj'V) w)1ere x\7y iff there is a kEJ .with

xk~ Yk· . In formal concept analysis the' tensor product

accurs as concept lattice of direct product of scales.

For measurab~llty arid dependency theorems a characteriza­

tion of tensor products as closure system$ is u~eful. A

general characterizationis given and specializations ta·

particu~ar scales are shown.
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B. WOJDYLO (joint work with p~ BURMEISTER):

The meaning of basic cateaory theoretical nations in same

categories of partial algebras

For ~ finltary type ~ there are the following restrietions

for ,the existence of categorical constru~tions in the

cat~gories of partial algebras with homomorphisms, closed

homomorphlsms, quomorphisms, clased quomorphisms and

conformisms, respectively:

No. Notion (lom(t) ~=~om(t) Quom(t) Q'==tJuom(t) Q'onfft)

0 zero object - - + OCO)=0 0(0)'=0

j terminal object + (4).,e2 + + +

1d initial object • ' o(O)~e + ' 0(0)=0 0(0) =0

2 producta + (1),,'0 O~0, (O)~(n (1)~(O

2d coproduct· + U)""n O(~)=0 (t),pro U)tpfO

3 inverse limit· + + + + ...
3d directed colimit- + + + + +

4 ~qualizer- + + + (O)",(n~ (1j~(n (tJ'P fO

4d coequaUzera + "cp ~ 1 (01""(0 "cp ~ t "", ~ 1

5 '(muIIJ punback- + + 0=0 (0)",'.0 ~...

Sd (mult J pushout.-. + n" ~ 1 0=0 n~'~ 1 n~~ 1. .

6 limite + t1.)cpfO O=~ (0)", ,Cl 0:0

6d colimlt· + (1)eplo 0=.0 (')",10 O~0

. '.

Sur~ey on. the exis tence of different categbry theoretical concepts in some categories of

partia' algebras (" •.. means {hat the .chosen index set should be non-empty)

E. WRONSKA-GRACZYNSKA:

Regular identities and hyperidentities'

We deal with algebras of a given type, wi±hout nullary

operations. An identity p=q 1s called regular If the same

variables occur on its both sides. For a variety V, ·R(V)

denotes the variety of the same type .aS V, which is

defined by all the regular identities, satisfied in V.
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has Ascending Chain Condition

For a hypervar~ety V, R(V) denotes the hypervariety,

define~ by all the ~egular hyperidentities of v. L(~)

and L(~) denotes t~e.l~ttice of all varieties and hyper­

varieties of a'~~y~~ ~ype ~, respectively. Theor~ms:

(1) The variety V 'covers R(V) in the lattice L(~).

(2) T~~ hypervafiet:~·, V covers R(V) in the lattice ~('t').

(J) The ward problem· for an axiomatic t,heory V 15

solv~ble iff t~e wo~~ problem for R(V) 1s solvable.

- -~-,~~------

PROBLEMS:

M.H. Albert·

1. Find "reasqrable~',criteriaon a variety V which ensure

t~at· <*)' Con<Fv(~»

fo~ all fini~e" n.·

2. If every ~yst~m of ,equatio~s in finitely many variables

has a finite equ~valent subsystem relative to an algebra

M' of type ~, iso it true, that there 15 an ext~nsion

tt of 't", a 3"-v~.riety V sat-isfying (*) . and .a

finitely generat'~d algebr~ N in V such that ME][S(N,~)1

3. Is it .possible to prove ~hrenfeucht's conjecture without ex­

plicit or irn~li~it'referenc~to the Hilbert Basis Theorem?

4. Is· it true that the axiom scheme~ UEvery f.irst order

definable subset has bot)l.a supremum and an infimum ll

axiomatize the theory of complete lattices?

FV(A ) (k) . The values are known
. -0

k arbitrary, and for n;4, k=1,2.

W.J. 'Blok

5. 'Let A
-0

Det~rmine

for n=3,

<{o, ... ,n-l},~;> , n= 1 ,2, ... , {
n-1 if x=y

Xt-+ y =
min(x,y), oth.
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s.o. ·Corner

Let G be a graupe A conjugacy relation on G is an
- l 1

equivalence relation e such that (i) xSy ~ x- fj y - and

(ii) z9xy ~ z=x'y' for same x'ex and y'9y; A conjugacy

relation 15 special if xGe .x=e. Let Conj~G) (r.esp.

conjs(G)} denote the lattic~ of all·.cpnjugacy relations on

e G (resp. special conjugacy relations on G).

6. Is every lattice embeddable in C6nj(G) for so~e

group? In Conjs(ß) ?

7. Does Conj(G) determine. G ?

8. Öoes every ~aximal element in. conjs(G) have at most

five blocks?

J! •. A •. Oavey

9. The first order sentence <Vabcd) a,b~ c,d ~

(3e) a,b~e~c,d characterizes the finite.members· of

the order variety generated by ·1 ~i.e., complete

lattices). Is this a ~enerai phen~menon? In particular,

Is there a sentencewhich charact~~iz~~

. the finite members of the order vatiety .

generated by ?

10. Let OPNU denote the class of orrlered .sets which-have an

order-preservi~g near"unanimity functiort~ If P,'Q are

fi~ite members of OPNU whic~ gener~te the same variety

th~n the varieties Var P and Var Q generated by the

corresponding order-primai ,algebras are equivalent as

categories and conversely. In ·general, if P and Q

generate the same order ~~riety then .•~Pf({~,~!ep})

and ~SPf({Q,g/eQ}) are e~uivalent as catego~ies (here

ep is the congruence on ~ whos~ blbcka ar~ th~

connected components of P). Ooes it follow that
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I~.({~,~/ap}) 1s equivalent to ISP({g,Q/9 Q}) or

th~t Var ~ is eq~ivalent to 'Var g ?

More generally; for whic~ varieties V and W do we

implies
' .. IV

V =Cat ~1 .?

11. Let P b~ a fipite non-trivial order-primal algebr~.

Prove that Var P has only a finite number of simple

algebras. (l.conjecture that in fact there 1s only

one: P if ~ i~ connected and f/~p otherwlse.)

--.---:--1-2-~:l:-f·~V~i~s-a~t()-qai.~ly-f·in-ite-a-f-f-ine--complete-vari.e_ty. -O..-_._~ _

th~~ V 18 con~ruence dist~ibutive. R: McKenzie asks,

if we can ~ub ~ut "loca~ly finite~ h~re.

H·. Dobbertin

13. Let L be a distributive lattice. A'valuation is

a "mapping V.': fram L inta the non-negative reals

'whic'h satisfie~ 'the ide:ntity' v(avb)+v(aAb)=v(a).+v(b).

- ~~t Y(L) denote the set of all valuations on L,

~nd ~efine the compact convex set M(L) =
.{vE:V(L)IO~V~ll·. What are the extreme points of M(L)~

(Conjecture: ~he extreme·points of M(L) are precisely

the 0-1 valuations.)

G. Grätzer

We say that ~ 1s the unique arnal~am of the sublattices

A, B, with A()B = S if for every lattice containing AUB

as asubposet K 2 L holds.

14. Characterize the unique amalgamation property.

15. Is the variety of modular lattices closed for unique

amalgams?

c. Herrmann

16. Does Brauer-Thrall 11 hold for finite modular (non
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2-distributive) lattiees? (cf. Proble~ 35.)

17. Let K be a nlee quasivariety, e~q., type modular

lattices, representable relatiqn algebras. 15 there

an algorithm deciding A E. K' for finite A.1

M. Kamara and K. ,Keimel

Consider the reals, as a latttce ordered ring with identity,

i.e~ the algebra A ='(R;+,-,Ö,.,l,~,A) . with the usual

rin~ operation~ and the lattice ope~atlons correspondlng

to the usual total order. We ask SOMe questions about the

variety V generated,by A:

18~ Give a basis for the equ~tional theo~y of v.

19. 15 there a finite basis? .

21. Is there even a normai:f6rm for 'the terms?

T. Katr:i.rutk

Let P n (1 ~ n' < w) be the subvariety of the v'a!iety

P = pw . of all, p-algebras defined'b~ the,ldehtity'

(Ln) (X1"·.·"XnrV(X~".~ .Axnfv .... V()cl" ••.A~yt- 1.

be the subv~riety 6~'

(XAY)*" = x*v y. '.

p d~fin~d by the identity

It 1s known 'that PbCP1C. ••• CPnC·~"~CP~

22.. Let L 6.Pn (i ~ n< W) be a- fin! t~ly generated

p-algebra,I which is a subalg'e'bra of, some free p~algebra

in p, ..
n Is L a bounded' homomorphiC imaqe of a

free p-algebra in the elass P .,n .

23. Char~cterize the projective p~a~gebras in th~ rilass PO.
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E.W. ,Kiss

24. A prime quo~{en~ of a finite algebra A 1s defined

to have type zero ("constant typen), if the corres-

'~ondi~g minimal al~~bras have no unary polynomials that

-are permutations other than the identity map.

Deve~op a the6ry of ty~e zero quotients. In'particular:

a) giVe a characterization independent of minim~l sets;

b) describe all simple algebra~ of type zero;

~)_~escribe type zero v~rieties. When are they
_._-~---~~------

residually small?

25. Characterize varleties'that admit type 50nly.

----------

W.A. Lampe

- 26 .. If L 1s a latt~ce o~ equational theories extending

a g~ven theory,then it satisfies the following condit~on:

I'f At;; L, ' VA =1 then' ;Ja
O

' •• ~ ,an ~ A such that

(. · · (~ (aoAx) val )"x) ••• vanl1\x .= x for all x E L .

(M. Ern~, G. Tar~os). For example, let now B~ L,

~l~VB. Th~n one can prove in the same way that

3 b
o , .... ,bm E.B such that « ««( ••• «(aOAx)"bo)l\x)

• • • )v bIO)" ({aoAx)v ~1 )1\ xlv a 2 )J\X) • )v an )J\X = x for all

xE L. One can build other terms similarly. Are these e,
conditions for

one?

G. McNulty

(Answer:

L really stronger than the original

(G .. Tardos) Yes.)

27. For every positive integer n, i5 th~re an (n+1)-

avoidaple word which is not n-avoidable?

28 .. Describe those. sets ~ of ~quations such that for every

finite set A of terms
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IJ, 15 avoidable with respect to Z 1ff

every member of ~ 1s avo1dable w1 th respect to Z.

29. (An eId problem) Is it true that if A- 1s a congruence

modular algebra, Con A has finite height and A has

a one-element subalgebra then A has the unique

factorization property?

P. Pudl~k

30.: Let a binary operation be given. Consider a finite

set of rewriting r~les such that every two terms with

the same number of occurences af'variables (i.e.,.

equivalent in the free commutat!ve .semigroup) ar.e

equivalent with respect tq this sys~em. (For Instance,

o(~~~o(, oC(~~)~(o(~J~, (g(f')~++(~o(11.) A standard counting

argument shows that it i9 necessa-ry to use n(n ·,log n)

rewritings "tot.ra:r:tsforin' xl (x2 (. • . (x~'_1xn) • · .» into

x 7rl (xK2 ( ••• (x
1r

(n-l)x",n) •.. ),) 'for same permutation- "7(.

Find at le~st.one such permutation.

R.W. Quackenbush

31: What is the smallest first ordet defln~ble orde~

variety containing r? 15 it 'the class of bounded

lattices? (Ans~er: (M. Albert) Yes, in fac~.

= S{ P uRPSfP (~), where S{ = elem~ri:ta~y substructure,

Pu = ultraproducts. Can we mana~e'wlth6ut Pu?)

I.G. Rosenbera

Let A be a finite set, G a permutation grou~ on

{1 , ... , h} (h > 1) anrl ~'<;. A
h such that for all

(al,···,ah)E~ we have (i) ai~aj for all 1~'1 < j'~ h

(areflexivity) and (li) '(a1["l'·· · ,a1th)~~ ~ 1fE.G for

all permutations 1r of {1 , .•. , h}. We say that ~ 1s

strongly colorable 1f there ~s a (relation~l) homomoiphism

from ~ into 6'r; = t<1tl, ••• ,1fh) :7t~G}.
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32. Characterize the strongly ~olora~le relation~.

33. ~nvestigate the computational complexi~y of the

problem.

E.T. Schmidt

34. Characterize the rigid quotients in' finite modular

lattices. (Hint: Let alb be a prime quotient in a

modular lattice 'M and let .p:a/b~a/b a projectivity.

If M is a ~ubta~tice of the modular lattice L then

_~ can be taken as a projectivity in ~ (M-projectlvity)~

alb is a rig~d quotient of M if for every extension

Land for ~very p the restrietion of p 15 the

identity ~apping.),

35 ..Let alb pe a prime q~otient of -a finite modular

'lattiqe M and let L be another bounded modular

'lattice. Ne put L into the intervai [b,a],

identifying the zero of L with band the unit

with a. We get a partial lattice P .. Give a necessary

and sufficien~ conditio~for the pair (M,L) ·that

there exists a modular lattice generated by P in

which the interval [b,a] 15 exact.ly L.

36. Let A, B, 5 be subla~tices of L, AnB = S, AUB = L.

L pastes A and B together if (1) for all a6 A,

bE. B a< b ~'3s: a ~ s ~ b, and duallYi and ( i1) for

s6S the covers of 5 in L are either all in A

or·all in B, and dually. Instead of (ii) we take

(ii t
) for ses if a)-s. (a':A'S'), b)-s (bE:B'A)

then a"b € S" and dually. What are the properties of

'this .. pastin'g ll ?

·e
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D. Schweigert

37. Give a completeness criterion for the clone of multi-

valued operations.

38. Let us call a clone C· binary if C is qenerated by

the set C~ of operations of arity ~ 2 in c.

< 2· 2
Define C~vC~ = C<,C~). Describe the lattice of all

binary subc!ones on the set A={O,1!2}~

M. Valeriote

39. Does there exist a varie~y V subh that (1) the

equational theory of V Is r~cu~sive, and (2)~th~

equational theory of IIS.i> .(F" (~) ) 15 not recursive?

H. Werner

40. It would be mor:e' reasorl,able to call. a variety . V

affine ~ornplete ~f all non-simple algebtas lri V .are

affine ~omplete. The va~tety of .vecto~ s~aces ovet a,

field F', the' variety. of sets.;. etc. are affine

complete in this sense. Investlqate the properties

of these affine complete varleties.

R. Wilie

41. For which direct ~roducts of contexts does a common

refinement exist?

42. Is every complete.·lattice iso~or~hic to the lattice of.

complete congruence relations oE some.complete lattice?

Berichterstatter: P.P. P~l~y
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