
....~
()berwoffach

E20/~AO

MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e r ich t 11/1988

Diophantische Approximationen

13.3. bis 19.3.1988

Die~Tagung, die unter der Leitung von P. Bundschuh (Köln)

und R. Tijdeman (Leiden) stand, führte 43 auf dem Gebiet

der Diophantischen Approximationen arbeitende Wissenschaft-

ler zusammen. Bei ihren Vorträgen standen arithmetische Frage-

stellungen (Irratiqnalität, Transzendenz, algebraische Unab-

hängigkeit) sowie diophantische Gleichungen im Vordergrund

des Interesses. Einen weiteren Schwerpunkt bildeten Probleme

aus der Gleichverteilungstheorie.

Auf die Durchführung der in der Vergangenheit üblichen "Probl~m

Session" wurde diesmal verzichtet; stattdessen enthält der vor-

liegende Bericht im Anschluß an die Vortragsauszüge eine Samm-

lung offener Probleme, die den Tagungsleitern von verschiedenen

Teilnehmern eingereicht wurden. Darunter befindet sich auch ein
)

.Problem von K. Mahler, das dieser kürzlich - wenige Tage vor sei-

nem Tod - noch P. Erdös mitgeteilt hatte.
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Vortragsauszüge

J. BECK:

Irregularities of distribution (An improvement of Roth's theorem)

In 1954 K.F. Roth proved the following result: Let P1 ,P 2 ,.··,PN

be N points in [O,l]k. Then there is ~ box B(~) ~ [O,x~]
i=l 1

such that

k-l
-2-

» (logN)

The case k = 2 was improved by W.M. Schmidt. In 1972 he proved

the best possible result log·N.
k-1

For k > 3 we can write (logN)-2-. (loglogN) c k lc
k

> 0)
k-l
-2-

instead of (logN) . This improvement enables us to prove e.g.

the 2-dimensional analogue of van Aardenne-Ehrenfest's theorem.

P.-G. BECKER:

P-adic continued fractions

In the year 1968 Schneider introduced a special type of p-adic

continued fractions with properties similar to those known in

the real case. Although, as recently found by de Weger, the

analogon to the theorem of Lagrange is not true for p-adic con-

tinued fractions, one can prove that for periodic p-adic con-

tinued fractions an analogon to the theorem of Legendre holds.

Theorem: Let p be an odd prime and let c be a rational number

wi th Ic Ip = 1 and IC E (Dp" W.

e·
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i) If the p-adic continued fraction of Ic is periodic,

then it is nearly purely periodic (i.e. there are

a o a h - l
a i E lN, b j E {l, ••• ,p-l} with /"C = b O+ Fb

1
1+ •• :+ ~I).

ii) Furthermore " if b h = 2bO' - then the p-adic continued frac­

tion is symmetrie (i.e. bv=bh - v for v=l, ... ,h-l and

av=ah - v - 1 for v~O, ••• ,h-l).

'·V. I. BERNIK:

Die inhomogenen metrischen Sätze über Approximationen auf Mannig-

faltigkeiten

Es sei P(x)

und-L~(WiC) die Menge der x E m, für welche die Ungleichung

·1 p (x) +c I < H-w unendlich viele Lösung~n hat. Es ist bekannt,

qa{l ·fijr c ~ (D \lnt;! w >. n gi1t ~ '~tn (w, c) == O. Hier bezeichnet .'

~A das Lebesquesche Maß von A.

Satz: Für w > n und beliebige c E m gilt

o.

D. BERTRAND:

Heights and. volumes in Baker's theory

Let G qe a commutative algebraic group defined over a number
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field K, and embedded in .some projective space. We shall

study the behaviour of the associated height function:

a) on algebraic subgroups of G and b) on quotients of G,

in suitable projective embeddings.

a) yields estimates for the linear dependence relations lin­

king n-tuple (P1, .•• ,Pn ) of points in G(K), extending the

results of Loxton, van der Poorten and Masser in the multi-

plicative or elliptic case.

b) provides a new proof of Baker type inequalities for linear

forms in logarithms or abelian integrals in the rational case.

F. BEUKERS:

A p-adic Eroof of the Lindemann-Weierstrass theorem following

Bezivin and Robba

The statement (LW) of the Lindemann-Weierstrass theorem is well-

known. Corisider now the following statement:

d(BR) Let L E ~[x" dx] be the differential operator defined by

Ly := x 2Y'(x)+(x-l)y(x); and let u(x) E (D[[x]] be a locally con-

vergent power series with rational coefficients. If Lu is an

element of ~(x), then so is u. •Bezivin and Robba prove that (LW) and (BR) are equivalent assertions.

Moreover, they prove (BR) either directly or by applying a gene-

ral result of theirs on differential operators with many large

p-adic radii of convergence. The proof ultimately relies on

F. ijertrandias' sharpening of the Borel-Polya-Owork criterion
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for rationality of power series.

In addition, during the conference it turned out that an

even simpler proof of (LW) exists. ·It is based on the ideas

of the above approach, but requires no p-adic analysis ..

D.W. BOYD:

Multiplication module one by Salem numbers

We consider the mapping of the interval defined by Tx ßx (mod 1),

•

where ß > 1. The question -of interest is whether 1 is a periodic

point of T. This is known to be the case if ß is a Pisot number

but it is unknown whether it must be true if ß is a Salem numbero.

If ß is a Salem number of degree 4, then the result is true and

·the periods depend in a rather regular way on the coefficients

of the minimal polynomial of ß. If ß has degree 6, we describe

some computations which show that this is not the case. There

are some very small ß which have very large periods and pre-

periods. We give a heuristic explanation of the differences bet-

wenn d = 4 and d > 4 •

B. BRINDZA:

On Thue's eguation
n

Let F(X,Y) = TI (X-~.Y) be an irreducible binary form with ra-
i=l ~

tional integer coefficients (n > 2) and m be a non-zero rational

integer. Further, let H, Dan? d denote theoheight, discrimi­

nant and the degree of the splitting field of F, respectively.
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Theorem: All the rational integer solutions x and y of the

equation

F(x·,'Y) m

satisfy

1 + _3_ 1
Iyl < max{2nH n-2 Imin, exp(c(logI201)3(logI2ml)3)}

where C is an effectively computable constant depending only

on n and d.

W.D. BROWNAWELL:

Criteria for measures of algebraic independence

P. Philippon and the speaker have given criteria furnishing

measures of algebraic independence in dimension d. Philippon's

criterionhas recently been rendered effective by E.M. Jabbouri.

We show that these criteria are the two extreme cases of a

•

family of criteria in which increasing radii of zero-free regions

(of polynomial ideals in ~[xl, •.. ,xn]) correspond to ever shorter

sequences of ideals, until finally the sequence degenerates to

a single ideal.

P. BUNDSCHUH:

Linear independence of certain algebraic numbers

1Let k > 0 and q > 2 be integers, and let T denote a set of 2~(q)
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representatives.mod q such that T·U(-T) is a complete set of

residues mod q coprime with q. Then we sketch a new proof of

Theorem 1: The numbers (cotnz) (k-l) I / (a E T) are linearly
z=a q

independent over ~.

The same method can be ap?lied to show

Theorem 2: If k _> 2, then the numbers (_._1_) (k-l) I (a E T)
S1nnz z=a/q

are linearly independent over ~. In the case k = 1 this is true

iff X(2) +1 for every Dirichlet-character X with X(-l) = -1.

Theorem 1 is due to T. Okada and K. Wang and contains earlier

results of S. Chowla, H.Hasse, and H. Jager-H.W. Lenstra. We

give also (best possible) linear independence measures for the

numbers involved in the above theorems. Furthermore we give a

Baker-Birch-Wirsing-~tyle result concerning non-vanishing of

the values of certain Dirichlet-series at posi tive integers •.

W.W.L. eHEN:

Irreqularities of distribution (Joint work with J. Beck)

Let P be. a distribution of N points in the unit torus UK+L

[O,l] K+L, where K > 2 d L > 1 F- t d_ an _. .or every compac a~ convex

,~ body A in uK, any number A E (0,11, any proper orthogonal trans-
K· K'

formation ~ in m and any vector ~ EU, let A(A,~,~)

{T (,X~) +!!: ~ E A}. For every y = (Yl' ••• 'y L) E uL
, let B (y)

[0 ~Yl ).?<.••• x [9 'YL). Write
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where ~K and ~L denote respectively K- and L-dimensional volume.

Further, let '-denote the group of all proper orthogonal trans­

formations T in mK , and dT the volume element of the invariant

measure on:l", normalized such that ~ dT = 1.
. K

Theorem: Let A be a given compact and convex body in U • For

every ~natüra-r. number N, there exists a distribution P of N points

in UK+L such that

1 I 2 1- l/K
f·'/ f ·.!.L D[PjA( A,T,~)x:B(y)] I 'dy d,!! dT dA« A,L N
or'\JKu

P. COHEN:

Some transcendence problems for automorphic functions

One knows that if A is a projective group (or abelian)

•

variety defined·ove~ the. field ,j and on~ irnposes. on,the .ex-

ponential map exp: ~n + A(~), n = dim~A" the normalisation

condition that exp(Q) and dexp(Q) be algebraic, that exp(P) is

transcendental for P algebraic, P f Q.

W~ propose -the follow~ng conjecture whose solution would give

an analogousresult for projective varieties which are not necessa-

rily group varieties:

Conjecture: Let X be a compact connected complex.manifold carrying

a (Hodge) metric 11 II~, endowing it with the structure of a pro­

jective variety definable over the field of algeb~~ic numbers.
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Suppose that the universal covering X·of X may be-realized

as a domain in complex Euclidean space of dimension dim~x,. with

covering group freely acting bi-holomorphic automorphisms of

X, and corresponding holomorphic covering map ~: X ~ x..

Then not all the following are algebraic:

(I) for any u,v E X, u +v:

u, <p (u), d<p(u), v, <p(v)

(11) for any u E X, ~ E T(X):

2
u, <p (u), d<p(u), cH· (<p*II~IIH) (u)

..

where 1I ..~II~(u)- = 1 with 11 II~ the natural Euclidean metric of the

ambient space of X and

t1~)
,- ~ .

c H 1 if curvature ( tI - 0

= TI if curvature ( 11 li~) f o.

P. DEBES:

Arithmetic variation of fibers in families of ·curves

(Joint work with M. Fried~ Univ. of Florida)

Simple data'given entirely by Group Theory, called a N~~ls~n

class, determines families of covers of the'affine' line.that:

are complete with respect to a simple moduli problem. .Hurwitz.

mono~romy action determines 'much about the geometry. of the ~.

family: field of definition K, the possibility that the··-para­

meter space for the family" is a rational variety. We will .explain

an arithmetical use of the'monodromy action: a criteria.for the

existence of rational points on each K-fiber of the family. We

will illustrate the theo~y with an example which originates
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in an exceptional case of the Hilbert-Siegel problem. Exploration

of application of this kind of results to the elliptic curve

rank problem will be continued in later work.

J.M. EVERTSE:

Weighted unit equations (Joint work with K. Györy)

Let~ be the field of algebraic nurnbers, let K be an algebraic

number field of degree d, and let S be a finite set of places

on K.containing all infinite places. let Us be the group of

S-units, U
s

::;: {t; E /A* 13 n E 7l with ~n E US } (5s is called the

group of division points of Us) .

We consider the equation:

(WUn ): ulx1+ •.. +anxn = 1 in x 1 , .•. ,xn E r, where r

r = 5s ' and a1, ••• ,an E l~*)n.

(WU 2 ) has only finitely many solutions. If r = Us then

(WU
2

) has at most 3·7d+2Isl solutions. This can be generalized

as follows:

Theorem 1: If r = 5
s

then (WU
2

) has at most 3·7d+2Isl +

(12 d log log 3 d)4 solutions.

If n ~ 3 then (WUn ) has infinitely many solutions in general,

hut the minimal number of (n-1)-dimensional subspaces of ~n con-

taining all solutions of (WUn ) is finite. Denote this number by

B(n,~,r). Call two tuples ~,~ E (/A*)n r-equivalent if ai/ßi Er

for i = 1, .•. ,n (notation ~[~). If ~ [~ then B(n,~,r) B(n,ß..,f),

                                   
                                                                                                       ©



- 11 -

hence we may write B(n,a,r) for any r-equivalence class ~.

Then we have

Theorem 2: For all but finite~y rnany r-equivalence classes 8L

B(n,a,r) 5 (n!)2n+2.

4i' K.GYÖRY:-

Unit eguations with rational coefficients (Joint work with

B. Brindza)

Let Kbe a normal extension of W of finite degree n, UK

the unit group of K, and a,b,c E 1l , {O}. We deal with the

unit equation

( 1) ax+by=c

One may assume wi thout loss of gene~ali.t.y that a, .b, c a~e co­

prime positive integers with' c ~ max(a,b). We. do not distinguish

between conjugate solutions of (1).

Theorem 1: There exists an e~fectively computable number e1 (K)

such that if c > e
1

(K) then with at most one exception, each

~ solution of (1) satisfies

(2) min{ fXl , fYl} < c-1exp( ( (log 2a) (log 2b) (log cl) 2/3) .

Further, if ab > 1 or n is odd then each solution of (1) satis-

fies (2).
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If ab = 1 and n is even then (1) can have a solution for which

(2) does not hold. Theorem 1 implies that if c > C2 (K,a,b) then

(1) has. at most one solution, and if ab > 1 or n is odd then (1)

is not solvable.

Theorem 2: Apart from finitely many triples fa,b,c) E m3 with

coprirne a, b, c, (1) is solvable if and only if either

a) c = a+b when x = y = 1 is the only solution of (1) or

b) c = E+ EI. for some real quadratic units E, EI which are conju­

gates to each other. In this case x = E, Y = EI is the only

solution of (1).

M. LAURENT:

Some new results on the non vanishing of p-adic regulators

.'

Using tools from transcendental number theory we give lower bounds

for the p-adic rank of certain matrices whose entries are logarithms

of algebraic numbers, in terms of the Galois action on these num-

bers.

J. LOXTON:

Zeros of Newrnan polynomials

A Newrnan polynomial is a polynomial

n
L cnmzm.with c

m=Q nm
o or 1.
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These polynomials are pamed after some conjectures of D.J. Newman

on the order of magnitud~ of

min max Ip (z) 1
piz 1 =1 n

n

and max
p

n

Clearly the zeros of such Pn (z) lie in the annulus t < IzI· < 2.

Computer experiments suggest that ~hese zeros fill out a rather

interesting shape S. The extreme zeros include·the omnipresent

. number ~ (15+1) •

1 1 &"In fact S n :IR = [- "2{1"5+1), -"2 (..,5-1)] and the convex hull of S

is tangent to the positive real axis at 1.

H. LUCKHARDT:

Herbrand-Analysen zweier Beweise des Satzes von ~oth: polynomiale

Anzahlschranken

A previously unexplored method, combining logical and mathernatical

ele~ents, ~shown to yield substantial numerical improvements in

the.area of diophantine approx~mations. Kreisel illustrated the

method abstractly by noting that effective bounds on the numbere of elements are ensured if Herbrand terms fram ineffective proofs

of E2-finiteness theorems satisfy certain simple growth conditions.

Here several efficient growth conditions for the same purpose are .

presente~ that are actually satisfied in practice, in particular,

by the proofs of Roth's theorem due to Roth himself and to Esnault/

Viehweg. The analysis of the former yields an exponential bound of
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urder exp(70E- 2d 2 ) in place of exp(285E- 2d 2 ) given by Davenport/

Roth in 1955, where a is (real) algebraic of degree d > 2 and

la-pq-1j < ~-2-E. (Thus the new bound is less than the fourth

root of the old one.) - The new bounds extracted from. the other

proof are polynomial of low degree (in E- 1 ,10gd).

Corollaries: Apart from a new bound for the number of solutions

of the ~orresponding dioph~ntine equations and inequalities lamong~

them Thue I s inequali ty), log log q < C v S/ 6+E, where q are the
v a,E v

denominators of the convergents to the continued fraction of u.

M. MENDES FRANCE:

On Euler like products (Joint work with A. van der Poorten)

Consider the dynamical system m2~ :m2 , (xo'YO) t (0,0) ,

x n+1 := q>(xn,yn )

Yn+l := 'l'(xn,Yn )

where we assume

(i) Yn+l/ xn+l F(Yn/xn)'

(ii) Yn+1/Yn G(yn/xn ),

(iii) x -.. xn co

(iv) there exists a continuous V with V(ep (x,y) , 'I' (x,y» V(X,y) •

Then Yn converges to Y
oo

where F
n

is the n
th

iterate of F. The value of Y
co

is determined
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by V(xoo,Ym ) = V(xo,yO) •

Several examples are discussed:
2 2

1. <p (x,y) = X:Y' 'i'(x,Y) = -!+y., V(x,Y) = y-x •

Then one obtains the/well known Euler product

n
JI (1+~2). = (1-~) -1 I.~ I < 1

n=O

2 •. <p(x,y)

Then

2 '2(x+y) (2y -x )
xy

x+y
'i' (x,y) = y. X- V(x,y)

2 22 x -4y
y 2 ·

(x-y)

JI {~1+ _1_}
.:.n=O.· F n (~)

The value of the last product was discovered by R. Ostrowski.

M. MIGNOTTE:

.Arithmetical applications of a theorem of Erdös-Turan

A theorem of Erdös-Turan says that the arguments .of.~he roets of

a ~o~plex ~o1ynomial are well~distributedwhen thc coefficients

of the polynomial are "not to big".

We apply this result to integer polynomials, but after a prepara-

tion via same Siegel's lemma. Our result contains a theorem of

Michel Lang'evin.
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J. MUELLER:

On the number of good rational approximations to algebraic numbers

Recently, Bombieri and van der Poorten obtained a result (H. Luckhart

obtained a similar result in 1984 hut unpublished) on the number

of exceptional approximations in Roth's theorem: Let 0 < 0 <.0 0

where '00 is a fixed number less than 1. Let a be an algebraic

number of degree n and of absolute height H(u) which is defined

as the largest coefficient in absolute value of the defining poly­

nomial of a Qver ~. Denote by N(~) the number of rational approxi­y

mations to a with

la-~I <. 1 2+6
y 64 max ( Ix I , Iy I )

then

2
log log 4'H(a) + 3000 (logn) 1 (SOlogn)

log ( 1+6 ) <5 5 og <52 ·

Schmidt and I observed that the first term in the above inequality

is best possible.

Theorem: (Mueller & Schmidt) There are infinitely many algebraic

numbers a of degree n such that

-1log 10gH + 10g(nö(4+2<5) )
10g(1+0) 10g(1+0)

H. NIEDERREITER:

New low-discrepancy sequences

We generalize and improve earlier constructions of low-discrepancy
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sequences given by Sobol ',- Faure, and the speaker. For any

s ~ 2 this yields sequences in the s-dimensional.unit cube

with the smallest discrepancy that is currently known. The con-

struction is based on the theory of nets and (~,s)-sequences

developed by the speaker and on algebraic techniques using formal

Laurent series.

"K. NISHIOKA:

Algebraic independence of gap series

We shall discuss the necessary and sufficient conditions of

algebraic independence of certain power series using Evertse

theorem.

kl
Example 1. Let f(z) = r z · and al, ••• ,a be algebraic numbers

k=l n
with 0 < la

1
· I < 1. If no a./a. (if j) is a root of unity, then

1 J

f(a1), ••. ,f(an ) are algebraically independent.
~ kl+k .

Example 2. Let f(z) r z· and al, ••• ,a be algebraic numbers
k=l n

with 0 < lail < 1. If al, ••• ,an are all distinct, then f(a l ),

••. ,f(an ) are algebraically "independent.
00 k

Example 3. Let f(z) = r (ke]z and al, ..• ,an be algebraic numbers
k=l

with 0 < lail < 1. If al, ••• ,an are all distinct, then f(a l ),

••• ,f(an ) are algebraically independent.

P. PHILIPPON:

Zero estimates in finite characteristic

We show that the classical zero estimates on commutative algebraic
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groups extend when the base field is not required to be of

char~cteristic zero provided that the notion of order of vanishing

is appropriately modified.

G. RHIN:

Transfinite diameter and irrationality measures

We use some results on the "integral transfinite diameter" of

areal interval to get a new method that provides effective

irrationality measures for logarithms of rational numbers. We

2prove that if a, b are positive integers such that (Iä-Ib) ~ 0,6

then it is possible to give an effective irrationality measure

of 10g(E). The previous bound was ~ = 0,367 •••• We give some

information on the limit of the irrationality measure given by

this method for log 2.

A. SCHINZEL:

A decomposition of integer vectors

A proof is outlined of the following theorem.

For all positive integers k > 1 and ~ < k and for every integer

with the height h(n) = max In. I there­
l<i<k 1

exists a decomposition

R-.- -
n E uiPi

i=l

- E 1lk -where u i E m, Pi and linearly i~dependent vectors Pi satisfy
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the inequality

"R­

n
i=l

H.P. SCHLICKEWEI:

h(p. )
1

k-:~

< h(n)k-1 ~!.

The subspace theorem

Generalizing W. Schmidt's recent quantitative version of the

subspace theorem we prove.

Theorem 1.: Let K be a number fieldof degree d. Let s = {O,P1' ••. 'Ps}'

where the p; are rational primes. Write , ,. for the p.-adie valu-
.L J J

ation "( I ,1
0

denoting the standard absolute value). Suppose that

for each j (0 ~ j 2. s) we are given linearly independent linear

form~ Llj), .•. ,L~j) in n variables with coefficients in K. Con­

sider the inequality

(1) ( ~ Idet(L
1
(j), ••• ,L(j» I .) 1~I-eS

j=O n J

where 0 < eS < 1 i5 given, where det(Llj), ... ,L~j~ denotes the

determinant of the coeffieient matrix of the L~j)· and where
1e I~I = (x~+ ••• +x~) 1/2.

Th . t b T T f ",n W1· there eX1S proper su sp~ces 1 , .... , t 0 w

26n 6 -2
t < (8 (5+1) d! ) 2, (s+1) eS

such that each rational integral solution ~ of (1) either lies
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in one of T1 , •.• ,Tt or has norm

I~I < max {(n!) 8/0 ,H (L1°» , .•• ,H (L~s»}

where H(L(~» is a suitable defined height.
~

As an application we obtain an explicit upper bound for the

number of solutions of S-unit equations.

We can give aversion of the above result where ·the variables xi

lie in K instead of m.

J. SCHOISSENGEIER:

On the number of lattice-points in a right-angled triangle

Die Anzahl der Gitterpunkte in einem rechtwinkligen Dreieck der

Form {(x,Y)1 O~x~N,O~y~.ax} hängt wesentlich von der Summe
N' .
E B1 (na) ab, wobei BI (x) = {xl - t. Es genügt, den Fall a E (0,1)' m

n=l
zu betrachten. Ist- a = [OiaI,a2, ••• ] die Kettenbruchentwicklung von Cl

p
mit den Näherungsbrüchen ~

qn

s .. qmin (i, j),qmax (i, j) -Pmax (i, j» für i,j >
° und1J

1.(1-(-1) a i +1 )
i-I

(_I)a j +1K. II für i > 0,1 2
j=O - ej =i (2)

so gelten die Abschätzungen
N

min L BI (na) = - j ( E a. +1 - r K. K • s .. ) + 0 (1) ,
I~N<qm+l n=1 2li~m 1 2li~m 1 ) 1J

2 j~m
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1 ( La. + L K • K • s. .) +0 (1) ..
8 2 f i ~m 1.+1 2 l' i ~m' 1. J 1. J

. 2rj~m

•

1

Daraus ergeben sich eine Reihe von Folgerung~n. Z.B. ist für

a = ~(/t2+~-t) (t eine positive ganze Zahl) lim 10g1 N ~ B1 (na)
2 . N+c:o n=1

16l0~(t+Ct) für gerades t, und für ungerades t ergibt sich

t t 2+2
16 log (t+ a) t2+3

J. SILVERMAN:

.He~ghts .. and inteCJ:'~~~ points

Lang.has conjedtured:.
"A

I h{P) »K h(E) for non-torsion points P E E(K).

11 )E(R) I ~ eKl~ran~E(K) for integral points on a minimal

e'qua·tion for· E.

Earlier I proved that I ~ ~I. Reeently, Mare Hindry. and 1 proved

aversion of,I in whieh the » eonstant depends also on the Szpiro

ratio oE = h(6E)/h(NE)·· Sinee it is known that OE «K 1 for function

fields, we obtain an unconditional proof of land 11 in this c~se •

C.L. STEWART:"

On the number of solutions of th.e. Thue equation

Let F(x,y) = xn+an~IXn-ly+ •.• +aoyn E Z[x,y] with non-zero dis~
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criminant and with n ~ 3. Let ~ > 0, let h be a positive in­

teger and let h
1

be any divisior of h with h 1 > h 2 / n + c
• We shall

show that the number of solutions of the equation

F(x,y) = h,

w(h 1 ) +1
in coprime integers x and y -is at most C1n for h > C2 ,

where Cl is a number which is effectively computable in terms of E

and C2 is ~ nurnber which is computable in terms of n, E and

H := m~x lai I. Here wehr denotes the number of distinct prime
1

factors of h 1 •

R.F. TICHY:

The discrepancy of digit-depending sequences

For a wide class of number-theoretical functions t(n) depending

on the digit representation of n to a certain base q, distribu-

tion properties of the sequences (t(n)·x) are studied and best
n=O

possible discrepancy-estimates are given. The estimates depend on

the approximation type of x. First results are due to M. Mendes France,

J. Coquet et al. Several refinements and generalizations are ob-

tained.

Theorem: Let x be of finite approximation type n. Then the discre-

pancy D
N

of (t(n)x) satisfies the estimate

_! +E
D

N
« (logN) 2n (E: > 0),

and this estimate is best possible if x is not of type n~ < n.
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R. TIJDEMAN:

Representations as sums of elements of finitely generated groups

Report on the-following results proved jointly with Lianxiang Wange

1. (To .appear in Pacific-J.Math.)

Every sufficiently large integer. has at most four representa~

tions of the form

N = 2a 3b + 2c ,+ 3d w;th a b-c d"E ~.. ", "' >0 •

If N is large and admits four representations, then it is of

the form 20. + 3 ß with Cl, ß E 1l.

2. (To appear in Indag.Math.)

Let G and·H be ~initely gep~rat~d subgroups of a: '{O} and

m, n E 7L +. Let "a 1 ' ••• , am and b 1 , ••• , b n in a:." Put F = G n H •

If a admits non~degenerate representations

then there are finite subsets V of G "and W of H, the cardinali­,
ties of ~hich depend only on G, H, m and n, such that gi =

v.f., ho = wof'. with V 1.' E V, WJo" E W, f1.0,fJ! E G n H for all i
1. ~ ] J J

and j. Moreover, the representations have a common c~ntraction

over G n H.

                                   
                                                                                                       ©



- 24 -

K. VÄÄNÄNEN:

On arithmetic properties of G-functions

Let K be an algebraic number field of finite degree over m.
For e~ery place v of K we denote by I lv the corresponding

normalized absolute value. Let gl(z), •.• ,gn(z) be algebraically

independent (over K(z» KG-functions satisfying g1,,(z) =
n
LA .. (z)g.(z) (i=l, ... ,n), where A .. (z) E K(z). Then we have •

j=l 1) ) 1J

the following

Theorem: Let P E K[X 1 , ... ,xn], P $ 0, be a polynomial of degree

~ A and height h(P). Then there exist positive constants c, A,

depending only on the functions gi(z) and n such that for any

8 E K of height h'(8) 2. h (~ee) satisfying

logh> (1+max(3,")J)4nlog logh,

-c A( iog h) (4n-l )/4ri (log log h) 1/ 4n
lel v < e

for all h(P) large enough.

P. VOJTA:

A refinement of Schmidt's subspace theorem

Schmidt's subspace theorem asserts that a certain diophantine

inequality pertaining to hyperplanes in projective space holds

for all points outside a finite set of linear subspaces. As ori-

•
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ginally proved, this set depends on the number field, the set

of excluded pri~es, and on E> 0, as weIl as the set of hyper­

planes. We show that Schmidt's inequality holds -for all points

outside Z1 U Z2' where Z1 is a finite set ~f points (depending

on all data, as before) and Z2 is a finite set of linear sub­

spaces depending on the set of hyperplanes but independent of

the number field, the set of excluded primes arid E > O.

G.' WAGNER:

On means of distances.Dn the surfache of a sphere

On the surface 5 of the unit sphere in 3-dimensional euclidean

space we study two extremal problems. Let xf' .... ,x
N

be' a fixed

set of points on 5 and let x E S' bea .variable point. ,~ •• , denotes

the euclidean distance.

1. We obtain sharp lower (upper) bounds for the maximum (minimum)
, N

on S of the a-Riesz potentials L Ix-x ., a ( ~ 2 < a < (0) . and the
N j=1 J

logarithmic potential L loglx-x.l.
j=1 J

2. We obtain sharp lower (upper) bounds for the a-energies

L 'x. -xk Ia (- 2 .< a < 2) and L log Ix . -xk I.
j~k J . j<k J

Ta give an example, we prove the inequality

N(N-1)

j~k Ixj-Xkl ~ (iE l 2

~(1+0 (1) )
N
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I. WAKABAYASHI:

Algebraic values of functions on Riemann surfaces and the unit disk

First we generalize the Schneider-Lang theorem to functions on

punctured Riemann surfaces by using Jensen's fomula for Riemann

surfaces. Next we improve the Schneider~Lang theorem which was

generalized to functions on the unit disk by Gramain-Mignotte­

Waldschmidt. This improvemene is achieved by estimating more pre- ....

cisely the Blaschke terms in Jensen's forrnula.

M. WALDSCHMIDT:

Some topics in transcendental number theory

We first give irrationality results for theta functions by

Gel'fond-Schneider's method (joint work with P. Bundschuh).

Next we consider the algebraic independence of Liouville numbers

(joint wirk with Zhu Yao ehen). We mention recent results on

lower bounds for linear forms in logarithms (work of Blass, Glass,

Manski, Meronk and Steiner on Baker's method, and joint work with

M. Mignotte on Schneider's method for linear forms in two loga­

rithms). Finally we state some results due to D. Rayon finitely

generated dense subgroups of mn .

B.M.M. OE WEGER:

The sum of two S-units being a square

Let Pl' ... 'Ps be fixed primes. The set of S-units is
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We study the diophantine equation

(1)

in x,y E ~, z E m. Without 1055 of generality we may study

(1) with conditions

(2)

~ n]N, y E C n ~, z E 2Z;

z > 0,

squarefree.

The generalized Ramanujan-Nagell equation x+k z2 (k fixed)

i~ a special case of (1).

Theorem A: The solutions of equation (1) with conditions (2)

satisfy

max(x,lyl,z) < Ci

where C depends on Pi' ••. 'Ps only"and is effectively computable.

The proof is based on (Yu's) bounds for p-adic linear forms in

logarithms.

Theorem B: For s = 4, Pl, ••• ,P4 = ~, ••• ,7, equation (1) with con­

ditions (2) has exactly 388 solutions. The one with largest

max (x, I y I ,z) i s x = 3 13 . 5 3
I Y = - 2 • 7 3 , z = 1411 7. '

The method of proof'works in p~iciple for .. any PI' ... ,ps.' It uses com­

putational p-adic di.ophantine.' approxima~ion techniques,. bas'ed on the L3_

algorithm for lattice case reduction.

(Ref.: S.M.M. de Weger, Algorithms for diophantine equations,

PhD,thesis, Univ. of Leiden, 1987, Chapter 7)

                                   
                                                                                                       ©



- 28 -

J. YU:

Transcendence theory in char p. Special zeta values

We propose to prove the transcendence of Carlitz zeta values

at all positive·int~gers. These are the values in lFq«T»

given by

l;(m) L N-m

monic NElFq [Tl
m > 1 integer. •

Let Ec be the Carlitz module, with period TI. If m is "even",

i. e., rn == 0 rnod q-l, Carlitz showed that r; (rn) In m is essentially

the rn-th Bernoulli-Carlitz nurobers in F (T). If m $ 0 mod q-l,. q

we manage also to prove that l;(m)/n m is transcendental. Our starting

point is the tensorproducts of Carlitz modules introduced by

G. Anderson and a formula of G. Anderson and D. Thakur relating

the zeta values wi th the exponential maps pararnetrizi'ng Anderson' s

tensor products.We"shall prove versions of Hermite-Lindemann and

qualitative Baker 1 s theorems for the ~lgebraic ~roups in question,

which irnply the transcendence of t(m), and l;(m)/i m (when m "odd")

respectively.

K. YU:

Linear forms in p-adic lo9arithms
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2n i/hp an odd prime number and set K := KO (1;4). (1;h:= e ). Let

D : = (K: <D] , m: = max{t E 7l, t ~ 0 11; t E K }. Let p be a pr ime ideal
2

of the ring 'cf integers in K, lying above Pi denote by e}Oand, f~

the ramification index and res'idue "class degre.e, respect·ively.

For a E K* denote by ord,.a the order to which~'P divides the frac­

tional ideal (a) generated bya. Let VI ~ V2 .i .. ; ~ Vn b~ r~al

numbers such that for t ~ j < n

where h(a) denotes the logarithmic absolute height of (1. If 10g(1
. n

is linearly dependent on ni, 10ga1 , ••. ,loga n _
1

over m, we assume,
-1 ,.

in addition, that Vn-~ (fpD .logp), max(I,log(r)'log'p)).·

.Let b 1 , ••• ,b
n

E 7l, not all zero, and B > maxlb.l. Set
- j ]

Theorem: Suppose that ord~aj

Then we have

V :=
if

if

ordpbn min(ord b.)'
j P ]

ordpbri > min (ord b.) •
j P ]

b 1 b
o (1 ::. j: ::. n) and ~ a 1 ••• ann +1.

fl:'
d ( bI bn 2844000 2S

n .(n+1)2n+2.2S p .Dn+ 2 .V .•• V ,
or " (11 ••• an -1) < 1 n

2m (fplogp)n

Remark: A similar result holds for the case p = 2.,
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Probleme

v. BERNIK:

und ~(H). eine monoton fallende Funktion mit ~(H) + 0 für

endlich viele Lösungen, wenn P(X) E ~[X], ap = n, H = H(P)

Man zeige:

1. Die Ungleichung Ip(X) I < ~(H).H-n+1 hat für fast alle X un-

H + 00 und ~ ~(H) = 00 ist.
H=1

2. Die schwache Vermutung: In 1. setze man n

H-1 (log H) - Y mi t 0 < Y < 1.

P. ERDÖS:

1. (Mahler's last problem)

2 und ~(H)

•

A few days before his death Mahler told me that he conjectures

that for every k > 4

R­
E

i=O

2x ,
R-
E ~i > 1

i=O

has only a finite number of solutions. He showed that for k ~ 4.
the number of solutions is infinite. Mahler found only one non­

trivial solution for k > 4: 1+7+7 2+7 3 = 400. (Remark: to avoid

a "trivial" solution of this problem one has to assume (k,x) = 1.)

2. Is it true that

kx ~i E {0,1}, L
i=O

E. < 00

1.
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has only a fini te number. -of solutions? In fact i t probably

can be powerful (i.e. of the form x 2y 3) only f±riitely often.
(\ .

A weaker result will be in ~ forthcoming paper of Brindza

and myself.

A. SCHINZEL:

1. Does there exist an absolute constant c with one of the following

properties?

For all integers k' and R., k ~ R. > 1 and every vector n E 7l
k

, {O}

there exist linearly independent vectors P1, ... ,Pi such that

and

R.
n

i=l
h(p. )

~

k-i
< c h (n) k-l-

- R. -(a) n L ~iPi' u i E (D
i=l

- .t -(b) n L uiPi' u i E 7l
i=l

2. Estimate' (or evaluate) the function f(R.) defined on positive

integers .' by the formula

f (R.)

where [-<1 .. ]
. 1)

R. - R.
sup inf n (L d .. ) ,

A U i=1 - j=l 1)

- :U A-1, A and "U run through all lower triangular
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non-singular integral matrices and all lower triangular uni-

modular integral matrices of order k, respectively.

Remark: It is known that

'and

where

C.L. STEWART:

f(.Q,)

m

(.Q,+m+l) ! •

We conjecture that there exists an absolute constant c such that

for any binary form F(x,y) with integer coefficients non-zero

discriminant and degree at least three, there exists a number C,

which depends on F, such that if h is an integer larger than C

then the equation F(x,y) = h has at most c solutions in coprime

integers x and y.

R. TIJDEMAN:

Is it true that if f E ~[X,y] is of degree d, then the number of

(caprime) solutions (x,y) E ~2 of the equation f(x,y) = 0 is
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either infinite or bounded by a number depending only on d?

B.M.M. OE WEGER:

Let PI' •.• 'P be fixed prime numbers. For nE]N, let a l , ..•• ,a E ]NO
s a . . s

l aI sI" . 1be such that n I -PI·· ..•. Ps 1.5 m1.n1ma . Using p-adic linear

forms in logarithms I could p~ove that

for same constant C. Numerical experiments suggest that

a
l

a
sInl-PI ·~ •.. ··ps I > exp(C'.n.logn)

might be true for some constant C'. Is this true?

Berichterstatter: P.-G. Becker
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