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Inverse Spektralprobleme

27.3 bis 2.4.1988

(Marcel Berger gewidmet)

Die Tagung fand unter Leitung von Herrn Briining (Augsburg), Herrn Guillemin
und Herrn Melrose (beide Cambridge, Mass.) statt.

" Zu Beginn referierte Herr Guillemin iiber M. Bergers Arbeit aus dem Jahr 1968
und zeigte, welchen mafigeblichen Einflu diese auf die weitere Entwicklung der
inversen Spektraltheorie in den letzten 20 Jahren gehabt hat. Sein Vorschlag,
die Tagung gu Ehren von Herrn Berger abzuhalten, fand einhellige Zustimmung.
Die Bandbreite der 19 anschlieBend gehaltenen Vortrige zeigte den gegenwirtigen
Stand der Forschung. Behandelt wurden Beispiele isospektraler, nicht isometri-
scher Mannigfaltigkeiten, die Topologie der isospektralen Menge fiir das Sturm-
Liouville Rand Eigenwertproblem, Isospektralitit fiir diskrete Schrédingeropera-
toren, Streutheorie fiir Schrédingeroperatoren und Asymptotik von Eigenwert-
verteilungen,um nur einige Themen zu nennen. Dariiberhinaus nutzten fast alle
Teilnehmer die Gelegenheit, in intensiven Diskussionen und Eingelgesprichen ihre
neuestenErgebnisse und Projekte gu besprechen.

Bedauert wurde, daB einige der eingeladenen Mathematiker nicht teilnehmen
‘\ konnten; insbesondere waren keine Mathematiker aus der UdSSR anwesend.
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Y. COLIN DE VERDIERE:
Multiplicités des valeurs propres

On s’interesse 3 la muliplicité maximale de la premiére valeur propre d’opérateurs
de Schrddinger (avec ou sans champ magnétique) sur une varieté compacte ou
de lapaciens discrets sur un graphe fini. On demande que les valeurs propres
multiples satisfassent I’hypotheése de stabilité d’Arnold. Aprés une étude séparée
des cas discrets et continus, on étudie le passage discret — continu (théorie de
P’effet tunnel) et le passage continu - discret (éléments finis et triangulations).
Une application est une critére nécessaire et suffisant de planarité pour un graphe
en terme de la multiplicité maximale du A;. Ces travaux sont parus ou 3 paraitre
en 86, 87, 88 dans Comm. Math. Helv., Ann. ENS et J. Comb. Theory (B).

T. SUNADA:
Dynamical L-functions

In this talk, I present some phenomenon of distribution of closed orbits in hy-
perbolic dynamical systems. In case of geodesic flows on hyperbolic space forms,
a perturbation technique for the first eigenvalues of twisted Laplacians is avail-
able in the study. In the general case, I take up a perturbation method for the
maximum eigenvalue of twisted Ruelle operators defined on symbolic dynamics
associated to the flows. The perturbed eigenvalues are related to the poles of dy-
namical L-functions, so that some classical ideas in number theory can be applied
to our problem. The following diagram may illustrate what I wish to discuss:

Dirichlet L-functions «— density theorem for primes
in arithmetic progression

Dynamical L-functions «—  density theorem for closed orbits
in homology class

DFG Deutsche
Forschungsgemeinschaft ©




UFG

Deutsche

H. KNORRER

The geometry of Fermi-curves
(joint work with D. Gieseker and E. Trubowitz)

In the almost free electron approximation the forces acting on an electron in a
metal or a crystal are subsumed in a potential V(z) (z € R", n = 2,3) which is
periodic with respect to a sublattice ' =Z -7, ®---® Z- 7, of R*. By Bloch’s
theorem the wave function of such an electron is an eigenfunction ¢(z) of ~A+V
for which there are complex numbers £;,-- -, £n of absolute value one such that
¥(z + i) = & - ¥(z). For fixed energy A the variety

Fai= (€1, €a) € T™ | 3 ¢ with (A +V)$ = Ay, ¥(z+ %) = & - ¥(z)}

is called the Femi-curve resp.-surface to the energy A. We define the Bloch mani-
fold B(V) as {(£,A) | € € Fa}. It turns out that B(V) is an analytic hypersurface
in (£,A)-space. The density of states py()) is a function which measures the
expectation value for finding an electron with energy A, it can be computed as

Bk,
W(I\)‘_(z’"')""' RnbfE & A

where P(€,A) = 0 is a (local) equation of B(V).
For a difference approximation of A we can show in the case n = 2:

Theorem 1: There is a Zariski-open dense set O in the space of all potentials
such that for V € 0, V' an arbitrary potential the equality B(V) = B(V') implies
that V and V' coincide up to the obvious symmetries in the problem.

Theorem 2: For V,V' € O one has: If the germs of the functions pv and py
coincide at some point Ao and are not identically sero there then B(V) = B(V').

The proofs use methods of complex algebraic geometry. For the first theorem
the proof is based on a degree argument. The basic ingredients of the proof of
Theorem 2 are an analysis of the monodromy-of the family of complexified Fermi-
curves over A-space, Delignes theorem of the fixed part and the Torelli theorem.
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A. URIBE

Reduction and the trace formula
(joint work with V. Guillemin)

Let M be a closed Riemannian manifold, and consider the operator P = VA.
Let A be a first-order, self-adjoint ¥WDO commuting with P. Simultaneously
diagonalize P and A4, and denote the joint eigenvalues by ();, u5;). Fix E > 0,

and consider the distribution

T(s) = 3 (s - Euj)ei

where  is a function on R with a compactly-supported Fourier transform. This
distribution is the F.T. of the weighted counting function

Nw) = Y o(A; - En;)
B;i<p

which counts the joint eigenvalues close to the line A = yE much more heavily
than the rest. We prove a microlocal trace formula for T(s). In case e3*%4 = I, the

‘bicharacteristic flow of A is 2x-periodic and one can form the Marsden-Weinstein

reduction of the bicharacteristic flow of P. T is then given microlocally by the
periodic trajectories of the reduced flow with energy E. Moreover, T is periodic,
and hence we obtain an asymptotic expansion of 2 V(Am,; —mE) as m / co.

As a particular case, take M = N x S, P = /Ay -V §5; with V € C®(N)

positive, and 4 = —¢ %‘. If A?(h) are the eigenvalues of the Schrodinger operator
A A+V on N, our theorem gives an asymptotic expansion of

A;R)-E
Ze(*5)
E]
as K (= 1/m) goes to zero, in terms of the closed trajectories of the flow of
the classical Hamiltonian H = /|£|2 + V(z) on the energy surface {H = E}.
This can be generalized to any compact Lie group, and to potentials that include
magnetic fields.
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G. ESKIN

The inverse backscattering problem for the Schrodinger 6perator
(joint work with J. Ralston)

For well-behaved potentials ¢ the Schrédinger equation in three dimensions

-Au+qu=k®u

has, for each a € $2, a unique solution of the form

* = ¢thaz aiklil 4 1 z| = o0
(« ) = ehee Ak, k) T o) lel o,

where k > 0 and 8 = z/|z|. The function A(kB,ka) is called the scattering
amplitude for g. The scattering amplitude can be defined for a larger class of

potentials than those for which (x) holds. We consider the inverse problem of

recovering ¢ from the backscattering A(—ka, ka). Let

_ f(6+8) - £(6)
11l = sup (ircon+ T‘)

be the Holder norm, 0 < ¥ < 1, and let H, » be the closure of C§°(R?) in the
norm ||f|ly,» = [I(1 + [€)" f]ly. We show for N > 1 and 0 < 7 < 1 that for g
with Fourier transform § in H, y the mapping

G — A(-ka, ka) = A(-¢,8)

is an isomorphism on a neighborhood in H, y of each § in an open dense subset
in Hy y. In particular, for § in this open dense set A(—¢, &) € H, y and A(—¢, £)
is a continuously differentiable function of §.

V. ENSS
Towards completeness of N-body quantum scattering

We present a strategy to prove asymptotic completeness for N-body Schrodinger
operators which simplifies the approach of Sigal and Soffer. We use a time-
dependent decomposition of phase-space into cells which are absorbing for all
relevant time evolutions. A modification of the standard Cook estimate permits
to replace in each of the phase space regions the fully interacting time evolution
by a simpler channel evolution.

The procedure works for two- and three-body systems (with long-range forces
admitted) and it seems to extend to arbitrary particle number.
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S. ZELDITCH

Kugnecov formula on manifolds

The classical Kuznecov formulae on quotients I'\lH? of the hyperbolic plane are
exact formulae of the form

[ [ vtavia= ¥

[0]€Ta, \I'/Tay

where U is the wave kernel, a; are closed geodesics (or horocycles), Iy, is the
stabilizer in I' and L[o] is a certain double coset invariant. On general mani-
folds such exact formulae are replaced by singularity expansions at singular times
(“sojourn times® = lengths of common orthogonals to a; and a3).

The left side may be actually replaced by more general Lagrangean distributions
of the form [,,. A, U(t,7,y) A(z,y) where A is a Lagrangean distribution.

The expansions can be used to give asymptotic formulae for summatory functions
N(T,4) =3, , <7 (A, p; ® ;) where {n;, p5} is the spectral data of VA. When
A = 6y ® 6y (Y a hypersurface), one derives that fy ¢; € 1,as j — oo. When
A is a FIO kernel associated to a canonical correspondence x (finitely multiple-
valued symplectic map), and x commutes with the geodesic flow for VA4, one
derives a Szegd formula for the distribution of eigenvalues of A. This applies e.g.
to spherical mean operators and has the flavor of the Phillips-Sarnak results on
eigenvalues of Hecke operators. '

Finally one can modify Sunada’s method for constructing isospectral manifolds
to construct pairs (M,,Y;), (Ma,Y3) so

/ Us(t,7,9)dz dy = / [ Us(t, z,y)dz dy, Vt.
Y; Yl Yz Y3

More precisely, the construction is reduced to a problem of finding a finite group
satisfying some double coset conditions (which has not yet been solved). An
application would be to construct non-isometric finite area quotients with the
same scattering matrix.

R. HEMPEL
Eigenvalues of the Schrédinger operator H — AW in a gap of o{H)

In the quantum theory of solids, the understanding of doped semiconductors,
lasers and the colour crystals is based on “impurity levels”, i.e., energy levels of the
Hamiltonian which owe their existence to the presence of impurities. We consider
a simple mathematical model, consisting of a (periodic) Schrédinger operator
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H = —A +V with a spectral gap (a, b), describing the pure crystal, and a short-
range potential W describing the impurity. We then ask the following question
(cf. P. Deift, R. Hempel: CMP 103 (1986), 461 - 490):

Given an energy E € (a,b) does there exist a (real) coupling constant A = A(E)
such that E € o(H — AW)?

(So we ask for a coupling constant which produces a certain spectral property).
Present work of S. Alama, P. Deift and the author (Habil.-thesis, Miinchen 1987)
indicates that the answer will be “yes®. The proof uses estimates for the asymp-
totic distribution of eigenvalues  in eigenvalue problems with weight of the type
(H — E)U = pWU, with W > 0.

T. KAPPELER

On isospectral potentials on a discrete lattice

Let L be a sublattice of Z% of the form L = pZ @ - - - ® pZ with p > 2 an integer.
Then consider the discrete Schrédinger equation

(1) (Adiscrete + Q)u(z) = Au(z) (z in Z%)
(2) u(z + & = e"*tu(z) (z in Z%, €in L),
where Agiscrete ¥(z) = Ely-zl= , u(y) and @ is a L-periodic, possibly complex-
valued potential. a is an arbitrary vector in R? called the crystal momentum.
For a given L-periodic, possibly complex-valued potential @ define Isof(Q) to be

- the set of all L-periodic potentials P such that the spectrum of Agiscrete + @ and

Agiscrete + P with boundary conditions (2) are the same.

Theorem Ford > 2, p > 2 and a € R? there exists for generic 8 in R? a
Zariski-open dense set U of potentials in CV such that

108(Q) N 150§ (Q) = {Q(¢z +a) |a €T} (QinU)

where T’ is a fundamental domain of L.

D. DETURCK

Inaudible geometric invariants
(joint work with C. Gordon, H. Gluck, D. Webb)

On a specific six-dimensional nilmanifold M (compact quotient of a simply con-
nected nilpotent Lie group) with left-invariant metric go, there is a deformation g
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of go which leaves the spectrum of the Laplacian A of g fixed (e.g. an isospectral
deformation). This is proved by explicitly constructing the intertwining operator
S, : L3(M) — L3(M) such that A; = S;'A¢S:. To show that this deforma-
tion of metrices is nontrivial (i.e., that g is not isometric to go), the method of
calibrated geometries is used to find closed geodesics and closed area-minimizing
surfaces in various homology classes. Even though the length spectrum of (M, ¢;)
is fixed, the relative positions of the geodesics changes, and the areas of minimiz-
ing surfaces changes continuously. This phenomenon also occurs for a wide class
of nilmanifolds.

J. RALSTON

Topology of isospectral manifolds
(joint work with E. Trubowitz)

Let spec (g, B) denote the set of A (with multiplicity) for which the following
Sturm-Liouville eigenvalue problem has a nontrivial solution u:

22, () - ()

We are interested in the isospectral sets:

M(qo, Bo) = {(g, B) € L}((0,1]) x SL(2,R) \ {B12 =0} |
' spec(go, Bo) = spec(q, B)}
and

M3z, (90) = {g € L{([0,1}) | spec(q, Bo) = spec(go, Bo) -

It turns out that for (o, Bo) € L([0,1]) x SL(2,R) \ {Bi2 = 0} M(qo, Bo) is
always a noncompact analytic manifold with a topological structure independent
of (go, Bo). To study the subsets Mp,(q0) of M(go, Bo) one needs to study the
critical points of tr B = By; + Bj; as a function on M(qo, Bo). It turns out that
there are always a countable number of these which we index by the finite subsets,
I, of the positive integers. Assuming that tr By does not equal tr B at a critical
point, the homotopy groups of Mp (qo) are determined by {I | tr By < tr B(p;),
pr acritical point}. In addition, if tr By = tr B(p) then Mp (go) = {go}. In other
words for the spectra of the problems considered here, given a spectrum there is
always a (unique) boundary condition such that the isospectral set reduces to a
single point. This joint work with Eugen Trubowitz will appear in Ergodic Theory
and Dynamical Systems.
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M. ZWORSKI

Counti e poles in potential scatterin,

We consider scattering in R", n odd, by a compactly supported bounded potential

A+V, Vel®.

The poles of the scattering matrix can be characterized as A; € C\ {0} for which
there exists an outgoing solution to the reduced wave equation:

esAir 1

— | h(8) + O(- ) .

rs ( ) (”)

For the counting function of the poles, n(r) = §{A; | |A;| < r}, we show n(r) <
Crt+C'.

The exponent n is sharp as shown by the example of radial potentials nonvanishing
at the boundary of the support, where n(r) = c,ar™ + (1 + O(1)), a being the
diameter of the support.

(A+V -2Hu=0, u(rd)=

T. FRIEDRICH
Riemannian manifolds with killing spinors

Let M™ be a compact Riemannian spin manifold with positive scalar curvature
R > 0 and denote by D the Dirac operator acting on sections of the spinor bundle.
If A, is the first eigenvalue of D we have A} > {-%; R, Ro = min R(z). Thus,
there arises the problem to classify all those Riemannian manifolds where the

lower bound _:I:%\/ 282 is an eigenvalue of D (i.e. this lower bound is attained).
M™ must be an Einstein space and the corresponding eigenspinor ¢ satisfies the
stronger condition Vx¢ = +1, /;(,ﬁ—ﬂx ¢, XeTM. .

In dimension n = 4 the only possible manifold is M* = S4. In dimension n = 5 we
first prove that any solution ¢ of Dy = :b%\/s—litﬁ defines an Einstein-Sasaki struc-
ture on M®. Conversely, if M® is a simply-connected Einstein-Sasaki space then
this equation has a non-trivial solution. Next we classify all regular contact metric
structures arising from a non-trivial solution of the equation Dy = %\/S_Rd! The
regularity assumption implies that M? is a fibre bundle over an Einstein-K3hler
manifold X* with positive scalar curvature. Therefore, we know the possible X4
(= 8% x 83, P3(C) or the del Pesgzo surfaces Py, 3 < k < 8) as well as the topolog-

ical type of the fibration: M® is isometric to $° or §%/%3, V4 3 or V4 3/Z; or is the

simply connected S*-bundle with Chern class ¢} = ¢;(Px) over one of the Py. In
the last case M® is diffeomorphic to a connected sum & = (S?x S3)f - - - §(§2 x §3),
and there is a one-to-one correspondence between Einstein-Kihler structures on
Py and Einstein metrics with killing spinors on I.
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H. URAKAWA
Hilbert’s 18t% problem and eigenvalues of the Laplacian

Hilbert’s 18t* problem consists of three parts:

(1) The finiteness of isomorphism classes of crystallographic groups (solved by

L. Bieberbach, 1912),

(2) The tiling problem (solved by K. Reinhardt for n = 3, 1928, and H. Heesch
for n = 2, 1935, cf. the book of Griinbaum and Shephard),

(3) The (sphere) packing problem (solved by A. Thue for the 2-dimensional disc,
1950, in 3 dimensions still open).

For a given bounded domain 1 C R", we call Z = {D}lien 2 packing if each
{); is congruent to } and Q; N Q; = @, i # j. The packing density is defined by
(1) = sup p(Z,Q), where

z

p(2,0) = limsup Y _ vol(fi)vol(C).
S(C)"""nmc#

with C a n-dimensional “suitcase” with edge-length S(C). It can be shown that
p(0) > 2(n!)2/(2n)! for every convex domain {3, and p(1) 2 3/4ifn=2.

Theorem 1: For the Dirichlet eigenvalue problem on QQ, the k-th eigenvalue Ax
can be estimated by (B, = unit ball)

Ax > 472 (k p(@2) vol()/vol(Ba)) /™, k2 1.

The sphere packing density pn is given by pn = vol(Bn)_(%)"/ ’#:/ 2, where p, =

max min _|z|3/V/detA, A a lattice in R".
A zeA\{0}
Theorem 2: Letting vn = sup A, (R"/A)vol(R"*/A)3/*, we get v, = 47° i, and
A

the estimate

2-4

vol(S™~1)* (73-1)" 7",

1+2

v, S M_—
n

where ja_, is the first zero of the (% — 1)-th Bessel function.

This estimate is one of the best known today, cf. the book of Conway and Shane,
Springer, 1988.
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G. COURTOIS

Eigenvalues below 1/4 of degenerating Riemannian surfaces
(joint work with B. Colbois)

A degenerating family {S.}cjo,1) of Riemann surfaces (i.e. of constant curvature

—1) is defined as follows:

i) All the S’ have the same combinatorial structure, i.e. are built from the

same number of hyperbolic parts with the same combinatorial way to glue them

together.

ii) A fixed subset of the closed geodesica which bound the parts of the decompo-

sition of S, is chosen to have length going to gero when € goes to gero. The other
‘ : geodesics of the decomposition by parts have length staying fixed.

‘It is then possible to associate a limit Riemann surface § with S, which is non-

compact of finite volume and eventually non-connected.

If we denote by Af < A§ < --- < A§ < 1/4 the eigenvalues of S, below 1/4 and

by py < p3 <+ < par < 1/4 those of S below 1/4 we have

Theorem For € small enough

i) N>Mand A\{ — px, k=1,2,--- | M
ii) ifN>Mthen,\§—»l/4,Ic=M+1....,N.‘

(This work is to be published in Comm. Math. Helv. in 1988).

D. BATTIG

Toroidal compactification of the Blo anifold for the two-dimensional discrete
Laplace operator

Consider the spectral problem for the two-dimensional discrete Laplacian with

a periodic potential. Using a toroidal embedding one shows that this situation

defines spectral problems for the energy level infinity, namely by discrete one-
‘ ' dimenisonal Laplace operators with averaged potentials. )

A. GRIGIS
On the Spectrum of Polynomial Hill’s equation

Consider Hill’s operator P = —-f;’, + V(z) on L?(R) with V a trigonometric
polynomial. The band structure of the spectrum is well-known when V is real-
valued. If V is a Hardy-Fegan potential (i.e. has only positive Fourier coefficients)
P is isospectral to -z‘;’, but can have a nilpotent part when restricted to periodic

DFG Deutsche .
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eigenspace. When V is a general complex polynomial there is a real-analytic
curve in C on which the spectrum is located and a band structrue can be defined.
We study the asymptotics of the width of the gaps and the size of the reflexion
coefficients when energy E tends to co. We use Floquet theory and the complex
WKB method. We find a class of V'’s for which the gaps are all open when E is
large. Part of this work is published in Ann. ENS 1987 and the other was inspired
to us by V. Guillemin and A. Uribe. )

R. HELFFER

Semi-classical Analysis for Harper’s equation
(joint work with J. Sjostrand)

In solid state physics the Harper’s (or almost Mathieu) equation appears naturally:

£(2) > (un) — (Hou)n = %(u,.“ + tn—1) + cos(2n(an + 0))u,
where & € R, § € R. We study the properties of the spectrum | SpHp. This prob-
]

lem appears to be equivalent to the study of the spectrum of the pseudodifferential
operator on L3(R) : cos(2raD;) + cos z.

When «a is small, the semi-classical analysis is well adopted to the study of this
problem and we get in particular that for a € Q,

1 . 1 4
a=m+]—q—|l+~--+l7|j+--~ with g; > co(co big enough),

the spectrum is a Cantor set. This gives a partial answer to the “Ten Martinis”
problem of M. Kac.

C. GORDON

Isospectral deformations of Riemannian metrics and potentials

We first discuss (i) the construction of continuous families of isospectral closed
Riemannian manifolds using representation theoretic methods and (ii) Sunada’s
trace formula method for constructing pairs of isospectral Riemannian manifolds
with a common finite covering. We then find a common context for viewing
both (i) and (ii). Next using a modification of the techniques of (i) and (ii), we
construct continuous families of isospectral potentials for the Schrédinger operator
on certain nilmanifolds. '

Berichterstatter: Herbert Schréder (Augsburg)
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