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Tagungsbericht 18/1988

Kombinatorik geordneter Mengen

24.4 bis 30.4.1988

Tagungsleitung: M. Aigner (Berlin) und R. Wille (Darmstadt).
Im Mittelpunkt des Interesses stand die Theorie endlicher geordneter Mengen. Die
Themen lassen sich in etwa in folgende Teilbereiche gliedem:

- Dimension und andere Parameter geordneter Mengen.

- Diagramme geordneter Mengen.

- Theorie extremaler Mengen.

- "cutsets" und "fibres".

- Strukturtheorie von Verbänden.

- Spemertheorie

- Komplexitätsuntersuchungen.

- Anwendungen.
. .

Zusätzlich fand eine "Problemsitzung" statt, in der offene Probleme vorgestellt
wurden.
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Th~mas Andreae

Fibres in Ordered Sets and weakly 2-colorable Graphs

Call a subset of an ordered set a /ibre if it meets every maximal antichain. Z. Lonc
and I. Rival proved several instances of the conjecture that, in an ordered set P
without splitting elements, there is a subset F such that both F and P - F are e;
fibres. Reformulated in terms of the incomparability graph of P, this conjecture
reads as follows: any incomparability graph is weakly 2-colomble, i.e., its vertices
can be colored red and blue such that there exists no monochromatic maximal
clique of size ~ 2. We exhibit classes of graphs other than incomparability graphs
that are weakly 2-colorable, and investigate related questions concerning clique-
transversal sets of graphs.

(Joint work with M. Schughart, Berlin, and Z. Tuza, Budapest)

H.-J. Bandelt

Diagram,." Orientations, and Varieties

One of the central problems in the theory of ordered sets is to describe the ori­
entations of the covering graph of an ordered set. We show that the particular
operatfon called "inversion" , together with the classical constructions of retraction
and product provide a cqntext for the classification of a.il such orientations.

(Joint work with lvan Rival)

Kenneth P. Bogart

Discrete Representation Theory fOT Semiorders

Semiorders may be characterized as ordered sets which da not contain as restrie­
tions either the sum of two two-element chains or the sum of a point and a three­
element chain. We give similar characterizations, using lists of forbidden restrie­
tions, of semiorders representable with interva.ls of length w (and with the order
relation (a, b) < (c, d) if b ~ c). A semiorder is representable by intervals of length
one if it contains 00 restriction which is the sum of a point and a one element
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chain. The family whose absense characterizes posets representable by intervals of
length w may be constructed from the corresponding family for length w - 1 by
applying the following construction to each minimal element of each member of
the family. Select the minimal element x. Replace i t with two incomparable ele­
ments Xl and X2 each less than all y with x < y. Introduce a new element zunder
Xl and an elements above x in the cannonical linear extension of the semiorder.
These examples are distinct and the number of them is the catalan number c(w).
These results follow from the following theorem: A semiorder is representable by
intervals of length w if and only if the weighted digraph whose vertices are the
vertices of the semiorder and whose edges 9 from X to y if x > y or if x and y
are incomparable and whose weights on x > y edges are -w and on incomparabil­
ity edges are w - 1 has no cycles of negative weight. The interval representation
may be found in a natural way by applying a mi~mum distance algorithm to this
weighted digraph.

Graham Brightwell

Some results on correlations

The aim of the talk is to present some (fairly) recent results on.correlation in posets.
For a and b incomparable elements of a finite poset (X, ~), define P(a -< b) to be
the propotion of linear extentions of (X, <) with a below b. The relation a -< b &
c -< d are (po8itively) correlated with respect to (X, <) if P(a -< b)P(c -< d) ~
P(a -< b & c -< d). We are particularly interested in 'universal' results : a -< b &
c -< d are positively correlated with respect to every (X, <) in a given class, e.g.
the subposets of a fixed poset, or the extensions of a fixed poset.

Walter Deuber

On Shelah '8 prooj that the van der Waerden function is primitiv~ recursive

Ein klassischer Satz von van der Waerden besagt, dass zu k, rEN eine kle­
inste Zahl w(k, r) existiert mit der Eigenschaft, dass zu jeder' Zerlegung von
{I, ... ,w( k, r)} in r Klassen in mindestens einer dieser Klassen eine arithmetische
Progression mit k Termen sich befindet.

Während bisherige obere Schranken stets Ackermannqualität hatten, konnte
Shelah kürzlich zeigen, dass weine primitive rekursive FUnktion ist.
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Dwight Duffus

Fibre8 in Ordered S et8

A fibre in an ordered set X is a subset F of points of X such that F n A i= 0 for
all maximal antichains A of X.

Motivated by graph theoretic results, Andreae and Aigner asked if every finite
ordered set X with no I-element maximal antichains must have a fibre F satisfying
IFI ~~IXI· Lone and Rival asked for more: under the same hypothesis, is there
some F ~ X such that both F and X - F are fibres?

This question is easily translated to one for the hypergraph H (X) = (X, € )

whose edges are the maximal antichain of X: is H(X) 2-eolorable?
In this talk we present same observations eoncerning maximal 2-element an­

tichains whieh support a positive answer to these questions.

Vincent Duquenne

The Gore 0/ finite lattice8

Motivated by same practical questions in data. analysis in Psychology (description
of Experimental Designs built on sublattices of 2-permuting partitions, language
for describing their statistics ... ; analysis of dependeneies between attributes in
Fonnal Coneept Analysis), as wen a.s a. need for generaJization the celeb~ated

Birkhoff's theorem which exhibits any finite distributive lattiee Las isomorphie to
the (order- )filter lattiee of its set M(L) of meet-irredueible elements, the following
i~ proved: Let L be a finite lattiee; x E L is said to be f\-e83ential if there exists
an order filter X C [x) witb f\X = x and X U {x} a proper sublattiee of [x). Let
eall K,,(L) := M(L) U {x E LI x is A -essential} the A-core 0/ L.
Theorem 1: the filter lattice cf the the partial I\·semi·lattice eonstrueted on
p ~ L is isomorphie to L iff P 2 K,,(L). e
Theorem 2: the f\-eore is the union of the converses of the eore's factors, for a
subdireet produet.
Theorem 3: Let L be modular; x is I\-essential iff tbe sublattiee generated by
tbe covers of x is a covering Mn.

The A-eore and dually the V-eore of a geometrie lattice are 8lso eharacterized.
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Paul Edelmann

Tableaux and chaim in a new partial order 0/ Sn

We define a new partial order on Sn by lettering q ~ T if T can be gotten from
q by a sequence of adjacent transpositions moving a left-right maximum to the
left. This ia a aubposet of the weak order of Sn. We show that this poset has the
property that every interval is a distributive lattice, and can explicitly compute
the poset of join-irreducibles in the principal ideals. This allows us to compute
the number of maximal chama in certain of these principaJ ideals.

Konrad Engel

On the number 0/ independent sets in an m' X n lattice

Let Zm,n := {(i,j) : 1 :5 i :5 m,l :5 j ~ n} and ~m,n be the number of subsets of
Zm,n with the property: there are no (i1, jl), (i2, j2) E A with lil - i 21+ lil - i21 = 1.
We prove several inequalities for the numbers "m.n and, show that

1.503 < !im !im "l/mn = !im K.1/
n2 < 1.514.

- m~oo n~oo m.n n~oo n,n -

We conjecture that K.~,2" ~ K.m ,2"-2K.m .21l+2 holds for a1l positive integers m and k
which implies' lim K.~:2 = 1.50304808...

n~co '

Zoltan Füredi

Minimal Cutsets 0/ the Boolean Lattice

e C c B n is a cut.set if it interseets all maximal chains t:. (i.~ che.ins of the form.
. 0 C LI C L2· C .... C L",.-l C'Ln = [nD of Bn . -A cutset C ia minimal if for every

C E C there ia a maximal chain avoiding C \ {Cl. For example, the whole' k-th
level is a minimal cutset. However, there are much larger mini'mal cutsets, e.g.,
the following family

{C c [n]: Icn {1,2}1-= I}

has size 2n
-

l
. Denote the maximal size of a minima.l cutset of Bn by c(n). It is

easy to see that c(n + 1) ~ 2c(n), so n~ c(n)2-n exists. Ko-Wei Leih gave a
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construction c(6) ~ 33. Here we give an almost explicit constroction proving that

limc(n)/2n = 1.

(This was ajoint work with J.R. Griggs and D.J. Kleitman.)

Gerhard Gierz

The bandwidth problem for partially ordered 8et8

Let P be a finite poset, and let f : P~ {I, ... , IPI} be a linear extension. Define

max{f(y) - fex) : x is a lower neighbor of y}

minbw(f)
/

Conjecture: If L is a distributive lattice, then w(L) ~ bw(L) ~ 3/2w(L).
Theorem. If L ia a distributive lattice of breadth 3, then bw(L) ~ w(L) + 1 +
JW(L)-1.. .
Theorem. If L is a distributive lattice of breadth ~ 4, then bw(L) ~ 3/2w(L).

(This is joint work with F. Hergert.)

Damel Grieser

Complexity of familie8 of 8et8

We consider the following problem: Given a family 'P of subsets of some finite
set T, determine the complexity c('P), which is defined 88 the minimal number
of tests necessary to decide if an imaginary set H ~ T is in l' or not, a test
being a question "Is x EH?" for some x E T. This kind of question was first
discussed by Holt, Reingolt and Rosenberg 1973 in the special case where 'P is a
graph property. While most l' have the maximal complexity t = lTI, there are 'P's
with low complexity. A well known theorem states that c(P) :5 t - k implies l' to
be the disjoint union of intervals of length ~ k. We prove that a weak inversion
of this is true: If l' is the disjoint union of r > 1 intervals of length ~ k, then
c(1') ~ 2k In r. In the course of the proof we establish an interesting connection
to a probeim concerning edge coverings of a complete graph by bipartite graphs.
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Jerrold R. Griggs

Towers 0/ Powers and Bruhat Order

Arecent paper of Brunson deals With an interesting partial. order on the symmetrie
group, S",., whieh arises from eomparing permutations of iterated exponentials.
For u E Sn and X = (Xl, •• ·., X n ) E Rn, let T(u(x)) = T(Xg(l) , ... , Xer(n») denote
.. . . .1lG'(B) .

the tower of iterated exponential x:nv . For q, r E Sn we have the partial
ordering Tn = (Sn, T), where q :5T r if and only if T{q(x)) :5 T(r(x)) for all
Xn ~ .•. ~ Xl ~ e. It turns out that for n :5 4, this ordering, eall it Tn ( e),
is isomorphie tothedual of another interesting poset on Sn, Bruhat order. We
prove that this is false for n ~ 5. It turns out to be essential to determine
eompletly the poset An(e.) of towers of size n in just two symbols a and b, where
for w, w' E {a, b}n, W::5A w' if and only if T(w) 5 T(w') for an b ~ a ~ e. More
generally', let Tn(c) 'and A,.(c) be the posets above where the lower bound e is
replaeed by auy c ~O. We prove that for all n Tn (3, 6) and An(3, 6) are chains in

. reverse lexicographie order. For n = 3 we determine all posets A,.(c). There ate
eight different posets.

Hans-Dietrich O.F.Gronau

Minimal proper Sperner Jamilies

Let' R be a finite set, IRI = r. A family F ~ 2B is ealled a Sperner family, if
X <t. Y !or all X, Y E F. A Sperner f~y F = {Xl ,X2 , ••• ,X,,} is ealled proper,
if for every x ~ R the family F( x) = {X \ {x} : X E F} is not a Sperner family
or 'IF(x)1 < IFI. Obviously, maXimal Spemer families a.re proper. But what is the
minimum size of a proper Spemer family on R? The main result in attacking this
problem is the following one: .
Fix the size' k cf the Spemer family F and ask for tbe' maximum size r(k) of R
such that there exists a proper Spemer family. F. on R.
Theorem:

{
2k - 2 if 2 5 k 5 7,

r(k) = l~J if k ~ 7.

This and related results for further proper families (e.g. t-wise intersecting Spemer
families) are presented.
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Martin Grötschel

On an ordering problem in manufacturing

A practical optiinization problem that comes up in a number of flexible manufac­
turing systems is the following. Let aeomplete digraph Dn = (V, An) on n nodes
and costs Ce, e E An, be given. (The nodes correspond to machines. The costs
include the costs of moving an objeet from one machine to another and setting up
the machines.) Moreover, an acyclie digraph D = (V, A) on the n nodes is given
that describes preeedenee relations among tbe maehines, i.e., if (i,j) E Athen the
object has to be proeessed on maehine i before it ean be processed on machine
j. Tbe task is to find a hamiltonian path H in D n that satisfies all precedence
relations and that has total cost c(H) as small a.s possible. This problem is called
sequential ordering problem in the fiexible-manufacturing literature.

We indicate.that it can be viewed as an "intersection" of tbe asymmetrie trav­
eling salesman problem and the linear ordering problem. We give severaJ integer
programming fonnulations of the problem and demonstrate how the correspond­
ing LP-relaxations can be solved in polynomial time by providing polynomial time
separation algorithms for certain classes of valid inequalities. Preliminary compu­
tational experience is reported with a cutting plane code for the solution of the
sequential ordering problem. This code is based on the results mentioned above.

M. Habib

M echani8m3 and algorithm3 for multiple inheritance in object oriented systems..

This talk presents a joint study with R. Ducournau (Inria) about inheritance
algorithms. They are the kernel of object oriented systems, where one eentral
problem is: "given an object determine its inheritance". Using simple inheritance
(inheritance graph is a tree) is very easy, hut when multiple inheritance is allowed •
conflicts occur. We present some of tbe principles which are necessary to build
good inheritanee algorithms. We show that depth-first greedy (also called super
greedy and invented by O.Pretzellast Oberwolfach meeting 1985) linear extensions
playa great role in all the inheritanee mechanisms we propose and compare to
known ones.
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Jeff Kahn

Fourier analysis 01 a problem on finite setJ

For X ~ {O, l}n let Ei be tbe set of edges from X to X, end set Oi = IEi l/2n- 1
.

Set f(n) = min m~{Oi}. The question of bounds for f(n) was raised (in tbe
IXI=2G

-
1 ,

context of computer science) by Ben-Or and Linial, who showed

l/n ~ I(n) :5 logn/n,

and eonjectured that the upper bound is elose tri tlie truth. We prove this eonjec-
ture. .
Theorem f(n) = n(logn/n).

Tbe proof uses techniques of Fourier analysis on Z;, and has implications for
random walks on the cube and distance distributions in subsets of tbe cube.

(Joint with G. Kalai and N. Linial)

G.O.H. Katona

The poset 01 closures

Witb G. Burosch and J. Demetrovics, we introduced the poset of closures as a
model of changing datal>ases: .

L,t :5 L,2 iff L,2(A) 2 .cl (A) for any subset A.
We investigate the folloWing questions: number of elements, number of.elements

with fixed ranks (the poset has a rank function), the min (max) number of upper
(lower) immediate neighbours at a fixed rank.

• David Kelly

Planar Ordered Seta

We eall an ordered set L a pseudolattice if LÜ{O, I} is a lattice. Henceforth, all
ordered 'sets are' finite.
Theorem H a pseudolattice L is a subposet of a planar 6rdered set, 'then L is also
planar. ·

In other words, nonpl~arpseudolattices are obstructions to planarity. Observe
that the ordered set P =°,< {a, b} < c < {d, e} < 1 is planar,. hut tbe suhposet
P - {c} is nonplanar. .
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HaI Kierstead

A polynomial approximation algorithm for Dynamic Storage Allocation

Chrobak and Slusarek proposed a polynomial algorithm which produces a feasible
solution 8 for Dynamic Storage Allocation. They defined a parameter w* and
showed that w* ~ v(Opt) ~ v(S) ~ 2tt'(w*) where v(T) is the value of a solution
T, Opt is the optimal solution, and c,o(x) ia the number of calors required by the
greedy algorithm to color an interval graph with clique size .x, in the worst case.
They conjectured that c,o(x) is linear in x, and thus their algorithm had a constant
perfonnance ratio. This conjecture was made independently by Woodal in 1973. •

We show that c,o(x) ~ 40x.

Daniel Kleitman

Some Applications of Order Theoretic Methods

We address tbe question: how large can a collection C of divisors of a square free
integer N be, if whenever A, B E C, and AlB then A ~ B mod p ?

We show that, when each i the number of prime factors of N congruent to
j mod p is the same as the number congruent to I/i, and the number eongruent
to -1 is even, and N has n prime faetors, than an upper bound is ((tl) + ([~i+l)'

Let 181 = n. We eonsider ordered pairs of subsets of S of equal size, ordered
by inclusion in eaeh eompon~nt. We describe how to eonstruet a pairs of size k
that are covered by fewest pairs of size k + 1, for any approp~atea; though there
is no canonicaJ ordering of such pairs so that the answer is an initial segment.

Peter Luksch

Finite modular lattices finitely generated by an ordered set

Free modular lattiees are of central interest in lattiee theory. In partieular, one
eonsiders F M(P), the modular lattice freely generated by an ordered set P.

If the width of P is two, F M(P) beeomes distributive and hence is isomorphie
to F D(P} the free distributive lattice generated by P. In this case we state a
reeursive structural formula for F D(P} whieh ean be used to obtain a reasonable
line diagramm. Öur basic idea is to study a deeomposition by a congruence relation
which has eongruence classes isomorphie to a direet produet FD(Ql) x F D(Q2)
for some Ql' Q2 ~ P. Then a stroetural fonnula for F D(P) ean be described

•
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which uses the knoweldge of some FD(Q) for proper subsets Q of P.
For the modular lattice FM(l+1+n) freely generated by two single elements

and an n-element chain we state a recursive counting formula. This answers Prob­
lem 44 in Birkhoff (Lattice Theorie, Amer. Mat.. Soc. (1967)) which asks one to
determine FM(l +1+n). Therefore we study subdirect pro<;lucts of copies of D2

and Ms via their scaffoldings. In this way we obtain a deeper understanding of
the strocture of FM(l +1 + n).

Ralf H. Möhring

Partial Orders 0/ InteMJal Dimen8ion Two and a Channel Rotding Problem·

It was shown by Dagan, Golumbic and Pinter (DAM, to appear) that certain VLSI
channel routing problems can be modeled aB the intersection of two interval orders,
i.e. by partial orders of interval dimension two or less (idim(P) ~ 2 ). We derive a
polynomial algorithm that tests whether a partial order P has idim(P) ~ 2, and,
if so, finds two associated interval orders. The algorithm uses properties of the
set Q of all downsets D(u) = {v E Plv <p u} of P ordered by inclusion. In par­
ticular, dim(Q) ~ idim(P). The polynomial algorithm solves an open problem of
Yann~s (SIAM J.AIg.Disc.Math.) about the complexity of interval dimension
two.

J~ Nesetfil

Hasse diagram is an (undirected) covering graph of aposet. Hasse diagrams are
known to be difficult to characterize. We present two paradoxieal facts supporting
this fact. In particular, we give a construction of aposet Pn with"high ehromatic
Hasse diagram and with dimension 2.

.0 liver P~etzel

Removing Monot~ne Cycle8/rom Graph Orientations

Given a graph G give each eyele C a reference direction of traversal. For an
orientation"R of G an edge e of C is a forward edge if R orients it in the reference
direction. Otherwise e ia a backward edge. C is monotonie if all its edges are
forward or all are backward. C is k-good if it has at least k forward edges and k
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backward edges. R is k-good if an cycles are k-good. (R is l-good iff it is acyclic
-and 2-good if it makes G into the diagram of an ordered set).
Theorem 1 (Mosesian 1972) If G has given ~ 4 and an orientation in whieh every
cyele is monotone or 2-good, then G has a 2-good orientation.
Weak Generalization H G has given ~ 2k and an orientation in which every
_cycle i~ monotone· or k-good, then G has a k-good orientation.
Strong Generalization If G has given ;::: 2k and an orientation in which every
cycle is either k-good or not (k - l)-good, then G has a k-good orientation.

The weak generalization is proved by a method tbat gives a new proo! of
Theorem 1.

A counterexample to the Strong generalization found by Dale Youngs is pre-
sented.

Hans Jürgen Prömel

Boolean lattices, combinatorial spaces, and Ramsey theory

In this talk we diSCUS8 two extensions of Hales-Jewett '8 theorem on combinatorial
spaces with particular emphasis on the special case of Boolean lattices.

The first one is a ordering version of Hales-Jewett's result, describing,a1l natural
orders on combinatorial spaces. A characterization of all these natural orders was
first given in (Nesetni, Prömel, Rödl, Voigt, J.Comb.Th(A) 40, 1985). Here we
present a new simplified approach (Prömel, 1988 to appear in Discr.Math.). The
second result we discuss i8 a. "sparse" version of Hales-Jewett '8 theorem whieh is
a joint result with B.Voigt and will appear in Trans. of the Amer. Math. Soc.

Klaus Reuter

Order Dimension via Ferrers Relation,.,

A survey of my work on some problems about order dimension will be given.

1. How small can a lattice of order dimension n be? (joint with B.Ganter,
P.Nevermann, J.Stahl)

2. It is known that

max{dim P, dim Q} :5 dim P X dim Q :5 dim P + dim Q

Can the bounds be improved?
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3. Given a convex polytope P. Is it true that

order dim(face lattice(P» = 1 + affine dim(P)?

4. Does ·tbe removal of 80 critical pair of an ordered set always decreases the di­
mension by at most one?

The more general concept of Ferrers relations and formal concept analysis are used
to get some new insight in tbese problems (tbe answer to 3. and 4. is "no" )~

lvan Rival

Dimension Invariance for Lattice Subdi1Jisions

Inspired by a conjecture of M. Habib, we (Lee, Liu, Nowakowski and Rival) show
that tbe dimension problem for fj-free ordered sets is NP-complete. The proof ia
based on this fact. For any finite lattice L, "

dimension(L) = dimension(subcllvision(L»,

where subdivision(L) is tbe lattice obtained from "L by adding one vertex along
every edge with tbe obvious comparabilities.

Alexander Rutkowski

A (disconnected) tJariety 0/ results concerning the fi$ed point property

1. Let, for a,b E P, x rt P, P(a,b,x) be aposet witb the order determined by the
order of P and inequalities x < a, x < b.

Thm. If P and {a,b}· have the FPP, {a, b}. :F 0 then P(a, b,x) bas the
FPP. If P x Q and {a, b}· have tbe FPP,{a, b}. 1: 0 then P(a, b,x) x Q has
the FPP.

~. Let M p stand"for Minp U Maxp.

Thm. H Mp has the FPP then P has the FPP.
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3. (with A. Klimczuk). H P is the poset shown in the figure and n is a positive
integer then pn bas tbe FPP.

4. Let P be a connected, crown-free poset with only finite chains. If every infinite
normal fence (each maximal point is a supremum of two adjacent minimal
points and conversely) contains an infinite subset which is up-(or down-)
bounded then P has the FPP.

Norbert Sauer

Cut-set8 ~n partially ordered sets

F c P is a cut-set for x E P if F U {x} intersects with all maximal chains of
the partially ordered set P and all of the elements in F are unrelated with x.
The smallest cardinal K. such that all x E P have an cut set of cardinality less
than or equal to K. is the cut-set number of P. The problem of relating the cut­
set number with other order invariants such as width and length has stimulated
significant activity. In the infinite case bounds for the cut-set number are closely
related to bounds for ß-systems and hence many of the infinite problems have
been resolved recently. In the finite case the corresponding problems seem to be
much more challenging hut possibly also more interesting as they might constitute
a step down in difficulty from the ß-system problem.

James H. Schmerl

Incidence Algebras

For aposet P and a commutative ring R with 1, let I(P, R) be the incidence
algebra over R. Incidence algebras were introduced by Rota. The general problem
considered is for which P and R does [(P, R) uniquely determine P. Some results
(including all previously known ones) concerning this problem are implied by the

. following theorem and its proof.
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Theorem: For posets P and Q, the following are equivalent:
(1) p =oo,w Q
(2) there is R such that I(P,R) ~ I(Q,R).

The equiva.lence relation in (1) ia we1l-known from model theoryj countable posets
are characterized by it.

(Joint work with M. Parmenter and E. Spiegel)

Dietmar Schweigert

Pareto exten.sionJ for spanning-tree-problem.s with .several objectitJes

For a spanning-tree-problem with n objectives the weights of the edges are
n-tuples. Therefore we have in general a. partial order and not a linear order of
edges. A linear extension of this partial order of edges is called a Pareto exten­
sion if the algorithm of Kruskal (resp. Prim) produces an efficient solution. We
present bounds on the number of efficient solutions and study furthermore Pareto
extensions given by preference functions.

M.M. Syslo

Bound.s on the page number

The page number of aposet has been defined by R. Nowakowski (Ottawa, June
1987) and,,"for aposet P, ia equal pep), to the minimum number of pages on which
the cOvering edges of the diagram of P can be' drawn without intersecting each
other provided the elements of P are on the spine in a topologieal order (i.e., their
order formes a linear extension).

It is easy to shqw that p is not a comparability invariant hut it is a diagram
invariant for p = 1 and for some other elasses of posets. H s = s(L, P) denotes the
number of jumps in a linear extension L of P then

rm - : + 11 +1~ p(P),

where n = IPI and m is the number of covering relations. On the other hand

pep) $ c(P),

whe.re c(f) ~s th~ eovering number of the diagram of P. We use these estimates
to c8.lculate p for some posets. "
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William T. Trotter

An Improved Bound fOT the Dimension o/Interval Orders

Aposet P is called an interval order if there is an assigment x ....... Iz where each
Iz is an interval on the realline R so that x < y in P # Iz <J Iv on R, i.e., every
point of Irz: is less than all points in Iv. It is 'weIl known that the dimension of an
interval order in whieh the length of the longest chain has n points is bounded· as
a funetion of n regardless of the total number of points in P. Rabinovitch proved
dim(P) < clog2 n while Bogart, Trotter, and Rabinovitch show that dim(P) ~ .
Cl log log n. In this paper, we show that if P ia an interval order of length n, then •
clim(P) ~ c2loglogn. We expect that the correct answer is (1 +o(l»loglogn.

(Joint work with Z. Füredi, and V. Rödl).

Douglas B. West

The Interval Inclusion Number 0/ a Partially Ordered Set

A containment representation of aposet P is a map f such that x < y in P if
and only if J(x) C f(y). We introduce the internal inclusion number (or interval
number) i(P) as the smallest t such that P has a eontaintment representation in
which each J(x) ia the union of at most t intervals. Trivially, i(P) = 1 if and oo1y
if dimP = 2. Posets with i(P) = 2 inclucle the standard n-dimensional poset and
all interval orders; i.e., posets of arbitrarily high dimension. In general, i(P) ~
rdim P /21, with equality for Boolean algebras. For lexieographic composition,
dim(Q) = 2k + 1 and i(P) = k imply i(P(Q)) = k + 1. This and i(B21c) = k imply
that testing i(P) :$ k for fixed k is NP-complete. The maximum value of i(P)
for n-element posets remains unknown, hut i(P) = 8(IPI/logIPI) for almost every
poset. Concerning removal theorems, i(P - x} ;::: i(P} -1 when x is a maximal or
minimal element, and in general i(P - x) ;::: i(P)/2.

(Joint work with Thomas Madej)

Rudolf Wille

On the skeletons 0/ free distributive lattices

The aim is to understand the structure of free distributive lattices via their skele­
tons. The skeleton S( L) of a finite distributive lattice L eonsists of all maximal
Boolean intervals of L ordered by their lower (or equivalently upper) bounds; S(L)
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ia again a lattice. To analyse tbe skeletons of the free bounded distributive lat­
tices FBD(n) witb n generators, methods of formal coneept analysis are helpful.
As key we use the basie fact tbat FBD(n) is isomorphie to the eoneept lattice
B..(Bn,Bn, 'l.) and S(FBD(n» ~ 8..(Bn,Bn, '$) where Bn is the Boolean lattice
with n atoms. ' .
Theorem: The maximal Boolean intervals containing n - 1 of the gener'ators
generate in S(FBD(n» a 0-1-sublattiee isomorphie to FBD(n - 1); if n ~ 5,
S(FBD(n)) is the union of these n sublattices.
Corollary: IS(FBD(5»1 =386

Günter M. Ziegler

Topology 01 oriented matroids

We show that the {see lattice of an oriented matroid (as axiomatized by Edmonds,
Mandel and Fukuda) is the face lattice of a regular CW-sphere.

For this we use Bjömer's characterization of the fa.ce lattiee of shellable CW­
spheres, to show that every linear extension of the poset of regions (as studied by
Edelman) induces a reeursive coatom ordering of the face lattice.

Dur method leads to a new proofof tbe Folkman-Lawrence Representation The­
orem: every oriented matroid arises from an arrangement of p~udo-hemispberes
on a sphere. Moreover, such ara.ngements 88 weIl 88 their hemispheres and inter­
sections of hemispheres (supercells) a.re always shellable. This sharpens Mandal's
result that oriented niatroids anse from eonstruetible (hence PL-) spheres.

(Joint work with Anders Bjömer, Stockholm)

Berichterstatter: Klaus Reuter
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