MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsbericht 25/1988

Algebraische K-Theorie

5.6. bis 11.6.1988 b

Die Tagung fand unter der Leitung von Herrn R.K. Demnis (Ithaca) und Herrn
U. Rehmann (Bielefeld) statt.

Es wurden Vortrige aus unterschiedlichen Gebieten der algebraischen K-Theorie

gehalten und neue Entwicklungen des jeweiligen Teilgebietes vorgestellt.
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Vortragsausziige - o
H. HURRELBRINK: On . K,(0p)

For lbng time, we have known the structure of the K-groups KI(OF)
for rings Op of integers of every number field F (Dirichlet). Recently
we also learned the structure of the K-groups K3(OF) for every
number field F (Merkurjev, Suslin). As of today, the information about
the structure of the finite abelian K-groups KZ(OF) is still limited. .

We proposed the study of the stiucture of Kz(OF) modulo the knowledge
of the structure of related S-class groups, and exhibited 4-rank formulas
for KZ(OF). This led to a characterization of all number fields F with
a wild kernel (Hilbert kernel) of odd order, and the determination of
infinite families of number fields F for which the structure of the

2-primary subgroup of KZ(OF) can be determined.

M. ROST. Hilbert's Satz 90 in Milnor K-Theory

For a quadratic extemsion L = F(¥a ), Char F # 2, Hilbert's Satz 90 states

that the following sequence is exact.

QLo 2y TL/E,
n . n n

Here Kg‘ denotes Milnor K-Theory and o is the generator of Gal(L/F).

Hilbert's Satz 90 for quadratic extensions is proved for n < 4. The method

of proof is to use specialization arguments relating Hilbert's Satz 90
to certain homology groups of the localization sequence in Milnor K-Theory
for quadricsdefined by Pfisterforms. In computing these groups one is led

to consider the complex

M

® Knle(v) 4, (-] KﬁK(V) N, K:F

X
Ve (1) V€ (o)
for (projective) quadrics X (where d is given by the tame symbol and
N=2Z NK( ). The exactness of this complex is proved for n < 1 if

v v) F i p3
the form defining X is of type ¥ ® cy' @ <d>, where ¢ = y' e " is
a Pfisterform and for n = 2, dim X < 2 (which leads to a proof for Hil-
bert's Satz 90 for n < 3, n = 4 respectively) and for n = 3, dim X =1.
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B. OLIVER; Whitehead groups of finite groups

This talk was a summary of current knowledge of the groups KI (ZG) and
Wh(G) for finite groups G. By results of Bass , they are finitely genera-
ted, and their ranks are known. Also, by a theorem of Wall, the torsion

subgroup of Wh(G) is precisély the group
SK, @G) =iKer[K, &G) > K, (6)] ='Rerlnr: K, @G) + Z(@G)*].

Localization sequences are needed to make systematic computations of the
. SK, (2G). One way to see these is to consider the relative K-theory exact

sequences (for all n > 1):
K,®/nlG]) + SK, ®G,n&G) » SK, 6) ~ K, @/n[6]).
Upon taking the inverse limit over all n, this gives an exact sequence

C . L -
1. Kz(sz) + lim SK‘ (ZG,n ZG) ~» SK‘ ZG) — 1 SKl (ZPG) - 1.
P n .
For any Z-order A in a finite dimensional semisimple Q-algebra A,
lim 5K, (A,nA) vanishes iff the congruence subgroup problem holds for Aj;
i.e., iff any subgroup of finite index in SLr(A) (r > 3) contains some

congruence subgroup SLr(A,nA). The group

C(A) = Lim S (A,nA) = Coker[K,(a) > @ K;(Ap)]
n . P

is independent of A; and in many cases - including the case A = QG -
has been completely described in works of Bass, Milnor, Serre; Bak,

Rehmann, Prasad, Raghanathan, and others.
. The SK;(ZG) are thus described by 2 exact sequences

1 > C1,@6) » sk, @6) %> 1 sxlaipc) > 1 (C1,G) := Rer(2))
. P

and T K;CZPG) + C(Qe) » C1,(ZC) » 1.

P .
The SKIWPG) can be described precisely, for any finite G, in terms
of the functor 1-12(-) applied to subquotients of G. The map & is natu-
rally split in odd torsion. Formulas for the odd torsion in CllﬂG)
are known. For example, if G is a p-group for odd p, if

QG =~ l'll;=| Ai, Ai o Mri(Fi)’ has irreducible representation Vi, and
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Fi = Q(ui) where Mg is a group of p-power roots of unity, then:

k

CII(ZG) o [ ui}/w(g @ h) : g,h € G, gh = hg>

n
i=]
where

h,. k h '
Y(g @ h) = (detFi(g,Vi))i=l. v, = {xev; | hx. = x})

A. BAK: The structure of classical groups below the stable range

and nonabelian K-Theory

Let A denote an associative ring which is finite over a commutative ring
with 1. Let Gn(A), n > 3, denote a classical group over A, i.e., either
Gn(A) = GLn(A) or Gn(A) is the automorphism group of a nonsingular form
of Witt index 2 n. Let En(A) denote the elementary subgroup of Gn(A).
Algebraic K-theory treats the groups G(A) = lim Gn(A) and via stability
theory, one can apply K-theory to obtain infon:ation about certain sub-
quotients of G (4), for example Gn(A)/Bn(A), providing n > sr(A) =
stable range of A. Until recently, almost nothing was known about
Gn(A)/En(A) when n < sr(A), one reason being that there is no K-theory

for these groups. The following results close these gaps.

THEOREM A. There is a filtration G| =6 56 >...e > ... E,
n n n n n

functorial in A, satisfying:
j :
(1) Gn(A) < Gn(A)'

(2) If A is commutative and Gn = GLn then Gz(A) = SLn(A).

3) G;I(A)/G::(A) is abelian.

(4) Gg(A) =] G:‘(A) D ... D Gf‘(A) ... 1is a descending central series.

THEOREM B. If sr(A) is finite then G;(A) = En(A) ‘'whenever i > sr(a).

Theorem B says that G:(A)/En(A) is nilpotent of class < sr(A). This
result can be improved to the following: if 2z € Z, let [2] = 2z if

z >0, and o if z < o,
- =

THEOREM C. If sr(A) is finite then Gﬁ(A)/En(A) 'is nilpotent of class
< 1 + [sr(a) + 2-n]. )

The results above are proved by introducing'nonabelian K-theory'.
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Fot.each functor G:in above an algébraic.K—theory with K-theory groups
ij:; (3 > 1) is defined such that KIG;(A) = G;(A)/En(A). Whereas, Kj
for j > 2 is always abelian, K] is not necessarily abelian, hence the
rubric 'nonabelian K-theory'. The main theorems are deduced with the help
of certain exact Mayer-Vietoris sequences for the K-theory above, in par-
ticular the M.-V.-sequence associated to a localization-completion square.

L. VASERSTEIN: Structure of gauge groups

. Let G = G(R) be a simple Lie group. E. Cartan and van der Waerden proved

that G(R)®/center is simple as an abstract group.Let A be a ring of con-
tinuous functions X * IR~ on a topological space X. Assume that A D> IR

and GL,A is open in A. We define G(A) as a subgroup in the group of

1

. 1 .
continuous maps X * G. When X = S, these groups are known as loop groups.

In general, they appear in mathematical physics as gauge groups. Assume
that G is of classical type or splits (e.g. G is complex) (this condi-
tion probably is not necessary) and that there are N roots of 1 for
elements of A or Ali]l close to 1 (where N 1is a certain number
depending on G). Then a. subgroup H of G(A) is normalized by G(A)°
iff 6(B)° € H < G(B) for an ideal B of A.

When X = {point}, this is the Cartan - van der Waerden result. When X = Sl,

the maximal normal subgroups of G(a)° were described by de la Harpe
and (for some G) Segal-Pressley(they use G(B) with maximal ideals B
of A).

W. RASKIND: Some Remarks on H](X,l=(2) of Curves

. Let X be a smooth, projective, geometrically connected curve over a num—

oF

ber field k and set
1 N
V(X) =: Ker(H 0{,52) — k¥).

A conjecture of Bloch and a more general conjecture of Vaserstein say
that V(X) should be a torsion group. Let now k be an algebraic clo-
sure of k and X = Xxkl-c. Then one can easily show that V(X) 1is torsion

if and only if

v(E S _ o
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In this lecture I stated and outlined the proof of the following

THEOREM: Let X be as above with X(k) #. §. Then the natural map

V(X) —> v(i)Gal(k/k)

is surjective.

Since V(i)cal(k/k)

V(X) 1is a torsion group or it is quite large.

is uniquely divisible, the theorem states that either

The proof of the theorem uses results of Saito to prove the corresponding
local statement and then a recent theorem of Jannsen to pass from the

local to the global.

J. URBANOWICZ: Connections between [KzoFI for real quadratic fields F

and class numbers of appropriate imaginary quadratic fields

1 gave some connections between the order of the group KzoF for general
quadratic fields F and class numbers of appropriate imaginary quadratic
fields. I applied an old series (see the paper of M. Lerch in Acta Mathe-
matica, 1905). From the obtained formulas we got some congruences for
|K20F| modulo powers of 2. These congruences are more general. and modulo
larger powers of 2 . ones of Gras (see Manuscripta Math. 57(1987),
373-415). We got the exact divisibilities of |K,0p| by powers of 2
which then answered questions' (conjectures) of Candiotti (Acta Arithm.,

to appear).

R.W. THOMASON: Higher Algebraic K-theory of schemes and of derived categories

(joint work with Thomas F. Trobaugh (t))

Let X be a quasiseparated and quasicompact scheme. Recall from SGA 6Gro-
thendieck's notion of a perfect complex on X. This is a complex of
Qx-modules which is locally quasi-isomorphic to a bounded complex of alge-
braic vecfor bundles. Using quasi-isomorphisms as the weak equivalences
this is a category with cofibrations and weak equivalences in the sense

of Waldhausen. His work thendefines a K-theory spectrum K(X). Whem X has

an ample family of line bundles, for example when X is quasiprojective
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over an affine scheme or is regular noetherian, then this K(X) is homotopy

equivalent to Quillen's K(X).

KEY LEMMA: Let U be a quasicompact open in X. A perfect complex F°
on U is the restriction of some perfect complex on X up to quasi-iso-
morphism iff the class [F']€ KO(U) . is the image of KO(X).

Using this, and techniques of Waldhausen K-theory, we prove:

THEOREM 1: (Bass Fundamental Thm.) There is a functorial spectrum KB(X)

‘ such that

a) Ki(x) = Kn(x) for all integers n > o.

b) there is an exact sequence for all n € Z:

_ 1. 3

0+B® »KBEezIT) 6 B(x zIT '] » KX 8ZIT,T H>K_(X) +0
n - n g n z n z n-1

with 3 naturally split by multiplication by T € KIW[T,T-I]).

THEOREM 2: (Quillen Projective Space Thm.) If ¢ is a rank r vector

bundle over X, there is a homotopy equivalence
r
(e « 1 KX,
1

For Y € X closed, define K(X on Y) as the K-theory of the category

of those perfect complexes on X which are acyclic on X - Y. There is
a [(B(X on Y) satisfying the analog of the "Bass fundamental theorem",

Thm 1.

THEOREM 3: (Localization) For U c X quasicompact open, there is a

. homotopy fibre sequence

oF

(X on X-U) » Ko(X) » (V)
Hence there is a long exact sequence
B B B, 3 B
vee > Kn(x on X-U) » KB(X) > Kn(U) -> Kn_l(x on X=U) » ...

THEOREM 4: (Excision) If i : Y+ X is a finitely presented closed
immersion and f : X' + X is a map such that

. . ey . ,
1) ox',y' is flat over Ox'y if £(y') =y € i(D)

2) f induces an isomorphism f_I(Y) =y
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then f£* : KB(X on Y) = KB(X' on Y') is a homotopy equivalence.

THEOREM 5: (Mayer-Vietoris) If U and V are quasicompact open in X, .

there is a homotpy cartesian Mayer-Vietoris square

KB(U uv) — KB(U)

vy —Bwnv

THEOREM 6: (Brown-Gersten) If X is noetherian of finite Krull dimension,

there is cohomological descent for the Zariski and Nismevich topologies
Em = m;, (G
KBy = my (X3KB)

hence sPectral sequences Hgarfx;iz) = Kﬁ.p(x).

The Nisnevich descent part of Thm 6 allows one to remove the hypothesis -

that X is regular in my old theorem that
v -1 Top,,v
K/2(X)[ 8 ] xR T/2(X).

S. SAITO: SK, of punctuated . Spec of 2-dimensional local rings

1

Let A be a 2-dimensional normal local domain. Let F = A,mA its residue

field. K = Q(A) its quotient field, P the set of all prime ideals of
height 1 in A and put

X = Spec(A) - {mA}.
Let
SK, (X) def Ker (K, (X) — A®

By the localization theory on X we know

SK(X)=  Coker(K,(K) 2. 8 k(MY

where 9 1is given by tame symbols. The localization sequence
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1(2(1() — & K(p)* — 2
pEP

gives use to
S : SK'(X) —Z
and we put
SK,(0)° = Rer(s).
Bloch proves
THEOREM: If A is regular & is an isomorphism.

In this talk I give the following theorem which treats SK] (X) in general
case but assuming F is finite.

THEOREM: Assume that F is finite.

(1) SK, (X)° is torsion. ‘

(2) Let’ D(i) c SKl(X) be the maximal divisible subgroup then
SK,(X)°/D(X) is finite.

(3) There exists a canonical isomorphism

o oUT 45
Sl(1 (X)"/D(X) o Gal(K /K)tor'

T

Here K is the quotient field of the completion A of A. K" is the

maximal abel extension of K which is unramified over any p € P.

We conjecture D(X) = O. Concerning this we have

PROPOSITION: Assume that A has rational singularity. Then the prime-to-
ch(F) part of D(X) is trivial.

As a corollary of Thm.and Prop. we get -

CON. Let B be a 2-dimensional regular local ring with finite residue
field F..Let G be a finite group acting on B such that

(1) for any o € G - {id} lengthy B/I <= where I = <¢%-b | b € B>.

(2) any o € G acts trivially on F.
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Put A= BG which is a 2-dimensional normal local ring. Then we have

Gab

(p = ch(F)) SK (X)° o ® (p-primary torsion divisible group).
1

B. MAGURN: Absolute stable rank and Witt cancellation for noncommutative

Iings
In a ring A, a list I . "can be shortened" if there are t, € A
with a  *toa,...a, AL lying in exactly those maximal left

ideals containing 85583 if every such list in A can be shortened,

we say A has absolute stable rank asr(4) < n. This condition is de-

signed to imply transitive action of U(q) on all.nonsingular vectors
v (in a- (A,e,0)-quadratic space (M,q)) of equal length. By a standard
argument it implies (M,q) is cancellative when q has Witt index

> ast(A) + 2 (or asr(A) + 1 provided the involution o on A is trivial).

In general asr(A) > sr(A) = the stable rank of A. By a recent theorem of
J.T. Stafford, asr(A) ¢ Kdim(A/rad A) + 1, where Kdim(A) is the Krull

dimension of a left noetherian ring. So Witt cancellation (for sufficiently

large index) applies to quadratic spaces over ZG when G isa polycyclic-

by-finite group .

B. KAHN: Trivializing Milnor's K-theory

Let F be a field. The talk defined two series of groups K ), k (F),

"1ifting" the Milnor R-groups KM(F) K (F) (resp. K (F)) is deflned as

mﬁn (resp A" (G )) in the category of Mackey functors. So, loosely

™
speaking, Kn(F) is defined by generators CorE/F(xl @x ... 8 x ),
[E:F] < += x; € E*, with relations given by the projection formula.

Same thing for K (F) with X, A ...A X, There are surjective homomor-

phisms:
o - M
K (F) > K (F) + K (F),
and Ker (i ) > RIF)).  and Rer K (F) » KN(F)) are divisible.

Thus the Milnor-Kato conjecture may be phrased as follows: the natural
maps K (F)/m + H*/F,Z/u(n)) (resp. Kn(F)/m > H'(F,Z/m(n))) are
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isomorphisms.
CONJECTURE 1, There are canonical isomorphisms:

w7 (v, 02() = R (D)
B (F,0/2()) = R (F)

tors
tors
I am able to construct such maps for n = 2,3 (at least, away from 2-torsion:
for 2-torsion I have to assume that Gal(F( p _ )/F) is torsion free).
2
Assume that F is perfect; define Z(I) as Gm[-l] (as a complex of

Gal(F/F)—modules) and Z(n) as Z(l) (in the corresponding derived
category). Set K (F) = H (F;E(n)) Then cup-product induces a homomor-

phism

R (F) &= K!(F),
and

CONJECTURE 2. « is an isomorphism.

The link between conjectures 1 and 2 is the following (easy) theorem.
THEOREM 1. a) There is a canonical isomorphism

8" (F,0/2(0)) =R (F)

tors”

b) There is a canonical injection
K!(F) /m “— H"(F ,2/m(n)).

If the Galois symbol in degree n 1is surjective, this injection is an

isomorphism.

It is easy to see that Ker a and Coker o are torsion. On the other
hand, there is the following result.

THEOREM 2, a) a is surjective iff the Galois symbol in degree n is
surjective.
b) Assume n = 2 or 3. Then the restriction of a to

Kn(P)tors is split surjective, with divisible kernel.
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T. GOODWILLIE: Traces and Fixed Points

The main point of the talk was to give a particular description of Dennis'
trace map from the K-theory K(A) of a ring A to the Hochschild homology

H(A). The description is as follows:

Define K(A) by the Waldhausen method, so K(A) = 9|BiS.C| where
C = category of A-modules (finitely generated proj.)
SkC = category of filtered objects in c

OEPOCP c...cP =P

1 k
iSkC = category with these same objects, but only isomorphisms.

B = nerve
Then Dennis' map can be described as the composition

(*) Q|Bis.C| - Q|Ais.C| i 2|as.C| T 2|Hs.C|

~

H(A)

Here A is "cyclic nerve" (whereas a p-simplex of BC is a diagram

p —2, P!, 5 in C, a p-simplex of AC is a diagram
o ces o .
fl
S I
o/
o
P
o
A
P .
Pe—— )
p .
The map o is . based on the fact that BC &— AC when every arrow
in C is invertible
(Fgrermrfpoy) = (Feennf)s £,0£, 10 ... 0f =1
m m
B A

The map B forgets the requirement that maps are invertible. The map ¥
takes products of Hom-sets to temsor products of Hom-groups. Its target
is defined like its source except that in the forming cyclic nerves a

p-simplex is an element of

Deutsche
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P e
. ,.?.,P Hom(Po, ,) 2] e Hom(Pp_‘,Pp) ] Hom(Pp,Po)
o P

rather than

1l Hom(®,P) x ... <. x Hom(P P )

R 3
R R,

The inclusion H(A) —> 9EH(A) —* 9ZHS C — QlHs.C|

(analogous to inclusion BGL,(A) — K(A)) is an equivalence, by a theorem
1

of Randy McCarthy. (H(A) here is the "tensor product cyclic nerve" of the
one-object category A; it is isomorphic to the usual model for Hochschild

homology.)

One point of the construction is thatthe circle group acts on the diagram
(*) because cyclic nerves are cyclic objects in the sense of Connes.

The intermediate terms can be jdentified as follows:

(1) a|As.iC| = @|B.i Autcl, the K~theory of A-modules-with-automorphisms.

(2) 2|AS.C| seems to be equivalent to the K-theory of A-modules-with-
endomorphism, minus K(A), that is

K(End,| = aln.i'zndcl o K(A) x 2]As.C|

(The idea of proving (2) ‘only came up after the talk, in response to a
question of Thomason. With a little help from Grayson it new looks like

it can be proved.)

S. GELLER: 1Is the KABI conjecture true?
(This is joint work with Chuck Weibel)

KABI CONJECTURE: Let A and B be rings, I an ideal of A, and

£: A+B such that £(I) is an ideal of I and I = £(I). Then for

all n 21
K (A,B,1)8.q ~ HC__,(,B,1) 6 Q.

Previously, the conjecture was known to be true for
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a) n=1 i (Geller-Weibel)
b) I nilpotent (Goodwillie)
¢) B=A/J (Ogle-Weibel)

Also, it is sufficient to prove that Kn(A,B,I) = ncn-l (A,B,I) for
T-algebras AC B with I an ideal of both rings.

In this talk, for Q€ ACB and I an ideal of both rings, triple re-
lative groups xn(A,B,I,J), J an ideal of A, were defined, a module
structure over the ring of Witt vectors W(@) was discussed and the
following results were amnounced with some proofs given.

For QCAcB and I an ideal of both A & B:

1) KABI conjecture < NKn(A,B,I) o Nﬂcn_l (A,B,I) Vn>1
2) KABI conjecture axn(A[t],B[tj,I[t],tk) —
HC__,(ALt],B[t],I[e],t") Va2

3) KABI conjecture e the weight s summand of Kn(A[t],B[t],tkI[t])
is zero for s <k and Vn2>1 -
(hence, if the weight s summand of Kn(A[t],tkI[t]) =0
for n > 2, then the KABI conjecture is true).

4) K,(4,B,I) > HC (4,B,I) is onto.
Hence, for A,B,I as in the conjecture
E(A,B,I) Q> ncl (A,B,I) ® @ is onto.

* B. DAYTON: Naturality of Pic, SKO and SKI

This talk reports on joint work with C.A. Weibel. Transfer maps are con-

structed for SKo and SKl. From these it follows that if A= @ Ai
i>o

is a graded commtative ring with A = @ A, and A =R then

- i
1>0

SK_(A,4,), SK,(A.A,), Pic(A,A,), NSE (R), NSK,(R), NPic(R) are all modules
over the ring W(R) of Witt vectors over R. Various consequences of these
module structures are discussed. In particular we consider the case where
A= ’0. Ai is reduced, graded and finitely generated as an algebra over

120
‘the field Ao =k. Let B= © Bi be the seminormalization of A,
i>o ’
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T OGW(B) = {f =14t + ... € W(B) | b; € B;}. There is an injection
Y : Pic(A) > GW(B)/GW(A) of W(k)-modules. If A =B  for n > o
then y is an isomorphism. If char(k) = 0, composing y with the ghost

map gives an isomorphism of k-modules Pic(d) » B/A.

C. KASSEL: Bivariant Chern character

The Chern character (also called generalized Dennis trace map)
ch : Ke(a) » HC (A) from algebraic K-theory to negative cyclic homology

can be extended to a bivariant Chern character ch : K¥(A,B) -+ HC*(A,B)

from a suitably defined bivariant algebraic K-theory.to a bivariant version
of cyclic cohomology. Both bivariant theories are covariant in B and con-
travariant in A. One recovers the usual Chern character when A =2Z, As

an immediate consequence of the multiplicativity of the bivariant Chern
character, two Morita-equivalent algebras_héve isomorphic (bivariant)

cyclic (co)homology groups.

The bivariant K-groups are obtained from the exact category of A-B-bimodules
which are finitely generated projective over B.

The bivariant cyclic cohomology groups have the following properties

i) (Product) There exists a graded product

HC*(AI,B1 ® C) 8 HC*(C ® AZ’BZ) *’HC*(AI 2] AZ’ Bl ] BZ)

ii) (Bivariant Connes exact couple) There exists an exact couple
s
HC*(A,B) ———> HC*(A,B)
B I

. . EEY(A,B)

where deg(S) = 2, deg(I) = 0, deg(B) = -1 and HE*(A,B) is a

bivariant version of Hochschild homology.

iii) For any extension of algebras 0+ I » R+ S > 0 such that I is

H-unital in the sense of Wodzicki, one has the exact triangles

HC*(|A,I\)—:H/C*(A,R) HC*(I,A) <— HC*(R,A)
HC*(A,S) . © HC*(S,A)
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jiv) If SA. is the suspension of the algebra A, one has the following

isomorphisms:

HC™(a,B) = HC®°(A,S"B) and  HC "(A,B) = HC®°(s"A,B) (n > o).

J.L. LODAY: Operations in cyclic homology of commutative algebras

The notion of descents for a permutation o € Sn permits us to define the

Eulerian partition of S :S_ =§ U...Us . The elements
n n n,l n,n

2: = (-l)k-I T sgn(c)o of the group algebra K[Sn] have very nice

o€S
. n,k k-1 : s s
properties. They lead to )‘1; = I (-'I)l(nzl)l: .
i=o

Let Sn act from the left on A ® Aen where A is a commutative K-algebra.
Denote by b the Hochschild boundary and by B the map defined by Connes.

k_ ok k-1 o peeok k-1
PROP. b2 = (2 +2 )b and 1:5 B(ke[ + (n-k+1)2.)).
k _,k - k
Cor. b AK =K b and AB=BRAL, .

Therefore these lﬁ maps permit us to endow Hochschild homology and cyclic
homology with a special A-ring structure.

In the rational case it implies a natural splitting:

(1) (n) _ aell) (n) .
HH, = HH '  © ... ® HH and HC = HC ~ @ ... ®HC ', with
) -1 1 .
'mlfl") = o, nct(l“) = g%7ae® and uné ) . Harr, = nct(ll) (n > 3 for this

last equality) where Harr, is Harrison homology.

'\311 the properties are valid for any functor Fin -+ (R-modules) where

Fin is the category of finite sets. In fact, the relatioms in PROP and

COR above may be seen as relations in the universal ring L = K[Einl.

Ref.: J.-L. LODAY, Partition eulérienne et opérations sur

‘homologie cyclique, Cptes Rend. Acad. Sci. Paris (1988).

D. WEBB: .G-theory of integral group rings

Let G be a finite group, and consider G,(ZG) (or more generally,
G4(RG), for a Noetherian ring R). We first deduce a Lenstra-type decompo-

sition for G nilpotent.
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PROP.: Let. G be finite nilpotent, and write QG = I Q(p), where p

p
ranges over irreducible rational representations and Q(p) is simple;
. 1
let Z(p) be a maximal Z-order in Q(p), Z<p> = 2(9)[1314, where
o] = [G : ker p]. Then G,(&G) = 6 G,(<p>).
p

I. Hambleton, L. Taylor, and B. Williams prove this result independently,
and they conjecture a general answer:

CONJECTURE (HTW): Let G be a finite group, and write QG e« I M (Dp),
- o

p
D = Endmc(vé) the division algebra associated to the irreducible ratio-

nal representation p : G > GL(vp). Let kp = |ker(G £, GL(V“’))'I,y.p the
degree of any. irreducible constituents of € OQ Vp, Wp = E;%L-, Dp a
PP

maximal Z-order in Dp. Then G,(ZG) ~ @ G*(Dp[l/“b])’
p

PROP.: The HTW conjecture holds for dihedral extensions of finite abelian

groups.

PROP.: The HTW conjecture holds for |G| square-free.

The proofs use Lenstra-type techniques; one defines the Lenstra functor,

a self homotopy equivalence of BQM(M), m a Z-order in QG containing ZG;
this induces a map of the homotopy fibre sequence gtorclc) + M@ZG) + M(QG)

to the sequence gtor(a) + M(a) > M(QG), where a is a ring whose G, is the

desired answer.

C. OGLE: Generalized Trace Map for K-theory of Spaces, and Applications

A conjecture due to T. Goodwillie asserts that
- - def.
w @,
1 o (Ix]), o (lx) = a5 (GEZ/q_A [X]
a1 9 4 z/q

[q]

AGX) = p(lx)) = M,

‘where A(Z) denotes the Waldhausen K-theory of the space = simplicial

Deutsche

set Z and A(Z) = cofibre (A(Z) + A(x)). A proof of this conjecture has
been annoynced by G. Carlsson, R. Cohen, T. Goodwillie, and W.-C. Hsiang
[CCGH] and independently by myself. Both previous proofs are incorrect.

We correct this.

We follow the techniques used by Waldhausen in his proof of the splitting
Diff © oo .
A(Y) = Wh 1 (Y]) xaz (|Y|+), and the outline of the proof of Goodwillie's
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conjecturé given in [CCGH] in showing

THEOREM 1 There exists a trace map Trx(Y) natural in X and Y,

(X a connected simplicial set, X and Y base pointed):
Trg(Y) : lig " fibre G(z(X v " ¥)) » ACQX)) —
. n -

oy 1219 A ey = netmedx i A e,
! ezl

The decomposition on the right decomposes Trx(Y) as I 'I‘rx(Y)q.

qz1 -
There exist maps Pq ¢ Dq(|X|) + A(ZX) as constructed in [CCGH] and [0].
These constructions, as well as the entire proof of the above Theorem,
admit and require a precise simplicial formulation. This we do. We then

get

* if p%gq

THEOREM 2 T (M o (D,EP)X(Y) = { D3 if peq

This homotopy is natural in X and Y. Here (DISP)X(Y) denotes the 15%
derivative of the map 5p at X, evaluated at Y in the sense of Good-
willie. It now follows from the fundamental results of Goodwillie and
Waldhausen, who have computed (DIKZ)X(Y) that

COR. 3 A(ZX) = D(|X|) by a homotopy equivalence natural in X.

A.0. KURKU: Higher R-theory of orders and integral group-rings

This talk gives an exposition of the speaker's recent results on the higher
K-theory of orders and group-rings. First solutions were given to recent
questions on finite generation of K> Gn of orders as well as finite-
ness of SK, and SGu of orders as follows. More precisely we prove

the following results:

(I) Let R be the ring of integers in anumber field F, A any R-order
in a semi-simple F-algebra I, P any prime ideal of R, then for all
n>1

(i) K@) isa finitely generated abelian group.

(ii) Kn(A) - Kn(r) is an isomorphism mod torsion if T is the maximal

R-order containing A.

Deutsche
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(iii) SKn(A) is a finite group.
(iv) SKn(AP) is finite where AP is the completion of A at P

(II) Let R,A, F, £ be as in (I). Then V n > I

(i) G,(A) is a finitely generated abelian group

(ii) GZh-l(AP) is a finitely generated abelian group.

(iii) SG, (Ap) = SG, (A) = SG, (Ap) = O. .

(iv) SG2n-1(A) is finite; SGZn-l(AE)’ 5G, _1(Ap) are finite groups

of order relatively prime to the prime p lying below P.
We also have the following results on Cartan maps: For all n > 1

(III)(i)- If k is a field of characteristic p. and 7. any finite
group, then Kzn(kﬁ) is a finite p-group and
Ker(K2n_|(kﬂ) **Gzn_l(kﬂ)) is the Sylow p-subgroup of Kzn_l(kn).

(ii) Kn(A) -> Gn(A) ‘induces a surjection SKn(A) > SGn(A).
(iii) G4n+3c!“)’ K4n+3GZu), cbn+3czpn) are finite groups.

Finally we show that reduction theory can be used to reduce the study
of K-theory of integral group-rings of finite groups to the study of
the K-theory of group-rings over the p-hyperelementary subgroups of .

S. LICHTENBAUM: Motivic Cohomology

It would be highly desirable to have an algebraic cohomology theory
bearing the same relation to algebraic K-theory as ordinary singular coho-~
mology bears to topological K-theory. This theory should also have serious
applications to the study of special values of zeta-functions and to arith-

metic duality theorewms.

Such a theory should be the hypercohomology (in the &tale and Zariski sites)
of a complex of sheaves Z(r) (r = 0,1,2...) on a noetherian regular

scheme X satisfying (at least) the following properties:
©) Z(o) =z z() =G [-1]
(1) For r > 1, Z(r) is acyclic of [1,r]

: L
(2) There is a product pairing Z(r) © Z(s) -» Z(r+s)
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Forschungsgemeinschaft

o




DFG

- 20 -

(3) (a) If n is invertible on X, there is a distingui‘shed triangle in

the étale site
Z(r) ——-»Z(r) — Z/nz(r) — Z(x)[1]

() If X has characterxst:.c p, there is a d1st1ngu1shed triangle

in the eétale site

2(r) B 2(x) — u_(0[-x] — 2(0) (1]

(4) 1f o maps the étale site to the Zariski site,

FR(), = EB(Dg  CRRER)G = e Ry T2,

r+l

In particular, R* oZ(r) = 0 (Hilbert Theorem 90).

(5) RfaZ(x) = B

=r,zar- .
(6) The homology sheaves . B @Z(r)) should be isomorphic to the sheaves

grx_Kzr_l(O ), up to p—torsmn for primes p < r.

For r = 2, we have constructed a cohomology theory satisfying all of

these properties, with the exception that we do not know for proj:erty (6)

that grx_(0)=0 for i <o.
2=4-1 -

A possible candidate for a motivic cohomology complex in the case of a

field F is the following:

Let the i-th term of the complex Z(r) (e <i<rx), be

Lig kM (v-5, 1),1,,...1)

v,S

where V runs over all reduced i-dimensional subschemes of A:, whose

intersection with all faces of the hypercube xi(xi_,) = 0, i=l,...,r

is proper. S runs over all finite )

subsets of V whose intersection with the (r—i)-skeleton of the hyper-
- 1

cube is empty, and Ij is the ideal defined by Xj (Xj-l). KiM here

denotes multirelative Milnor K'-theory.

M. HARADA: Grothendieck-Riemann-Roch for general schemes

Let S be a base scheme, Noetherian and of finite Krull dimension, sepa-

rated. Let % be a prime number, fixed once for all so that

1) z-l € Os’ 2) all residue fields of S have uniformally bounded,
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. ‘ _ .
f-gtale cohopolqgical dimension, e.g. @ if 2 # 2, T,k Z[zi,... .

alg’
Schemes we consider are essentially of finite type over 5.

THEOREM. There exists a topological G-theory spectrum Gt(X) so that

! t .
1) Atiyah-Hirzebruch s.s. Hf(xét; i Zi(*)) = Cy(X), i : XS,
the str.—morph.

‘ 2) Grothendieck-Riemann-Roch: When f : X + Y is proper morph.,
T
. B —= ¢t
t
‘| E
alg t
¢*B@) ——— 6" (M)
y

where c‘lg(x) is the spectrum associated to coherent sheaves on X,

f, 1is induced by an alternative sum of higher direct image sheaves.

And it induces the Hirzebruch-Riemann-Roch formula, the main theorem of
Baum-Fulton-MacPherson and its generalization to higher K-theory, the
theorem of Gillet.

The proof and the construction is based on the facts that 1) fs can be
localized with respect to the étale topology on Y; 2) Kalg( ); is
locally constant on the &tale topology.

The projection formula £4(x N f*y) = (fax) Ny is formulated as the

commutative diagram of spectra
*

18f n
c218(x) o k®18(v) — c218(x) & K318B(X) — G2l8(x)

| 8wy @ R*1E(n) - » 18D .
The fact gi
e fac ilves U: 18£* . L n .
.nalg,, Vv -t ~ .~alg, v > .nalg, Vv
L WETERN 6 KMy — Mg e ) a:&x)l‘-» H (%, 56" B/)
K (8); YO
£401- fe

alg,,V L t o
H(Y,, 3¢ “/t) @ K (Y),

. Y
~ | (Y. ;63180
€ et’s
K(S),
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When X and Y are proper over S , compose the Gysin mapping to S

.nalg,,V
H (X, ;6% 8/2)

T
 u

.calg, v
MY, 36 °/8)

I c218/¢"(s)

and taking the adjunction as Kt(s);-module, we get the theorem 2).

To prove the theorem 1), we look at the Postnikov filtration on them.

J. BERRICK: Acyclic groups

Acyclic groups are those groups whose homology (trivial Z coefficients)
is that of the trivial group. This survey attempts to indicate the

importénce of acyclic groups and examine their group-theoretic structure.

Examples

Acyclic groups are to be found in work of G. Higman (1951), McLain (1954),
Baumslag & Gruenberg (1967), Epstein (1968), J. Mather (1971)) Wagoner
(1972), Kan & Thurston (1976), Baumslag, Dyer & Heller (1980),

de la Harpe & McDuff (1983), and elsewhere. Many examples have few normal

subgroups.

Ubiquity results

For a group extension N < G +* Q with Q acting trivially on H,N,

(i) N acyclic e= H,G — H,Q

(ii) Q acyclic H,N — H,G

[K&T]1976 : V group G, G 4 D g acyclic.
This prompts the study of normal-in-acyclic groups, e.g. abelian groups
[BD & H 1980, B 1983],GL(R) (R ring) [W 1972].

Group structure = acyclicity

Techniques used to prove acyclicity include Mayer-Vietoris sequences,
preservation of dirlim by homology, and binate structure: G = UGn where

G] < G2 <... and Vn 3 wn:Gn-.Gn-H and a1 € Gn+| s.t. Vg€Gn g =

[@_(g), a_,,). Binate groups are acyclic [ B, to appear in Proc. Singa-
n n+l g 8

pore Group Theory Conf., de Gruyter] .
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Acyclicity = group structure
T: Any f.d. complex representation of an acyclic group restricts

trivially to all finite subgroups.

Cl: Finite normal-in-acyclic- groups are abelian.

C2: A (non-central) normal subgroup N of a torsion-generated acyclic
group has N/N" f.g..iff N is ‘infinite perfect - by - f.g. abelian.

(Possible example GL(R) <9 GL(CR) therefore GL(R) is ER—by-KlR.)

C3: If perfect N a torsion-gen'd acyclic A and AutN has a series with

factors residually finite and/or hypoabelian and/or torsion-free, then

‘ AN x A/N, so N also torsion-gen'd acyclic.

‘ by the Poincaré duality isomorphism H > H

oF

J. BOCHNAK: Algebraic vector bundies over real algebraic varieties and

applications

Let X -be an affine nonsingular, compact connected real algebraic
variety and let R(X) be the ring of regular functioms from X into
R. The group§ Pic (R(X)), Pic (R(x)emm)_ R KO(R(X)) , KO(R(X)GRE) contain

precious information about the geometry and topology of X . Each of these

groups is a subgroup (in a natural way) of the corresponding group of the

ring C(X) of continuous functions from X into R (embedding is induced

by the inclusion map R(X) — C(X) ).

. : . i
Pic(R(X)) 1is naturally isomorphic to a subgroup Halg(X,ZIZ)- of

Hl (X,2/2) where H;lg(X,Z/Z) is the image of

Halg

n_‘(X,Z/Z) = {homology classes in Hn_l(x) represented

by algebraic hypersurfaces of X}

I;n=<li.\'nx.

Theorem. Let M be a compact connected ¢® manifold of dimension > 3,
and let G be a subgroup of Pic (C(M)) containing the first Stiefel-
Whitney class of M . Then there is an algebraic model X of M and

a diffeomorphism ¢ : X — M such that ¢* (G) = Pic (R(X)).

(here @* : Pic (C(M)) — Pic (C(X)) is the isomorphism induced by ¢).

Remark. A slightly weaker version of this theorem is valid also for sur- .

faces.
Corollarz. For each compact connected ¢° manifold M , orientable of
dim » 2, there exist an algebraic model X of M with R(X) facterial.
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KO(R(X)) of real affine surfaces and 3-folds : -

Define the following invariants of a nonsingular real algebraic surface X .

B = dimy,, By (X2/2)
a(0) = digy, {v € “;1'3 (X, Z/2) | vbv = o} )

Theorem.

(1) Let X be a compact connected affine real algebraic surface. Then
R, (R(X) =2z 8 @/6)f Pz /5)8®+1-2(BEX) -0 X))

(ii) As X " runs through all algebraic models of a compact connected
smooth surface M of genus g , the groups KO(R(X)) take (up to iso-

morphism) precisely q(M) values, where

2g+1 if M orientable
qM) = { g if M nonorientable, g odd
2g-2 " if M nonorientable, g even

(Remark. Similar results holds true for algebraic 3-folds).

Theorem. Let M cIRPk

bea € compact hypersurface. Then there exists
a diffeomorphism h : me¥ — wPE (which can be chosen arbitrary close to
the identity), such that:.

(i) X = h(M) is an algebraic nonsing\'zlat subset of ]RPI.(

(ii) K (R(X) and K (R(X)WE) are finite groups. ,

(iii) 1f BSV®" (M, Z) is torsion free, then K _(R(X)6C) =0

(iii) If M is orientable, and dim M = k-1 is even, then eacb regular

mapping X — sk!

is homotopic to a constant.

There are many applications of these and similar results to the study of
the structure of the set R(X,Sk) of regular mappings from affine real

algebraic varieties X into Sk ( = the standard sphere).
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A sample of results:

‘Theorem. Given a compact connected ¢ surface M , the following

conditions are equivalent:

(i) PFor each algebraic model X of M , the set R(x,sz) is dense in
¢ (X,Sz) (=set of C~ mappings from X into 82 equipped with the
¢ topology).

(ii) M is nonorientable of odd genus.

Remark. In particular one gets an algebraic model X of the Klein bottle
with R(x,sz) not dense in CQ(X,SZ) by constructing a model with
KO(R(X)OI:) =0.

Theorem. Let )'12( be a Fermat sphere i.e.
}i = {(x,y,z) € IR3 ] x2k+y2k+zz~k = 1}
Then .
. R (zlzc R Sz) is demse in C° (Zk . Sz) .

Remark. The Fermat spheres are quite excepti’.onal, since for "most"
algebraic surfaces X in IR3 , the set R(X,Sz) contains only mappings

homotopic to a constant!

Theorem. Given a compact connected orientable ¢” manifold M, dim M = 4,

the following conditions are equivalent:

(i) There exists an algebraic model X of M such that each regular
map X — s s homotopic to a constant.

(ii) The signature of M is O .

Theorem.- Let C be a nonsingular complex projective curve, and let

CIR be the underlying real algebraic variety. Then R(Cm, 52) is dense
in ¢ (cp, sH .
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R. Mc CARTHY: Cyclic and Hochschild Homologies of an Exact Category

Let k be a commutative ring and for € a small k-linear category; we

define the cyclic nerve of € , CN(£) to be the cyclic k-module:

an(t) = e Hom(Cl,Co) 8 ... 8 Hom(Co,Cn)
CosveesChy
an
a/a"'_\
i.e. Co‘201 “Cy...—C  (a® ...8a).

Face and degeneracy operators are like those of Hochschild homology.

Theorem If A is a unital k-algebra, and P, = cat. of f.g. projective

modules, then
CN(A) o CN(PA) [by def. retract] .

For M an exact category, which is also k-linear, we can form CN. S. 1,

where S.Ml is Waldhausen simplicial category for a cofibered category.

Def: HHx(M) = HH, ]( CN. S.M )
HC, M = HC, , (CN. s.W)
m
Theo?em CN. Sm PA = CN. PA

Cor. The map CN. PA — 0 CN. S. PA is a homotopy equivalence.
Cor. We have trace map (by Goodwillie earlier)

aNi ~
NiS. PA—r QCNS, PA<— CN. PA

4 4
QN.QPA CN.A
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S. LANDSBURG: Relative Chow Groups

Let Yc< X be a closed inclusion of regular schemes of finite type over
a field. (Regularity can be relaxed in much of what follows.) We want to
define a relative Chow Theory cvP (x,v).
To see what this theory should look like, consider the usual absolute
Chow theory ChP (X). We have
P : Prgy = 7P exy/m o 1P _ g PyD
grPK () = P () = 2P0/~ = B, = BP TP )
iso up to torsion.
7P

where is cycles, ~ 1is rational equivalence, K  is sheafified

K-theory, and Ezp'-gx) is from the Quillen spectral sequence.
Here are the relative analogues of some of these objects:

(1) Let ZP(X) be free abelian on cycles meeting Y properly.
Then 2P(X,Y) is defined by 0 - zP(X,Y) + Z°(X) » ZP(Y).

(2) KP(X) is the complex gp(x)‘-> i*lc(‘p(Y).

(3) We get a spectral sequence for relative K-theory by taking

fibers vertically in the diagram

g m N Fm/mﬂ
} i }
W™l - 1O — @
| l l

) = kPO — ™ )

Here M (X) is the category of X-modules of cod > m. The spectral
nee i Pq p/p+l)
ce is E =1 F = K X).
sequence 1 -p-q ( ..p_q( )

The construction of the spectral sequence leads immediately to maps
P>~P P

}

. ZP(X,Y)/~ for appropriate ~ .

We also get a cycle map ZP(X,Y)/~ — IBP(X,KP) directly by noticing
that for Z € ZP(X,Y), Hg (X’Kp) is free abelian on the components

of Z .
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Before defining Chm(X,Y), we generalize some of this to higher Chow
groups. There is a map from Bloch's higher Chow complex to the Gersten-

Quillen complex induced by

Z"(x,n) — I K (D) via (p*z’ { Nt Nt } )
. oxex™® ' INe,-T ..., WL, -1

"where N = Normz,p*z and { } 1is the Steinberg symbol. This gives
Chm(x,n) — Hm—n(x,gm) ; this is iso for n g 1.

Now defime Ch"(X,Y,n) = M_ (Cone @, ) = 22, -N-1D.
(To define the map, first replace Zm(X,-j by quasi-isomorphic complex
consisting of things that restrict properly to. Y.)
Define
ch®(%,Y) = Ch™(X,Y,0).

Then we get a Bloch Formula

ch%(x,¥) — H®(X, Km).

Finally, to get a cycle map, note that an element of Chm(X,Y) is repre-
sented by a cycle Z on X with a choice of trivialization of zIy.
This gives data consisting of compatible cycles on two copies of X and
one of Y x al (namely Z+, 2z~ and the trivialization). Under favorable

circumstances, these can be "patched" to give a class in

1
xo(xuy”o (Y < Iy, ) K (5,1) 8 K (D).

Berichterstatter: Gilinter Habdank
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