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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e r ich t 25/1988

Algebraische K-Theorie

5.6. bis 11.6.1988'

Die Tagung fand unter der Leitung von Herrn R.K. Dennis (Ithaca) und Herrn

U. Rehmann (Bielefeld) statt.

Es wurden Vorträge aus unterschiedlichen Gebieten der algebraischen K-Theorie

gehalten und neue Entwicklungen des jeweiligen Teilgebietes vorgestellt.
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Vortragsauszüge

H. HURRELBRINK: On· KZ(oF)

- z -

For long time, we have known the structure of the K-groups K1(OF)

for rings 0F of integers of every number field F (Dirichlet). RecentIy

we also Iearned the structure of the K-groups K3(OF) for every

number field F (Merkurjev, Suslin). As of today, the information about

the structure of the finite abelian K-groups KZ{OF) is still limited.

We proposed the study of the structure of K2(OF) module the knowledge

of the structure of related S-class groups, and exhibited 4-rank formulas

for K2~OF). This led to a characterization of all number fields F with

a wild kerne1 (Hilbert kernei) of odd order, and the determination of

infinite families of number fields F for which the structure of the

2-primary subgroup of K2(OF) can be determined.

M. ROST. Hilbert's Satz 90 in Milnor K-Theory

For a quadratic extension L = F(Iä), Char F * 2, Hilbert's Satz 90 states

that the following sequence is exact.

Here K:" denotes Milnor K-Theory and a is the generator of Gal(L/F).

Hilbert's Satz 90 for quadratic extensions is proved for n ~ 4. The method

of proof is to use specialization arguments relating Hilbert's Satz 90

to certain homology groups of the Iocalization sequence in Milnor K-Theory

for quadri~definedby Pfister~orms. In computing these groups one is Ied

to consider the complex

for (projective) quadrics X (where d is given by the tame symbol and

N = ~ NK(v) F). The exactness of this complex is proved for n ~ 1 if

the form defining X is of type tP m cl/J' i <d>', where 1P $' I $" is

a Pfisterform and for n = 2, dim X ~ 2 (which leads to a proof for Hil­

bert's Satz 90 for n ~ 3, n = 4 respectively) and for n = 3, dim X = 1.

                                   
                                                                                                       ©



- 3 -

B. OLIVER: Whitehead groups of finite groups

This talk was a summary of current knowledge of the groups K1QtG) and'

Wh(G) for finite groups G. By results of Bass , they are finitely genera­

ted, and their ranks are known. Also, by a theorem of Wall, the torsion

subgroup of Wh(G) is preeisely the group

Loealization sequences are needed to make systematie eomputations of the

~ SKICtG). One way to see these is to consider the relative K-theory exact

sequences (for all n > 1):

Upon taking the inverse limit over all n," this gives an exaet sequence

11· K~<ipG) ...~ SKI <XG.n ZG) ... SK1liZG) !... 11 SKI <ipG) ... I.
p n p

For any Z-order A in a finite dimensional semisimple ~-algebra A,

~ SKI (A,nA) vanishes iff the congruence subgroup problem holds for A;

i.e., iff any subgroup of finite index in SLr(A) (r > 3) eontains same

congruence subgroup SLr(A,nA). The group

is independent of Aj and in many eases - ineluding the ease A = ~G -

has been completely deseribed in works of Bass, Milnor, Serre; Bak,

Rehmann, Prasad, Raghanathan, and others.

The SKI(ZG) are thus described by 2 exact sequences

1-+ Cl l (7lG) -+ SK1(ZG) ~ TI SK1<Z G) -+ (Cll(ZG)':= Ker(t»
. p p

c ...
and TI K2(Z G) -.. C«(QG) -+ Cl I (ZG) -+ ).

p p
The SKICZpG) can be described precisely, for any finite G, in terms

of the functor H
2

(-) applied to subquotients of G. The map is natu-

rally split in odd torsion. Formulas for the odd torsion in Cll(ZG)

are known. Por example, if G is a p-group for odd p, if

~G ~ ~ ) A., A. ~ M (F.), has irreducible representation v
1
", and

1= 1 1 r. 1
1
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Fi ~(~i) where ~i is a group of p-power roets of unity, then:

Cl\QtG) ~ [i;. Ui]/<w(g e h) : g,h E G, gh = hg>

where

1lJ(g 8 h) {x E Vi I hx·= x})

A. BAK: The structure of classical groups below the stable range

snd nonabelian K-Theory

Let A denate an associative ring which is finite over a commutative ring

with I. Let Gn(A), n ~ 3, denote a elassieal group over A, i.e., either

Cn(A) = CLn(A) or Gn(A) is the automorphism group of a nonsingular form

of Witt index ~ n. Let En(A) denote the elementary subgroup of Cn(A).

Algebraic K-theory treats the groups C(A) = lim Cn(A) and via stability
n

theory, one ean apply K-theory to obtain information about eertain sub-

quotients of Gn(A), for example Gn(A)/En(A), providing n > sr(A)

stable range of A. Until reeently, almest nothing was known about

Gn(A)/En(A) when n ~ sr(A),·one.reason being that there is DO K-theory

for these groups. The following results elose these gaps.

THEOREM A. There is a filtration C-1
n

funetorial in A, satisfying:

G
j

::::> En ••. n'

(I) Gj(A) <I G (A).
n n

(2) If A is eommutative and G GL then GO(A) SLn(A).n n n

(3) C- I (A}/Co(A) is abelian. en n

(4) CO(A) ::::> GI (A) ::::> ••• ::::> Ci (A) is adescending central series.n n n

THEOREM B. If sr(A) is finite then Ci(A) = E (A) 'whenever i ~ sr(A}.
n n

Theorem B says that CO(A)/E (A) is nilpotent of class < sr(A). This
n n

result can be improved to the following: if z E Z, let [z] = z if

z ~ 0, and 0 if z < o.

THEOREM C. If sr(A)

~ I + [sr(A) + 2-n].

is finite then CO(A)!E (A) "is nilpotent of class
n n

The results above are proved by introducing'nenabelian K-theory'.

                                   
                                                                                                       ©



- 5 -

For each functor G~ above an algebraic K-theory with K-theory groups
i i i IK.G (j > 1) is defined such that K)G (A) = G (A) E (A). Whereas, K.

J n n n n J
for ~ 2 is always abelian, KI is not necessarily abelian, hence the

rubric 'nonabelian K-theory'. The main theorems are deduced with the help

of certain exact Mayer-Vietoris sequences for the K-theory above, in par­

ticular the M.-V.-sequence associated to a localization-completionsquare.

L. VASERSTEIN: Structure of gauge groups

Let G = G(R) be a simple Lie group. E. Cartan and van der Waerden proved

that G(R)oIcenter is simple as "an abstract group.Let A be a ring of con­

tinuous functions X + IR· on a topological space X. Assume that A ~ IR

and GL)A is open in A. We define G(A) as a subgroup in the group of

eontinuous maps X ~ G. When X = SI, these groups are known as loop group~.

In general,. they appear in mathematical physics as gauge groups. Assume

that G is of elassical type or splits (e.g. G is complex) (this condi­

tion probably is not necessary) and that there are N roots of ) for

elements of A or A[i] elose to (where N is a certain number

depending on G). Then

iff G{B)o eHe G{B)

a. subgroup

for an ideal

H of

B of

G(A)

A.
is normalized by G(A)o

When X = {point}, this is the Cartan - vander Waerden result. When' X =.5
1

,

the maximal normal subgroups of G(A)o were described by de 1a Harpe

and (for some G) Segal-Pressley(they use G(B) with maximal ideals B

of A).

W. RASKIND: Some Remar~s on H1(X'!2) of Curves

Let X be a smooth, projective, geometrieal1y connected curve over a nu~

ber field k and set

1 N
V(X) =: .Ker(H OC'~2) --+- k*).

A eonjeeture of Bloch and a more general conjecture of Vaserstein say

that V(X) should be a torsion group. Let :now k be an algebraic c!o­

sure of k and i = X~k. Then one can easily show that V(X) is torsion

if and only if

v(iö Ga1 (k/k) o.

                                   
                                                                                                       ©



- 6 -

In this lecture I stated and outlined the proof of the following

THEOREM: Let X be as above with X(k) *·0. Then the natural map

is surjective.

Since V{X)Gal(k/k) is uniquely divisible, the theorem states that either

V(X) is a torsion group or it is quite large.

The proof of the theorem uses results of Saito to prove the corresponding

local statement and then arecent theorem of Jannsen to pass from the

local to the global.

J. URBANOWICZ: Connections between IK20F I for real quadratic fieids 'p

and class numbers of appropriate imaginary quadratic fields

I gave some connections between the order of the group K20
F

for general

quadratic fields Fand class numbers of appropriate imaginary quadratic

fields. I applied an old series (see the paper of M. Lerch in Acta Mathe­

matica, 1905). From the obtained formulas we got some 'congruences for

IK20 F I modulo powers of 2. These congruences are more .genera~.and modulo

larger powers of 2 . ones of Gras (see Manuscripta Math. 57(1987),

373-415). We got the exact divisibilities of IK20F I by powers of 2

which then answered questions' (conjectures) of Candiotti (Acta Arithm.,

to appear).

R.W. THOMASON: Higher Algebraic K-theory of schemes and of derived categories

(joint work with Thomas F. Trobaugh (t»

Let X be a quasiseparated and quasicompact scheme. Recaii from SGA6Gro­

thendieck's notion of aperfeet complex on X. This is a eomplex of

o.x-module~ which is locally quasi-isomorphie to a bounded eomplex of alge­

braie vector bundles. Using quasi-isomorphisms as the weak equivalence~

this is a category with cofibrations and weak equivalences in the sense

of Waldhausen. His work thendefines a K~theory spectrum K(X). When X has

an ample family of line bundles, for example when X is quasiprojective
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over an affine scheme or is regular noetherian, then this K(X) is homotopy

equivalent to Quillen's K(X}.

KEY LEMMA: Let U be a quasicompact open in X. A perfect complex F·

on U is the restriction of same perfect complex on

morphism iff the class [F·] E" Ko (U) " is the image of

x up to quasi-iso­

Ko(X}.

Using this, and techniques of Waldhausen K-theory, we prove:

THEOREM I: (Bass Fundamental Thm.) There is a functorial spectrum KB(X}

such that•a) for all integers n ~ o.

b} there is an exact sequence for all n E Z:

with natura11y sp1it by multiplication by
-I

T E K1CZ[T,T ]}.

THEOREM 2: (Quillen Projective Space Thm.) If E is a rank r vector

bundle over X, there is a homotopy equivalence

B r B
K· (lF EX) ~ TI K (X).

1

For Y c X closed, define K(X on Y) as the K-theory of the category

of those perfect complexes on X which are acyclic on X - Y. There is

a KB{X on Y} satisfying the analog of the "Bass fundamental theor~",

Thm 1.

THEOREM 3: (Localization)

homotopy fihre sequence

For UeX quasicompact open, there is a

Hence there is a 10ng exact sequence

THEOREM 4: {Excision} If i: Y ~ X is a finite1y presented closed

immersion and f : X' ~ X is a map such that

I} 0X',y' is flat over 0X,y if f(Y') = y E i(Y)

2) f induces an isomorphism f-I(y} ~ y

............._-----------------_.- --
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then f*: KB(X on Y) ~ KB(X' on y') is a homotopy equiva1ence.

THEOREM 5: (Mayer-Vietoris) If U and V are quasicompact open in X,

there is a homotpy cartesian Mayer-Vietoris square

KB(U U V) --+ KB(U)

! !
KB(V) ---+ KB{U n V)

THEOREM 6: (Brown-Gersten) If X is noetherian of finite Krull dimension,

there is eohomo1ogica1 descent for the Zariski and Nisnevich topo1ogies

henoe spectra1 sequenees

The Nisnevieh deseent part of Thm 6 al10ws one to remove the hypothesis

that X is regular in my old theorem that

S. SAlTO: SKI of punctuated Spec of 2-dimensional leeal rings

Let A be a 2-dimensional normal leeal domain. Let F = A/mA its residue

field. 'K Q(A) its quotient fie1d, P the set of all prime ideals of

height I in A and put

x = Spec(A) - {mAl.

Let

defSK I (X) = Ker (K] (X) ---+- A*)

By the loea1ization theory on

SK](X) ~

X we know

Coker(K2(K) ~~ • K{p)·)
pEP

where a is given by tame symbols. The loealization sequence
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gives use to

and we put

Bloch proves

THEOREM: If A is regular 6 LS an isomorphism.

In this talk I give the following theorem which treats SKI (X) in general

case hut assuming F ia finite.

THEOREM: Assume that F is finite.

(I) SKI(X)o is torsion.

(2) Let" D(X) C SKI (X) be the maximal divisible subgroup then

SKI (x)o/D(X) is finite.

(3) There exists a canonical isamorphi~

SK I (X) 0 ID (X) ct Ga1(iur11.) tor.

Bere" K ia the quotient field of the completion A of A. iur is the

maximal abel extension of K which is unramified over any p € P.e We conjecture D(X)" O. Concerning this we have

PROPOSITION: Assume that A has rational singularity. Then the prime-to­

ch(F) part of D(X) is trivial.

As a corollary of Thm. and Prop. we get .

CON. Let B be a 2-dimensional regular loeal ring with finite residue

field F.·Let G be a finite group acting on B such that

any a € G acts triviallyon F.

(I)

(2)

for any 0 € G - {id} . 0 Ilength.- BI! < CD vh:ere I • <b -b b € B>.-15 a a
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Put A = B
G

whieh is a 2-dimensional normal loeal ring. Then we have

(p = ch(F» SKI (X)o ~ Gab m (p-primary torsion divisible group).

B. MAGURN: Absolute stable rank and Witt eancellation for noneommutative

rings

In a ring A., a list 8
0

., ••• .,an tlcan be shortened" if there are t i E A

with ao + t oan , •.• ,an-l + tn-Ian lying in exactly those maximal left

ideals containing ao, •.• ,an ; if every such list in A can be shorteaed,

we say A has absolute stable rank asr(A) ~ n. This condition is de­

signed< to imply transitive action of U(q) on all.nonsingular vecto~s

v (in a· (A,c,a)-quadratic space (M,q» of equal length. By a standard

argument it implies (M,q) is cancel1ative when q has Witt index

~ asr(A) '+ 2 (or asr(A) + provided the involution a on A is trivia~).

In general asr(A) ~ sr(A) = the stable rank of A. By arecent theorem of

J.T. Stafford, asr(A) ~ Kdim(A/rad A) + I., where Kdim(A) is the Krull

dimension of a left noetherian ring. So Witt cancellation (for sufficiently

large index) applies to quadratic spaces over 1lG when G is a polycyclic­

by-finite group .

B. KAHN: Trivializing Milnor's K-theory

Let F be a field. The talk defined two series of groups K (F), K(F),
n n

ttliftingtt the Milnor K-groups lieF). K (F)(resp. K(F» is defined as
n n n

~8n (resp. An(~ » in the category of Mackey functors. So, loosely
m ,... m

speaking, ~(F) is defined by generators CorE/F(x1 8 x ••• 8 xn),

[E:F] < +~ , Xi E E*, with relations given by the projection formula.

Same thing for Kn(F) with XI A •••A xp . There are surjective homomor­

phisms:

•

and Ker (~(F) -+ ~(F». and Ker-{K (F) -+ rt(F» are "divisible.n n

Thus the Milnor-Kato conjecture may be phrased as·follows: the natural
.. n - n

maps Kn(F)/m + H /F~/m(n» (resp. Kn(F)/m -+ H (F~/m(n») are
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i somorphisms •

CONJECTURE I. There are canonical isomorphisms:

n = 2,3 (at least, away from 2-torsion:

Gal(F{ ~ m )/F) i9 torsion free).
2

as ~m[-I] (as a complex of

1 am able to construct such maps for

for 2-torsion 1 have to assume that

Assume that F i8 perfectj define Z{I)
L

Gal(F/F)-modules) and Zen) as Z(I)8n (in the corresponding derived
... n'"

category). Set K~(F) = lH (F~(n». Then cup-product induces a homomor-

phism

•
Kn(F) ~ K~(F),

and

CONJECTURE 2. a is an iso~orphism.

The link between conjectures 1 aud 2 is the following (easy) theorem.

THEOREM 1. a) There is a canonical isomorphism

b) There is a canonical injection

K' (F) Im c....-. H
n

(F~/m(n» •n

• If the Galois symbol in degree n is surjective, this injection is an

isomorphism.

It is easy to see that Ker a and eoker a are torsion. On the other

hand, there 1s the fol1owing result.

THEOREM 2. a) a is surjective iff' the Galois symbol in degree n i8

surjectiv~.

b) Assume n = 2 or 3. Then the restrietion of a to

Kn(F)tors is split surjective, with divisible kernel.
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T. GOODWlLLIE: Traces 2nd Fixed Points

The main point of the talk was to' give a particular description of Dennis'

trace map from the K-theory K(A) of a ring A to the Hochschild homology

H(A). The description is as follows:

Define K(A)

C

SkC

by the Waldhausen method, so K(A) = nIBiS.CI where

category 'of A-modules (finitely generated proj.)

category of f~ltered objects in C
o ~ Po C PI C ••• C Pk = P

category with these same objects, but only isomorphisms.

nerve
•

Then Dennis' map can be described as the composition

nlBis.cl ~ nlAiS.cl s-+ nIAS.CI --+ nlHS.cl
Y t_

I-

H(A)

Here A is "cyclic n'erve" (whereas a p-simplex of BC is a diagram

P
o

~P
P

in C, a p-simplex of

f
p ----4fo/l

P
o

f~
Pr---"

p

AC is a diagram

) . •The map a is based on the fact that BC~ AC when every arrow

in C is'invertible

(fo ' ••• ,fp_ l ) ~ (f l , ... ,fp)'-
m In

B A

The map ß fargets the requirement that maps are invertible. The map Y
takes products af Hom-sets to tensor products of Hom-groups. lts target

is defined like its source except that in the forming cyclic nerves a

p-simplex is an element of
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i HOm(PO'P 1) 8 .•. 8 Hom(P I'P) 8 Hom(P ,P )
p P p- P P 0
0'···' p

rather than

••• x Rom(P ,P )
P °

The inclusion H(A) --+ nrH(A) --+ nEHS1C --+ nlHS.cl

(analogous to inclusion BGL1(A) --+ K(A» is an equivalence, by a theorem

of Randy McCarthy. (D(A) here is the "tensor product cyclic nerve" of the

one-object category Ai it is isomorphie to the usual model for Hochschild

homology.)

One point of the construction is thatthe circle-group aets on the diagram

(*) because cyclie nerves are cyclic oDjects in the sense of Connes.

The intermediate·terms ean be identified 'as 'foll~ws;

(1) nIAS.iCI = nlB.i Autcl, the K-theory of A4modules~ith-automorphis~.

(2) nlAs.cl seems to be equiva1ent to the K-theory of A-modules-with­

endomorphism, minus K{A},. that is

(The idea of proving (2) 'on1y came up after the talk, in response to a

question _of Thomason. With a little help from Grayson it now looks like

it can ~e proved.)

s. GELLER: 18 the KAB1 conjeeture true?

(This is joint wo~k with Chuck Weibel)

}{ABI CONJECTURE: Let A and B be rings, I an ideal of A, and

f : A + B such that feIl is an ideal of I and I ~ f(I}. Then for

all n ~

Previously, the conjecture was known to be true fo~
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(Geller-Weibel)

(Goodwi.l1ie)

(Ogle-Weibel)

Also, it is sufficient to prove that Kn(A,B,I) ~ BC
n

_ 1(A,B,I) for

aralgebra~ A =B with I an ideal of both rings.

In this talk, for ~ =A =B and I an ideal of both rings, tripie re­

lative grouits Kn(A,B,I,J), J an ideal of A, vere defined, a module

structure over the ring of 'litt vectors W(Gl) was discussed and tbe

following results were announced vith same proofs given.

For CQ.= A = B and I an ideal of batb A & B: •
I)

2)

KABI conjecture C=O' RKn (A,B, I) ~ NBCn_t (A,B,I)

KABt" conjecture ~ K (A[t],B[t],I[t],t~ c......-..
n

k
BCn_t(A[t],B[t],I[t],t )

vn~

V n ~ t

3) KABI conjecture ~ the weight s summand of K (A[t],B[t],tkI[t])
n

is zero for s < k and V n ~ t
k

(hence, if the weight s summand of Kn(A[t],t I[t]) = 0

for n ~ 2, then the KADI conjecture is true).

4) ~(A,B,I) + BCt(A,B,I) is onto.

Bence, for A,B,I as in the conjecture

!2(A,B,I) 8 '+ HCt(A,B,I) 8 ~ is anto.

B. DATION: Raturality of Pie, SKo and SKI

This talk reports on joint work with C.A. Weibel. Transfer maps are con- •

structed for SK
o

and SKI. From these it follows tbat if ~ = .• Ai
~

is a graded cOIIIIIUtative ring vith A+ = • A. and A = R then
i>o 1 0

SKo(A,A+), SKt(A,A+), P~c(A,A+), NSKo(R), RSKt(R), NPic(R) are all modules

over the ring WeR) of Witt vectors over R. Various consequences of these

module structures are discussed. In particular we consider the case where

A = •. A. is reduced, graded and finitely generated as an algebra over
ho 1

't:be f ield A = k. Let B = fJ B. be the seminormalization of A,
o ~ 1
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GW(B) = {f = l+b1t + ••• E WeB) I bi E Bil. There is an injeetion

y : Pie(A) + GW(B)/CW(A) of W(k)-modules. If A = B for n» 0
n n

then y is an isomorphism. If char(k) = 0, composing y with the ghost

map gives an isomorphism of k-modules Pic(A) + B/A.

C. KASSEL: Bivariant ehern character

The Chern character (also called generalized Dennis trace map)

~Ch : K.(A) ~ HC-(A) from algebraic K-theory to negative cyclic homology

can be extended to a bivariant Chern charaeter eh: K*(A,B) + HC*(A,B}

fram a suitably defined bivariant algebraie K-theory.to abivariant version

of eyclic cohomology. Both bivariant theories are covariant in Band con­

travariant in A. One recovers the usual Chern character when A =Z. As

an immediate consequence of the multiplicativity of the bivariant Chern

character, ~a Morita-equivalent algebras .h~ve isomorphie (bivariant)

cyclic (eo)homology groups.

The bivariant K-groups are obtained from the exact category of A-B-bimodules

which are finitely generated projeetive over B.

The bivariant cyelic cohomology groups have the following properties

i) (Product) There exists a graded product

~

ii) (Bivariant Connes exact couple) There exists an exact couple

HC.(~~.(A'B)

HH*(A,B}

where deg(S) = 2, deg(I) = 0, deg(B} = -I and HH*(A,B) is a

bivariant version of Hochschild homology.

iii) For any extension of algebras 0 + I + R + S + 0 such that I is

H-unital in the sense of Wodzicki, one has the exact triangles

HC.(~~(A.R)

HC*(A,S}

HC*(I,A) «- BC*(R,A)

~/
HC*(S,A)
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iv) If SA. is the suspension of the algebra A, one has the following

isomorphisms :

and (n ~ 0).

J.L. LODAY: Operations in eyclic homology of commutative algebras

The not ion of deseents for a permutation a € Sn permits us to define the

Eulerian partition of Sn Sn = Sn,l U ••• U Sn,n. The elements ~

1~ = (_l)k-I L sgn(a)a of the group algebra K[Sn] have very nice ~
oESn,k k Ik - .• k·

properties. !bey lead to A = r (~1)1(n:l)1 -1.
n. 1 n

1=0

Let Sn act from the left on A 9 A8n where A is a commutative K-algebra.

Denote by b the Hochschild boundary and by B the map defined by Connes.

PROP. and

and

Therefore these A~ maps perffi~t us to endow Hochschild homology and cyclic

homology with a special A-ring strueture.

In the rational ease it implies a natural splitting:

RHn = HH~I) ••••• HH~n) and HCn = HC~) m ••• e HC~n), with

QH(a) = nn HC(n) = nn/dOn-1 and HH(I) = Harr HC() (n _> 3 for this
n ' n n n n

. last equality) where Harrn is Harrison homology.

·~ll the properties are valid for any functor ~!g ~ (K-modules) where

~!g is the category of finite sets. ~n fact, the relations in PROP and

COR above may be seen as relations in the universal ring L = K[E!n].
Ref.: J~-L. LODAY, Partition eulerienne et operations sur

homologie cyclique, Cptes Rend. Acad. Sei. Paris (1988).

D. WEBB: .G-theory of integral group rings

Let G be a finite group, and consider G.QZG) (or more generally,

G.(RG), for a Noetherian ring R). We first deduee a Lenstra-type decompo­

sition for G nilpotent.

•
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PROP.: Let. G be finite nilpotent, and write ~G ~ TI ~(p), where p
p

ranges over irreducible rational representations and ~(p) is simple;
1

let Z(p) be a maximal Z-order in ~(p), Z<p> = Z(p) [TPT]' where

Ipl = [G : ker p]~ Then G.VEG) ~ e G.CE<p».
p

I. Hambleton, L. Taylor, and B. Williams prove this result independently,

and they conjecture a general answer:

CONJECTURE (HTW): Let G be a finite group, and write ~G ~ TI M (D),
p np p

Dp = End~G(V~) the division algebra associated to the irreducible ratio-

nal representation p : G ..... GL(Vp). Let k = Iker(G ~ GL(V'»" I, I. thep p p

degree of any. irreducible constituents of t 9~ Vp ' Wp = k~~~ • Pp a

maximal Z-order in D. Then G. (7lG) ~ e G. (D [1 /w ]).
p p p p

PROP.: The HTW conjecture holds for dihedral extensions of finite abelian

groups.

PROP.: The HTW conjecture holds for IGI square-free.

The proofs use Lenstra-type techniques; one defines the Lenstra functor,

a self homotopy equivalence of BQ~(m), maZ-order in ~G containing ZG;

this induces a map of the homotopy fibre sequence ~torOEG) ..... ~CEG) ..... ~(~G)

to the sequence ~tor(4) ..... ~(a) ..... ~(~G), where a is a ring whose G. is the

desired answer.

C. OGLE: Generalized Trace Map for K-theory of Spaces, and Applications

A conjecture due to T. Goodwillie asserts that

_ _ _ def. [ ]
A(tX) Cf D(lxl> = n Dq(lxl), Dq<lxl> = nCOtO)(t(E Z/~ A lxi q »,

q~1 Z/q

·where A(Z) denotes the Waldhausen K-theory of the space = simplicial

set Z and A(Z) = cofibre (A(Z) ~ A{.». A proof of this conjecture has

been announced by G. Carlsson, R. Cohen, T. Goodwil1ie, and W.-C. Hsiang

[CCGH] and independently by myself. Both previous proofs are incorrect.

We correct this.

We follow the techniques used by Waldhausen in his proof of the splitting
Diff 0) co I .

A(Y) ~ Wh (Iyl) x n L (IY +), and the outline of the proof of Goodwillie's
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conjecture given in [CCGH] in showing

THEOREM t There exists a trace map Trx(Y) natural in X and Y,

(X a conneeted simplieial set, X and Y base pointed):
- ... n - n -
TrX(Y) : !!! n fibre CA(E(X·v E y» + A(EX» ---+

, n .

O~rm(L( V Ixl[q~l] A IYI» ~ TI nmrm(E(lxl[q-t] A Iyl».
q~J q~t

as II Trx(Y) ·
q~t q

There exist"maps P
q

Dq(lxl) ~ A(EX) as constructed in [CCGH] and [0].

These constructions, as weIl as the entire proof of the above Theorem,

admit and require apreeise simplicial formulation. This we do. We then

get

•
THEOREM 2

-
(Tr)x(Y)q 0 (Dtpp)x(Y)

if p * q

if p = q

This homotopy is natural in X and Y. Here (DtPp)x(Y) denotes the 1
st

derivative of the map Pp at X, evaluated at Y in the sense of Good­

willie. It now follows from the fundamental results of Goodwillie and

Waldhausen, who have computed (DJÄL)X{Y) that

COR. 3 A{rX) ~ D(IXI) by a homotopy equivalence natural in X.

A.O. KUKU: Higher K-theory of orders and integral group-rings

This talk gives an exposition of the speaker's recent results on the higher

K~theory of orders and group-rings. First solutions were given to recent •

questions on finite generation of Kn , Gn of orders as weIl as finite-

ness of S~ and SGn of orders as foliows. More preciselywe prove

the following results:

"(I) Let R be tbe ring of integers in a number field F, A any R-order

in a semi-simple F-algebra L, P any prime ideal of R, then for all

n ~

(i) Kn(A) is a finitely generated abelian group.

(ii) ~(A) + Kn(r) is an isomorphism mod torsio~ if r is the maximal

R-order containing A.
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(iii) SK (A) is a finite group.
n A

(iv) SK (A ) is finite whe~e A is the completion of A at .p
n p p

(11) Let R,./\, F, E be as in (I). Then V n ~ I

We also have the folloWing results on Cartan maps':•

(i)

(ii)

(iii)

(iv)

Gn(A) is a finitely generated abelian group

G2n-
I

(./\P) is a finitely g~nerated abelian group.

SG2n(./\p) = SG2n (A) = SG2n (Ap ) = O.

SG2n_
I

(A) is finite; SG2n_
I

(Ap )' SG2n_
I

(Ap ) are finite groups

of order relatively prime to the prime p lying below P •

For all n > I

(III)(i)

(ii)

If k is a field of characteristic p. and n. any finite

group, then K2n (kn) is a finite p-group and

Ker(K
2n

_l (kn) ++G2n_l (kn» is the Sylow p-subgroup of K2n_l (kn).

Kn (~) -+- Gn (A) 'induces a surj ection SKn(A) -+- SGn (A).

(iii) G4n+3(Z1T), K4n+3 (X1T), G4n+3 OZpn) are finite groups.

Finally we show that reduction theory can be used to reduce the study

of K-theory of integral group-rings of finite groups to the study of

the K-theory of group-rings over the p-hyperelementary subgroups of 1T.

s. LICHTENBAUM: Motivic Cohomology

It would be highly desirable to have an algebraic cohomology theory

hearing tbe same relation to algebraic K-theory as ordinary singular coho­

mology bears to topological K-theory. This theory should also have serious

• applications to the study of special values of zeta-funct~ons and to arith­

metic dualit~ theorems.

Such a thepry should be the hypercohomology (in the etale and Zariski sites)

of a complex of sheaves Zer) (r = 0,1,2 ••• ) on a noetherian regular

scheme X satisfying (at least) the following properties:

(0) Z(o) = z ?L(I) = G [-I]
m

(I) Far r ~ I, Zer) is acyclic of [I ,r]
L

(2) There is a product pairing Zer) 8 Z(s) + Z(r+s)
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(3) (a) If n is invertible on X, there is a distinguished triangle in

the etale site
n

Z(r) --+ Z(r) --+- 7l/n7J.(r) --+- Z(r) [I]

(b) If X has eharacteristie p, there is a distinguished triangle

in the etale site

(4) If a maps the etale site to the Zariski site,

1l ( r) L 7l (r) --+- 1..1 (r) [ -r] ---.. Z (r) [ 1]
. m

(5)

a*Z(r)zar =Z(r)et'

In partieular, Rr+I~Z(r) = 0

RrrvW(r) = rt
.....- =r,zar-

(Hilbert Theorem 90).

•
(6) . The homology sheaves . Bi (Z (r» should be isomorphie to the sheaves

grYK- .(0), up to p-torsion for primes p < r •
. r=Lr-l, x

For r = 2, we have eonstructed a cohomology theory satisfying all of

these properties, with the exoeption that we do not know for property (6)
y .

that gr2~4-i(Ox) = 0 for i ~ o.

A possible candidate for a motiv~c cohomology complex in the ease of a

field F is the following:

Let the i-th term of the complex Z(r) (0 ~ i ~ r), be

~ K~M (V-S, 1 1,12 , .•• l
n

)
V,S 1.

rwhere V runs over all reduced i-dimensional subschemes of AF whose

intersection with all faces of the hypercube Xi(Xi _ l ) = O. i=I ••••• r ~
is proper. S runs over all finite

subsets of V whose intersection with the (r-i)-skeleton of the hyper-

cube is.empty. and Ij is the ideal defined by Xj (Xj-I). KiM here

denotes multirelative Milnor K'-theory.

M. HARADA·: Grothe~dieck-Riemann-Roch for general schemes

Let S be a base scheme, Noetherian and of finite Krull dimension, sepa­

rated. Let 1 be a prime number, fixed once for all so that
-I

I) 1 E Os' 2) all residue fields of S have uniformally bounded,
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i-etale coho~logical dimension. e.g. ~ if i * 2. ~.kalg' Z[tJ••••
Schemes we consider are essentially of finite type over S.

THEOREM. There exists a topological G-theory spectrum Gt(X) so that

1) Atiyah-Hirzebruch s.s. H*(X, j i! Z;(*» ~ G~(X), i : X ~ S,. et A,

the str.-morph.

2) Grothendieck-Riemann-Roch: When f : X+Y is proper morph.,

• "Ca1g(X) l'x
J CteX)

I 1f t
f*! ! *

Ca1g(y) 0+ Ct(y)
T
Y

where Ga1g{X) is the spectrum associated to coherent sheaves on X,

f. is induced by an alternative sum of higher direct image sheaves.

And it induces the Hirzebruch-Riemann-Roch formul~ the main theorem of

Baum-Fulton-MacPherson and its generalization to higher K-theory, the

theorem of Gillet.

The proof and the constructi~n is based on ~he facts that 1) f. can be

localized with respect to the "etale topblogy on Yj 2) Ka1ge ); is

locally constant on the etale topology.

The projection formula f.(x n f·y) = (f.x) n y is formulated as the

commutative diagram of spectra

Iftf·
Ca1g{X) 8 Ka1g{y) ---+ Ga1g(X) 8 Ka1g(X)~ Ca1g{X)

• f.8 I 1
Cs1g{y) 9 Ks1g{y)

I

1___________~) Ca1g(y) •
n

n____________.-.... lH(Y't'jCalg/tV)
e _
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When X and Y are proper over S,. compose the Gysin mapping to S

and taking the adjunction as Kt(S);-module, we get the theorem 2).

To prove the theorem I), we look at the Postnikov filtration on thern.

J. BERRICK: Acyelie groups

Aeyclie groups are those groups whose homology (trivial ~ eoefficients)

is that of the trivial group. This survey attempts to indicate the

importanee of aeyelic groups and examine ~heir group-theoretic strueture.

Examples

Aeyelic groups are to be found in work of G. Higman (1951), MeLain (1954),

Baumslag & Gruenberg (1967), Epstein (1968), J. Mather (1971); Wagoner

(1972), Kan & Thurston (1976), Baumslag, Dyer & Heller (1980),

de 1a" Harpe & MeDuff (1983), and elsewhere. Many examples have few normal

subgroups.

Ubiquity resu1ts

For a group extension N 4 G ++ Q with Q acting triviallyon H*N,

(i) N acyelic ~ H*G ~H*Q

(ii) Q acyclic H*N ~ H*G

[K&T] 1976 : V group G, G ~ D ~ acyclic.•

This prampts the study of norma1-in-acyc1ic groups, e.g. abelian groups

[BD & H 1980, B 1983],GL(R) (R ring) [W 1972].

Group structure ~ aeyelicity

Techniques used to prove acyelicity include Mayer-Vietoris sequences,

preservation of dirlim by homology, and binate structure: G = UG
n

where

GI S G2 s... and Vn 3 tpn:Gn ~Gn+l and an+1 € Gn+1 s.t. Vg € Gn g =

[tpn(g), an+ I ]· Binate groups are acyclie [ B, to appear in Proe. Singa-·

pore Group Theory Conf., de Gruyter] •

.'

•

                                   
                                                                                                       ©



- 23 -

•

Aeyelieity ~ group strueture

T: Any f.d. eomplex representatie~ of an aeyelie group restriets

trivially to all finite subgroups.

CI: Finite normal-in-aeyelie groups are abelian.

C2: A (non-eentral) normal subgroup N of a torsion-generated aeyelie

group has N/N" f.g .. iff N is "infinite perfeet - by - f.g. abelian.

(Possibl~ example GL(R) <Cl GL'(CR) therefo.re GL(R) is ER-by-KtR.)

C3: If perfeet N ~ torsion-gen'd aeyelie A and AutN has aseries with

faetors residually finite and/er hypoabelian and/ar torsion-free, then

A~· N x A/N, so N also torsion-gen'd aeyelie •

J. BOCHNAK: Algebraic vector bundles over real algebraie varieties and

applications

Let X· be an affine nonsingular " eompaet eonneeted real aigebraie

variety and let R(X) be the ring of regular funetions from X into

~. The groups Pie (R(X», Pie (R(X)8m~) , Ko(R(X» , ~0(R(X)8~~) eontain

precious information about the geometry and topology of X. Eaeh of these

groups is a subgroup (in a natural way) of the eorresponding group of the

ring C(X) of continuous functions from X into lR (embedding is indueed

by the inelusion map R(X) -+ C(X) ).

I
Balg (X;Z/2) - ofis naturally isomorphie to a subgroup

where Bl
l
" (X~/2) is the image of

a g

H
alg

(X,z/2)0-1 {homology elasses in Hn_I(X) represented

by algebraie hypersurfaees of X}

-I
by the Poineare duality isomorphism Hn- 1 ~ H ; n = dim X.

Pic(R{X»

BI (X;!J./2)

•
Theorem. Let M be a eompact eonneeted C~ manifold of dimension ~ 3,

and let G be a subgroup of Pie (C(M» eontaining the first Stiefel­

Whitney elass of M. Then there is an algebraie model X of M and

a diffeomorphism ~ X -4 M such that ~ (G) = pie (R(X».

(here <p* pie (C(M» -+ pie (C(X» is the isomorphism induced by ~).

Remark. A slightly weaker version of this theorem is valid also for sur- .

faees.

Corollary. For eaeh campaet conneeted. C~ manifold M, orientable of

dim ~ 2. there exist an algebraie model X of M with R(X) faetorial.
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Ko(R(X» of real affine surfaces and 3-folds

Define the fol1owing invariants of a nonsingular real algebraic surface X.

ß(X) di~/2 H~lg (X~/2)

Theorem.

o(X) di~/2 {v E H
1

. (X, 71./2) I vUva1g o} .

(i) Let X be a compact connected affine real algebraic surface. Then

K (R(X» = 1Z tB (7L/4)6(X)-a(X)EB(72 12)6(X)+1-2(6(X)-0(X»
o .

(ii) As X runs through all algebraic models of a compact connected

smooth surface M of genus g, the groups Ko(R(X» take (up to iso-

morphism) precisely q (M)' values, where

q(M)

2g+1

{ g

2g-2

if M orientable

if M nonorientable, g odd

if M nonorientable, g even

(Remark. Similar results holds true for algebraic 3-folds).

Theorem. Let M cmPk be a C~ compact hypersurface. Then there exists

a diffeomorphism h IRPk -+ ~~k{which ean be chosen arbitrary elose to

the identity), such that:

(i) X = h(M) is an algebraie nonsingular subset of lRP~·

(ii) Ko{R(X» and Ko{R(X)IIR[) are finite groups.

(iii) If Heven (M, 71.) is torsion free,· then K (R(X) 8Q:) = 0
. 0

(iii) If M is orientable, and dim M = k~1 is~, then each regular

mapping X -+ Sk-I is homotopic to a constant.

There are many applieations of these and similar results to the study of

the strueture of the set R(X,Sk) of regular mappings from affine real

algebraic varieties X ioto Sk = the standard sphere).

•
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A sampie of results:

>Theorem. Given a compact connected C~ surface M, the following

conditions are equivalent:

(i)

•
For each algebraic model X of M, the set
~ --2 ~

C (X,S) (=set of C mappings from X into

C~ topology).

(ii) M is nonorientable of odd genus •

R(X,S2) is dense in

52 equipped with the

Remark. In particular one gets an algebraic model X of the Klein bottle

with R(X,S2) hot dense in C~(X,S2) by constructing a model with

K
o

(R(X)8G:) == 0 •

Theorem. Let r; be a Fermat sphere i.e.

:L2 _ f ( ) E lR 3 I 2k 2k 2k
~ - l x,y,z x +y +z"

Then

Remark. The Fermat spheres are quite exceptional, since for "most"

algebraic surfaces X in IR 3 , the set R(X,5 2) contains only mappings

homotopic to a constantl

Theorem. Given a campact connected orientable C~ manifold M, dim M == 4,

• the following conditions are equivalent:

"(i) There exists an algebraic model X of M such that each regular

map X -+ 5k is hamotopic to a ~onstant.

(ii) The signature of M is o.

Theorem.· Let C be a nonsingular camplex projective curve, and let

C
lR

be the underlying real algebraic variety. Then R(C
IR

, 52) is dense

in cO) (Cm.' 82) ~
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R. Me CARTHY: Cyclie and Hoehschild Homologies of an Exact Category

Let k be a commutative ring and for t a small k-linear category; we

define the cyclic~ of C, CN(C) to be the cyclic k-module:

cN (C)
n

$ Hom(C1,Co) 8k
Co,···,Cn

a
n

a
i.e. Co ~ CI ~ C2 ..- ••• +- Cn (a

0
8 ••• Ban)·

Face and degeneracy operators are like those of Hochschild homology.

Theorem If A is a unital k-algebra, an~ PA = cat. of f.g. projective

modules,'then

CN(A) ~ CN(PA) [by def. retract] •

For m an exact category, which is also k-linear, we can form CN. s. m,

where s.m is Waldhausen simplicial category for a cofibered category.

Def: HH*(m) HH*+ J( CN. s.m
HC. m = HC*+I ( CN. s.m

Cor. The map CN. PA -+ n CN. S. PA is a homotopy equivalence. •Cor. We have trace map (by Goodwillie earlier)

rlNiS. PA --+ GCNS. PA~ CN. PA

n ~

ON.QPA CN.A
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s. LANDSBURG: Relative Chow Groups

Let Y c X be a closed inclusion of regular schemes of finite type over

a field. (Regularity can be relaxed in much of what foliows.) We want to

define a relative Chow' Theory " ChP (X,Y).

To see what this theory should look like, consider the usual absolute

Chow theory ChP (X). We have

grPKO(X)" 7 ChP(X} = z~(X}/-" c HP(X,~}

iso up to torsion•

where zP is cycles, is rational equivalence, ~P is sheafified

K-theory, and E2Pt-~X) is from the Quillen spectral sequence.

Here are the relative analogues of some of these objects:

. (I) Let zP{X} be free abelian on cycles meeting Y

Then ZP(X,Y} is defined by 0 ~ ZP(X,Y} ~ ZP(X) +

properly.

Zp(Y}.

(2) Kp(X) is the complex K.(X)"+ i*K (Y).
=p =p

(3) We get a spectral sequence for relative K-theory by taking

fibers vertically in the diagram

~+l FmtOt )!
KJfl+ I (X) .-.. KJfl (X)

! !
KJfl+ I (y) --+ KIvF (Y)

~ Fm/ m+ 1

J
-+- KJfl/m+ I (X)

!
........ KIvF/m+ I (Y)

Here "1f!{X}

sequence is

is the category of X-modules of cod > m. The spectral

E1
Pq = TI (FP/ P+ I) ~ K (X).-

-p-q -p-q

The construction of the spectral sequence leads immediately to maps

EP,-P ~ lHP(x,K }
2 " P

!
ZP(X,Y)/- for appropriate

We also get a cycle map ZP(X,Y)/~-+ mP(X,K} directly by noticing
P

that for Z E ZP(X,y}, E P (X,K) is free abelian on the components
z P

of z.
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Before defining Chm(X,y), we generalize some of this to higher Chow

groups~ There is a map from Bloch's higher Chow complex to the Gersten­

Quillen complex induced by

Zm(X, n) -+ 11 Knk(x) via
xEXU-n

. where N = Normz/p*z and { is the Steinberg symbol. This gives .

lfB-n(X,K )
=m

this is iso for n ~ 1.

Now define Chm(X, Y,n) = n (Cone (Zm(X,. ) --+ Zm(y,.» [_) ]) •
n

Zm(X,e)(To define the map, first replace by quasi-isomorphie complex

eonsisting of things that restrict properly to . Y.)

Define

Chm(X,y) = Chm(X,Y,O).

Then we get aBloch Formula

ChDi(X, Y)~ lHm(X, Km).

Finally, to get a cycle map, note that an element of Chm(X,Y) is repre­

sented by a eycle Z on X with a choice of trivialization of Zl y •

This gives data consisting of compatible cycles on two copies of X and

one of Y x Al (namely Z+, Z- and the trivialization). Under favorable

circumstances, these can be "patched" to give a class in

Berichterstatter: Günter Habdank
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