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ApPLICABLE ALGEBRA

1.1. bis 6.1.1989

Tbe first meeting of tbe year 1989, dedicated to the area of Applicable Alge­
bra, was tbe second on this topic held at Oberwolfach after the first conference on
"Anwendbare Algebra" in early 1983.

For this year's conference the program bad been planned by the three organizers .
Thomas Beth (Karlsruhe), Bruno Buchberger (Linz) and Heinz Lüneburg (Kaisers­
lautern) ~o address areas from Algebra afi9 its applications, lik~ computer aided
design, image processing, communications engineering, digital signal processing, in­
verse kinematics, inverse dynamics, robot programming, geometrical modelling, ah­
stract data types, artificial intelligence, VLSI-Design and verification.

The meeting, which started on the aftemoon of New Year's Day brought together
36 people of 9 co~tries. As planned by tbe organizers, the emphasis was on such ap­
plications which require solution methodologies from typical algebraic areas such 88:

Arithmetics in real, complex and finite fields, discrete mathematics, representation
theory, algebraic theories, algebraic logic and algebraic geometry.

The talk by Schröder (Göttingen) surveyed the nianyfold applications of number
theory, finite field arithmetics and elementaiy group theory to the areas of commu­
nications, engineering and a.coustics. The general overview by Rembold (Karlsruhe)
gave a wide scope introduction to the state of the an and problems arising in the
ares of robotics, showing the close relation to problems of computational geometry,
algebrai~manyfolds, GrÖbner bases and artificial intelligence. The s~eyesby Kana­
tani (Gunma) and Nagel (Karlsrohe) on the problems encountered in Vision related
to Representation Theory and Artificial Intelligence.

These talks set the frame for the subsequent t8.Iks which can be grouped ioto
three major areas, namely Computer Algebra, computational geometry and arithme­
tics with elose interrelations between these three fields. The questions addressed in
computationaI geometry reached {rom problems of classical manyfold theory to pro­
blems of stereogrammetry while touching upon problems of arithmetics in complex
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number fields. Simultaneously methods of model theory of theorem proving were em­
ployOO. The close connections of finite field arithmetics to pseudo-random generation
and ~oding theory again 100 to questions of VLSI-design problems, an 'area which is
also closely related to computational geometry.

During several problem and discussion sessions held in the evenings' it became
clear, that a general common topic fo'r ,most problems addressed should be seen
under the classical title "Invariant Theory". After a survey talk by Abhyankar one
of the organizers showOO in a tour d'horizon many close relations between invariant
theory techniques in program design, coding theory, vision and problems of geometry.
It was feIt that the results of these discussions 100 to a new insight into"the area of
applicable algebra in both applied mathematics and computer science.

It has become clear through this confere~ce that an essential topic in the areas
considered lead to common approach of problems solving, which could be entitled by
the headlines "symmetry finding" as a process of further research work into the area
of modern invariant theory. Though it may seetp that the results of this discussion
inevitably lead to classical group theory it has become obvious that the research topics
to be addtessed in this context will make considerable use of algebraic geometry and
representation tlleory on one side but with a clear direction into research areas of
modern computer science such as automatie theorem proving, progranuning in logic,
applied model theory and the design of next generation computer algebra systems.

The extremely positive atmosphere of Mathematisches Forschungsinstitut Ober­
wolfach, supported by pleasant weather and the well-known hospitality of aU staff as
weH as the special support and dedication of the director of the institute, Professor
Barner has made it possible to conclude this conference with the extremely positive
feeling by all participants as to having gained insights ioto a new research area which
was only founded during this conference at Oberwolfach.

Abstracts

M. R. SCHROEDER: The Unreasonable Effectiveness of Number Theory in Physics,
Music and Communication

Number Theory is often thought of as rather abstract and far removed from practical
applications. Actually, however, the "higher arithmetic" provides highly useful ans­
wers to numerous real-world problems, including the design of musical scales, cryp­
tographic systems, and special phase arrays and diffraction gratings with unusually
broad scatter (with applications in radar camouflage, laser speckle removal, noise
abatement, and concert hall acoustics). One of the prime domains of number theory
is the construction of powerful error-correcJing codes, such as those used for picture
transmission from space vehicles and in compact discs (CD's). Other applications
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include schemes for spread-spectrum communication, "error-free" computing, fast
coml?utational algorithms, and precisioD measurements (of interplanetary distances,
for example) at extremely low signal-to-noise ratios. In this manner the "fourth
prediction" of General Relativity (the slowing of electromagnetic radiation in gravi­
tational fields) has been fully confirmed. The quasiperiodic route to chaos of nonli­
near dynamical systems are being ana1yz~ in terms of continued fractions, Fibonacci
numbers, the golden mean and Farey trees. Even the recently discovered new state
of matter ("quasicrystals") is effectively described in terms of such number-theoretic
principles. And last not least, prime numbers, whose distribution combines regularity
and randomness, are a rich source of pleasing artistic designs.

z. D. DAI: Functions Defined by de Bruijn Sequences (Joint work with K. C. Zeng)

In cryptosystems, one of the ideas is to make use of nonlinear feedforward func~ions

f of linear feedback shift-register sequences. The function f, can be expressed in an
unique way as a polynomial in indetenninates linear in each of them separately. f
should satisfy n certain cryptographic requirements. The following is a list of the
simplest among them. .

1. The function f with value range {O, I} should be balanced, and complete in
the sense that it will contain each of the n indetenninates explicitly.

2. It should have- a reasonably high total degree.

3. It should be free from certain correlational weakne$ses.

4. The family of functions used should be parametrized by ä space Vj(GF(2».

Since de Bruijn sequences can be produced in large numbers, it is natural to think
of defining the feedforward function f by means of a de Bruijn sequence

ß = (bo, bt" ", bi ,' . " b2n_l; •• '),

n-I
f(io, i},' .. , in-I) = bi , i = E i j 2j

, i j = 0 or 1.
j=O

It can be proved that the de Bruijn functions satisfy the above requirements pretty
weil. For example we have the following theorem.

Theorem If n-~ 2, then the function f defined bya de Bruijn sequence of degree n
is balanced, complete and deg(f) ~ llog2 nJ.

The given lower bound given is by no means discouraging, but it is too modest as
compared with results computed for a large number of de Bruijn sequences, so, there
is a hope to improve it much. New ideas are needed for improving tms bound.
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L. BUDACH: VLSI-Design and Fractals

VLSI-technology mak~ it possible to integrate millions of transistor functionS on a
chip. In order to use these new possibilities for advanced computer architecture one
is 100 to "find hardware realizations of important principles in computation theory.
These principles have been developed to find very fast (parallel) algorithms. Many of
them - take the divide and conquer principle as an example - lead in a very natural .
way to a recursive design of algorithms. In order to bring these designs on silicon
a system RELACS (REcursive LAyout Computing System) has been developed and
implemented in Berlin as common word of Humboldt-University and the Academy of

.Science of GDR by L. Budach, H. Grassmann, E.G. Giessmann, B. Graw, eh. Meine!, e
B. Molzan, U. Schaefer and P. Zienicke. A RELACS-program is characterized by the
fact, that not only one boolean function f hut a sequence f n of boolean functions is
realized by a uniform design of a sequence Vn of VLS1-1ayouts. It is proved that in a
certain sense Vn converges to a structure V which reflects the mayor qualities of Vn

for n ~ O. V can be obtained by a generalization of a method of J.E. Hutchinson
[1] for the construction of self-similar fractals. Hutchinsons theorem results as the
degeneration of a graph (the generation graph of the RELACS-program) to a single
point.

[1] J.E. Hutchinson, Fractals and SelfSimil~rity,Indiana Univ. Math. J. 30(1981), 713-747.

U. REMBOLD: Autonomous mobile robots

In this paper the architecture and functions of an autonomous mobile system are
described~ For the operation of such a system knowledge-based planning, execution
and supervision modules are necessary which are supported bya multi-sensor system.
The individual functions of such a vehicle are explained with the help of an autono­
mous mobile assembly robot which is being developed at the University of Karlsruhe.
The vehicle contains a navigator, a docking module and an assembly planner. Navi­
gation is done with the help of a road map under the direction of the navigator. The
docking maneuver is controlled by sensors and the docking supervisor. The assembly ~

of the two robot arms is prepared by the planner and controlled by a hierarchy of •
sensors. The robot actions are planned and controlled by several expert systems.

C. M. HOFFMANN: Trade-Off between symbolic algebraic and floating point com­
putation in solid modeling.

Solid modeling involves certain geometrie operations such as surlace/surface inter­
section evaluation. For example, given an intersection point, trace reliably the inter­
section curve and analyze its singularities. Can this process be made both reliable
and efficient by combining techniques from algebraic geometry, Gröbner basis COID­

putation, and numerical approximation?
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V. WEISPFENNING: Comprehensive Gröbner Bases

The Gröbner basis method initialized by B. Buehberger is a powerful tool for the
algorithmie solution of many probleß:lS eonceming multivariate polynomial ideals and
their zeros in algebraieally elosed fields. It has, however, two signifieant drawbacks:

1. The construetion of Gröbner bases is very sensitive to variations of the coef­
fieients of the input polynomials.

2. While lexieographie Gröbner bases admit the computation of elimination ideals,
they do not provide a necessary and sufficient eondition on the coefficients of a
system of polynomials in order that the the system has a common zero in the
algebraic elosure of the ground field.

Both problems ean be overcome by the novel eoneept of a eomprehensive Gröbner
basis: Let K be a field, R = K[Ut , ... , Um,Xt , ... , Xn ] = K[Q, X] a polynomial ring
over K. A specialization is a ring homomorphism Cf) : K[IL] -+ K' :J K over·K; ep
extends eannonically to a ring homomorphism ep : R -+ K'[X]. Fix a termorder < on
T(X). Then a finite set GeR is a eomprehensive Gröbner basis (w.r.t. <), if for
aH specializations ep : K[Ll.] -+ K' :J K, ep[G] is a Gröbner basis (w.r.t. <) in K'(X].

Theorem 1 Given a finite set F c R and a termorder < on T(X). Then one ean
construet a comprehensive Gröbner basis G w.r. t. < such that F and G generate
the dame ideal in R. For a suitable motion of a reduced eomprehensive Gröbner
basis G for F, G' is uniquely determined by the ideal [(F) generated by F in
R. Moreover, deg(G') and IG'I are bounded by recursive funetions in deg(F),
IFI, m and n.

As a first application, we get:

Theorem 2 Let F be a finite subset of Rand let G be a comprehensive Gröbner
basis for [(F) in R. Then G determines in an easy, explicit way böolean
eombinations 6d(IL) of polynomial equations (-1 ~ d ~ n) such that for every
algebraieally elosed K' ::) K : 6d(cp(Il.)) holds in K' iff dirn VKt(e,o(F) = d for
every specialization e,o : K[ll] -+ K ' . (For d = -1, dim VKt(cp(F)) = -1 means
VK,(cp(F)) = 0.)

The construction of comprehensive Gröbner bases ean be extended to universal, com­
prehensive Gröbner bases, i.e. to work simultaneously for all termorders, and also to.
one- and two-sided ideals use the non-eommutative polynomial rings of solvable type
studied by Kandri-Rody & Weispfenning (J. Symb. Comp., to appear).

J. H. DAVENPORT: From Gröbner bases to solving equations

Many scientifie areas have problems that can be expressed as the solution of polyno­
mial equations. One particular area we have been working on is biochemistry. This
talk will describe:
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1. The seientifie problem

2. ,The fonn of the Gröbner base

3. The eonversion from this to a nwnerical solution that the seientists ean under­
stand.

We will also deseribe the use of factorization in Buehberger's algorithm, to produce
solutions more rapidly.

H. J. STETTER: A eomputational algorithm for finding aU zeros of a multivariate
polynomial system

Let F be the ideal generated by the n polynomials fi : CA --+ cn. The eonstruetion of
multiplieation tables mod F for power produets w.r. t. apower product basis permits
the reduction of the root probl~m for the fi to an eigenvalue problem for a set of
matriees immediately defined by the multiplieation tables: Each joint eigenvector of
the (commuting) matrices contains all components of a (finite, isolated) joint zero of
the fi' and for eaeh isolated zero of the polynomial system there is a corresponding
joint eigenvector.
The algorithmie generation of the multiplication tables ht;'S been based on the results
by Maeauley and sueeeeds .whenever the polynomial system has no zero manifolds
of positive dimension (some open questions). If there are manifolds at infinity only,
the algorithm may be modified appropriately. A numerical algorithm following this
approach generates approximations for all isolated zeros of a multivariate polynomial
system.

B. STURMFELS: Computational versions of the Quillen-Suslin-Theorem

We describe a constrnctive proof of the Quillen-Suslin theorem (Serre's conjecture)
which computes an explicit free basis for a given projeetive K(xt, ... , xn)-module of
finite rank. The resulting algorithm completes a unimodular polynomial matrix to a
square invertible matrix. It ean .be implemented using Buchberger's Gröbner hases
method. Applications include control theory and computational algebraic geometry.
An independent alternative algorithm has been given by J. Heintz et.al. (1988).
Using the effective Nullstellensatz, they give singly-exponential degree and eomplexity •
bOWlds. A combination of both methods with faster heuristies for special cases yields
a practical algorithm for the Quillen-Suslin theorem.

KEN-ICHI KANATANI: Group theoretical methods in image understanding

The aim of image understanding is to extraet, from 2D images, 3D information about
the objects we are viewing - their sizes, locations, orientations, and motions in the
scene. If an object model is assumed, the problem is estimation of model parameters
from observations on images. If we define observable quantities of 2D images, we ean
derive, from the geometry of eamera imaging, 3D recovery equations which relate
the object model parameters with the image observables.
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Since images do not have inherent coordinate systems, the choice of the observables
roust be essentially invariant to the rotation of the image coordinate system (invari­
anc~ to 50(2)). It is also shown, from the camera imaging geometry, that the 3D
recovery equations must be invariant to the rotation of the camera around the center
of the lens (invariance to 50(3)). We discuss how to exploit such invariant properties
by invoking the theory of Lie groups, Li~ algebras, and their representations.

J. MUNDY: An Aigebraic Basis for Modeling in Computer Vision

The use of geometrie models as a basis for the recognition of three dimensional objects
in two dimensional images has proven to be a practical and robust approach. Most
experiments involve the use of fixed object models which are specified by numerical
geometrie data. In this talk we discuss the use of parametrie object models which
are represented as a system of geometrie constraints. These constraints are expres­
sed algebraically and the results are processed using a combination of symbolic and
numeric manipulation. The symbolic processing' is based on term rewriting methods.
The numerical processing consists of standard non-linear optimization. The result is
a new approach to object recognition based on systems of algebraic constraints.

s. S. ABHYANKAR: Invariant Theory

The discriminant of a quadratic equation is zero iff the two roots .coincide. Chan­
ging the variable by a fractional linear transformation 'will change the roots but not
their being coincidental. Hence it will not change the zeroness of the discriminant. In
1830 Boole confirmed this by showing that the discriminant gets multiplied by a non­
zero quantity, namely the square of the determinant of the transformation. Cayley
generalized this by defining invariants of Wlivariate polynomials of any degree, or
equivalently, invariants of bivariate forms of any degree. In 1865 Gordon proved that
the invariants of a bivariate form are expressible in terms of a finite number of them.
In 1890 Hilbert generalized this multivariate forms. Unlike Gordon's, Hilbert's proof
was nonconstructive. Gordon's proof is based on what Young in bis book on Invariant
Theory (which he coauthored with Grace in 1902) has called the German Method or
the Symbolic Method. The heart of this method is the FFT = the First Fundamental
Theorem of Invariant Theory. The FFT says that invariants and covariants of any
system of multivariate forms are expressible as meaningful symbolic expressions in­
volving only dets and dots, Le., determinants and dot products. The ideas of Clebsch,
Gordon, Young, et.al., have culminatOO in the Straightening Law of Young Bitableaux
which was formalized by Doubillet-Rota-Stein in 1972. Some of my own word in this
direction may be fOWld in my book entitled "Enumerative Combinatorics of Young
Tableaux" published by Marcel Dekker in January 1988. Presently I am engaged in
redoing this enumerative work by bijective methods obtained by modifying the RSK
correspondence, i.e., the Robinson-Schensted-Knuth correspondence as explained in
the third volume of Knuth's book on the Art of Computer Programming.

                                   
                                                                                                       ©



- 8 -

'-

M. CLAUSEN:o FFT

According to Wedderburn's Theorem the group algebra CG of a finite group G of
order n is isomorphie to a suitable algebra of block-diagonal matrices. Every such
isomorphism W : CG -+ e~l Cd,xd, °is called a Fourier transform for CG. Such a W
links the convolution in CG and the multiplication of block-diagonal matriees. W.r. t.
natural C-bases, W ean be viewed as an n-square matrix. The linear complexity of a
matrix W is the minimal number L,,(W) of C-operations suffieient to evaluate W at
a generic input vector. The linear eomplexity L,,(G) of the finite group G is defined
by LB(G) := min{max(L,,(W), L,(W-l)) I W a Fourier transform for CG}. Trivially,

.IGI < L,(G) < 2 ·IGI2
, for any finite group. The classieal FFT-algorithms improve A;

the trivial upper bound by showing that for cyclic groups G, LB(G) = O(IGI·log IGI). •
Using Clifford theory, Beth (1984) ~howed that for soluble groups L,(G) = O(IGI~).
Motivated by real-time applications in digital signal filtering we are interested in
extending the F FT results to other classes of finite groups.

Theorem

1. L,,(G) = O(IGI!)

2. If G is metabelian (i.e. G has an abelian normal subgroup A with G/ A abelian),
then L,,(G) = O(IGI·log IGI).

3. For symmetrie groups L,(Sn) = 0( ISnl . log3lSnl).

The proofs "nearly automatieally" translate .into highly reg~lar VLSI-designs.

D. JUNGNICKEL: The trace of primitive elements of GF(qm)

The following theorem holds for all hut finitely many pairs (q, k):

Theorem Choose an arbitrary element a =F 0 in GF(q). Then there exists a primitive
element b of GF(qlc) which has trace a over GF(q).

In fact, there are at most 147 exceptional pairs (q, k), aU with k = 2 and q odd. We
conjecture that none of them is reallyexceptional. We also consider the analogous
problem for trace O.
Finally, the special case b = 1 and k = 2 is important in the construction of Costas
sequences, as pointed out by Golomb in 1984.

Reference: D. Jungnickel & S.A. Vanstone: On primitive polynomials over finite fields, J.
Algebra (to appear).

w. GEISELMANN: Selfdual Normal Bases over GF(q)

Starting with one normal basis (bo, ••• , bn- 1 ) of GF(qn) : GF(q) aU normal hases
can be constructed as (bo, ... , bn- 1 ) • A, where A runs over all invertible circulant
n x n-matrices over GF( q). This weil known method was transferred to orthogonal
circulant matrices to calculate all selfdual normal hases (SDNB) if one is given. Due

•

                                   
                                                                                                       ©



.'

- 9 -

to a paper of A. Lempel and M.J. Weinberger (1988) the problem of tbe existenee of
SDNB's is solved in full detail for all finite fields.) By this metbod the number of all
SDNB's ean direct1y be calculated for 30y finite field.

D. GOLLMANN: Multiplication in GF(2n )

We examine the decomposition of multiplication into shift-and-add algorithms and
the translation of these algorithms into hardware architectures for different basis
representations. For polynomial basis representation we have two decompositions
that eorrespond to seria! input / parallel output multipliers. SIPO dual basis ar­
chitectures follow from the same decomposition. The difference to polynomial basis
architectures is only in the type of the linear feedback shift registers. Dual basis
representations also al10w PISO arehitectures. When the feedback polynomial is a
trinomial we have a "weakly seH dual polynomial basis" and these arehitectures also
"aceept" polynomial basis representations. For normal basis' representation there is
the PISO multiplier proposed by Massey aod Omura. SIPO multipliers ean be deri­
ved from a decomposition similar to the polynomiaJ basis algorithms. Multiplication
by the root of the feedback polynomial is the expensive step in all these normal basis
architectures. It ean be shown that PISO- aod SIPO-multipliers are equivalent in
this respect.

A. GUTHMANN: Construetive Arithmetic in GF(q)[T]

p > 2 a prime, q power of p, ZT = GF(q)[T], QT = GF(q)(T), RT = eompletion of
QT w.r.t. degree valuation.
The following topics are dis~ussed:

1. Extraction of square roots in ZT.

2. Continued Fractions in RT.

3. Divisors in K = QT(v'I5), D. E ZT, and how to caleulate with then.

4. The regulator group: Definition and formulas for addition.

H. H. NAGEL: AIgeb~aic Approaches in Image Sequence Analysis

Image sequenees, for example sequenees of digitized video frarnes, allow to capture
temporal variations in a scene. Algorithmic evaluation of sucb sequences aims at
describing the 3 - D (surface) strueture of objects in tbe scene and their motion
relative to the recording camera.
Given tbe eoordinate vector xii at time tl of the perspective image pf a point Xi' in
space and the eorresponding vector x2 i at time t2, these two entities are related by

... T ...
an equation x2 i Ex1 i = 0 where the so called "essential matrix" E depends only on
the translation T and rotation R between camera positions and orientations at times
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tl and t2. Various approaches towarcls the extraction of estimates for T and R from
es timates of E are discussed.
Rece~t results by Demazure, Fangeras and Maybank (INRIA 1988)'describe algebraic
conditions for obtaining solutions for T and R.
Attempts to study the infiuence of measurement noise on the estimation of translation
and rotation parameters result in challenging questions for algebraic approaches.

B. A. KUTZLER: Algebraic methods for-automated geometry theorem proving

Implemented provers following the algebraic approach to automated geometry theo-
rem proving are discussed. The basic idea of this approach is to translate a geometry e,
theorem into an algebraic problem and to solve the latter by computer algebra me-
thods.
After shortly explaining the technique how to obtain an appropriate algebraic trans­
lation of a geometry theorem, the three general purpose computer algebra methods,
i.e. Collins' cylindrical algebraic decomposition method, Buchberger's Gröbner bases
method, and Ritt's Characteristic sets method are investigated for their applicability
to decide certain subclasses of geometry theorems. Explicit characterizations of what
can be achieved by these methods as weH as practical results on twenty representa­
tive examples are given. Then the provers of Wu, Chou, Kapur and Kutzler/Stifter,
which are aH based on Characteristic sets or Gröbner bases, are presented in detail
and also applied to the twenty examples.
FinaIly, applications to constructive geometry and computer-aided design are sketched.

G. SCHIFFELS: WeIl Quasi Orders and Gröbner Ideal Bases

My talk is on joint work with A ndreas Dress. We want to present a simple (but
mainly structural and non-algorithmic) approach to the theory of Gröbner bases and
some other canonical bases (e.g. by Szekeres, Re'dei, C. Ayoub). We proceed by
introducing suitable quasi-orders ~ on the ground-ring K (commut. with 1), which
are supposed to be simplifying for all K -ideals a, i.e. each residue class u + a has a
(unique) least element min-«u+a). For a commut. monoid (r, +, 0), we consider the e
monoid.algebra R = K(f) ~ L"YEr K . X..." XCX ·Xß = xcx+{3. In case r = N(I) we have
the polynomial ring R = K[(Xi)iEI]. For any partial order ~ on rand the ~ on K,
we introduce on Kf(T) the lexicographic quasi order~. If:5 and ~ are noetherian or
well quasi ordered, then so is ~. If moreover on r the relation 3/: a + / = ß defines
a partial order a ~+ ß, and if ~ is an addition-compatible well-ordered refinement
of ~+, then ~ turns out to be simplifying for all R-ldeals A. For a basis A of A,
the appropriate reduction ---+A is noetherian, as ~ iso The basis A turns out to be
order.adapted (i.e. Gröbner), iff for all f, gER the relation 9 = mi~(f + A) is
equivalent to f -+ A . ~A ••• -+A 9 and no 9 -+ A h. If ~+ is well partial ordered an
K is a noetherian ring, each A has a finite Gröbner basis.
A preprint is available.
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H. NIEDERREITER: The linear complexity profile of binary sequences

Stream ciphers are cryptosystems based on pseudorandom key streams,. i.e. on deter­
ministically generated sequences of bits with acceptable properties of unpredictability
and randomness. From the viewpoint of cryptology a useful measure for unpredicta­
bility and randomness is the linear complexity profile of a sequence. 1t measures to
what extent the initial segments of the sequence can be simulated by linear feedback
shift registers. We present recent results on the linear complexity profile of binary
sequences relating to the following problems:

(i) the construction of sequences with prescribed linear complexity profile;

(ii) the behavior of the linear comple~ity profile for truly random sequences.

The relevant algebraic tools are formal power series over finite fields a~d their conti­
nued fraction expansions. Applications to stream ciphers will be discussed.

D. E. LAZIC: Sphere Packing aod Signal Constellations

There are many connections between the geometrical problem of paeking equal sphe­
rieal caps placed on the N-dimensional sphere nN aod the channel eoeling problem,
i.e. the problem of design signal constellations for errorneous data transmission.
The long-standing Tammes problem of finding the densest packing of M equal spe­
rieal eaps on ON is analized. This problem can be viewed as equivalent to finding
an arrangement of M points on ON that maximize the minimal mutual distances
between points. This arrangement CB(N, M) is called the ~est sperical code. It
has important applications to the design of signal constellations for a band-limited
channel with additive white Gaussian noise.
Using a method which consists of finding the minimum of a suitably chosen objective
function of th~ codes distance distribution, all known. conjectures for C3(3, M); 4 ~

M ~ 32, are obtained, together with some soluti~ns that are better than them.
These solutions are expressed by means of Schlegel graphs and corresponding polyt­
opes. Four-dimensional conjectui-es ale obtained for M ranging from 9 to 21 and for
M =24 and M =25. In tbe higher-dimensional Euclidean spaces conjectures for the
following best sperical codes are obtained:

CB(4,16), C B(5, 13), C B(5,32), CB(6,16), CB(6,22), C B(6,64),
CB(7,25), CB(7,128), CB(8,40), C B(8,64), CB(9, 64), CB(9,107),
CB(10,32), C B(10,101), C B(12,64), CB(15,32), CB (16,40), CB(17,51),
C8(18,64).

B. HAIBLE: Linear differential equations with polynomial eoefficients

Let us call apower senes f (in finitely many variables) differentiably finite (D-finite)
if all its derivatives span an only finite-dimensional vector space over the rational
functions. It is shown that D-finiteness is fulfilled for algebraic and elementary tran­
scendental functions and preserved by addition, multiplieation, Hadamard produet
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and diagonalization (taking the diagonal power senes w.r.t. two of the variables). As
an application, a canonical simplifier is presented for a huge subalgebra containing
the elementary transcendental functions of the algebra of power series. As another
application, it is shown that a wide class of sequences represented by sums that ap­
pear in combinatorics satisfy a linear recurrence relation with polynomial coefficients
and therefore can be calculated fast.

K. MUROTA: LM-matrix and its combinatorial canonical form for systems analysis

.Let K be a subfield of an extension field F. A matrix A = (~) is called a layered •
mixed matrix (LM-matrix) with respect to.K if

(i) Q is a matrix over K, and

(ii) the nonzero entries of T are algebraically independent over K.

We show the fundamental properties of such a matrix, including its combinatorial
canonical form, and discuss its role in the analysis of discrete systems such as electrical
networks.

J. GRABMEIER: On sums of characters: zero-testing and interpolation

We reported on a joint work with A. Dress, Bielefeld ([DG 89]): Many ideas and
methods from the recent papers on zero-testing and interpolation of k-sparse n-variate
polynomials over fields of characteristic 0 ([BT 88]) and over finite fields GF(q), q
prime power, possibly allowing evaluations of elements from GF(qm). ([CnGK 88],
[GKS 88]), can be unified and better understood by considering k-sums L::~~ !iXi of
characters Xi : A --+ (R, '), where A is an abelian (semi-) group and R an integral
domain with fi E R. The zero-test set

{(Zr, ... ,Z;_l) : T c {O, ... , n - 1}, nT ~ Ll092nJ, zr = {~ :~ ~.~ ~ }}

of minimal size E OS i<llo92nJ (7) f'J n'092k for GF(2) from [CnGK 88] is constructed.
Furthennore it is shown that finding elements that distinguish the involved cha- e
racters, e.g. the method of [GKS 88] using Cauchy's determinants, together with
appropriate zero-test sets are the essential ingredients for efficient interpolation al-
gorithms.

[BT 88] Ben-Or, M., Tiwari, P.: A Deterministic Algorithm Cor Sparse· Multivariate
Polynomial Interpolation, Proc. STOC. ACM, (1988).

[CDGK 88] Clausen, M., Dress, A., Grabmeier, J., Karpinski, M.: On zero-testing and
interpolation of k-sparse multivariate polynomials over finite fields. Techn. Rep.
TR 88.06.006, Heidelberg Scientific Center, IBM Germany, (1988).

[DG 89] Dress, A., Grabmeier, J.: On sums of characters, in preparation (1989).

[GKS 88] Grigoriev, D.Y., Karpinski, M., Singer, M.F.: Fast Parallel Algorithms Cor
Sparse Multivariate Polynomial Interpolation over Finite Fields, preprint, (1988).
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A. SHOKROLLAHI: Fermat Codes

V.D. Goppa's famous method of deriving linear codes from algebraie curves ean be
used to construct new and interesting classes of linear codes over finite fields.
Utilizing the method of Goppa, one can construct codes on the Fermat curve x r +
yr + zr = 0 where r = pb + 1 and the ground field is F;n. One problem which arises
in this connection is that of determining a basis for the linear space L(A) of some
diviso~ A on the curve. Letting Q be the point (Tl, 0, 1) where Tl is a primitive 2r - th
foot of unity in F;n and fixing a with 2g - 2 < a < n where 9 is the genius of the
eurve (= ~(r -1 )(r - 2)) and n is one less than the number of the F;n-rational points
on the curve, one gets: A basis of L(aQ) can be parametrized by the set

{Ca, b) E N~ I 0 :5 b ~ min(a - 1, r), 0 ~ ar - b ~ a}.

If Co is the code attaehed to L(aQ) and 29 - 2 < a, ß < n satisfy 0: +ß = n +29 - 2,
one has further

Co = ct·
The computation of the exact minimal distance of these codes ean be reduced to
computation in the function field of the curve which has a very pleasent arithmetic
behavior.

w. BÜTTNER: Modelling Complex Applications in Prolog

The term algebra used by Prolog to model domains of interest is inadequate when
more exacting requirements have to be met as in modeling various phases of circuit
design. Often, however, the structure of such a domain can be adeciuately described
by a finite algebra. The characteristics of digital switching functions can be described,
for instance, bya boolean algebra. It is outlined how the expressive power of Prolog
can be amplified by an arbitrary finite algebra by implementing an equation solver
operating with such an algebra. Implementations have shown the described proce­
dures to enhance the expressive power and efficiency of Prolog to an equal extent .•
J. CANNON: Knowledge-Based Systems as a Tool for Applied Algebra

Techniques from many areas of algebra, geometry and combinatonal theory are fin­
ding application to problems in physics, engineering and communications. Having
chosen the appropriate mathematical theory, the applied mathematician will often
need to get detailed information about a specific mathematical structure. For eXaID­
pIe, in many situations where groups are applied in physics, the physicist needs to
know information about the characters of specific groups. It therefore makes sense
to construct software systems which have the capability of answering many questions
about specific algebraic and combinatorial stroctures. Such a system would contain

                                   
                                                                                                       ©



- 14 -

algorithmic knowledge, data bases incorporating families of critical examples, and
possiply theoretical knowledge (definitions and theorems). A new version of the alge­
bra system Cayley , designed to support computation in number theory, algebra and
combinatorial theory, will attempt to integrate the use of all three types of knowledge.

A. KERBER: The combinatorial use of finite group actions

Whenever a mathematical structure can be defined as an equivalence class on a finite
set, we can make effective use of the tools of finite group aetions theory in order to e
enumerate, construct, generate ... such structures.
The basic tools, developed by Cauchy, Frobenius, Burnside and others were received
and applied to symmetry classes of mappings. A particular example, the graphs, were
discussed to some detail. Emphasize was laid on a redundancy free construction via
double cosets and on a method that allows to generate orbit representatives uniformly
at random.

Berichterstatter: W. Geiselmann
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