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Die Tagung fand unter der Leitung von Herrn Deuber (Bielefeld), Herrn Jack-
son (Waterloo) und Herrn Jungnickel (GieBen) statt. ’

Das Ziel der Tagung war es, einen Uberblick Gber das gesamte Spektrum der
Kombinatorik zu geben, die sich immer mehr in der Gefahr befindet, in eine
Anzahl spezialisierter Einzelgebiete zu zerfallen. Die Tagungsteilnehmer soliten
sich demzufolge in Oberwolfach Gber Forschungsergebnisse in der diskreten
Mathematik auch auBerhalb ihres eigenen Spezialgebietes informieren und mit
Kollegen dariber diskutieren kénnen.

Um diese Ziele zu erreichen, wurde ein inhaltlich wie auch geographisch
ausgewogener Teilnehmerkreis eingeladen. Alle wesentlichen Teilgebiete der
Kombinatorik waren vertreten, insbesondere Codierungstheorie, Designtheorie

‘ und endliche Geometrie, Graphentheorie und kombinatorische Optimierung,

UFG

kombinatorische Polytope, partiell geordnete Mengen, Matroidtheorie, Ramsey-
und Partitionstheorie und Zihitheorie.Wenngleich die algebraischen Aspekte
der Kombinatorik eine gewisse Betonung erfuhren, sind auch die analytischen
Aspekte sowie Bezige zu den Anwendungen vertreten gewesen.

Die Vortrage wurden bewuBt nicht zu Teilgebieten zusammengefaBt, um
einen moglichst breiten Gedankenaustausch zu férdern, der auch -sowohi durch
die rege Teilnahme an den Vortridgen wie durch zahlreiche Einzeldiskussionen-
weitgehend erreicht wurde, wie die positive Resonanz, die die Tagung fand,
gezeigt hat.
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M. Aigner (with E. Triesch): Degre‘e Sequences of Graphs

Let w:E(G)—{1,...m} be a weighting of the edges of a graph G; w is
admissible if all weighted degrees w(x)=X_, w(e) are distinct (x€V(G)). The
irregularity strength s(G) is the minimum number m for which an admissible
weighting is possible. A survey is given on the numbers s(G). In particular:

Theorem 1: Let T be a tree on n vertices, then s(T)=n-2 except when T is a

star (then s(T) =n-1).

Theorem 2: Let G be a connected graph on n vertices. Then s(G) = n-1 except

fors(K3)=3.

The method of proof uses partitions of the additive group, and alternatively,
results in the geometry of numbers. “Graceful” conjecture: Let T be a tree on n
vertices. Then there always is an admissible weighting which uses all the numbers
1,2,...,n-1.

K.T. Arasu: Difference sets

We present a condition on the intersection numbers of difference sets which
follows from a result of Jungnickel and Pott. We apply this condition to rule out

several putative (non-abelian) difference sets and to correct erroneous proofs of

Lander for the nonexistence of (352, 27, 2) - difference sets in Z11®Zg®(Z,)? and
Z11D(Z4)?®Z,.

A.Beutelspacher: The chromatic index of a finite projective space

The chromatic index of a linear space § is the least number n such that one
can colour the lines of S in such a way that any two intersecting lines have
different colour. The chromatic index of § is denoted by x(S).

The conjecture of Erdos-Faber-Lovasz says that in any linear space x(S) is at
most the numbers of its points. We investigate this problem in the special case
where S is a projective space of dimension d.

There are direct constructions (using spreads and parallelisms) and recursive
constructions which prove the conjecture

- ford odd if the order is not too small;
-forsome evend."
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A.Blockhuis: Solution of an extremal problem for sets using resultants of
polynomials

We give a short and completely new proof of the following fundamental
theorem of Bollobas: Let Ay,...,Ap and By,...,Bp, be collections of sets with |Aj| =,
IBil=s Viand AiNB;=@ifand only ifi=j. Then

hs('”)

s

The proof immediately extends to the generalization of this theorem
obtained by Frankl, Alon and others. The essential ingredient is to associate to
each set Aj (resp. B) a polynomial a; ( =II(x-a)) (resp. bj) where a runs through A;,
such that the resultant of (aj, b)) =0 if and only if i#]. The bound then follows
from a dimension argument.

David Bressoud: OZ and Unimodality

The Ohara-Zeilberger identity (02)

J
'n'+jl= qu().)-j
g

m+2n—L‘._l-Li“
LR

with

i n+i
1-
” —q—-, nz0

. S i
oM=A2+ . +A2 L=X 4.+ A, I"f'!]:[ =1 1-q
J i J J
0, n<@
implies unimodality of the Gaussian polynomials since each summand is a
unimodal polynomial (by inductive hypothesis) with mode at nj/2.
OZ is easily proven by demonstrating that
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is the generating function for partitions with j parts <n such that if f; = # of parts
of sizeithen fi.y + fi=k Viand fi.; + f; = k implies
f+2 f+ik=n,
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A.R. Calderbank: Quasi-symmetric Designs

A quasi-symmetric t-design is a t-design with two block intersection sizes p
and g (where p<q). We describe algebraic invariants for quasi-symmetric designs
that are similar to the Bruck-Ryser-Chowla theorem for symmetric designs. We
shall also settle a conjecture of Sane and Shrikhande, by classifying quasi-
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symmetric 3-designs with p=1: our method is to reduce the classification
problem to that of finding all integer points on the elliptic curves y2 = x3-
11x2 + 32x and y2 = x3-4x + 4.

W. Deuber: Complexity theory for fast growing functions

By establishing the complexity of a Ketonen-Solovay function in the
Grzegorcik/Wanier hierarchy it is shown that in Peano arithmetic the totality of
such a function is not provable. W. Thumser (Dr. dissertation 1989) also gives
good upper bounds for the complexity.

M. Deza: Facets for the complete cut cone

We present results on the facets of the complete cut cone, i.e. the cone C, of
dimension n(n-1)/2 generated by the cuts of the complete graph on n vertices.
We describe some operations on facets, in particutar, a lifting procedure for
constructing facets of Cn, + 1 from given facets of the lower dimensional cone Cp,.
We present several new classes of valid inequalities for C, and we prove
facetness for some subclasses. The elements of the complete cut cone C admit
the following geometric characterization: they are exactly the semi-metrics on n
points which are isometrically embeddable into L'. The results presented follow
from a joint work with M. Laurent.

2. Furedi: Covering the complete graph by partitions

Let f(D,c) denote the minimum integer n such that every c-colouring of the
edges of the complete graph K™ contains a monochromatic, connected subgraph
whenever m>f(D,c). If a resolvable block design with ¢ parallel classes and with
block sizes <D over n vertices exists then f(D,c}= n. Our main tool to investigate
f(D,c) is the fractional matching theory of hypergraphs.

C. Godsil: Distance reqular antipodal covers of complete graphs

An r-fold cover of the complete graph K" is obtained by replacing each vertex
in it by a set of r vertices, and each edge by an r-matching joining the vertices in
the corresponding r-sets. Thus it is a regular graph on rn vertices of valency n-1. A
cover G of K" is called antipodal if any two vertices in the same r-set are at
distance three in G, and any two vertices in different r-sets are at distance at
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most two. Finally, an antipodal cover is distance regular if, for each pair of
vertices x and y in G, the number of vertices adjacent to both x and y only
depends on the distance between xand y.

We now restrict the word “cover” to mean "distance regular antipodal
cover”. The cube is a 2-fold cover of K4, while the line graph of Petersen's graph
is @ 3-fold cover of K5. An (n-1)-fold cover of K" exists if and only if there is a
Moore graph of diameter two with valency n-1. Covers of K" are interesting, in
part because they are related to a number of structures arising in finite
geometry.

My talk will be a report on recent attempts to obtain a better understanding
of this class of graphs, and on a few of the problems remaining to be solved.

I.P. Goulden: Enumeration of tableaux by number of columns

" For (n-3)2=m=n-1, we prove that the number of involutions on {1,2,...,n}
whose longest increasing subsequence haslength mis.
1) ijz)o (»_1)11 +m+i+j(i:’j)(l_:j)1nu(")
. 2i+jsSn-m
where Inv(j) is the number of involutions on {1,2,...,j}, and that the number of
permutations on {1,2,...,n} whose longest increasing subsequence has length m

is
@ i.i%ao (- n(lrl)(tﬂ)(‘:‘)(iil)'
i+j+lsn-m .

The proof of (1) uses the Schensted correspondence to express this number as
the sum of degrees of all irreducible representations of the symmetric group
corresponding to partitions A with largest part equal to m. This sum is thus the
coefficient of x1...xn in Zsp(x1,...,xn), where s) is a Schur symmetric function, and
the sum is over partitions with largest part m. The Schur function sum is
evaluated using an idea of I.G. Macdonald, yielding (1) as well as more
complicated formulas for smaller values of m relative to n. The proof of (2)
proceeds similarly and involves the sum Zsy(xi,...,xn)sA{y1.....¥n), again restricted
to partitions A with largest part m. )

The simple form of (1) and (2) suggests that a nice constructive proof exists,
and it is hoped that such a construction would lead to new results in symmetric
functions.
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C. Greene: Permutations with balanced patterns

We consider balanced nm-staircase tableaux, that is (equivalently)
permutations x1,....xn of 1,...,n which have no peaks or valleys in even positions.
(A peak is an element x; such that x; >x;_1,x; 4 1, and a valley is an element x; such
that xj<xi.1,Xi+1.) If by is the number of such permutations, for each
n, we show that B(x) = 2, b2nx20/(2n)t = 1/(1 - x/2% tanh(x/2%)) and B,(x)=
2 ban+ 1x20+ 1/(2n + 1)! = 2¥tanh(x/24)/(1 - x/24 tanh(x/2%)).

We note that Gessel has considered the related problem of enumerating
permutations with no valleys in even positions (peaks allowed). If gn is the
number of such permutations, Gessel obtains G (x) =Xg2nx20/(2n)! = (sech x)/(1-
xtanh x), and G,(x) =2g2n+1X20+1/(2n + 1)! = (tanh x)/(1- x tanh x). It follows
(comparing generating functions) that g2n 4+ 1 = 2nb2n 4 1 for all n, a fact for which
we have no simple combinatorial explanation.

H. Gronau (with B. Ganter): On two concectures of Demetrovics, Furedi and
Katona, concerning partitions

Is it possible to find n partitions of an n-element set whose pairwise
intersections are just all atoms of the partition lattice? Demetrovics, Furedi and
Katona verified this for all n=1 or 4 (mod 12) by constructing a series of special
Mendelsohn Triple Systems. They conjectured that such triple systems exist for all
n=1 (mod 3) and that the problem on the partitions has solutions for all n=7.
We prove both conjectures, except for finitety many n.

M. Grétschel: Upper Bounds for Block Codes from Polyhedral Theory

Let A(n,d,q) denote the largest size of a block code of words of length n over
an alphabet with g letters and minimum (Hamming) distance d. We transform
the problem of calculating A(n,d,q) into a stable set problem and use methods of
polyhedral theory and linear programming to compute upper bounds for
A(n,d,q). This way we can give new interpretations of known bounds and we
obtain - in a number of cases - improvements over the best upper bounds known
to date. This work is joint with E. Zehendner.

J.W.P. Hirschfeld: Projective spaces of square size

If IPG(n,q)! =rs and T is a Singer cycle, then there are many cases in which the
orbits of <Tr> give interesting subsets of the space. When r=s, the only
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possibilities for (n,q,r) with n >'1 are (3,7,20) and (4,3,11). In the former case, the
20 points of an orbit lie by fours on five skew lines; the lines of the orbits form a
regular spread. In the latter case, the 11 points of an orbit lie by fives in 66 solids
and form a familiar 4-(11,5,1) design. ' >

D.M. Jackson (with T. Vesentin): A character tbeoretic approach to embeddings
of rooted maps

The group algebra of the symmetric group and properties of the irreducible
characters are used to derive combinatorial properties of rooted maps in
orientable surfaces of arbitrary genus. We show that there exists, for each genus,
a correspondence between the set of rooted quadrangulations and a set of
rooted maps of all lower genera, with a distinguished subsets of vertices. The
theory can be extended to 2-face colourable rooted maps. We show that there is
a corresponding correspondence for rooted triangulations of given genus. Both
correspondences specialise to Tutte's correspondences for the sphere, but the
latter are known not to extend to higher genera. It seems reasonable to expect a
combinatorial construction which will account for these facts.

These techniques can be used to examine arbitrary classes of maps of
prescribed genus. T

D. Jungnickel: Affine difference sets

We present some recent existence tests for abelian affine difference sets
which allow us to prove the prime power conjecture for orders up to 10000.
These results follow from various papers of K.T. Arasu, D. Jungnickel and A. Pott.

K.W.J. Kadell: The Selberg-Jack polynomials

Aomoto has recently given a simple proof of an extension of Selberg's
integral. We prove the following generalization of Aomoto's theorem. If the
integrand of Selberg's integral is multiplied by a Jack symmetric polynomial with
a=1/k, then the integral has a certain closed form. Our proof requires
Macdonald's extension of the duality of the Schur functions to the Jack
symmetric functions and Stanley's extensions of the Pieri formula and the
combinatorial representation.

We give alternative proofs of some results of Stanley and Macdonald and
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conjecture a constant term orthogonality for the Jack symmetric functions. We
discuss the extension of our results to the g-case.

o

A.Kerber: Algebraic combinatorics: The use of finite group actions

The basic tools are the Cauchy-Frobenius and Burnside's lemma, both in
constant and in weighted form. They were presented and it was shown how they
apply to enumeration of symmetry classes of mappings. Then a redundancy free
construction of orbit representations using double cosets in symmetric groups
was mentioned as well as the method of Dixon/Wilf for generating orbit
representatives uniformly at random was described. Specific applications are the
construction of chemical isomers and the evaluation of catalogs of graphs with

pP= 10 points. Emphasize was laid on the fact that these methods apply in many,

other cases, too.

D. Kleitmann: Two Colouring Problems

1 We show that any 3-hypergraph uniform of degree 3 on n vertices can
have its vertices coloured by 3-dimensional 0-1 vectors such that the colours on
any edge span the space (joint with Z. Furedi, J. Griggs and R. Holzman). Does
this hold for k-hypergraphs with k =4, 5? A. Blockhuis (this meeting) shows that
this statement fails in general for k= 6. If the hypergraph is further restricted to
have a vertex transitive, cyclic symmetry, does this hold for general k? This would
prove a conjecture of Graham, Chung, et al. The k=3 case can be proven by a
method based on Lovasz' proof of Brooks' theorem. '

I Any planar graph admits a partition of its vertices into 3 blocks (colour
classes) of which two are forests and one an independent set. This is somewhat
stronger than the 5-colour theorem. Question: Is this result new? It can be
proven by classical methods, appropriately arranged.

B. Korte: Exchange properties and elimination processes

The Gaussian elimination algorithm is besides the Euclid algorithn{ probabely
among the most famous and certainly among the most used algorithms in
mathematics. It turns out that its combinatorial backbone, i.e. the sequence of its
pivot elements is nothing but a combinatorial exchange structure, namely a
special greedoid. This greedoid has neither the interval nor the transposition
property thus it seems to have less structure. However, we can give some nice
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algorithmic, duality and polyhedral results: GauB greedoids can be characterized
by the optimality of the greedy algorithm for linear objective functions; they are
closed under an appropriate duality operator (of which matroid duality is a
special case). Finally, we give some polyhedral characterizations. For special Gau3
greedoids we can linearly describe the convex hull of its characteristic vectors
completely and there is some hope to extend these results to general GauB
greedoids. My lecture reports on some earlier results of my student O. Goecke
and recent joint work with L. Lovasz and R. Schrader.

M. Las Vergnas: Bases and Orientations in Matroids

The structure of oriented matroid abstracts the main combinatorial
properties of signed linear dependence over ordered fields. Classical examples
include: cycle spaces of directed graphs, configurations of points and (dually)
arrangements of hyperplanes in Euclidean spaces, arrangements of pseudolines
in the projective plane and generalizations in higher dimensions (this last
example being generic by the Folkman-Lawrence Topological Representation
Theorem). Oriented matroids provide several ways to encode the different
combinatorial types of configurations of points or hyperplanes.

Theorem A (Las Vergnas 1975): The number of acyclic reorientations of an
oriented matroid M (or, equivalently, the number of maximal covectors, or the
number of regions of the Folkman-Lawrence Representation) is given by the
evaluation t(M; 2,0) of its Tutte polynomial. .

Theorem A generalizes Stanley's theorem (1973) on acyclic orientations of
graphs and contains Zaslavski's theorem (1975) on the number of regions of an
arrangement of hyperplanes. It can be generalized to oriented matroid
perspectiveé, oriented matroid counterpart of linear applications (Las Vergnas
1977). A further generalization of Theorem A deals with the notion of activities.

Theorem B (Las Vergnas 1982): Denoting by ojj the number of reorientations
with activities i, j of an oriented matroid of an ordered set, we have tM;qn) = Eu.
2 04 g'ny.

Comparing Theorem B with

Theorem C (Crapo 1969, generalizing works of Tutte for graphs): Denoting by
bjj the number of bases with internal activity i and external activity j of a matroid
M on a totally ordered set, we have t(M;{,n) = Z, bj; ginj. '

we get the equality oj; = 2'*ibj;. This equality suggests a question: Is there a
natural correspondence between bases and reorientations of an oriented
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matroid compatible with these equalities for all i, j? Our purpose in the talk is to
describe such a correspondence.

A. Lascoux (with M.P. Schitzenberger): Permutations are tableaux and
tableaux are permutations

A decomposition of a permutation p is any product co'... of simple
transpositions which is equal to it. Taking the subwords of oc’... produces the
permutations smaller than u for the Ehresmann order (also called strong or
Bruhat order). To any permutation p, we can associate the tableau K(p) whose
columns are the successive left (reordered) factors of p written as the word
pipg...The Ehresmann order is just the componentwise order on the special
tableaux K(p) called keys.

Conversely, given any tableau t, pushing successively each of its columns to
the right by the jeu de taquin or by Schensted algorithm gives a key k. (t);
symmetrically, we get on the left another key k-(t) and we have k.(t) =t=k, (1).
Thus, we can add to the Ehresmann order an edge, labelled by t, joining the
vertices k(1) and k 4 (t). This new order is Eulerian (see Séminaire Lotharingien,
Sept. 88) and has many properties generalizing those of the Ehresmann/
Bruhat/strong order, in connection with the geometry of flag varieties (see
Minneapolis meeting of combinatorics, June 88, to appearin Springer L.N.}.

H. Lefmann: On families with prescribed intersection properties

In this talk combinatorial extremal problems in ranked lattices (X,A,v) are
considered. In particular, for families FCX whose members have pairwise
prescribed intersection properties, the maximum cardinality of F is given for

various lattices like powerset-lattices, linear lattices and Graham-Rothschild

lattices.

S.C. Milne: Classical Partition Functions and the U(n + 1) Rogers-Selberq Identity

In this talk we show that after suitable specialization the “balanced” side of
the U(n + 1) Rogers-Selberg identity gives the generating function for all
partitions whose parts differ by at least n + 1. A similar specialization yields the
additional condition that the parts must be = n + 1. The case n = 1 is the sum side
of the pair of classical Rogers-Ramanujan-Schur identities.

This connection between classical partition functions and the U(n + 1) Rogers-
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Selberg identity depends upon the identity
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where (A)m =(1-A)(1-gA)... (1-q™'A).

Our proof of (1) involves using partial fraction techniques, Hall-Littlewood
polynomials, Raising operators, g-Kostka matrices, the Cauchy-identity for Schur
functions and generating functions for column-strict plane partitions to solve a
general g-difference equation. One outcome of this proof is a new class of
symmetric functions, analogous to Hall-Littlewood polynomials, that
interpolates between Schur functions and complete homogeneous symmetric
functions.
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A. Pott: A generalization of Mann's theorem on difference sets

The main tools to prove the nonexistence of certain (v, k, A)-difference sets
are multipliers and a theorem due to Mann. There are several proofs of Mann's
theorem. We simplify Lander's proof and generalize his results. We obtain new
non-existence results even for non-abelian difference sets (joint work with D.
Jungnickel). In particular, we obtain: -

Theorem: Let D be a (v,k,)-difference set in a group G, H<G, G/y abelian,
exp(G/y) =u*. Then the following holds: If pi=-1 mod u* (p prime), then p2j|n
(i.e. p2i+14n) for some j (generalization of Mann's theorem to non-abelian
groups).

Corollary: (i) pP=|H|,

(i) |G/H|>k = pZi1vA.
For instance, we prove: There exists no abelian (704, 38, 2)-difference set if
exp(Syl,G)= 4 and no (343, 19, 1)-difference set. The latter result holds for non-
abelian groups, too.

H.J. Prémel: The restricted Ramsey theorem for graphs

Apparently P. Erd6s was the first to ask whether there exists a graph F such
that

. Ky
F—»(I\Q)2
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but F has small clique size cI(F), where ci(F) denotes the maximal size of a
complete subgraph in F. Answering this question J. Folkman (1970} constructed a
graph F with

) . Fo (K3»§2
and cl(F) = 3. This result was a starting point for Ramsey Theory for graphs and
hypergraphs.

One of the key results in this area is the restricted Ramsey theorem for graphs
and hypergraphs due to Nesetfil and Rédl (1977, 1983). A hypergraph (X,L) is
called irreducible if for any two vertices x,y€ X there exists an edge E€L such that
x,y€E. Observe that with respect to ordinary graphs cliques are the only
irreducible ones. Let F be a family of irreducible hypergraphs. Then Forb(F)
denotes the set of all hypergraphs which do not contain any member of F as an
induced subgraph. Let G,H€Forb(F). Then Nesetiil and Rodl proved that there
exists an F€ Forb(F) such that

F> @G

The original proofs of this results are quite involved and conceptually not that
easy to understand, even in the case of ordinary graphs. The aim of the talk is to
present a short and simple proof for the restricted Ramsey theorem for
hypergraphs. This proof was obtained jointly with B. Voigt and will appear in J.
Comb. Th. (A).

A.Regev: Symmetry for the dual Schensted Knuth correspondence

In a classical paper, Knuth (1970) corresponded matrices of nonnegative
integers with two rows array of integers
A “( 1)
0yt
then followed by the Schensted algorithm

Ao ( :l’:") - P,Q).
That correspondence has the symmetry property: If A o (P,Q) then AT & (Q,P) (AT
is the transpose).

In that paper, Knuth also introduced a dual correspondence A « (P,Q). Here A
had to be a 0,1 matrix, and in general, it did not have symmetry: AT & (Q,P).

We follow a change in the Knuth dual correspondence that was suggested by
Berele and Remmel. With that change, that modified Knuth dual corres-
pondence has the symmetry: A « (P,Q) and AT - (Q,P). As an application we give
a bijective proof of a “hook” generalization of an identity of Schur.
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A. Rosa: Halving Steiner Triple Systems

When does there exist a Steiner triple system (V,B) of order v (STS(v)) which
admits a partition of the set of its triples B = BjUB) such that (V,B4) and (V,B>)
are isomorphic hypergraphs? An obvious necessary condition is b=|B|=0
{mod 2), i.e. v=1,9,13 or 21 (mod 24). This is not sufficient: We prove that an
STS(v) with the above property exists if and only if v=1 or 8 (mod 24). On the
other hand, almost all STS's do not have the above property.

We also prove that when b is odd, i.e. when v=3,7,15 or 19 (mod 24), there
exists an STS(v) (V.B) and a triple t€B such that there exists a partition of
B\{t} = ByjUB; with (V,B1)=(V,B);).

B.E. Sagan: _Log concave sequences of symmetric functions and analogs of the
Jacobi-Trudi determinant

We define the notion of log concavity for a sequence of polynomials. Next it
is shown that various sequences of elementary and homogeneous symmetric
functions are log concave. The methods used are lattice path arguments of the

" type employed by Gessel, Viennot, and others. Finally these results are

generalized to nxn determinants, giving new analogs of the Jacobi-Trudi
determinant.

J. Spencer: Threshold functions for extension statements

When Z is the sum of many rare mostly independent events and E[Z] ~p then
Pr[Z = 0] ~ e-n. We call thisthe Poisson Paradigm. Forexample, when

(=

the random graph has no K4 with probability e-n. We give a general corrolation
inequality that allows one to estimate the probability that no event occurs by the
product of the probabilities that each event fails when the pairwise corrolations
are small. In particular this allows good estimates for the probability that every
pair of vertices is joined by a path of a given length d.

J.Stembridge: Connections between Hall-Littlewood functions and the Rogers-
Ramanujan identities ‘

There exist several identities from the theory of Hall-Littlewood functions
that can be viewed as multi-variate generalizations of multiple basic
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hypergeometric series (i.e., g-series). Included in this list of g-series that can be
generalized are some extensions of the Rogers-Ramanujan identities originally
due to G. Andrews and D. Bressoud. The most important part of Hall-Littlewood
function theory that is relevant to this development involves the adaptation of a
technique of I. Macdonald first used in the proof of MacMahon's and Bender-
Knuth's plane partition conjectures.

T. Trotter (with G. Brightwell, K. Reuter): The Order Dimension of Convex
Polytopes and Planar Maps

Associate with a convex polytope M in R? a partially ordered set Py consisting
of the vertices, edges and faces of M partially ordered by inclusion. We want to
determine the order dimension (in the Dushnik-Miller sense) of the poset Pp.
There are three factors motivating this problem. First, given a graph G =(V,E),
define a poset Qg by ordering VUE by inclusion. Then Schnyder proved that G is
planar if and only if dim(Qg)= 3. So it is natural to ask what happens if we add
the faces to the poset. Second, the problem of determining the dimension of the

lattices of faces (of all ranks) of a convex polytope in R" can be posed, but for -

n=4 there is no bound which depends only on n. This is due to the fact that for
n=4, there exist cyclic polytopes which have large sets of vertices with each pair
belonging to an edge. As a third motivation, if dim(Py) is small, then we obtain a
useful data structure for representing the vertex/face incidence relation of a
polytope. With these comments as background, we prove that if M is a convex
polytope in R3, then dim(Ppm) = 4. The upper bound dim(Ppm)= 4 holds whenever
M is a planar map. Our argument includes a polynomial time algorithm for the
coordinatization of Pp.

S.A.Vanstone: Graph Theoretic Codes

Let G be a graph with q edges, p vertices and girth d. It is well known that the
cycle space of G gives rise to a binary (q, g-p + 1, d)-code and that these codes are
majority logic decodable. Such codes are usually referred to as graph theoretic
codes. In this lecture we describe a decoding scheme for graph theoretic codes
based on k-regular graphs having a particular type of 1-factorization. We
consider a t-factorization F such that there exists an automorphism of G which
acts cyclically on the 1-factors of F. In addition we would like F to have the
property that the union of any two of its 1-factors does not contain a 4-cycle. In
particular, using these properties we display an efficient method to decode
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complete graph codes. The algorithm corrects-all single and double adjacent
errors and all double errors confined to a 1-factor.

B. Voigt: Sparse Ramsey Theory

This talk reports on results from the following three papers: Ramsey
theorems for finite graphs /11, submitted to JCT(B), and A sparse Graham-
Rothschild theorem, Trans. AMS (1988). These are joint papers with H.). Prémel. |
concentrate to discuss the following results:

Theorem A: (Sparse graph Ramsey theorem) Given positive integers k,m,r
and g there exists a graph G with the following property: the set-system

(¢ ).

m

which has the set of complete K¢-subgraphs of G as vertices and edge

(-:k) for KE(EM) ,(where (g) isthe set ofupsolved H ~subgraphsof G)
has chromatic number larger than r and girth larger than g.
This result has been conjectured by ). Spencer, the particular case k =2 is due
to Nedetfil and Rodl.

Theorem B: (Sparse partition theorem for Boolean lattices) Given positive .

integers m# 1, r and g there exists a positive integer n and a set SC2n of points in
the n-dimensional Boolean lattice 20 such that the set-system which has the
points in S as vertices and 2m sublattices which are completely contained in S as
edges has chromatic number larger than r and girth larger than g.

Theorem C: (Sparse Hales-jewett theorem) Given a finite set A and positive
integers r and g there exists a positive integer n and there exists .a set SCAn such
that the set-system which has the points in § as vertices and generalized
combinatorial lines which are completely contained in S as edges has girth larger
than g and for every r-colouring of S there exists a (special) combinatorial line in
S which is monochromatic.

As a corollary from this we obtain the following resultation of a conjecture of
J. Spencer (1975). »

Corollary: Given positive integers k,r and g there exists a set S of positive
integers such that the set system which has the elements of S as vertices and k-
term arithmetic progressions which are contained in S as edges has chromatic
number larger than r and girth larger than g.

This is a sparse version of a celebrated theorem of van der Waerden on
arithmetic progressions. ‘

Deutsche
Forschungsgemeinschaft

o &




UFG

D.J.A. Welsh: The Complexity of Colourings and Knots

| relate the Jones polynomial of a knot with the Tutte polynomial of an

associated graph and hence with the general Tutte polynomial of a matroid.

Thus we prove that

a) determining the Jones polynomial of an alternating knot is #P-hard;

b) evaluating the Jones polynomial of an alternating knot is #P-hard except at a
set of special points at which it is already known;

¢) determining the Tutte polynomial of graphs is #P-hard except possibly along
the special hyperbola Ho=(x-1)(y-1) = a;

d) determining the Tutte polynomial at a point (a,b) is no easier than evaluating
it along the special hyperbola through (a,b) unless (a,b) is one of the special
points (0,0), (1,1), (-1,-1),(-1,0), (0,-1), (i,-i), (-i,i), (j.j2), (j2.j), where j = e2ni/3,

R. Wille: Conceptual measurement and finite structures

The aim of conceptual measurement is to understand the conceptual
structure of data sets by comparision with given patterns of concept systems. Our

-approach to conceptual measurement uses the framework of formal concept

analysis (cf. B. Ganter, J. Stahl, R. Wille: Conceptual measurement in many-
valued contexts. In: W. Gaul, M. Schrader (eds.): Classification as a tool of
research. North-Holland, Amsterdam 1986, 169-176). A scale is defined as a
context S: =(Gs, Ms, Is) with a clear conceptual structure which reflects some
meaning. The S-measures of an (empirical) context K: = (G, M, ) correspond to V-
preserving maps from the concept lattice B(K) into the concept lattice B(S)
respecting objects. Most important in measurement is the problem: By which
scales can a given empirical structure be measured? Answers are given by
measurability theorems which describe the use of considered finite structures for
analyzing data. An example of such a theoremiis:

Theorem: A finite context K admits a full measure into a direct product of
one-dimensional ordinal scales if and only if K= (P, P, Z) for some finite ordered
setP.

G.M. Ziegler: Posets with maximal Mébius function

Let P be a poset of length | + 1, bounded, of cardinality n + 2. Then the M&bius
function of P satisfies :

| p(P}| = max max p,—1h.(p =1
r=i p‘.#..‘.+pr=n. pial
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This bound is sharp: for every poset P there is a poset P* with |P*|=|P| and
I(P*)=I(P) that achieves the bound. The posets achieving equality are classified.

[This solves a problem of R. Stanley]. The analogous problem is solved for graded
posets and attacked for finite lattices.

Berichterstatter: A.Pott
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