
Mathematisches Forschungsinstitut Oberwolfach

Tag ü n g s b e r ich t 9/1989

Kombinatorik'

26.2 .bis 4.3.1989

Die Tagung fand unter der Leitung von Herrn Deuber (Bielefeld), Herrn Jack­

san (Waterloo) und Herrn Jungnickel (Gießen) statt.

Das Ziel der Tagung war es, einen Überblick über das gesamte Spektrum der

Kombinatorik zu geben, die sich immer mehr in der Gefahr. befindet, in eine

Anzahl spezialisierter Einzelgebiete zu zerfallen. Die Tagungsteilnehmer sollten

sich demzufolge in Oberw~lfach über Forschungsergebnisse in der diskreten

Mathematik auch außerhalb ihres eigenen Spezialgebietes informieren und mit

KolI.egen darüber diskutieren können.

Um diese Ziele zu erreichen, wurde ein inhaltlich wie auch geographisch

ausgewogener Teilnehmerkreis eingeladen. Alle wesentlichen Teilgebiete der

Kombinatorik waren vertreten, insbeso~dereCodierungstheorie, Designtheorie

und endlie;he Geometrie, Graphentheorie und kombinatorische Optimierung,

kombinatorische Polytope, partiell geordnete Mengen, Matroidtheorie, Ramsey­

und Partitionstheorie und Zähltheorie.Wenngleich die algebraischen Aspekte

der Kombinatorik eine gewisse Betonung erfuhren, sind auch die analytischen

Aspekte sowie Bezüge zu den Anwendungen vertreten gewesen.

Die Vorträge wurden bewußt nicht zu Teilgebieten zusammengefaßt, um

einen möglichst breiten Gedankenaustausch zu fördern, der auch -sowohl durch

die rege Teilnahme an den Vorträgen wie durch zahlreiche Einzeidiskussionen­

weitgehend erreicht wurde, wie die positive Resonanz, die die Tagung fand,

gezeigt hat.
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M. Aigner (with E. Triesch): Degree Seguences of Graphs

Let w:E{G)~{1,... ,m} be a weighting of the edges of a graph G; w is

admissible if all weighted degrees w{x) =Ee~xw{e) are distinct (xE V(G». The

irregularity strength s(G) is the minimum number m for which an admissible

weighting is possible. A survey is given on the numbers s(G).ln partieular:

Theorem 1: let T be a tree on n vertiees, then set)~ n-2 except when T is a
star (then set) =n-1).

Theorem 2: let G be a eonnected graph on n vertiees. Then s{G)~ n-1 except

for s(K3) = 3.

The method of proof uses partitions of the additive group, and alternatively,

results in the geometry of numbers. "Graeeful" conjecture: let T be a tree on n

vertices. Then there always is an admissible weighting whieh uses all the numbers

1,2,... ,n-1.

K.T. Arasu: Difference sets

We present a condition on the intersection numbers of differenee sets which

follows from a result of Jungniekel and Pott. We apply this condition to rule out

several putative (non-abelian) difference sets and to correct erroneaus proofs of

Lander for the nonexistence of (352, 27, 2) - difference sets in Zll EB Za EB {Z2)2 and

Zll EB{Z4)2EB Z2.

A. Beutelspacher: The chromatie index of a finite projective space

The ehromatie index of a linear space 5 is the least number n such that one

can colour the lines of S in such a way that any two intersecting lines have .'

different calour. The ehromatic index of S is denoted by X(S).

The conjecture of Erdös-Faber-lovasz says that in any linear space X(S) is at

most the numbers of its points. We investigate this problem in the special (ase

where 5 is a projective space of dimension d.

There are direct constructions (using spreads and parallelisms) and recursive

constructions which prove the eonjecture

- for d odd if the order is not too smalI;

- for some even d..
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A. Bloekhuis: Solution of an extremal problem for sets using resultants of

polynomials

We give a short and eompletely new proof of the following fundamental

theorem o~ Bollobas: Let Al, ... ,Ah and B" ... ,Bh be eollections of sets with IAil =r,

IBil =sVi and ÄinBj = (2) if and only it i =j. Then

h~{:S)
The proof immediately extends· to the generalization of this theorem

obtained by Frankl, Alen and ethers. The essential in~redient is to associate to

eaeh set Ai (resp. Bi) a polynomial aj ( =Il(x-a» (resp. bi) where a runs through Aj,

such that the resultant of (ai, bj) = 0 if and only if i* j. The bound then follows

fram a dimension argument.

David Bressoud: Ol and Unimodality

The Ohara-Zeilberger identity (02)

[
n.+j ] =L q",AJ-j n[,n+2h-_Li _ J -Li+ J]
J A. A. 1

. AJ-j i::l I 1+ .

j l_ qn+i

n--.-. n2:0

2 2 I ~ 'I I i = 1 l_ q
lo (},.) =},. 1 +... +Aj' Li =A1+... + },. j' nj ) =

O. n<O

implies unimodality of the Ga.ussian polynomials sinee each ~ummand is a

unimodal polynomial (by inductive hypothesis) with mode at nj/2.

OZ is easily proven by demonstrating that

2: qo<Al( j=j [ni~\I-Lj~llfk-L:-:-I-Lk 1
AI-j i=1 I 1+1 k.

lo..Isk

is the generating function for partitions with j parts< n such that if fj =# of parts

of size i then fi-l + fi~ k Vi and fj_, + fj =k implies

f; + 2 ) f t + ik So nk'

t>i

A.R. Calderbank: Quasi-symmetrie Des~gns

A quasi-symmetrie t-design is at-design with two brock intersection sizes p

and q (where p<q). We describe algebraic invariants for quasi-symmetrie designs

that are" similar to the Bruck-Ryser-Chowla theorem tor symmetrie designs. We

shall also settle a eonjeeture of Sane and Shrikhande, by classifying quasi-
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symmetrie 3-designs with p =1: our method is to reduce the classification

problem to that of finding all integer points on the .elliptic curves y2 = x3­

11 x2 + 32x and y2 = x3-4x + 4.

W. Deuber: Complexity theory for fast growing functions

By establishing the complexity of a Ketonen-Solovay tunetion in the

GrzegorcikJWanier hierarchy it is shown that in Peano arithmetic the totality of

such a function is not provable. W. Thumser (Dr. dissertation 1989) also gives

good upper baunds tor the complexity. •

M. Deza: Facets tor the complete cut cone

.We present results on the facets of the complete cut cone, i.e. the cone Cn of

dimension n(n-1)/2 generated by the cuts of the complete graph on n vertices.

We describe same operations on facets, in particular, a lifting procedure for

construeti~gfacets of Cn + 1 from given facets of the lower dimensional cone Cn .

We present several new classes of valid inequalities tor Cn and we prove

facetness for same subclasses. The elements of the complete cut cone Cn admit

the tollowing geometrie characterization: they are exactly the semi-metrics on n

points which are isometrically embeddable inta L1. The results presented follow

fram a joint work with M. Laurent.

Z. Füredi: Covering the complete graph by partitions

let f(O,c) denote the minimum integer n such that every c-colouring of the

edges of the complete graph Km contains a monochromatic, conneeted subgraph

whenever m >f(O,c). If aresolvable block design with"c parallel classes and with

block sizes <0 over n vertices exists then f(D,c)~n. Our main tool to investigate

f(D,c) is the tractional matching theory of hypergraphs.

C. Godsil: Distance regular antipodal covers of complete graphs

An r-fold cover of the complete graph K" is obtained by replacing each vertex

in it by a set of r vertices, and each edge by an r-matching joining the vertices in

the corresponding r-sets. Thus it is a regular graph on rn vertices of valency n-1. A

cover G of K" is called antipodal if any two vertices in the same r-set are at

distance three in G, and any two vertices in different r-sets are at distance at

•
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most two. Finally, an antipodal cover is distance regular if, for each pair of

vertices x and y in G, the number of vertices adjacent to both x and y only

depends on the distance between xand y.

We now restriet the word "cover" to mean "distance regular antipodal

cover". The cube is a 2-fold cover of K4, while the line graph of Petersen's graph

is a 3-f~ld cover of KS. An (n-1)-fold cover of Kn exists if and or:-1y if th~re is a

Moore graph of diameter two with valency n-1. Covers of Kn are interesting, in

part because they are related to a number of structures arising in finite

geometry.

My talk will be areport on recent attempts to obtain a better understanding

of this dass of graphs, and on a few of the problems remaining to be solved.

LP. Gaulden: Enumeration oftableaux by number of columns

For (n-3)/2~m~ n-1, we prove that the number of involutions on {1 ,2, ...,n}

whose longest increasing subsequence has length m is·

(I) L (_l)n+nj+i+{ti )C:}nu(})
;J2:0

2i+jSn-m
where Inv(j} is the number of involutions on {1,2,...,j}, and that the number of

permutations on {1 ,2, ...,n} whose langest increasing subsequence has length m
is

(2) L (- d+
jz{i71)(j/1)C:I)C:I).

ij.I2:0 .
i+j+ISn-m

The proaf of (1) uses the Sehensted correspondenee to express this number as

the sum of degrees of all irreducible representations of the symmetrie group

eorresponding to partitions A. with la.rgest part equal to m. This sum is thus the

coefficient of Xl ...Xn in I:sA(Xl,...,Xn), where SA is a Schur symmetrie function, and

the sum is over partitions with largest part m. The Schur function sum is

evaluated using an idea of loG. Maedonald, yielding (1) as weil as more

complieated formulas for smaller values of m relative to n. The proof- of (2)

proceeds similarly and involves the sum ~SA(Xl, ... ,Xn)SA(Yl,... ,Yn), again restricted

to partitions Awith largest part m.

The simple form of (1) and (2) suggests that a nice eonstructive proof exists,

and it is hoped that such a construetion would lead to new results in symmetrie

functions.
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c. Greene: Permutations with balariced patterns

We consider balanced nm-staircase tableaux, that is (equivalently)

permutations X1, ... ,Xn of 1,... ,n which have no peaks or valleys in even positions.

(A peak is an element Xj such that Xi> xi-1 ,xi + 1, and a va lIey is an element Xi such

that Xj<Xj-1,Xj + 1.) If bn is the number of such permutations, for each

n, we show that Bo(x) = ~nb2nx2n/(2n)! = 1/(1 - x/2 i tanh(x/2 t»and B,(x) =

~nb2n + , x2n + 1/(2n + 1)! =2t tanh(x/2t )/(1 - x/2!tanh(x/2t ».
We note that Gessel has considered the related problem of enumerating

permutations with no valleys in even positions (peaks allowed). If Qn is the

number of such j)ermutations. Gessel obtains Go(x) = :Eg2nx2n/(2n)! = (sech x)/(1- •

x tanh x), and G,(x) = L92n + ,x2n + 1/(2n + 1)! =(tanh x)/(l- x tanh x). It follows

(comparing generating functions) that 92n + 1 = 2nb2n + 1for all n, a fact for which

we have n9 simple combinatorial explanation.

H. Gronau (with B. Ganter): On two concectures of Demetrovics, Füredi and

Katona, concerning partitions

Is it possible to find n partitions of a~ n-element set whose p.airwise

intersections are just alt atoms of the partition lattice? Demetrovics, Füredi and

Katona verified this for all n == 1 or 4 (mod 12) by constructing aseries of special

Mendelsohn Tripie Systems. They conjectured that such tripie systems exist for all

n == 1 (mod 3) and that the problem on the partitions has solutions for alt n~ 7.

We" prove both eonjectures, exeept for finitely many n.

M. Grätschei: Upper Bounds for Block Codes from Polyhedral Theory

Let A(n,d,q) denote the largest size of a block code of words of length n over

an alphabet with q letters and minimum (Hamming) distance d. We transform .'

the problem of calculating A(n,d,q) into a stable set problem and use methods of

polyhedral theory and linear programming to compute upper bounds for

A(n,d,q). This way we can give new interpretations of known bounds and we

obtain - in a number of cases - improvements aver the best upper bounds known

to date. This work is joint with E. Zehendner.

J.W.P. Hirschfeld : Projeetive spaces of square size

If IPG(n,q)1 =rs and T is a Singer cycle, then there are many cases in which the

orbits of <Tr> give interesting subsets of the space. When r =s, the only
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possibilities for (n,q,r) with n> 1 are (3,7,20) and (4,3,11). In the former case, the

20 points of an orbit lie by fours on five skew lines; the lines of the orbits form a

regular spread. In the latter case, the 11 points of an orbit lie by fives in 66 solids

and form a faJ'!1iliar 4-(11,5,1) design.

D.M. Jackson (with T. Vesentin): A character tbeoretic approach to embeddings

of rooted maps

The group algebra of the symmetrie group and properties of the irreducible

• characters are used to derive combinatorial properties of rooted maps in

orientable surfaces of arbitrary genus. We show that there exists, for each genus,

a correspondence between the .set of rooted quadrangulations and a set of

rooted maps of all lower genera, with a distinguished subsets of vertices. The

theory can be extended to 2-face colourable rooted maps. We show that there is

a corresponding correspondence for rooted triangulations of given genus. 80th

correspondences specialise to Tutte's correspondences for the sphere, but the

latter are known not to extend to higher genera. It seems reasonable to expect a

combinatorial construction which will account for these facts.

These techniques can be used to examine arbitrary classes of maps of

prescri bed gen uso T

D. Jungnickel: Affine difference sets

We present some recent existence tests for abelian affine difference sets

whieh allow us to prove the prime power conjecture tor orders up to 10000.

These results follow from various papers of K.T. Arasu,D. Jungnickel and A. Pott.

e K.W.J. Kadell: The Selberg-Jack I:!olvnomials

Aomoto has recently given a simple proof of an extension of Selberg's

integral. We prove the following generalization of Aomoto's theorem. If the

integrand of Selberg's int~gral is multiplied by a Jaek symmetrie polynomial with

Q =l/k, then ~he integral has a certain closed form. Dur proot requires

Macdonald's extension of the duality of the Sehur funetions to the lack

symmetrie functions and Stanley's extensions of the Pieri formula and the

eombi natorial representation.

We give alternative proofs of some results of Stanley and Maedonald and
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conjecture a constant term orthogonality for the Jack symmetrie functions. We

discuss the extension of our results to the q-ease.

Ä. Kerber: Aigebraic combinatorics: The use of finite group actions

The basic tools are the Cauchy-Frobenius and Burnside's lemma, both in

constant and in weighted form. They were presented and it was shown how they

apply to enumeration of syrnmetry c1asses of mappings. Then a redundancy free

construction of orbit representations using double cosets in symmetrie groups

was mentioned as weil as the method of DixonlWilf for generating orbit •

representatives uniforrnly at randorn was described. Specific applications are the

construction of chemical isomers and the evaluation of catalogs of graphs with

p~ 10 points. Emphasize was laid on the fact that these methods apply in many.

other cases, too.

D. Kleitmann: Two Colouring Problems

I We show that any 3-hypergraph uniform of degree 3 on n vertices can

have its vertices coloured by 3-dimensional 0-1 vectors such that the colours on

any edge span the space (joint with Z. Füredi, J. Griggs and "R. Holzman). Does

this hold for k-hypergraphs with k =4, 51 A. Block~uis (this meeting) shows that

this statement fails in general for k~ 6. If the hypergraph is further restricted to

have avertex transitive, cyclic symmetry, does this hold for general k1 This would

prove a conjeeture of Graham, Chung, et al. The k = 3 case can be proven by a

method based on Lovasz' proof of Broaks' theorem.

11 Any planar graph admits a partition of its vertices into 3 blocks (colour

classes) of which two are forests and one an independent set. This is somewhat

stronger than the 5-colour theorem. Question : Is this result new? It can be

proven by classical methods, appropriately arranged.

B. Korte: Exchange properties and elimination processes

The Gaussian elimination algorithm is besides the Euclid algorithm probabely

among the most famous and certainly among the most used algorithms in

mathematics. It turns out that its combinatorial backbone, Le. the sequence of its

pivot elements is nothing but a com~inatorial exchange structure, namely a

special greedaid. This greedoid has neither the interval nar the transposition

property thus it seems to have less structure. However, we can give same nice
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algorithmic, duality and polyhedral results: Gauß greedoids can be characterized

by the optimality of the greedy algorithm for linear objective functions; they are

closed under an appropriate duality operator (of which matroid duality is a

special case). Finally, we give same polyhedraJ charaeterizations. Far special Gauß

greedoids we can linearly describe the convex hull of its characteristie vectors

completely and there is same hape to exte.nd these results to general Gauß

greedoids. My lecture reports on some earlier results of my student o. Goecke

anq recent joint work with L. Lovasz and R. Schrader.

M. Las Vergnas: Bases and Orientations in Matroids

The structure of oriented matroid abstracts the main combinatorial

properties of signed linear dependence aver ordered fields. Crassical exampres

include: cycle spaces of directed graphs, configurations of points and (dually)

arrangements of hyperplanes in Euclidean spaces, arrangements of pseudolines

in the projective plane and generalizations in higher dimensions (this last

example being generic by the Folkman-lawrence Topological Representation

Theorem). Oriented matroids provide several ways tc? encode the different

combinatorial types af configurations of points or hyperplanes.

Theorem A (Las Vergnas 1975): The number of acyclic reorientations of an

oriented matroid M (ar, equivalently, the number of maximal covectors, or the

number of regions of the Folkman-Lawrence Representation) is given by the

evaluation t(M;2,O} of its Tutte polynomial.

Theorem A generalizes Stanley's theorem (1973) on acyclic orientations of

graphs and contains Zaslavski's theorem (1975) on the number'of regions of an

arrangement of hyperplanes. It can be generalized to oriented matroid

perspeetives, oriented matroid counterpart of linear applications (Las Vergnas

1977). A further generalization of Theorem Adeals with the nation of activities.

Theorem B (Las Vergnas 1982): Denoting by Oij the number of reorientations

with aetivities i, j of an oriented matroid of an ordered set, we have t(M;~,I)} = ~,.j

2- j
-
j Oij <iI}(

Comparing Theorem Bwith

Theorem C (Cra po 1969, generalizing works of Tutte for 9raphs): Denoting by

bij the number of bases with internal activity i and ext~rnal activity j of a matroid

M on a totally ordered set, we have t(M;~,q) =L. biJ· ~iI)L .
l,J

we get the equality Oij = 2i
+ jbij. This equality suggests a question : Is there a

natural correspondence between bases and reorientations of an oriented

                                   
                                                                                                       ©



10

matroid compatible with these equalities for all i, j? Dur purpose in the talk is to

describe such a correspondence.

A. Lascoux (with M.P. Schützenberger): Permutations are tableaux and

tableaux are permutations

A decomposition of apermutation }J is any product aa' of simple

transpositions which is equal to it. Taki ng the subwords of aa' produces the

permutations smaller than p for the Ehresman~ order (also called strong or

Bruhat order). To any permutation p, we can associate the tableau K(p) whose

columns are the successive left (reordered) factors of p written as the word

P1P2...The Ehresmann order is just the componentwise order on the special

tableaux K(p) called keys.

Conversely, given any tableau t, pushing successively each of its columns to

the right by the jeu de taquin or by Sehensted algorithm gives a key k + (t);

symmetrically, we get on the left another key k_(t) and we have k_(t) ~ t ~ k + (t).

Thus, we can add to the Ehresmann order an edge, labelled by t, joining the

vertices k_(t) and k + (t). This new order is Eulerian (see Seminaire Lotharingien,

Sept. 88) and has many properties generalizing those of the Ehresmann!

Bruhatlstrong order, in connection with the geometry of flag varieties (see

Minneapolis meeting of combinatorics, June 88, to appear in Springer. L.N.).

H. Lefmann: On families with prescribed intersection properties

In this talk combinatorial extremal problems in ranked lattices (X,I\,v) are

considered. In particular, for families F~X whose members have pairwise

prescribed intersection properties, the maximum cardinality of F is given for

various lattices like powerset-Iattices, linear lattices and Graham-Rothschild

lattices.

S.C. Milne: Classical Partition Functions and the U(n + 1) Rogers-Selberg Identity

In this talk we show that after suitable specialization the "balanced 11 side of

the U(n + 1) Rogers-Selberg identity gives the generating function for all

partitions whose parts differ by at least n + 1. A similar specialization yields the

additional condition that the parts must be ~ n + 1. The case n =1 is the sum side

of the pair of c1assical Rogers-Ramanujan-Schur identities.

This connection between c1assical partition functions and the U(n + 1) Rogers-

•
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Selberg identity depends upon the identity

'1 2 2.'" I( . f1nl r ls- rl+nm s )"( 11 )-1 I n(n + I '/2I1m; + ... + mnJ
(1) L 11 (q -q ) (q)i-l+nm. q

n1
1

+ ... +m
n

=m l:5r<sSn i=1 • I

m.~O
I

n =I li _ n J( n + 1Im 'I m( (n + 11m - Il + Ilfl

(_ 1)1 n - I Im ( I I q ') .= q ( ") I

i=1 q m

where (A)m =(l-A}(l-qA)... (1-qm- 1A).

Our proot of (1) involves using partial fraetion teehniques, Hall-Littlewood

polynomials, Raising operators, q-Kostka matriees, the Cauehy-identity tor Schur

functions and generating functions for eo.lumn-strict plane partitions to solve a

general q-difference equation. One outeome of this proof is a new dass of

symmetrie functions, analogous to Hall-Littlewood polynomials, that

interpolates between Schur functions and complete homogeneous symmetrie

functions.

A. Pott: A generalization of Mann's theorem on differeneesets

The main tools to prove the nonexistence of certain (v, ·k, a)-difference sets

are multipliers and a theorem due to Mann. There are several proofs of Mann's

theorem. We simplify Lander's proof and generalize his results. We obtain new

non-existence results even for non-abelian differenee sets (joint werk with D.

Jungnickel). In particular, we obtain: .

Theorem: Let D be a (v,k,A)-difference set in a greup G, H<G, G/H abelian,

exp(G/H) = u*. Then the following holds: If pi == -1 mod u* (p prime), then p2j 11 n

(i.e. p2j + 1%n) for same j (generalization of Mann's theorem to non-abelian

groups).

Coral/ary: (i) pj~ IHI,
(ii) IG/Hf>k ~ p2j I va.

For instance, we prove: There exists no abelian (704, 38,' 2)-difference set if

exp(SyI2G)~4and no (343,19, 1)-difference set. The latter result holds for non­

abelian groups, too.

H.J. Prämel: The restricted Ramsey theorem for graphs

Apparently P. Erdös was the first to ask whether there exists a graph F such

that
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but F has small clique size c1{F), where c1(F) denotes the maximal size of a

complete subgraph in F. Answering this question J. Folkman (1970) constructed a

graph Fwith
K .)

F~ (K
3

)2 -

and c1(F) = 3. This result was a starting point for Ramsey Theory for graphs and

hypergraphs.

One of the key results in this area is the restricted Ramsey theorem for graphs

and hypergraphs due to Nesetfil and Rödl (1977, 1983). A hypergraph (X,L) iso

called irreducible if for any two vertices x,yEX there exists an edge EEL such that

x,yE E. Observe that with respect to ordinary graphs c1iques are the only

irreducible ones. let F be a family of irreducible hypergraphs. Then Forb(F)

denotes the set of all hypergraphs which do not contain any member of F as an

induced subgraph. Let G,HE Forb(F). Then Nesetfil and Rödl proved that there

exists an FE Forb(F) such that

F-+(G):.

The original proofs of this results are quite involved and conceptually not that

easy to understand, even in the case of ordinary graphs. The aim of the talk is to

present a short and simple proof for the restricted Ramsey theorem for

hypergraphs. This proof was obtained jointly with B. Voigt and will appear in J.

Combo Th. (A).

A. Regev: Symmetry for the dual Schensted Knuth correspondence

In a c1assical paper, Knuth (1970) corresponded matrices of non negative

integers with two rows array of integers

A +-+ (U1'···.u n)"
.llt·····lJn '

then followed by the Schensted algorithm

A +-+ (·u1 ...·.un)·· ~ (P,Q),
1J 1·····un

That correspondence has the symmetry property: If A ~ (P,Q) then AT ~ (Q,P) (AT

is the transpose).

In that paper, Knuth also introduced a dual correspondence A +-+ (P,Q). Here A

had to be a 0,' matrix, and in general, it did not have symmetry: AT ~ (Q,P).

We follow a change in the Knuth dual correspondence that was suggested by

Berele and Remmel. With that change, that modified Knuth dual corres­

pendence has the symmetry: A ~ (P,Q) and AT +-+ (Q,P). As an applicatien we give

a bijective proof of a "hook" generalization of an identity of Schur.

•
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A. Rosa: Halving Steiner Tripie Systems

When does there exist aSteiner tripie system (V,B) of order v (STS(v)) whieh

admits a :partition of the set of its tripies B = Bl UB2 sueh that (V,Bl) and (V,B2)

are isomorphie hypergraphs? An obvious neeessary eondition isb = IBI=O

'(mod 2), Le. v= 1,9,13 or 21 (mod 24). This is not suffieient: We prove that an

STS(v) with the above property exists if and only if V= 1 or 9 (mod 24). On the

other hand, almost all STS's da not have the above property.

We also prove that when b is odd, i.e. when v=3,7,15 or 19 (mod 24), there

exists an STS(v) (V,B) and a tripie tEB sueh that there exists a partition of

B\{t} =B1UB2 with (V,B,)==(V,B2).

B.E. Sagan: Log eoncave seguences of symmetrie functions and analogs of the

Jaeobi-Trudi determinant

We define the notion of log eoneavity for a sequence of polynomials. Next it

is shown that vario.us sequences of elementary and homogeneous symmetrie

functions are log concave. The methods used are lattiee path arguments of the

. type employedby Gessel, Viennot, and others. Finally these results are

generalized to n x n determinants, giving new analogs of the Jacobi-Trudi

determinant.

J. Spencer: Threshold functions for extension statements

When Z is the sum of many rare mostly independent events and E[Z] -p then

Pr[Z = 0] - e·p. Wecallthisthe Poisson Paradigm. Forexample, when

(n)' 6
4 P =p

the random 'graph has no K4 with probability e-p. We give a general corrolation

inequality that allows one to estimate the probability that no event occurs.by the

product of the probabilities that each event fails when thepairwise corrolations

are small. In particular this allows good estimates for the probability that every

pair of vertiees is joined by a path of a given length d.

J.Stembridge: Connections between Hall-Littlewood 'functions and the Rogers­

Ramanujan identities

There exist several identities from the theory of Hall-Littlewood functions

that can be viewed as multi-variate generalizations of multiple basic
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hypergeometric series (i.e., q-seriesf Included in this list of q-series that can be

generalized are same extensions of the Rogers-Ramanujan identities originally

due to G. Andrews and D. Bressoud. The most important part of Hall-Littlewood

fu nction theory that is relevant to this development involves the adaptation of a

technique of I. Macdonald first used in the proof of MacMahon's and Bender­

Knuth's plane partition conjectures.

T. Trotter (with G. Brightwell, K. Reuter): The Order Dimension of Convex

Polvtopes and Planar Maps

Associate with a convex polytope M in R3 a partially ordered set PM consisting

of the vertices, edges and faces of M parti~lIy ordered by indusion. We want to

determine the order dimension (in the Dushnik-Miller sense) of the poset PM­

There are three factors motivating this problem. First, givena graph G =(V,E),

define aposet QG by ordering VUE by indusion. Then Schnyder proved that G is

planar if and only if dim(QG)~ 3. So it is natural to ask what happens if we add

the faces to the poset. Second, the problem of determining the dimension of the

lattices of faces (of all ranks) of a convex polytope in an can be posed, but for .

n~ 4 there is no b~und which depends only on n. This is due t<? the fact that for

n~ 4, there exist cyclic polytopes which have larg.e sets of vertices with each pair

belonging to an edge. As a third motivation, if dim(PM) is small, then we obtain a

useful data structure for representing the vertexlface incidence relation of a

polytope. With these comments as background, we prove that if M is a convex

polytope in ]R3, then dim(PM) = 4. The upper bound dim(PM)~4holds whenever

M is a planar map. Our argument includes a polynomial time algorithm for the

coordinatization of PM.

S.A. Vanstone:- Graph Theoretic Codes

Let G be a graph with q edges, p vertices and girth d. It is weil known that the

cycle space of G gives rise to a binary (q, q-p + 1, d)-code and that these codes are

majority log;c decodable. Such codes are usually referred to as graph theoretic

codes. In this lecture we describe a decoding scheme for graph theoretic codes

based on k-regular graphs having a particular type of 1-factorization. We

consider a l-faetorization F such that there exists an automorphism of Gwhich

acts cydically on the 1-factors of F. In addition we would like F to have the

property that the union of any two of its 1-factors does not eontain a 4-eycle. In

particular, using these properties we display an efficient method to deeode

•
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complete graph codes. The algorithm corrects all single and double adjacent

errors and all double errors confined to a 1-factor.

B. Voigt: Sparse Ramsey Theory

This talk reports on results fram the following three papers: Ramsey

theorems for finite graphs 1/11, 'submitted to JCT(B),and A sparse Graham­

Rothschild theorem, Trans. AMS (1988). These are joint papers with H.l Prömel. I

concentrate to discuss the following results:

Theorem A: (Sparse graph Ramsey theorem) Given positive integers k,m,r

and 9 there exists a graph G with the following property: the set-system

(:nJ
which has the set of complete Kk-subgraphs of G as vertices and edge

(:)' rorKE(~ '),(where(~)'istheselofu~sol\'edH-subgraphsofG)
, km'

has chromatic number larger than r andgirth larger than g.

This result has been conjectured by J. Spencer, the particular case k = 2 is due

to Nesetfil andRödl.

Theorem B: (Sparse partition theorem for Boolean lattices) Given positive.

integers m* 1, rand g there exists a positive integer n and a set s~~n of points in

the n-dimensional Boolean lattice~n such that the set-system which has the

points in S as vertices and ~m sublattices which are completely contained in S as

edges has c~romatic number larger than rand girth larger than g.

Theoreme: (Sparse Hafes-Jewett theorem) Given a finite set A and positive

integers rand 9 there exists a positive integer n and there existsa set S~An such

that the set-system which has the points in S as vertices and generalized

combinatoriallines which are completely contained in Sas edges has girth larger

than 9 and for every r-colouring of Sthere exists a (special) combinatorial line in

Swhich is monochromatic.

As a corollary from this we obtain the following resultation of a conjecture of

J. Spencer (1975).

Corollary: Given positive integersk,r and g there exists a set S of positive

integers such that the set system which has the elements of S as vertices and k­

term arithmetic progressions which are contained in S as edges has chromatic

number larger than rand girth larger than g.

This is a sparse version of a celebrated theorem of van der Waerden on

arithmetic progressions.
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D.J.A. Welsh: The Complexity of Colourings and Knots

I relate the Jones polynomial of a knot with the Tutte polynomial of an

associated graph and hence with the general Tutte polynomial of a matroid.

Thus we prove that

a) determining the Jones polynomial of an alternating knot is #P-hard;

b) evaluating the Janes polynomial of an alternating knot is #P-hard except at a

set of special points at which it is already known;

c) determining the lutte polynomial of graphs is #P-hard except possibly along

the special hyperbola Ha=(x-l )(y-l) = a;

d) determining the lutte polynomial at a point (a,b) is no easier than evaluating

it along the special hyperbata through (a,b) unless (a,b) is one of the special

poi nts (0,0), (1,1), (-1,-1), (-1,0), (0,-1), (i,-i), (-i,i), (j,j2), (j2,j), where j = e2ni/3.

R. Wille: Conceptual measurement and finite structures

The· aim of conceptual measurement is to understand the conceptual

strueture of data sets by comparision with given patterns of concept systems. Our-

.approach to conceptual measu rement uses the framework of formal concept

analysis (cf. B. Ganter, J. Stahl, R. Wille: Conceptual measu~ement in many­

valued contexts. In: W. Gaul, M. Schrader (eds.): Classification as a tool of

research. North-Holland, Amsterdam 1986, 169-176). A scale is defined as a

context 5: = (Gs, Ms, Is) with a clear conceptual structure which reflects same

meaning. The S-measures of an (empirical) context K: ? (G, M, I) correspond to V­

preserving maps from the concept lattice E(K) into the concept lattice B(S)

respeeting objeets. Most important in measurement is the problem: By which

scales can a given empirical structure be measured? Answers are given by

measurability theorems which describe the use of consi~ered finite structures for

analyzing data. An example of such a theorem is: •

Theorem: A finite context K admits a full measure inta a direct produet of

one-dimensional ordinal scales if and only if K==(P, P, ~) for some finite ordered

set P.

G.M. Ziegler: Posets with maximal Möbius function

let P be aposet of length I + 1, bounded, of cardinality n + 2. Then the Möbius

funetion of Psatisfies

I llep) I S ma:c mar (Pl-l)... (Pr-l)
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This bound is sharp: for every peset Pthere is a peset P* with IP*I =IPI and

I(P*)~ I{P) that achieves the beund. The posets achieving equality are classified.

[This solves a problem of R. Stanley]. The analogous problem is solved for graded

posets and attacked for finite lattices.

Berichterstatter: A.Pott
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