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. kiinftigen Entwicklung der Rekursionstheorie herausgestellt haben.

oF

Math. Forschungsinstitut
TRl 14

MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsbericht 12/1989
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Die Tagung fand unter der Leitung von Prof. Dr. Klaus Ambos-Spies (Heidelberg),
Prof. Dr. Gert H. Miiller (Heidelberg) und Prof. Gerald E. Sacks (Cambridge, MA)
statt. Es haben 48 Wissenschaftler aus 12 Léndern teilgenommen. Das Vortragspro-
gramm war breit gestreut und umfangreich: In 33 Vortrigen wurden aus vielen Teil-
und Anwendungsgebieten der Rekursionstheorie neue Ergebnisse vorgestelit.
Schwerpunkte bildeten die Untersuchungen zur Struktur der Unlésbarkeitsgrade, die
verallgemeinerte Rekursionstheorie, die Anwendungen der Rekursionstheorie in der
(deskriptiven) Mengenlehre und die rekursionstheoretische Untersuchung von
Fragestellungen aus der Theoretischen Informatik. AuBerdem fand eine abendliche
Podiumsdiskussion statt, in der Prof. Moschovakis, Prof. Nerode, Prof. Sacks und
Prof. Soare, zum Teil in unterschiedlicher Sichtweise, die vitalen Tendenzen in der

Ein Tagungsband wird in der Reihe "Springer Lecture Notes in Mathematics”
erscheinen.
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‘ Vortragsausziige

Klaus Ambos-Sptes (Hezdelberg )

We look at the tops of mlmmal palrs for polynomlal many-one reducibility (<P).

|

1 A recursive set A is such a top if A is the direct sum B®C of sets B and C such that B,C
| ¢ PTIME and, for any set D,

D<P, B and D<P,,C = De PTIME.

We show that the complete sets for most of the standard complexity classes extend’
exponential time are not the tops of minimal pairs. The corresponding question

NP turns out to be oracle dependent.

(Joint work with S. Homer and R.I. Soare)

Marat M. Arslanov (Kazan)
Turin r f Ershov’s difference hierarch

A set Acw is called n-r.e. if A=limgAg for some recursive sequence {Ag}¢c ( such
that for all x, Ag(x)=0 and card{s : Ag(x)#Aq, 1(x) } <n. A Turing degree is called o

r.e. if it contains an o.-r.e. set and it is called properly a-r.e. if it is ¢-r.e. but not p-
r.e. for any B< a. I have discussed the following results due to Ishmuchametov,
Selivanov and myself: 1.) For all n>1 there exist n-r.e. degrees a <b such that
a'=0', b' = 0", and there is no (n-1)-r.e. degree ¢ between them. 2.) Given any d-
r.e.(= 2-r.e.) degrees a < b, a¢ D, , a' = 0', there exists a d-r.e. degree ¢ such that

a < ¢ <b and there is no r.e. degree between a and c. Here D is the set of all r.e.
degrees.- So, this theorem would solve the density problem for d-r.e. degrees if, for
example there are no properly d-r.e. degrees whose jumps are not equal to 0'. But this
is not the case: 3.) For every r.e. degree a < 0' there exists a properly d-r.e. degree b
such that a <b < 0'. 4.) For every r.e. degree a there exists a properly n-r.e. de

b (here n>1 is arbitrary) such that a' = b'. Furthermore, we have discussed some
related results.

|
i Peter Clote (Chestnut Hill)
| Boolean functions, invariance groups and parallel complexity
We study the invariance group S(f) of boolean functions fe B, (ie. f: 20 »2) on n

variables, i.e. the set of all permutations on n elements which leave f invariant. We
give necessary and sufficient conditions via Polya’s cycle index for a general

permutation group to be of the form S(f), for some fe By,. For cyclic groups G < S
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= we give an NC-algorithm for determining whether the given group is of the form
S(f), for some fe By. Also for any sequence <Gp, < Sp, : n21 > of permutation groups

we study the asymptotic behaviour of | {fe By, : S(f) = G} |. For instance, it is shown
that asymptotically "almost all" boolean functions have trivial invariance groups. We
show the applicability of group theoretic techniques in the study of the parallel
complexity of languages. For any language L let Ly, be the characteristic function of
the set of all strings in L which have length exactly n and let Sp(L) be the invariance
group of L. We consider the size of the index | Sy : Sy(L) | as a function of n and
study the class of languages whose index is polynomial in n. We use the classification

. results on maximal permutation groups to show that any such language is in NC1. we
also show that the problem of "weight-swapping" (modulo a sequence of groups of
polynomial index) is in NC1. We give the invariance groups of Dyck and palindrome
languages, provide an algorithm for testing membership in the invariance group of a
regular language, and consider the problem of constructing languages with given
invariance group structure.

" A. N. Degtev (Tuymen)
h icr ibiliti f the truth-tabl )
This note is a short survey of the results about relationships between elementary
theories of the upper semilattices of the r.e. r-degrees L, r-complete sets and r-

degrees for the basic reducibilities of truth-table type r € {m-,c-,d-,p-,1-,tt-}.

Recursi i i rti f th f th
natural numbers '
For a Boolean function P and a subset of N={0,1,2,...} are introduced the notions of
B-combinatorical, B-selector and weak B-selector sets. It is proved that for an
"admissible" P the class of B-combinatorical sets is equal to some of the following
. seven classes M, A, L, C, D, P or T; the class of B-selector sets to some two, and the

class of weak B-selector sets to some three classes. All of these classes are defined and
several relationships between them are obtained. :

Ding Decheng (Heidelberg and Nanjing)
Some results on e-generic sets
The notion of e-genericity has been introduced by Jockusch. Anr.e. set A is e-generic

if A has a recursive enumeration {Ag} such that <Ag,..,Ag>€ E for all s, and for
every primitive recursive set CcE, if C is dense along {Ag} then {Ag} meets C truly.

We proved some new results on e-generic sets and their degrees. For instance we show
that the degrees of e-generic sets are meet-inaccessible, i.e., if a is e-generic then a is
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not contained in the closure of R(£a) under joins and meets.

Yuri L. Ershov (Novosibirsk)

The next results were obtained in Novosibirsk recently:
1.) V. Rudnev constructed an example of an admissible set HF(M') such that:

a.) Xco is in X iff X is arithmetical; b.) If X,Y are disjoint Z-sets then there is a A-set
. Z such that X<Z and ZNY=2.

2.) Theorem (Ershov): If S € A is such a family that ae S = rk o <1, then Cov ‘
the least admissible set containing S - exists.

3.) If X is an infinite set of the urelements xg, X;,... € X, Xj#Xj for i#j € ® then for
S={X}u { {x0x1}, { X1, X2}, ..., {Xp.Xp4 1 }>-..} } does not exist Cov S.
4.) The right definitions for the notions Z-predicates and Z-functions are given and

studied. :
Peter Fejer (Boston)
' ir nstructi f inimal

We give a direct construction of a minimal recursively enumerable truth table degree.
(The existence of such degrees is due to Degtev and Marchenkov by a less direct
construction.) Our proof uses ideas from the full approximation construction of a
minimal Turing degree below 0'.

(Joint work with Richard Shore)

Sy D. Friedman (Cambridge, MA)

Recursion theory and class genericity
In this talk I applied ideas from recursion theory to the study of genericity in‘

theory. For classes X,Y € ORD we write X<Y if X is My-definable where My =

<L{Y],e,Y>. And X=Y iff X<Y, Y<X; Sat(X)= {@(&)| Mx |= ¢(&) }. Then
X<Sat(X). X is Y-low if Sat(<X,Y>) £ <X, Sat(Y)> and Y-complete if <X,Y> >
Sat(Y). X is strictly generic over Y if <X,Y> = <G,Y> where G is P-generic over My
forap.o. P s.t. P,lp for A, sentences are both My-definable. X is generic over Y if

X £ <G,Y> for some G as above. A useful fact is that X strictly generic over Y — X
Y-low and X generic over Y — X not Y-complete. The Genericity Conjecture

statesthat 0% $X — X Y-generic for some Y such that L[Y] = L.
Theorem (a) ThereisR < o¥# » Rew such that R is Y-complete forall Y s.t. L[Y]=Y.
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So the Genericity Conjecture is false.

(b) ThereisR < o# st.Ris generic over J but R is not Y-low for any Y s.t. L[Y]=L.
So generic + strictly generic.

(c) 0# is Y-low for some Y, of ¢ My.
Conjecture o# is strictly generic over some Y, Ofe My.

Robin O. Gandy (Oxford)

. nti m ] ions of fini
Pl recursion
A notion of sequentxal computation for hereditarily continuous functionals is glven, it

may be considered as a game of questions and answers played between a functional A
and an argument F leading to a value for A(F). R.O. Gandy and G. Pani have shown

that functions (over ® U {1 }) recursive in Platek’s sense are sequential. It is believed
that the converse is also true.

Marcia Groszek (Hanover)
iori r ) i
Theorem (Groszek, Slaman).  IZ; does not suffice to prove that <t is a transitive
relation on recursively enumerable sets.
This answers a question of Hijek and Kudera.

Leo Harrington (Berkeley)

A set is d-r.e. if it is the difference of two r.e. sets.
. Theorem (Cooper, Harrington, Lachlan, Lempp, Soare)
There is a d-r.e. set B s.t. 0' £1 B, yet for all d-r.e. (or even n-r.e. or even re-

cursively bounded A,0 ) sets U, either 0' <p BUU, or U<y B.
The proof is quite analogous to that of Lachlan’s Nonsplitting Theorem.

Christine Haught (Chicago) »

Limitations on initial ment embeddings in the r.e. tt-degrees

We prove that all of the finite initial segments of the r.e. tt-degrees have a least non-
zero element. (by Haught and Shore there are nontrivial finite initial segments of the
r.e. tt-degrees.)

Theorem Ifa is a non-zero r.e. tt-degree and there are at most finitely many tt-
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degrees b such that 0 <¢¢ b <; a, then there is a nonzero r.e. tt-degree ¢ such that for
allbsuch that0 < b<a,c<yb.

Corollary (special case) The diamond lattice cannot be embedded in the r.e. tt-
degrees as an initial segment.

Corollary (to the proof of the theorem) In fact, if a is a non-zero r.e. tt-degree and
there are at most finitely many tt-degrees below a , then all of the nonzero tt-degrees
<a are inside the same Turing degree.

(Joint work with Leo Harrington)

Peter G. Hinman (Ann Arbor) ) ‘
mp em ings in the Turin r
A Jump Partial Ordering (JPO) P = (P, <p, jp) is a partial ordering together with a

unary function which is monotone and strictly increasing. We consider which JPO’s
are embeddable in the Turing degrees with Turing jump (D, <r, j1) either locally
(such that P has a least element which maps to the zero degree 0.) or globally
(without further restriction). One group of local embeddings is stated in terms of the

jump trace of a degree a : JTr(a) = (hg, hy,..., hg_1, h; 1, 1g_1,...,1;, lp) such that for .

all i,.O(hi‘*i) <a() <0i+) and these are optimal bounds. The elementary properties
of the jump operator imply that h; <h;,1 <h<1<1j,1 <]j.and}; <1, +1.

Theorem 1. Any such sequence with 1-h <2 isJTr(a) for some degree a.

Theorem 2. Every countable linear JPO which is well-founded and sparse (every
interval [p, jp(p)] is finite) is locally embeddable. Theorem 3. Every countable
linear JPO such that the relation jp(p) <p q is well-founded and jp is injective is
locally embeddable .  Theorem 4. Every countable JPO is globally embeddable.
(Joint work with Theodore A. Slaman)

Alexander S. Kechris (Pasadena) .

We present joint work with R. Dougherty and S. Jackson on the structure of Borel
(and other) equivalence relations on the Polish Spaces. Given such an equivalence
relation E on X, a (countable) separating family for E is a sequence Ap of sets such

that xEy < Vn [ xe Ay < ye A ]. By Eg we denote the equivalence relation xEgy
<> 3nVm2n [ x(m) = y(m) ] on 2®. IfE,F are Borel equivalence relations we denote

by E<F the partial order of Borel embeddability i.e. E<F <> 3f Borel and 1-1 such
that xEy > f(x)Ff(y). The following extends a result of Glimm-Effros.

Theorem1. Let E be a Borel equivalence relation with Fg equivalence classes. Then

o®
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exactly one of the following holds: (i) Ehasa X, 1_ separating family or (ii) EgcE.

A Borel equivalence relation is countable if every equivalence class is countable. We
classify countable Borel equivalence relations in (i) finite, (ii) smooth (i.e. having
Borel separating families), (iii) hyperfinite (i.e. increasing unions of finite ones), (iv)
amenable.

Theorem 2. If E, F are hyperfinite non-smooth Borel countable equivalence
relations then E<F and F<E. '

Antonin Kulera (Praha and Ithaca)

On_a diagonalization of Zlo-gbiggjs and generalizations
A function f is called

(i) a diagonally nonrecursive function (DNR) if f(x) # ¢@,(x) for all x,

(ii) a fixed-point free (FPF) function if Wy # wf(x) for all x,

(iii) a *-fixed point free (*-FPF) function if Wy #* Wf(x) for all x (where =* means
equality modulo finite sets).

Arslanov proved that 0' is the only r.e. degree containing an FPF (or a DNR)
function. There was an open question whether the situation relativizes to higher levels,

too. We answer the question in the negative. More precisely, there is a £, degree a
containing a *-FPF function such that the only r.e. degree below a is 0 (thus, 0'¢ a).
The method used to prove this is based on the concebt of 210 random sets over &'
(i.e. D'-NAP sets).

The second part of the talk dealt with the use of I 10 classes of 0-1 valued DNR

functions and self-referential principles for constructions of r.e. sets as an alternative
method to the standard priority methods.

Martin Kummer (Karlsruhe)
m le_one- m

Let ‘W denote the r.e. sets. S €W has a computable one-one numbering (an ON) <>
IBeW [S={W;lieB} A VijeB [i#j] > W;= W; ] 1. The proof of several

‘results of the literature concerning ONs (e.g. Friedberg's Theorem, the criterion of

Malcev and Wolf, and Khuthoretskij’s Theorem on incomparable ONs) can be unified

. and generalized using the following: Extension Lemma. Givenre.L;,LycW st
. (i) Lyn Ly = @, (ii) L, has an ON, (iii) Each finite subset of an element of L; has

infinitely many supersets in L,. Then LjUL, has an ON. - Furthermore, the proof of '
this Lemma is in a natural way priority free.
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' Limits of this approach appear if S contains &-maximal finite sets. For such cases we
have the following Theorem, Given S€ ‘W r.e. and Sy < S canonically enumerable
s.t. each finite subset of an element of S\S has infinitely many supersets in Sy. Then S
has an ON. - If the infinite elements of S are total recursive functions then we can
show: Theorem. If L is a set of total recursive functions and Sg is a canonically

enumerable set of finite functions s.t. LUSg is r.e. then LUSO has an ON.

Steffen Lempp (Heidelberg and Madison) .
0(M) _priority arquments :

A general framework of 0(“)-prion'ty arguments has been studied by M. Lerman and
myself at the example of the following

Theorem. The existential theory of the r.e. degrees within the language of least and
greatést element and nth jump reducibility predicates for all n is decidable.

The proof involves requirements of the form A(1) tr B(M) and C(n)_ <r D), 50
the requirements are easy and uniform for all n and are therefore suitable for studying
(“)-priority arguments. The framework involves a finite sequence of priority trees .
A strategy on tree T, 1 is decomposed into infinitely many substrategles on Tj, each

working on an instance of the T}, -strategy’s requirement.

Alain Louveau (Paris)
n rel i-Qr i Il _antichai .

" This lecture was devoted to the proof of the following result of Khalid Kada (Paris):
Theorem (K. Kada) Let k be a natural number, and (X,<)-a Borel quasiorder on some
Polish Space X. If every antichain in X has cardinality at most k, then X can be
partitioned in k Borel pieces each of which is a chain.

This theorem is the "Borel" analogue of a celebrated result of Dilwoﬂ,
combinatorics. It also admits a lightface reﬁnement, which in fact is instrumental for
proving it.

Wolfgang Maass (Chicago)

Th lexi |

We analyse the fine structure of time complexity classes for RAMs in particular the
equivalence relation A =- B ("A and B have the same time complexity”) <> (for all
time constructible f: A € DTIMEgam(f) < B € DTIMER p4(f) ).

The = - equivalence class of A is called its complexity type. We prove that every set

.
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X can be partitioned into two sets A and B such that X =c A =c B, that a complexity
type C contains sets A, B which are incomparable with respect to polynomial time
reductions if and only if C & P, and there is a complexity type C that contains a
minimal pair with respect to polynomial time reductions. Furthermore we analyze the

" fine structure of P with respect to linear time reductions: We show that each

complexity type C ¢ DTIME(n) contains a rich structure of linear time degrees, and
that these degree structures are not isomorphic (in particular we characterize those C
that have a maximal linear time degree). Our proofs employ finite injury priority
arguments, together with a new technique for constructing sets of a given time

complexity type.
(Joint work with Theodore A. Slaman)

Yiannis N. Moschovakis (Los Angeles)
Computable concurrent processes

The talk presented a modeling of concurrent computation in which the perception of

the situation by each process is represented by a natural game of interaction.
Behaviors are partial strategies (for the second player) in the game and processes are

non-empty sets of behaviors. The first player in the game represents the collective

- actions of all the other processes operating in the same environment (the "world").

Deutsche
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The usefulness of the modelling derives from the fact that we can give natural, game-
theoretic definitions of all the natural operations on processes, including the fair
merge operation and (full) recursion. In addition, the model gives a useful framework
for program verification for asynchronous, concurrent systems, which on this picture
amounts to showing that certain winning strategies exist for various payoffs associated
with the basic game. The main mathematical result of the paper is a transfer result
between the notion of recursion for process-functions which we use and the classical
interpretation of recursion by least fixed points. This and other basic results will
appear in the proceedings of the LICS conference to be held in Asilomar in June ,
1989. In the proceedings of the conference for this meeting, I will put a follow up of
this work which was discussed very briefly in this talk: the model suggests (and gives
evidence in favor of ) a very natural class of computable processes and functions on

processes, a sort of Church’s Thesis for asynchronous, concurrent communication.
Anil Nerode (Ithaca)
Pol |

We develop a P-Time analogue of ISOLS within the Polynomial Equivalence Types
(PETS), N = {0}*, o, B< N are P-Time equivalent if 31-1 partial P-Time honest f,
dom(f) 2 a, f(ar) = B. <a>, the PET of o, is [ < N | B P-Time equivalent to o ].
Operations are <X>+<Y>=<{020 | 0" € X} U {020+l | OneY }>,

o®
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<X> * <Y> =< { TO0O™,0") |0"eX and 0M €Y } > where T(0™,0") =

0(1/2)[(m+m)2+3m+n] A set A€ N is polynomially isolated if for any P-Time
monotone map f of finite sets of A to itself, there is a polynomial g such that for all

finite X € A, Un=1°° f(X) is finite with length as a string < g(length of X). These

are the analogue of Dekker’s ISOLS in the PETS. There are infinite P-Time
polynomially isolated sets. They are closed under +, ¢, have +, * cancellation. The
study of (recursive) P-Time P-Isolated Sets presents new challenges.

(Joint work with J. B. Remmel)

Wolfram Pohlers (Miinster)

Th r reti | f

It is known that admissible ordinals may be regarded as a recursion theoretic analogue
of cardinals. We showed that admissible ordinals again may be collapsed to ordinals

below Q)ICK . On examples we illustrated why these collapses may be regarded as
proof theoretical analogues of their cardinal ancestors.

|
|
|
|
|
|
|
|
|
|

Helmut Schwichtenberg (Munchen)

Primitive recursi ional

In the context of Scott’s notion of an information system define Dy 5¢ to be the flat |

domain of the natural numbers and Dp_;g tobe Dg — Dg. Let IDpl ( |Dp|"e) be the

set of all ideals (r.e. ideals). To denote primitive recursive functionals we use terms

built up from constants {(@j, v;) |i€e I } for finite approximations and recursive

operators R by AX.r and ts. Let IDp|PT denote the set of all primitive recursive
functionals. A standard type model (e.g. for Bishop’s constructive analysis) then is a
system M = { M | p type } such that IDPIPTQ Mp c |Dp|, which is closed aga"
application. Theorem, Any closed term of ground type reduces to a numeral.-

For the proof one has to extend the notion of a term in oreder to take care of situations
like {(@;,vy) | i€ } (Ax.s) T.

Richard A. Shore (Ithaca)

Th n i il f th - r

We extend the methods of Fejer and Shore for constructing a minimal r.e. tt-degree to
embed certain lattices as segments of the r.e. (and all) tt-degrees above a minimal
degree.

Theorem, For every partition lattice l'I of a finite set {1,...,n} there are r.e. sets AO ‘
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and A of tt-degrees agp and a such that every tt-degree below a is r.e., the interval of
degrees [ag, a] = I, and [ag, a] U {0} is an initial segment of the tt-degrees.
Corollary. The theories of the r.e. tt-degrees and the tt-degrees below 0' are

undecidable.
(Joint work with Christine Haught)

Theodore A. Slaman (Chicago)

. Definition, (i) 2<® is the set of finite binary sequences; if se 2<© then |o] is the length
of 6.  (ii) A Turing functional ® is in PTIME if there is a polynomial ¢: N—N such
that for all oe 2<®, ®(X,0) is computed in less than ¢(lo]) many steps. (iii) For A, B
c2<0 A <p B if there is a ®e PTIME with ®(B) = A.

Let REC be the collection of recursive subsets of 2<®. Let REC(Sp A) be the
collection of sets that are b_elow Ain <p-

Question Is there a nontrivial automorphism of <REC, <> ?

Theorem, There is a recursive set A and a bijection f: REC(Sp A) > REC(Sp A) such
that (i) f preserves sp . (ii) f preserves thq set theoretic oberat.ions N, U, & modulo
finite differences. (iii) There is an Xe REC(Sp A) such that f(X) ‘p X and X $p f(X).
(iv) Further, we may ensure that f preserves time complexity relative to A or that f
moves some X in DTIMEA(n) to one in DTIMEA(n2) - DTIMEA(n).

Thus <REC(Sp A), $p> is not always rigid for Ae REC.

(Joint work with Christine Haught)

. Robert I. Soare (Chicago and Heidelberg)
ntinui roperti rsivel r

LetR = (R, <, v, A,0,0') be the structure of the (Turing) degrees of recursively
enumerable (r.e.) sets with least elemnet 0 and greatest element 0'. A formula
@(X1,...,.Xxp) in the language L(<, v, A, 0, 0') is contiuous at (aj, aj,..., ap); aje R for
1<i<n, if there exists an open interval I(a;j) containing a;, for all 1<i<n, such that
R|= @(by,....by) for all bje I(a;).
Theorem 1. Every quantifier-free formula ¢(x,y) of two variables is contiuous at
every pair (a, b) € RxR a, b # 0, 0'. (By known results in recursion theory this
result cannot be extended to quantifier-free formulas of > 3 variables or to formulas
of 2 1 quantifiers.) Theorem 1 is an immediate consequence of the new theorems:
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Theorem 2. (Harrington, Soare) There is no maximal minimal pair of r.e. degrees; ‘
Theorem 3. (Ambos-Spies, Lachlan, Soare) There is no pair of r.e. degrees a, b
cupping to 0' and minimal with this property.

Dieter Spreen (Siegen)

n_effectiv logies: izati
Countable topological Tq-spaces (T,t) with a countable basis on which a relation of
strong inclusion is defined are considered and under very natural effectivit
assumptions it is shown that up to effective equivalence t is the greatesf Mal

topology on T that is effectively related to t, where a topology 1 on T is a Malcev
topology, if it has a base of completely enumerable subsets of T. Moreover, it is

effectively related to 1, if for Bet and Cen with B & C a witness for this can
effectively be found. As examples constructive Scott domains and recursively
separable recursive metric spaces are considered. In the finite case one obtains the
generalized Rice/Shapiro Theorem which says that the Scott topology on the domain is
effectively equivalent to the Ershov topology on it which is generated by all of its
completely enumerable subsets. In the second case it follows that up to effective

- equivalence the metric topology is the greatest Malcev topology on the space such that

its lattice of completely enumerable open sets is effectively closed.under the
pseudocomplement operation given by the Heyting algebra of all open sets of this
topology.

Michael Stob (Lexzngton and Cambridge, MA)

r ipl itti
We define a class of r.e. sets, the array nonrecursive (anr) sets. The Turing degrees of
anr sets are exactly those below which certain multiple permitting arguments can be
performed. We give three natural examples of such arguments from the recursi
theory literature. We prove a number of theorems classifying the Turing degrees
anr sets.  (Joint work with R. Downey and C. Jockusch, jr.)

Stanley S. Wainer (Leeds)

Proof: r . )

This talk was a brief summary of some elementary proof-theoretic ideas which can be
used to analyse the logical complexity of natural classes of programs and program
transformations. The underlying theme was the strong-analogy which exists (and
which is now being exploited in computer science) between recursive programs and
their formal "specification" proofs. As an illustration, the transformation from
"recursive” into "while" programs was considered. In proof-theoretic terms, this
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corresponds to an increase in "cutrank” and an exponential increase in the ordinal

bounds on corresponding infinitary proofs. From this one can obtain "trade-offs" in
sub-recursive complexity, generalizing an old theorem of Tait.

Gerd Wechsung (Jena)

Applicati f lexity in ional complexi
Following L. Adleman and L. A. Hemachandra we prove necessary and sufficient
conditions in terms of Kolmogorov complexity for collapsing complexity classes like

AZP and NP, PP and NP or Z,P and A2P A string y is called Kolmogorov simple

relative to x if there exist a ¢>0 and a z, |z| € ¢ + ¢ log|x| s.t. a universal Turing
machine U (which is fixed once and forever) outputs y on input z#x within ¢ + |x|°
steps. Adleman’s result (1979): "P=NP if and only if any NP-machine has on each x
accepted by that machine Kolmogorov simple certificates (= accepting paths) relative
to x." may serve as a typical example for the resulits proved here. The certificates in
Adleman’s case, however, have to be replaced with the appropriate notions reflecting
essential parts of the computation in question. For instance, for A,P machines one uses

guides defined as follows:

" #y1#yo# ... #yk is a guide of the A2P -machine MAD o inputx &4¢

MSAT) o input x makes exactly k queries, and foreachi=1, ..., k,

the empty word ,if the ith query gets a negative answer
Yi=
a certifcate of a SAT accepting machine on the ith query  ,otherwise.
Klaus Weihrauch (Hagen)
nstructivi ili ion lexi
A _single approach

A powerful formalism for investigating constructivity for sets not greater than the
continuum is presented. It extends ordinary recursion theory and the theory of
numberings by a formally similar theory of continuous and computable functions on
Baire’s space and a theory of representations. The theory is a consequent further
development of the "Polish recursive analysis”". It admits a natural presentation and
interpretation of results obtained in other approaches, and evades foundational
problems by exclusive use of classical logic. As an essential feature, continuity can be
interpreted as a kind of constructivity. In the talk the formalism will be outlined,
illustrated by some applications, and compared with other approaches.

o®
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W. Hugh Woodin (Berkeley) ’ :
Determinacy and scales

Definition 1) AD: Every A< o® is determined. 2) Unif: For each A €RxR there
exists f: R—R such that for all xe R, if <x,y>€ A for some yeR then <x,f(x)>€ A.

3) ADR: Every A € R® is determined

Theorem (ZF + AD + DC) Unif + ADR.

This is proved by showing: :

Theorem (ZF + AD + DC) Unif — Every A € ®® is A-Souslin for some ordinal
Corollary (ZF + AD + DC) Assume Unif. Then SCALE(ZIZ) and if X ¢ P(R) is 2]

then X contains a Al2 subset of R. Further this holds in any inner model containing R.

Question Does AD— SCALE(Z,?) ?

Dongping Yang (Beijing and Heidelberg)

n_th limi i
A, B are subsets of N. We say that A is partial set limit of B, A=lim¢B, if xe A iff there
exists t such that for all s >t [<x,s>€ B]. When N - lim(B) = lim(N-B), we say the
limit is total. An infinite set C is 0(R) -cohesive if there is no 0(0)-r.e. set W such that
WNC and (N-W)NC are both infinite. An 0().re. set M is 0(0)-maximal if N-M is -
0(n) cohesive. Anr.e. set A is an n-quasi cohesive set if limg ..limg A, isan o(n).

cohesive set when n is odd and im® A is an 0(®)maximal set when n is even.
A function g(x) is an n-limit function if there is a recusrsive function f(x, sp,..., 51)

such that g(x) = limsn ... limg ) f(x, Sp» -+ »51)- We call f the n-base function of g. g is
called n-dominant function if g dominates every total n-limit function. ;.

Theorem. If A is an n-quasi cohesive set and n is odd (even), then the princi
function py;ns ( Primy-a) ) is n-dominant.

Theorem. Anr.e. set A satisfies 0(0) <1 A(D) iff there are (n-1)-dominat functions g
and an (n-1)-base function f of g such that f<pA.

Corollary, Anr.e. degree a is in Hy, iff there is an (n-1)-dominant function f and an
(n-1)-base function g of f such that the degree of g < a.
Corollary, The degree of all n-quasi cohesive sets is an element of Hy,.

Berichterstatter: Martin Kummer
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