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Tag u n g s b e r ich t

Rekursionstheorie

12/1989

Die Tagung fand unter der Leitung von Prof. Dr. Klaus Ambos-Spies (Heidelberg),
Prof. Dr. Gert H. Müller (Heidelberg) und Prof. Gerald E. Sacks (Cambridge, MA)
statt. Es haben 48 Wissenschaftler aus 12 Ländern teilgenommen.. Das Vortragspro­
gramm war breit gestreut und umfangreich: In 33 Vorträgen wurden aus vielen Teil­
und Anwendungsgebieten der Rekursionstheorie neue Ergebnisse vorgestellt.
Schwerpunkte bildeten die Untersuchungen zur Struktur der Unlösbarkeitsgrade, die
verallgemeinerte Rekursionstheorie, die Anwendungen der Rekursionstheorie in der
(deskriptiven) Mengenlehre und die rekursionstheoretische Untersuchung von
Fragestellungen aus der Theoretischen Informatik. Außerdem fand eine abendliche
Podiumsdiskussion statt, in der Prof. Moschovakis, Prof. Nerode, Prof. Sacks und
Prof. Soare, zum Teil in unterschiedlicher Sichtweise, die vitalen Tendenzen in der
künftigen Entwicklung der Rekursionstheorie herausgestellt haben.

Ein Tagungsband wird in der Reihe "Springer Lecture Notes in Mathematics"
erscheinen.
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Vortrags~uszüge

Klaus Arnbos-Spies (Heide/berg)
Minimal pairs and complete problems for polynomial reducibilities
We look at the tops of minimal pairs for polynomial many-one reducibility (glm).

A recursive set A is such a top if A is the direct surn BffiC of sets B and C such that B,C

~ PTIME and, for any set D,

~mB and D~mC ~ De PTIME.
We show that the complete sets for most of the standard complexity classes extendA
exponential. time are not the tops of minimal pairs. The corresponding question"'"
NP turns out to be oracle dependent.
(Joint work with S. Horner and R./. Soare)

Marat M. Arslanov (Kazan)
Turing degrees of sets of Ershov's difference hierarchy

A set Ago is called n-r.e. if A=limsAs for same recursive sequence {As}se 0) such

that for all x, Ao(x)=O and card{s: As(x);eAs+1(x) } ~ n. A Turing degree is called (l­

r.e. if it contains an (l-f.e. set and it is called properly <x-r.e. if it is (l-r.e. but not 13­
r.e. for any 13< <X. I have discussed the following results due to Ishmuchametov,
Selivanov and myself: 1.) For all n>1 there exist n-r.e. degrees a < b such that
a' = 0', b' = 0", and there is no (n-l)-r.e. degree c between them. 2.) Given any d-

r.e.(= 2-r.e.) degrees a < b, a~ D 1 ' a' = 0' , there exists a d-r.e. degree c such that

a < C < band .there is no f.e. degree between a and c. Here 1)1 is the set of all f.e.
degrees.- So, this theorem would salve the density problem for d-r.e. degrees if, for
example there are no properly d-r.e. degrees whose jumps are not equal to 0'. But this
is not the case: 3.) For every f.e. degree a < 0' there exists a properly d-r.e. degree b
such that a < b < 0'. 4.) For every r.e. degree a there exists a properly D-r.e. de~
b (here n>1 is arbitrary) such that a' = b'. Furthermore, we have discussed some
related results.

Peter Clote (Chestnut HiLI)
Boolean functions, invariance groups and parallel complexity

We study the invanance group S(f) of boolean functions fe Bn (Le. f: 2n -72) on n

variables, Le. the set of alt permutations on n elements which leave f invariant. We
give necessary and sufficient conditions via Polya's cycle in~ex for a gener~l

permutation group to be of the form S(f), for same fe Bn. For cyclic groups G ~ Sn
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we give an NC-algorithm for determining whether the given group is of the form
S(f), for same fe Bn. Also for any sequence .<Gn S Sn : ~l > of permutation groups

we study the asymptotic behaviour of I{fe Bn : 5(f) = GD} I. For 1nstance, it is shown
that asymptotically "almost all" boolean functions have trivial invariance groups. We
show the applicability of group theoretic techniques in the study of the parallel
comple~ity of languages. For any lan~age L let Ln be the characteristic function of
the set of all strings in L which have length exact1y n and let Sn(L) be the invariance
group of Ln. We consider the size of the index I Sn : Sn(L) I as a function of n and
study the class of languages whose index is polynomial in n. We use the classification
results on maximal permutation groups to show that any such language is in Nel . We
also show that the problem of "weight-swapping" (modulo a sequence of groups of
polynomial index) is in NC l . We give the invariance groups ofDyck and palindrome
languages, provide an algorithm for testing membership in the invariance group of a
regular language, and consider the problem of constructing languages with given
invariance group structure.

A. N. Degtev (Tuymen)
The basic reducibilities of the truth-table type
This note is a short survey of the results' about relationships between elementary
theories of the upper semilattices of the r.e. r-degrees Lr, r-compl~te sets and r-

degrees for the basic reducibilities of tmth-table type r e {m-,c-,d-,p-,l-,tt-}.

Recursively combinaterical and selecter preperties of the subsets of the
natural numbers

For a Boolean function ß and a subset of N={O,1,2,...} are introduced the notions of
ß-combinatorical, ß-selector and weak ß-selector sets. It is proved that for an
uadmissible" ß the class of ß-combinatorical sets is equal to same of the following
seven classes MI, A, IL, C, 10>, lP or T; the class of ß-selector sets to same two, and the
class of weak ß-selector sets to some three classes. All of these classes are defined and
several relationships between them are obtained.

Ding Decheng (Heide/berg and Nanjing)
Some results on e-generic sets
The notion of e-genericity has been introduced by Jockusch. An r.e. set A is e-generic
if A has a recursive enumeration {As} such that <Ao,...,As> E E for all s, and for

every primitive recursive set c~, if Cis dense along {As} then {As} meets C truly..
We proved some new results on e-generic sets and their degrees. For instance we show
that the degrees of e-generic sets are meet-inaccessible, Le., if a is e-generic then a is

--------- --------
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not contained in the closure of R($a) under joins and meets.

Yuri L. Ershov (Novosibirsk)
Recursion thepry on admissible sets
The next results were obtained in Novosibirsk recently:
1.) V. Rudnev constructed an example of an admissible set HF(M) such that:
a.»)Lcro is in 1: iff X is arithmetica1; b.) If X,Y are disjoint l:-sets then there is a 6-set

, Z such that~ and Zr1Y=0.
2.) Theorem (Ershov): If S l;;;; A is such a family that aE S => rk a :SI, then Cov •
the least admissible set containing S - exists.

3.) If X is an infinite set of the urelements XO' xl'... EX, xi*Xj for i*j E ro then for

S = {X} U { {XO,xI}, {Xl, x2}, ..., {Xn'Xn+l},...} } does not exist Cov S.

4.) The right definitions for the notions 1:-predicates and 1:-functions are given and
studied.

Peter Fejer (Boston)
A direct construction pf a minimal r.e. n-degree
We give a direct construction of a minimal recursively enumerable truth table degree.
(The existence cf such degrees is due to Degtev and Marchenkov by a less direct
construction.) Our praof uses ideas from the fuH approximation construction of a
minimal Turing degree below 0' .
(Joint work with Richard Soore)

Sy D. Friedman (Cambridge, MA)
Recursion theory and Glass genericity
In this talk I applied ideas from recursion theory to the study of genericity in.
theory. Forclasses X,Y ~ ORD we weiteX~ ifX is My-definable where My = •

<L[Y],e ,V>. And X=Y iff X:S;Y, Y~X; Sat(X)= {q>(et) I MX 1= q>(ä) }. Then
X<Sat(X). X is Y-Iow if Sat«X,Y» ~ <X, Sat(Y» and Y-complete if <X,Y> ~

Sat(Y). X is strictly generic over Y if <X,Y> == <G,Y> where G is 1>-generic over My

for a p.o. 1> s.1. l' , fl-~ for ~O sentences are both My-definable. X is generic over Y if

X ~ <G,Y> for some G as above. A useful fact is that X strictly generic over Y ~ X
Y-low and X generic aver Y ~ X nQ1 Y-complete. The Genericity Conjecture

states that 0# $ X ~ X Y-generic for same Y such that L[Y] = L.

Theorem (a) There is R< 0# , Rgo such that R is Y-complete for a11 Y s.1. L[Y]=Y.
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So the Genericity Conjecture is false.

(b) There is R < 0# s.t. R is generic over 0 but R is not Y-low for any Y s.t. L[Y]=L.

So generic ß strictly generic.

(c) 0# is Y-Iow for some Y, 0# ~ My.

Conjecture 0# is strictly generic over some Y, O#e; My.

Robin O. Gandy (Oxjord)
Seguentially computable functions of finite type
and Platek's recursion theory
A notion of sequential computation for hereditarily continuous functionals is given; it
may be considered as a gam~ of questions and answers played between a functional ~
and an argument F leading to a value for A(F). R.O. Gandy and G. Pani have shown
that functions (over co u {.1. }) recursive. in Platek's sense are sequential. It is believed
that the convef&e is also troe.

Marcia Groszek (Hanover)
Priority arguments and fragments pf arithmetic

Theorem (Groszek, SIaman): 11:1 does not suffice to prove that~ is a transitive

relation 00 recursively enumerable sets.
This answers a questioo of Hajek and Kucera.

Leo Harrington (Berkeley)
The non-density of the d-r.e. degrees
A set is d-r.e. if it is the difference of two r.e. sets.
Theorem (Cooper, HarringtoD, Lacblan, Lempp, Soare)
There is a d-r.e. set B S.t. 0' $T B, yet for all d-r.e. (ar even n-r.e. or even re-

cursively bounded ~20 ) sets U, either 0' s,. BuU, or U~B.

The proof is quite analogous to that of Lachlan's Nonsplitting Theorem.

Christine Haught (Chicago)
Limitations on initial segment embeddings in the r.e. tt-degrees
We prove that a11 of the finite initial segments of the f.e. tt-degrees have aleast non­
zero element. (by Haught and Shore there are nontrivial finite initial segments of the
r.e. tt-degrees.)
Theorem If a is a non-zero r.e. tt-degree and there are at most finitely many tt-

                                   
                                                                                                       ©



- 6 -

degrees b such that 0 <tt b ~t a , then there is a nonzero r.e. tt-degree c such that for

all b such thal"O <tt b ~tt a , c~ b.
Corollary (special case) Tbe diamond lattice cannot be embedded in the r.e. tt­
degrees as an initial segment.
Corollary (to the proof of the theorem) In fact, if a is a non-zero r.e. tt-degree and
there are at most finitely many tt-degrees below a , then aB of the nonzero tt-degrees
~a are inside the same Tunng degree.
(Joint work with Leo Harrington)

Peter G. Hinman (Ann Arbor)
Jump embeddings in the Turing degrees
A Jump Partial Ordering (JPO) l' = (P, ~p, jp) is a partial ordering together with a

unary function which is monotone and strict1y increasing. We consider which JPO's
are embeddable in the Turing degrees with Turing jump (D, ~, jT) either locally
(such that l' has a least element which maps to the zero degree 0.) or giobally
(without further restrletion). One group of Iocal embeddings is stated in tenns of the
jümp trace of a degree a : JTr(a) = (110, h 1,..., hk-I' h; 1, lk-I, ...,ll' 10) such that for

all i, O(hi+i) ~ a(i) ~ O(li+i) and these are optimal bounds. Tbe elementary properties
of the jump operator imply that hi ~ hi+l ~ h ~ 1~ li+1 ~ li .and li ~ li+1 + 1.
Theorem 1. Any such sequence with l-h ~ 2 is ITr(a)for some degree a.
Theorem 2. Every countable linear JPO which is well-founded and sparse (every
interval [p, jp(p)] is finite) is locally embeddable. Theorem 3. Every countable

linear JPO such that the relation jp(p) ~p q is well-founded and jp is injective is
locally embeddable . Theorem 4. Every countable JPO is globally embeddable.
(Joint work with Theodore A. SIaman)

Alexander S. Kechris (Pasadena)
.Descriptive Dynamics
We present joint work with R. Dougherty and S. Jackson on the structure of Borel
(and other) equivalence relations on the Polish Spaces. Given such an equivalence
relation E on X, a (countable) separating family for E is a sequence An of sets such

that xEy <=> T;/n [ XE An~ ye An]. By EO we denote the equivalence relation xEOY

~ 3n T;/m~ [ x(m) = y(m) ] on.2°O. If E,F are Borel equivalence relations we denote

by E~ the partial order of Borel embeddability Le. E~ <=> 3f Borel and 1-1 such

that xEy <=> f(x)Ff(y). The following extends a result of Glimm-Effros.
Theorem1. Let E be a Borel equivalence relation with FB equivalence classes. Then .
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exactly one of the following holds: (i) E has a .~II- separating family or (ii) EO~ E.

A Borel equivalence relation is countable if every equivalence class is countable. We
classify countable Borel equivalence relations in (i) finite, (ii) smooth (Le. having
Borel separating families), (iii) hyperfinite (Le. increasing unions of fmite ones), (iv)
amenable.
Theorem 2. If E, F ·are hyperfinite non-smooth Borel countable equivalence
relations then E~ and F~.

Antonin Kucera (Praha and Ithaca)

On a diagonalization of ~1O-objects and generalizations

A function f is called
(i) a diagonally nonrecursive function (DNR) if f(x) ;I; q>x(x) for all x,

(ii) a fixed-point free ~FPF) function if Wx * Wf(x) for all x,

(iii) a *-fixed point free (*-FPF) function if Wx ** Wf(x) for all x (where =* means
equality module fmite sets). .
Arslanov proved that 0' is the only r.e. degr~e containing an FPF (or a DNR)
function. There was an open question whether the situation relativizes to higher levels,
tao. We answer the question in the negative. More precisely, there is a 1:2 degree a

containing a *-FPF function such that the only r.e. degree below a is 0 (thus, 0'$ a).

The method used to prove this is based on the concept of L1
0 random sets over 0'

(Le. 0'-NAP sets).

The second part of the talk dealt with the use of n 1
0 classes of 0-1 valued DNR

functions and self-referential principles for constructions of r.e. sets as an alternative
method to the standard priority methods.

Martin Kummer (Karlsruhe)
Computable one-one numberings

Let W denote the r.e. sets. S~ has a computable one-one numbering (an ON) :<=>
.3BE W [S ={Wi I iE B} A 'rJi,jE B [i*j ~ Wi *" Wj] ]. The proof of several
results of the literature conceming ONs (e.g. Friedberg's Theorem, the criterion of
Malcev and Wolf, and Khuthoretskij's Theorem on incomparable ONs) can be unified
and generalized using the following: Extension Lemma, Given r.e. LI' ~ ~ W 8.t.

(i) LIn L2 = 0, (ii) ~ has an ON, (iii) Each finite subset of an elemen~ of L} has

infinitely many supersets in~. Then Llu~ has an ON. - Furthermore, the proof of
this Lemma is in a natural way priority free.
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. Limits of this approach appear if S contains ~maximal finite sets. For such cases we
have the following Theorem. Given S ~ W r.e. and So k S canonically enumerable
s.t. each finite subset of an element of S\So has infinitely many supersets in So. Then S
has an ON. - If the infinite elements of S are total recursive functions then we can
show: Theorem. If L is a set of total recursive functions and So is a canonically

enumerable set of finite functions S.t. LuSO is r.e. then LuSOhäs an ON.

Steffen Lempp (Heidelberg and Madison)
O(n)-priority arguments

A general framework of o(n)_priority arguments has been studied by M. Lennan and
myself at the example of the following
Theorem. The existential theory of the r.e. degrees within the language of least and

great~st element and nth jump reducibility predicates for all n is decidable.

The proof involves requirements of the form A(n) $T B(n) and c(n) ~ n(n), ~o

the requirements are easy and uniform for a11 n and are therefore suitable for studying

O(n)_priority arguments. The framework involves a finite sequence of priority trees .
A strategy on tree Ti+1 is deeomposed into infinitely many substrategies on Ti, each
working on an instance of the Ti+I-strategy's requirement.

Alain Louveau (Paris)
On Borel Quasi-orders with small antichains
This leeture was devoted to the proof of the following result of Khalid Kada (Paris):
Theorem (K. Kada) Let k be a natural number, and (X,~)-a Borel quasiorder on some
Polish Space X. If every antichain in X has eardinality at most k, then X ean be
partitioned in k Borel pieces each of which is a ehain.
This theorem is the "Barer' analogue of a celebrated result of DilwortA
eombinatories. It also admits a lightface refinement, which in fact is instrumentalt'ör
proving it. ..

Wolfgang Maass (Chicago)
The complexity types 01 computable sets
We analyse the fine structure of time complexity classes for RAM's in particular the
equivalence relation A =c B (nA and B have the same time complexity") <=> (for a11

time constructible f: A E DTIMERAM(t) <=> B E DTIMERAM(f).

The =c - equivalence class of A is called its complexity type. We prove that every set
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X can be partitioned into two sets A and B such that X =c A =c B, that a complexity
type C contains sets A, B which are incomparable with respect to polynomial time
reductions if and only if C g P , and there is a complexity type C that contains a
minimal pair with respect to polynomial time reductions. Furthermore we analyze the

. fine structure of P with respect to linear time reductions: We show that each
complexity type C g DTIME(n) contains a rich structure of linear time degrees, and
that these· degree structures are not isomorphie (in particular we characterize those C
that have a maximal linear time degree). Our proofs employ finite injury priority
arguments, together with a new technique for eonstructing sets of a given time
eomplexity type.
(Joint work with Theodore A. SIaman)

Yiannis N. Moschovakis (Los Angeles)
Computable concurrent processes
The talk presented a modeling of coneurrent eomputation in ~hich the perception of
the situation by each process is represented by a natural game of interaction.
Behaviors are partial strategies (for the second player) in the game and processes are
non-empty sets of behaviors. The first player in the game represents the collective
actions of all the other processes operating in the same environment (the "world").
The usefulness of the modelling derives from the fact that we can give natural, game­
theoretic definitions of all the natural operations on processes, including the fair
~ operation and (fulI) recursion. In addition, the model gives a useful framework
for program verification for asynehronous, concurrent systems, which on this pieture
amounts to showing that certain winning strategies exist for various payoffs associated
with the basic game. The main mathematieal result of the paper is a transfer result
between the notion of recursion for process-functions which we use and the classical
interpretation of recursion by least fixed points. This and other basic results will
appear in the proceedings of the LIeS conference to be held in Asilomar in lune ,
1989. In the proceedings of the conference for this meeting, I will put a follow up of
this work whieh was discussed very briefly in this talk: the model suggests (and gives
evidence in favor of ) a very natural class of computable processes and functions on
processes, a sort of Church' s Thesis for asynchronous, concurrent communication.

Anil Nerode (Ithaca)
Polynomially isolated sets
We develop a P-Time analogue of ISOLS within the Polynomial Equivalence Types

(PETS), N ={O}*, (x, ß~ N are P-Time equivalent if 31-1 partial P-Tim~ honest f,

dom(f) :2 (X, f(a) = ß. <a>, the PET of <x, is [ ß~ NIß P-Time equivalent to <X].

Operations are <X> + <V> =< {()2n I on EX} U {o2n+l I on eY }>,
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<x> • <y> = < { T(om,Oß) I on E X and om e Y } > where T(Offi,on) =
O(1/2)[(m+n)2+3m+nJ. A set A ~ N is polynomia11y isolated if for any P-Time
mon~tone map f of finite sets of A to itself, there is a polynomial g such that for a11

finite X ~ A, U n=l 00 ~(X) is finite with length as a string ~ g(length of X). These
are the analogue of Dekker's ISOLS in the PETS. There are infinite P-Time
polynomially isolated sets. They are closed under +, ., have +, • cance11ation. The
study of (recursive) P-Time P-Isolated Sets presents new challenges.
(Joint wo~k with J. B. Remmel)

Wolfram Pohlers (Münster)
The graof theoretic collaps of a cardinal
It is known that admissible ordinals may be regarded as a recursion theoretic analogue
of cardinals. We showed that admissible ordinals again may be co11apsed to ordinals
below 0)1 CK . On examples we illustrated why these collapses may be regarded as

proof theoretical analogues of their cardinal ancestors.

Helmut Schwichtenberg (München)
Primitive recursion on the cootinuaus functionals
In the context of Scott's notion of an information system define Dnat to be the flat

domai~ of the natural numbers and Dj1~a to be 0;1~ Da. Let IDpl ( IDplre) be the

set of all ideals (r.e. ideals). To denote primitive recursive functionals we use terms
buHt up from constants {«(ti, vi) I ie I} for finite approximations and recursive

operators R by Ax.r and t8. Let IDplpr denote the set of a11 primitive recursive

functionals. A stand.ard type model (e.g. for Bishop's constructive analysis) then is a

system fl{ = { "" I p type} such that IDplpr ~ Mp ~ IDpl, which is closed aga.

application. Theorem. Any closed term of ground type reduces to a numeral.- •
For the proof one has to extend the notion of a term in oreder to take care of situations
like {(Ui'vi) I ie I } (Ax.S) t

Richard A. Soore (Ithaca)
The uodecidability of the r.e tt-degrees
We extend the methods of Fejer and Shore for constructing a 'minimal r.e. tt-degree to
embed certain lattices as segments of the r.e. (and all) tt-degrees above a minimal
degree.
Theorem. For every partition lattice nn of a finite set {l,...,n} there are r.e. sets AO .
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and A of tt-degrees aO and a such that every tt-degree below a is r.e., the interval of

degrees [ao, a] c:. nn and [ao, a] u {O} is~ initial segment of the tt-degrees.

Corollary. Tbe theories of the r.e. tt-degrees and the tt-degrees below 0' are
undecidable.
(Joint work with Christine Haught)

Theodore A. Slaman (Chicago)
The polynomial time Turing degrees - automorphisms 01 generic ideals

Definition, (i) 2<0) is the set of fInite binary sequences; if se 2<0) then 10"1 is the length

of 0", (ii) A Turing functiona14> is in PTIME if there is a polynomial cp: N~N such

that for alt oe 2<0), 4>(X,o) is computed in less than <p(loD many steps. (iii) For A, B

~ 2<(0, A ~ B if there is a etle PTIME with 4>(B) =A.

Let REC be the collection of recursive subsets of 2<(0. Let REC(Sp A) be the

collection of sets that are below A in~ ,
QuestioD Is there a nontrivial automorphism of <REC, ~> ?

Theorem, There is a recursive set A and a bijection f: REC~~ A) ~ REC(~ A) such

that (i) f preselVes ~. (ü) f preserves th~ set theoretic operations n, .u, ~ modulo

finite differences. (iü) There is an Xe REC(~A) such that f(X) $p X and X $p f(X).

(iv) Further, we may ensure that f preserves time complexity relative to A or that f

moves some X in DTIMEA(n) to one in DTIMEA(n2) - DTIMEA(n),

Thus <REC(~A), ~> is not always rigid for AE REC,
(Joint work with Christine Haught)

Robert I. Soare (Chicago and Heidelberg)
Gontinuity properties 01 recursively enymerable degrees
Let 1\ = (R, ~, v, 1\ ,0, 0') be the structure of the (Turing) degrees of recursively
enurnerable (r,e.) sets with least elernnet 0 and greatest element 0'. A formula

<p(x1,.",xn) in the Ianguage L(~, v, A, 0, 0') is contiuous at (8., 82,'''' 3n); 3iE R for
1~~, ifthere exists an open interval I(ai) containing ai, for a1Il~~, such that

1\ 1= cp(b1,· ..,bn ) for all biE I(aj).

Theorem 1. Every quantifier-free fOrDlula cp(x,y) of two variables is contiuous at

every pair (8, b) E RxR 8, b * 0, 0', (By known results in !ecursion theory this
result cannot be extended to quantifier-free focmulas of ~ 3 variables or to formulas
of ~ 1 quantifiers,) Theorem 1 is an immediate consequence of the new theorems:
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Theorem 2. (Harrington, Soare) There is Da maximal minimal pair of r.e. degrees;
Theorem 3. (Ambos-Spies, Laehlan, Soare) There is no pair of r.e. degrees 3, b
cupping to 0' and minimal with this property.

Dieter Spreen (Siegen)
On effective topalogies: some characterization

Countable topological TO-spaees (T,~) with a eountable basis on which a relation of
strang inelusion is defined are cansidered and under very natural effecti'iv·t
assumptions it is shown that up to effective equivalence 't is the greatest Mal
topology on T that is effectively related to 't, where a topology" on T is a Malcev
topology, if it has a base of completely enumerable subsets of T. Moreover, it is
effectively related to 't, if for Be 't and Ce" with B g C a witness for this can
effectively be found. As examples constructive Seott domains and recursively
separable recursive metric spaees are considered. In the finite case one. obtains the
generalized Rice/Shapiro Theorem whieh says that the Scott topology on the domain is
effectively equivalent to the Ershov topology on it whieh is generated by a11 of its
eompletely enumerable subsets. In the second case it follows that up to effective
equivalenee the metric topology is the greatest Maleev topology on the space such that
its lattice of completely enumerable open sets is effectively closed. under the
pseudocomplement operation given by the Heyting algebra of a11 open sets of this
topology.

Michael Stob (Lexington and Cambridge, MA)
Array nonrecursive sets and multip~e permiUing arguments
We define a class of r.e. sets, the array nonrecursive (anr) sets. The Turing degrees of
anr sets are exactly those below which certain multiple permitting arguments can be
performed. We give three natural examples of such arguments from the recursa
theory literature. We prove a number of theorems classifying the Turing degree.
anr sets. (Joint work withR. Downey and C. Jockusch,jr.)

Stanley S. Wainer (Leeds)
Proofs and programs
This ta1k: was a brief summary of same elementary proof-theoretic ideas whieh can be
used to analyse the logical complexity of natural classes of programs and program
transformations. The underlying theme was the strong· analogy which exists (and
which is now being exploited in computer science) between recursive prograrns and
their formal "specification" proofs. As an illustration, the transformation from
"recursivert into "while" programs was considered. In proof-theoretic terms, this
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corresponds t<? an increase in "cutrank" and an exponential increase in the ordinaf
bounds on corresponding infmitary proofs. From this one can obtain "trade-offs" in
sub-reeursive eomplexity, generalizing an old theorem ofTait.

Gerd Wechswzg (Jena)
Applications of Kolrnogorov complexity in computational complexity
Following L. Adleman and L. A. Hemachandra we prove neeessary and sufficient
eonditions in terms of Kolmogorov eomplexity for collapsing complexity classes likee !1l and NP, pp and NP or L2P and!1l . Astring y is called Kolmogorov simple

relative to x if there exist a c>O and a z, Izl ~ c + cloglxl S.t. a universal Turing

machine U (which is fixed anee and forever) outputs Y on input z#x within e + Ixlc

steps. Adleman's result (1979): "P=NP if and only if any NP-maehine has on each x
aceepted by that machine Kolmogorov simple certifieates (= aeeepting paths) relatiye
to x." may serve as a typieal example for the results proved here. The eertifieates in
Adleman's case, however, have to be replaeed with the appropriate notions reflecting

essential parts of the computation in question. For instanee, for ~2P machines one uses

~ defmed as folIows:

. #YI #Y2# ... #Yk is a guide of the ~p -machine "M(SAn on input x <=>df

M(SAT) on input x makes exact1y k queries, and for each i = 1, ... , k,

Yi,=
the empty word ,if the ith query gets a negative answer

a certifc~te of a SAT accepting machine on the ith query ,0thelWise.

Klaus Weihrauch (Hagen)
Constructivity. computability and computational complexity'
A single approach
A powerful fonnalism for investigating constructivity for sets not greater than the
continuum is presented. It extends ordinary recursion theory and the theory of
numberings by a formally similar theory of continuous and computable functions on
Baire's space and a theory of representations. The theory is a consequent further
development of the "Polish recursive analysis". It admits a natural presentation and
interpretation of results obtained in other approaches, and evades foundational
problems by exclusive use of classical logic. As an essential feature, continuity can be
interpreted as a kind of constructivity. In the talk the formalism will be outlined,
illustrated by some applications, and compared with other approaches.
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w. Hugh Woodin (Berkeley)
Determinacy and scales

Definition 1) AD: Every Ac rolJ) is determined. 2) Unif: For each A c rRxIR there

exists f: lR~ such that for all XE IR, if <X,y>E A for same ye lR then <x,f(x»E A.

3) ADlR: Every A c Rro is determined

Theorem (ZF + AD + DC) Unif.... ADR.
This is proved by showing:

Theorem (ZF + AD + DC) Unif -+ Every A c roO) is Ä-Souslin for same ordinal ?...
Corollary (ZF + AD + DC) Assume Unif. Then SCALE(L12) and if X c P{IR) is L"
then X contains a ß 12 subset of IR. Further this holds in gny. inner model containing R.

Question Does AD -+ SCALE(LI2) ?

Dongping Yang (Beijing and Heidelberg)
On the set limit operation

A, B are subsets of N. We say that Ais partial set limit of B, A=limsB, if XE A iff there

exists t such that for all s >t [<x,s>e B]. When N - lim(B) = lim(N-B), we say the

limit is totaL An infinite set C is o(n) -cohesive if there is na o(n)-r.e. set W such that

WnC and (N-W)nC are both infinite. An O(n)-f.e. set M is O(n)-maximal if N-M is

O(n) -cohesive. An r.e. set A is an n-quasi cohesive set if lims ..Jims A, is an O(n)-
n 1

cohesive set when n is odd and limn A is an o(n)maximal set when n is even.
A function g(x) is an n-limit function if there is a recusrsive function fex, sn,... , SI)

such that g(x) = lims ... lims fex, sn' ... ,SI). We call f the n-base function of g. g isn 1
called n-dominant function if g dominates every total n-limit function. _
Theorem. If A is an n-quasi cohesive set and n is odd (even), then the princi~
function PlimßA ( Plimß<N-A» is n-dominant.'

Theorem. An f.e. set A satisfies o(n)~ A(n) iff there are (n-l )-dominat füßctions g

and an (n-l )-base function f of g such that f~A.

Corollary. An r.e. degree a is in Hn iff there is an (n-l )-dominant function f and an

(n-l )-base function g of f such that the degree of g $ a.
Corollary. The degree of all n-quasi cohesive sets is an element of Rn'

Berichterstatter:: Martin Kummer
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