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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsbericht 17/1989

•

FLÄCHEN IN DER GEOMETRISCHEN DATENVERARBEITUNG

16.04. bis 22.04.1989

Die Tagung fand unter der Leitung von R..E. Barnhill (Arlzona State
Unlverslty, Tempe), W. Böhm (TU Braunsehweig) und J. Hoschek (TH Darm­
stadt) statt.

Im Mittelpunkt des Interesses stand die Entwicklung neuer mathematischer
Methoden und effizienter Algorithmen zur Darstellung von Kurven und
Flächen des CAD. Aus der Vielfalt der vorgestellten Forschungsergebnisse
selen folgende Schwerpunkte herausgegriffen: Qualltltsanalyse, Gillttungs­
algorithmen, Scattered Data-Interpolation über ebenen und gekrümmten Be­
reichen, multlvarlate SpUnes, Einsatz von Methoden der algebraischen Geo­
metrie, R.epräsentation spezieller Flächen, sphärische Splines zum Design
zwangllufiger Bewegungen, geometrisch stetige Überginge, rationale
Spllnes, Interpolation mit BerUcksichtigung geometrischer Nebenbedin­
gungen, Polarrormen zum Studium polynomieller Kurven und Flächen, Algo­
rithmen zur graphischen Darstellung. Vorträge von Anwendern, 'In denen
auch auf offene Fragen und Probleme der Praxis. hingewiesen wurde, stellten
eine wichtige Ergänzung dar.

Die regen Diskussionen im Anschluß an die Vorträge sowie die zahlreichen
Gespräche Im Verlauf der Tagung lieferten eine Fülle Interessanter Anre­
gungen. Als besonders wertvoll fUr die Befruchtung der aktuellen Forschung
erwies sich der Kontakt zwischen· den an Universitäten lehrenden Wissen­
schaftlern und den in der Industrie tltigen Mathematikern.
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Vortrags aUBZn ge

R. E. BARNHILL

Geometry Processing and Surfaces on Surfaces

Geometry processing is the calculation of geometrie properties of already
constructed curves and surfaces. We present two geometry processing
topies: Surface-surface intersectlons and curvature analysis. We compare
our marehing algorithm for surface -surface interseetion with a dlvlde and
conquer algorithm. Our curvature analysis concludes that three surface
curvatures, Gaussian curvature, mean curvature and absolute curvature, are •
useful for surface interrogation. Our surfaces deflned on surfacespresent-
atlon includes a comparison of tbe distant-weighted method of Druce Piper
wlth the curved triangular interpolant of Henry Ou. Eaeh of tbe above topics
Is illustrated by color computer graphics.

C. M. HOFFMANN

Surface Operations in Higber Dimensions

Operations such a5 offsets, Voronoi surfaces, and variable radius blending
surfaces seem to require approximation or expensive symbolic computation.
We propose to avoid bath by using a higher dimensional formulation that
considerably simplifies the numerical difflcul ties.

H. POTTMANN

Scattered Data Interpolation Based upon Generallzed Minimum Norm Net-

~

A generallzation of G.M. Nielson's method for bivarlate scattered data inter­
polation based upon a minimum norm network Is presented. The essential
part of the new teehnique is the use of a varlational prlnclple for determin­
ation of functlon values as weil as cross boundary derivatives over the edges
of a triangulation of the data. We mainly discuss the case of C 2 lnter­
polants and present same examples including quality control with systems
of isophotes. Finally, extensions to sp'herlcal scattered data methods are
addressed.

T. FOLEY, R. FRANKE, D. LANE, G. NIELSON, H. HAGEN

Interpolation pf SCllttered Data oler Closed Surfaces

Glven N arbitrary points Pi on a closed surface D and associated real values
F i , we address the problem of constructlng a smooth funetion F(p) defined
for 811 p E D whleh satisfies F(Pi) = Fi , for i I: l, ... ,N. We assume that D has
genus zero, that is, topologically equivalent to a sphere. The basic approach
involves mapping D to a sphere, solvlng a corresponding scattered data inter­
polation problem on a sphere, and then mapplng back to, the domaln surfaee D.
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M. J. PRATT

Smootb Blendi", pf Cireular-section Ducts using Piecewise Cyclides

The talk provides a review of recent work by the author and others in the
use of cyclide surfaees for .the creatlon of GC l blends between natural
quadrics, toruses or other cyclldes in general. Tbe concept of the double­
eyeHde blend 15 then introduced, and detailes are given of the construction
of a smooth blend between two cylindrical ducts of different diameters, at
arbitrary relative positions and orientatlons In three dimensions. An ex­
tension to the blending of conieal or more general cyelidal ducts 18
indleated.

w. BOEHM

On CfeUdes in Geometrie Modeling

Just 125 years ago J. elerek Maxwell gave a niee construction of Dupin's
cyclides by the use of astring. Most of thelr properties can be derived from
this construction. Although they have a very simple Bezler representation
eyclides are more suitable for soUd blending than for patchwork. Some ex­
amples are given: the double-cycllde blend of two cones, a solution of the
so-called Cranfield-problem, and the blend of a trlpod.

j. HOSCHEK

GCn-1-Functlonal Splines fpr Interpolation and Approximation pr Cueyes.
Surraces and SoUds

Impllclt curves and surfaces are used for interpolation, approximation,
blending of eurves and surfaces aod for filling holes. The method Is an ex­
tension of Limlng's conle section splines by introdueing apower n ~ 2 for
the transversal eurve. The construeted eurves and surfaces can be used fore funetlonal spllnes whleh fulflll geometrie eontlnulty eondltlons.

H. MCLAUGHLIN, B. PIPER

Spiralare.· An InterpQlation Problem

Spiralares are planar eurves wlth monotone eurvature. Daes there exist a spiral
are which Interpolates two points with specified tangent lines and speclfied
centers of curvature at the points? The answer is negative. Does there exlst
an are with not more than one vertex which satisfies the above interpolation
problem? The answer is also negative. It i5 conjeetured that the interpolation
problem can be solved with an are of not more than two vertices.
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M.BERCOVIER

Related IORics In CAD Ind FEM· Isochoric Deformations

U5tng the tbeoretlcal mecbanIcs approach tbe notions of deformation of a
body, deformation gradient and Green Lagrange straln tensor ~ are In­
troduced. Let A be tbe (matrix) deformation gradient, an isochoric deform­
ation is defined by det ~ = 1. Isochoric deformations happen for so-called
incompressible materials. Ihe definition implies elementary volume pre­
serving. However, isocboric deformations cannot be buHt USÜ1g polynomial
or rational deformation functlons. Next one ean relax the lsoehorie con-
diUon. It would be good enough to control the volume of a patch for in-_
stance, without controlling Infinitesimal changes. This leads to so-called
"mixed" type finite element approximation, with a Lagrange multiplier dual
to tbe patch global volume constraint. A simple triquadratlc ease is used to
illu5trate thls approach. As a conclusion it i5 shown that some nonclassical

. thoughts taken from the necesslty of physics ean help set tbe proper back­
ground and thus obtain a solvable problem!

D. LIU

Ge· ConditioDs between Iwo Rational Bezier Patcbes

The Ge· necessary and sufficient eonditlons between two adjacent rectangul­
ar or two triangular rational Bezier aurface patches are presented. Further
some practlcal aod simple sufflcient conditioDS are developed. There are
many weights in the Gel conditions which are useful to easily compose I
Ge! smooth surface.

T.D. DEROSE .

Necessary Ind S"fflc!ent CaDditions for Tangent Plane Conti»"!t! pf Bezier
Surfaces

Sets of conditlons are derived that are necesslry Ind sufflcient for tangent
plane contlnuity between two integral or rational Bezier surfaces. The
patches may be given in either triangular or rectangular form, and no as­
sumptloßs are made coneernlng the relatIve degrees of the patehes; the only
assumption is that the patches share common boundary control points (and
weights in the ease of rational surfacesL The. conditions are shown to be
minimal In the sense that they are, In general, independent.

W. DEGEN

Supplements to tbe Ibeory pr Gk Cootlnuity pr Sürface Patcbes

In a first part, revlewlng the theoretlcal foundatlons, the definItion of C k

contlnulty along a common boundary curve, as recently given by J. Hahn,

•
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CAGD 6(989), i5 compared with the notion of "contact of order Je" used In
differential geometry. Especlally for G 2

, It will be shown that the existence
of a famUy of curves, crossing the boundary transversally with G 2 con­
tinuity, Is equivalent to both.
In a second part, the theory is applled to two adjacent rectangular Bezier
surface patches. Reeently, G. Farin's G 1 construetion (CGIP 20(182)), was
Improved by D. Liu and 1. Hoschek (1989, to appear). But their sol ution 15
ImplJclt. Uslng algebraic metho-ds and the prime factorization of poly­
nomials, an expliclt solution will be obtained. By slmllar arguments, the
analogous solution for the G2 ease i5 derlved under an additional regularity
assumptlon.

N. LUSCHER

Caleulatlon pf Curyature Cootinuous Cub!c Splines

The connectlon between the recursion formula for B-splines and the de Boor
algorithm 15 weIl. Icnown. Using results of Goodman/Unsworth and Boehm
the analogous connections for curvature continuous cubic splines are pre­
sented and special properties are discussed.

T.N.T. GOODMAN

CODstructlog Plecewlse Rational Curyes wltb Frenet Frame Continuity

A simple geometrie coostructlon Is given for the Bezier poInts of two ration­
al curves whlch join wlth approprlate Frenet frame contlnuity. Thls Is then
used to glve a geometrie construction, from an arbltrary sequence of control
points, for the Bezier points of a sequence of ratiooal curves of degree n
whlch Join with Frenet frame contlnuity of order at most n-1.

P. BRUNET

Increaslng tbe FlexiblHty of VC 1 Connections of Bezier Patcbes

The problem of connectlng a given patch to a nelghbour (to be defined ) in
a VC 1 way i8 5tudled. In practical applications we would expect some data
on the neighbour to be fixed (for example, boundarles). From a countlng of
degrees of freedorn, It can be faund that this is not posslble. In thls sense,
the algorlthm of Farin' 82 glves the most general solution insplte of the as­
sumptlon of llnearlty on the coefficients of the linear and rectangular
unions, and in polynomial or rational patches. After that, a rnethod Is pro­
posed that relaxes the one-sidedness of 8equentlal patching by modlfying
one control point In the data pateh. The consequence Is tbat a VC 1 con­
nectlon witb a neighbour with both endpoints completely uncoupled 18
always posslble. Also, the modiflcation of the data patch ean be minlmlzed.

/
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H. NOWACKI, D. LIU, X. LU

FItring Bezter Curves witb Some Constrlints

Aplanat parametrie Bezier curve Is constructed from I combination of
interpolation conditlons, end conditions, and integral constraints such as
area under the curve. A vBriational formulation of the problem based on a
second (or higher) derivative fairness criterion is presented. It leads to a
nonlinear system of equatlons for ~he free set of Bezier points, resulting
from a sufficiently high degree of the Bezler curve, and for the Lagrange
multiplier. The resultlng curve meets 811 constraints and minlmlzes the
fairness criterion. The computatlonal effort Is falrly high what suggests
posslble improvements by relaxing some constraints into inequallties.

H. PRAUTZSCH

A Fast Al gorltbm to Raise tbe DeBree of B-Spline Curves

The number of operations existlng algorltbms need to raise tbe degree
nt-n n . 2

of a B-spline curve sex) = I: Ci N. (x) by one is of order O(n m) where m
1=1 1

denotes tbe number of knots the spline sex) depends Oß and n tbe degree
of the spline. A new algoritbm Is presented whleh Is faster than tbe known
algorithms for any degree and where the nubmer of operations needed is of
order O(nm).

J. A. GREGORY, M. SARFAZ

A Rational Cübic Spline with Tension

A rational cubie spline curve is described wbieh has tension control para­
meters fot;' manlpulating the shape of the eurve. Tbe spline i5 presented in
both interpolatory and rational B-spline forms, and the behavlour of the
resulting representations Is analysed with respect to variation of the
control parameters.

G. FARIN

Surfaces 0ver Dlric'blet Iessellations

We develop a class of surfaces that are based on the concept of Sibson's
interpolant. This Is a generallzationof one-dimensional piecewise linear
interpolation to the ease of two or more variables. The interpolant Is obtain­
ed as the ratio of eertaln areas arising in the recurslve generation of
Dirichlet tesselations. We reinterpret Sibson's Interpolant as the projection
of bigher dimensional Bezier simplices and generallze to arbitrary degrees
of tbose simpllees. An application i5 a Cl scattered data interpolant with
local control and quadratlc precision.

                                   
                                                                                                       ©



•

- 7 -

G. GElSE, U. LANGBECKER

Finite Ouadrie Segments witb Four Conle Boundary Segments

For suitable segments tbe problem is solved how to get a representation as
rational TP Bezier surface which is smooth in the sense of differential geo­
metry and wbich has the boundBry curves as u and v lines. The intuitive idea
of sweeping out the surface by one conie may be realized by appllcation of
known facts eoneerning rational Bezier representation of eonies in the view
of stereographic projeetion. The resultlng representation x(u,v) is of degree
m f 6 in u and of degree n f 2 in v. Some special problems are consldered too.

A.WORSEY

Contouring Quadratics for Surface Analysis

We consider the problem of robustly contouring a trivarlate quadratic poly­
nomial defined over a tetrahedron. We show how the contour ean always be
descrJbed by a colleetlon of rational quadratic patches. These patehes are
easily parametrized after considerlng the contourlng problem on faces of the
tetrabedorn. A completely robust method for solving this problem Is also
developed which, to withln machlne accuraey, describes these contour curves
as rational quadratics with non-negative weights.

M. LUCIAN

Conyexlty Pre8erying and Curyature Continuous Interpolating Quadrat!c
Rational B-Spline

An algorithm, symmetrie in the input, 18 provided whlch Interpolates a planar
set of data without introduelng inflectio"ns extraneous to the data. The two
main features of the output (eonvexity and curvature continuity) are
independent. A simple extension allows for interpolating .data with
assoelated curvatures .

R. KLASS

Solyed and Unsolyed Surface Problems in ear Bodl Design

o Intersection problems and sol utions
o Qffset surfaees and singular points
o . Collisions problems between algebraic and parametrie surfaces
o Approximation wlth boundary conditlons
o Controlling surface shape
o Design and roHling problems wJth "Multisurfaces"
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N. PFEIFF

Uslnll CAGn Metbods in tbe System CASS for Styling Appllcltipns

C. de SOOR

Multlyariate Polynomi,l Interpolation

Witb M a subset of d-spaee Ind Q a polynomlai spaee, eall tbe pair (M,Q)
e 0 r r e e t in ease interpolation from Q It M Is posslble and uniquely so,
i.e. in ease the map on Q whteh earries the funeion f to Its restrietion to M
Is 1-1 and onto.
The Jo~nt work wlth Amos Ron reported on provides a map whteb associates
with eaeh fInIte subset M of d-space a polynomlai spaee P(M) so that
(M,P(M)) is correet. The map has the following properties: (U P(M) 15 defined
for every finite M. (tU P(M) depends continuously on M (to the extent
posslble). (tIl) (acceptable) coaleseenee leads to osculation. (Iv) P(M) ls
translation-invariant, hence DUfferentiatIon)-invariant. (v) P(M) is scale­
invariant, hence spanned by homogeneous polynomla!. (vI) For any invertIbl.e
matrix A, P{AM) = P(M)AT. (vU) P(M)is of minimal degree, in the sense that,
for any correct (M,Q) and any J, dirn Qj :' dim P(M») (with QJ denoting the
spaee of 811 polynomials of degree lI:: j in Ql. (vUiT The map Is monotone
(hence a Newton form Is available for the Interpolating polynomlall . (tx)
P(M x N) = P(M) x P(N) (with M x N the eartesIan· product and P(M) x P(N)
the tensor produetl. (x) P(M) ls eonstruetible from M in finltely many
arithmetie steps.
Any such map must glve the standard polynomlaI spaees In standard
situations. Further, any polynomialln P(M) must be eonstant in any direetlon
perpendieular to the affine huH of M.
P(M) ls constructed as the 'least' of the spaee H := eXPM := the span of all
exponentials em(x):= exp(m.x) wlth m In M. This means that P(M) 18 the span
of all 'Ieast's of functlons in H. One finds the 'lesst' of a functlon f as the
first nontrivial term f k in the Taylor expansion f = fo+ft+ ...+fk +... In which
f k contalns a11 terms of (exact) degree k.

P. ALFELD

MultlyarJate Splines

Splines (l.e. smooth plecewise polynomlai functlons) are used unlversally
throughout problems involving funetlons of one variable. It i5 natural to
contemplate the use of simllar functions in the ease of several variables.
However, problems that are trivial for one independent variable turn out to
be extremely diffleult in the ease of two or more variables. In this talk,
some unsolved problems eoneerning multivarlate splines will be desc~lbed

'and some new results wIll be given.

•

                                   
                                                                                                       ©



•

- 9 -

L. L.. Schumaker

Data Dependgnt Triangulation

We CODslder the standard problem of fittIng a surface to scattered data.
Our method 15 based on using Cl plecewJse cubics on the Clough-Tocber
spUt or a triangulation of the data. The maln idea ts to deftne a swap test
for chan.glng the triangulation based on reduclng the energy or the surface ..
Sy uslng thls swap thest, oue can ereate data-dependent triangulations
which provide surfaces with Improved smoothness and better flts than those
obtained uslng the usual Delaunay triangulation. The energy expressions
are obtalned In terms of the BernsteIn-B~zlerrepresentation of the spllnes.

R. WALTER

Differential Ceometr! and Surface Benderin,

We develop a method for generating and employlng contours and (self)lnter­
sections of arbitrary.smooth surfaces for the purpose of vislbUity clarifying.
The result relles on differential geometric integer Invariants, called sight
indices which describe the change of visibl1ity. These are the means to
render distinguished curves llke coutours, (self)intersectlons, and boundarles,
lucluding vlslbll1ty. In the same manner, but wlth different types of Index
formulas, arbltrary curves can be rendered. Also, more than one surface 18
allowed. One advantage is that the (visible parts of) curves are drawn In one
stroke. Thus the method Is especially suitable for gnerating high quallty
plots on plotters.

w. DAHMEN

Somg Bemart, on Conyexity Preserylng Interpolotloo

3 .
Glven any finite set of points in IR a method for constructlng a tangent
plane continuous piecewlse quadratlc .surface wlth prescribed topology 18
described. This method tnterpolates the given data wlth prescrlbed normal
directlons. In partlcular when the data come from a cORvex surface, l.e. when
a convex piecewlse triangular interpolant exists, conditloDs are dlscussed
that ensure the plecewise quadratlc interpolant to be convex as weil. Specifi­
cally, the rale of a certain free shape parameter in this context 18 U­
lustrated by some graphical examples. Efflcient ways of rendering the
quadrlcs are Indlcated.
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N.DYN

Reculsiye Subdlyision Curves Ind Surfaces

A famHy of interpolatory subdivision schemes wlth tension contral for the
design of curves and· surfaces is reviewed. Smootbness propertles of tbe
limIt curves/surfaces are discussed and the performance of the schemes Is
demonstrated by several pictures. In particular, tbe effect ofthe tension para­
meters ls tested. All the schemes. above are shown to be perturbations of
known schemes, with the tension parameter controlling the size of the per­
turbation. Small positive values of the tension parameter yield a scheme
whieh produces a limit eurve/surface with one more degree of smoothness.

R. N. GOLDMAN

Algoritbms in tbe Style of 80ebm and Sablonnlere

The de Boor algoritbm can be extended to curves whleh are not strictly B­
splines by allowing either infinite or deereasing knots. Blossoming can tben
be applled recursively to these curves to compute the dual functionals of
the correspondlng polynomlai bases. Th1s observation leads to change of
basis formulas wh1eh are tbe analogues of knot insertIon techniques for B­
splines. These methods are applied to generate transformations between the
B-spllne, 8ezier, monom!al, and power forms of a curve wblch are the
direct analogues of Boehm's knat insertion algorithm and Sablonniere 9 s
aigorithm for eonverting from B-spllne to Bezier form.

H.-P. SEIDEL

Symmetrie Reculslye Al gorithms for Curyes Ind Surfaces

We Introduce the concept of asymmetrIe reeurslve algorithm and show that
In the ease of curves thls leads to B-splines. We then apply thls concept to
surflce5 and construct a new patch-representatlon for blvariate.polynomials:
The 8-Patches share many propertles with B-spllne segments: Besldes thelr
control points they are influenced by a 3-parameter family of knots. If all •
knots coincide, we obtaln the Bezier representatlon of a bivarlate polynomial
w.r.t. ,6,(R,S,Tl. Tberefore B-Patches are a generillzation of Bezier patches.
B- Patches have a de Boor Hlee evaluatlon IIgorithm, and, as In the ease of
B-spUne curves, the control points of a B-Patch can be computed by simply
Inserting a sequence of knots Into the correspondlng polar form. In partlcul-
ar this Implies linear Independence of the biending funetioJis. Furthermore ,
B-Patches can be jolned smoothly and they bave an algorJthm for knot insert-
Ion that Js completely slmJlar to Boehm's algorJthm for curves.
After studylng B-Patches we go back to curves and somewhat relax our sym­
metry condltions. This leads to geometrie spllne eurves.· In partlcular we
show that ß- and y-spllnes have a de CastelJau type evaluation algorlthm
that starts wlth the glven spllne control points and computes the function
val ue by repeated linear interpolation. Thls 15 surprlsing since It has been
previously conjectured that no such algorlthm for ß- and y-splines exlst5.
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L. RAMSHAW

Ibe. Progressive ease of tbe de eRsteIla» Algoritb9" for Surfaees

Tbe de Casteljau Algorltbm for eurves bas two varlants. Tbe plain ~
evaluatea a plynomlal curve segment given the coefficients of its Bernstein
expansion, that Is, It8 B~zier points. Ihe progresslye~ evaluates a spline
eurve given the eoefflcients of It5 B-spl1ne expans Ion. It turns out that the
de Casteljau Algorlthm for aurfaees can also be extended from the plaln case
to an analogous progressive ease. Unfortunately, the resultlng algorithm can­
not be applied In any straightforward way to evaluate --say--a box spllne
surfaee. Botb polar forms and tbe symmetrie variant of the tensor-product
eonstructlon are useful In studylng thls situation.

M.D~HLEN,T.DOKKEN,T.LYCHE,K. M0RKEN

Almost Best Approximation or Cireies by Curyature-cootinuous B6zler
Curves

We provlde a surprislngly simple euble Bezler eurve whleh glves a 6-th order
aeeurate approximation to a segment of a eirele. Jolnlng the Bezier segments
we obtaln a G2-eontinuous approximation to the eirele. The error 15 approx­
imately onetenth of what 15 obtalned by applying tbe general method of de
Boot, H6llig and Sahln to the ease of a eirele.

T.LYCHE

ExponentlaI B-spUnes In Tension

Spllnes in tension were introdueed by Sehwelkert In 1966 as a meaos of
ellmlnatlng wlgg1es In euhle spline interpolation. We will eonstruet a B­
spline representatlon for tension splines allowing multiple knots and differ­
ent tension parameters Pt and linear B-spUnes for large values of Pt. The
result Is a loeal representation for a elass of functlons which has the
smoothness of a cublc spllne and the shape of a piecewlse linear approx­
Imation.

K. HÖLLIG, H. MÖRGELE

G-Splines

We Introduce a new type of spllne 8paees for cOßstructing GCn - t surfaees
for (general) networks of n-th degree Bezler patches. In partlcular,
"G-Spllnes" allow to incorporate singular vertlces (the Bumber of eolncldent
patches does not equal 4) Into a tensor product network. Our approach 15

based on an idea of Goodman for eonstructing biquadratlc GC l tensor produet
patch networks aod a special cholce of the Geometrie Continuity eonstraints.
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J. PETERS

On Smootbness Ind .CompltlblUtv

B. PIPER

FUI-ln Regions for Curyes Ind Surflces

Tbe problem of deslgnlng surfaces by using sectional curves motlvates tbe
consideration of 'curves' Ind thls ean be 'sbaped' automltlcally by use of
fill-In regloDs. Results of an interpolatlon-like Ilgorithm that produces 'fot'
plan~r curves will be presented along wlth a preliminary algorithm to use
"fat" curves 1n the creatlon of surfaces.

R. ·T. FAROUKI

Analytlc. Algebra!, Ind 10Po1olical Propertles or Plane oerset Curyes

•
Although the notion of a "parallel" curve dates back to Leibnltz, such loel
merit ooly passlng mentlon In contemporary differential geometry books.
Recently, however. they have enjoyed a resurgenee of lnterest motivatedby
thelr appllcatlons In areas such os N.C. maehlning, geometry optles, toler­
anee analysis, and path-plsnDing. We examlne certaln fundamental pro­
perties of offset curves form an analytleal, algebralcal, and topological
perspective. Irregular points arise on an offset whenever the generator
curvature attains a certaln critlcal value, an they may be cusps (sudden
tangent inversions) or extraordinary points (tangent-contlnuous points of
infinite curvature). Further, there exi&ts 0 one-to-one correspondenee
between eertaln regular "characterlstic" points (turning points, inflection5,
and vertlces) on a glven generator curve and elch of its offsets.
From the algebraic perspective, we show that the "interior" and "exterlor"
offsets to a polynomial generator of degree n, taken together, constltute an
algebrolc curve of degree 4n- in gen~ral. A simple closed-form expressIon
for the imp1Jclt equation of the offset i& presented, and It Is seen thBt the
degree 15 reduced by 2 for each "eusp" of the generator. Algebraic methods
also furnlsh an algorlthmlc basis for JdentlfyJng all self-Jntersectlons of the e
offset which are requlred when "trJmming" It.

G. M. NIELSON

Spbere Splines witb Application

Based upon control points on the surface of a sphere, we introduce ,0 new
piecewise, C 2

, curve whlch remalns on the spbere. The constructlon of thls
curve i5 analogous to cubic B-spllnes where the individual cublc segments
Bre represented as Bernstein/Bezier curves. The spherical analogs of the
Bernsteln/Bezler curves are defined by means of a spherical version of the
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de CastelJau algorithm based upon geodeslc Interpolation on the sphere rather
than linear Interpolation. Several of the basic propertiea of these new curves
are establlshed and some examples are glven. Ualng quarternions and a
4D extension of Dur spherleal curve we show how to anlmate rota"tlons.

R. K.E. ANDERSSON

CurIes IS Boundaries or SUffaces wltb Prescribed Shape

w~ wl1'l discuss tbe problem to generate parametrlc polynomial spaee curves,
close to a set of fitting points and satlsfying constralnts. The conatraints are
derlved from desired propertles of the surfaees, to be bounded by a network
of thes~ curves. The need to satlsfy the condltions whlle keeplng the eurve
close to the fitting points gives rlse to quadrlc minimlzation problems wlth
nonlInear constralnts. The solution proceS8 for these problems, however, 15
facUitated by beneflttlng from thelr separable charaeter.

D. FERGUSON

Dlrectigns in CurIe Ind Surflce Design

Curves and surfaces whlch are appropriate for maJiufacturlng are dlffieult
to deflne. In this talk a brief review of the problems will be given. Then, two
approaehea wHI be described. The first approach Ja constralned fitting of
data and can be deaeribed as a success. The second la a variant of tbe TFI
method of curve blending and represents work In progress.

Berichterstatter: H. Pottmann
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