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FLACHEN IN DER GEOMETRISCHEN DATENVERARBEITUNG

16.04. bis 22.04.1989

Die Tagung fand unter der Leitung von R.E. Barnhill (Arizona State
University, Tempe), W. B6hm (TU Braunschweig) und J. Hoschek (TH Darm-
stadt) statt.

Im Mittelpunkt des Interesses stand die Entwicklung neuer mathematischer
Methoden und effizienter Algorithmen zur Darstellung von Kurven und
Flichen des CAD. Aus der Vielfalt der vorgestellten Forschungsergebnisse
seien folgende Schwerpunkte herausgegriffen: Qualititsanalyse, Glattungs-
algorithmen, Scattered Data-Interpolation iiber ebenen und gekriimmten Be-
reichen, multivariate Splines, Einsatz von Methoden der algebraischen Geo-
metrie, Reprisentation spezieller Flachen, sphirische Splines zum Design
zwanglidufiger Bewegungen, geometrisch stetige Utberginge, rationale
Splines, Interpolation mit Berficksichtigung geometrischer Nebenbedin-
gungen, Polarformen zum Studium polynomieller Kurven und Flichen, Algo-
rithmen zur graphischen Darstellung. Vortridge von Anwendern, in denen
auch auf offene Fragen und Probleme der Praxis hingewiesen wurde, stellten
eine wichtige Ergénzung dar.

Die regen Diskussionen im AnschluB an die Vortriige sowie die zahlreichen
Gespriche im Verlauf der Tagung lieferten eine Filille interessanter Anre-
gungen. Als besonders wertvoll fiir die Befruchtung der aktuellen Forschung
erwies sich der Kontakt zwischen den an Universititen lehrenden Wissen-
schaftlern und den in der Industrie titigen Mathematikern.
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Vortragsausziige
R. E. BARNHILL

Geometry Processing and Surfaces on Surfaces

Geometry processing is the calculation of geometric properties of already
constructed curves and surfaces. We present two geometry processing
topics: Surface-surface intersections and curvature analysis. We compare
our marching algorithm for surface -surface intersection with a divide and
conquer algorithm. Our curvature analysis concludés that three surface
curvatures, Gaussian curvature, mean curvature and absolute curvature, are
useful for surface interrogation. Our surfaces defined on surfaces present-
ation includes a comparison of the distant-weighted method of Bruce Piper
with the curved triangular interpolant of Henry Ou. Each of the above topics
is illustrated by color computer graphics.

C. M. HOFFMANN
Surface Operations in Higher Dimensions

Operations such as offsets, Voronoi surfaces, and variable radius blending
surfaces seem to require approximation or expensive symbolic computation.
We propose to avoid both by using a higher dimensional formulatlon that
considerably simplifies the numerical difficulties.

H. POTTMANN

A generalization of G.M. Nielson's method for bivariate scattered data inter-
polation based upon a minimum norm network is presented. The essential
part of the new technique is the use of a variational principle for determin-
ation of function values as well as cross boundary derivatives over the edges
of a triangulation of the data. We mainly discuss the case of C? inter-
polants and present some examples including quality control with systems
of isophotes. Finally, extensions to spherical scattered data methods are
addressed.

T. FOLEY, R. FRANKE, D. LANE, G. NIELSON, H. HAGEN
Interpolation of Scattered Data over Closed Surfaces

Given N arbitrary points p; on a closed surface D and associated real values
F;, we address the problem of constructing a smooth function F(p) defined
for all p ¢ D which satisfies F{p;) = F;, for i = 1,...,N. We assume that D has
genus zero, that is, topologically equivalent to a sphere. The basic approach
involves mapping D to a sphere, solving a corresponding scattered data inter-
polation problem on a sphere, and then mapping back to the domain surface D.
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The talk provides a review of recent work by the author and others in the
use of cyclide surfaces for the creation of GC! blends between natural
quadrics, toruses or other cyclides in general. The concept of the double-
cyclide blend is then introduced, and detailes are given of the construction
of a smooth blend between two cylindrical ducts of different diameters, at
arbitrary relative positions and orientations in three dimensions. An ex-
tension to the blending of conical or more general cyclidal ducts is
indicated.

W. BOEHM

On Cyclides in Geometric Modeling

Just 125 years ago J. Clerck Maxwell gave a nice construction of Dupin’s
cyclides by the use of a string. Most of their properties can be derived from
this construction. Although they have a very simple Bézier representation
cyclides are more suitable for solid blending than for patchwork. Some ex-
amples are given: the double-cyclide blend of two cones, a solution of the
so-called Cranfield-problem, and the blend of a tripod.

J. HOSCHEK

Implicit curves and surfaces are used for interpolation, approximation,
blending of curves and surfaces and for filling holes. The method is an ex-
tension of Liming's conic section splines by introducing a power n 2 2 for
the transversal curve. The constructed curves and surfaces can be used for
functional splines which fulfill geometric continuity conditions.

H. MCLAUGHLIN, B. PIPER
Spiralarcs: An Interpolation Problem

Spiralarcs are planar curves with monotone curvature. Does there exist a spiral
arc which interpolates two points with specified tangent lines and specified
centers of curvature at the points? The answer is negative. Does there exist
an arc with not more than one vertex which satisfies the above interpolation
problem? The answer is also negative. It is conjectured that the interpolation
problem can be solved with an arc of not more than two vertices.
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M.BERCOVIER
Related Topics in CAD and FEM: Isochoric Deformations

Using the theoretical mechanics approach the notions of deformation of a
body, deformation gradient and Green Lagrange strain tensor E are in-
troduced. Let A be the (matrix) deformation gradient, an isochoric deform-
ation is defined by det A = 1. Isochoric deformations happen for so-called
incompressible materials. The definition implies elementary volume pre-~
serving. However, isochoric deformations cannot be built using polynomial
or rational deformation functions. Next one can relax the isochoric con-
dition. It would be good enough to control the volume of a patch for in-
stance, without controlling infinitesimal changes. This leads to so-called
"mixed” type finite element approximation, with a Lagrange multiplier dual
to the patch global volume constraint. A simple triquadratic case is used to
illustrate this approach. As a conclusion it is shown that some nonclassical

.thoughts taken from the necessity of physics can help set the proper back-

ground and thus obtain a solvable problem!

D. LIU

The GC! necessary and sufficient conditions between two adjacent rectangul-
ar or two triangular rational Bézier surface patches are presented. Further
some practical and simple sufficient conditions are developed. There are
many weights in the GC! conditions which are useful to easily compose a
GC! smooth surface.

T. D. DEROSE

Sets of conditions are derived that are necessary and sufficient for tangent .

plane continuity between two integral or rational Bézier surfaces. The
patches may be given in either triangular or rectangular form, and no as-
sumptions are made concerning the relative degrees of the patches; the only

. assumption is that the patches share common boundary control points (and

Deutsche

weights in the case of rational surfaces). The conditions are shown to be
minimal in the sense that they are, in general, independent.

W. DEGEN

In a first part, reviewing the theoretical foundations, the definition of Gk
continuity along a common boundary curve, as recently given by J. Hahn,
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CAGD 6(1989), is compared with the notion of "contact of order k" used in
differential geometry. Especially for G2, it will be shown that the existence
of a family of curves, crossing the boundary transversally with G2 con-
tinuity, is equivalent to both.

In a second part, the theory is applied to two adjacent rectangular Bézier
surface patches. Recently, G. Farin's G! construction (CGIP 20(182)), was
improved by D. Liu and J. Hoschek (1989, to appear). But their solution is
implicit. Using algebraic methods and the prime factorization of poly-
nomials, an explicit solution will be obtained. By similar arguments, the
analogous solution for the G? case is derived under an additional regularity
assumption.

N. LUSCHER

Calculation of Curvature Continuous Cubic Splines

The connection between the recursion formula for B-splines and the de Boor
algorithm is well known. Using results of Goodman/Unsworth and Boehm
the analogous connections for curvature continuous cubic splines are pre-
sented and special properties are discussed.

" T.N.T. GOODMAN
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A simple geometric construction is given for the Bézier points of two ration-
al curves which join with appropriate Frenet frame contlnuity. This is then
used to give a geometric construction, from an arbitrary sequence of control
points, for the Bézier points of a sequence of rational curves of degree n
which join with Frenet frame continuity of order at most n-1. y

P. BRUNET

Increasing the Flexibility of VC' Connections of Bézier Patches
@

The problem of connecting a given patch to a neighbour (to be defined ) in
a vc! way is studied. In practical applications we would expect some data
on the neighbour to be fixed (for example, boundaries). From a counting of
degrees of freedom, it can be found that this is not possible. In this sense,
" the algorithm of Farin' 82 gives the most general solution inspite of the as-
sumption of linearity on the coefficients of the linear and rectangular
unions, and in polynomial or rational patches. After that, a method is pro-
posed that relaxes the one-sidedness of sequential patching by modifying
one control point in the data patch. The consequence is that a VC! con-
nection with a neighbour with both endpoints completely uncoupled is
always possible. Also, the modification of the data patch can be minimized.

Deutsche
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H. NOWACKI, D. LIU, X. Lt
Fairing Bézier Curves with Some Constraints

A planar parametric Bézier curve is constructed from a combination of
interpolation conditions, end conditions, and integral constraints such as
area under the curve. A variational formulation of the problem based on a
second (or higher) derivative fairness criterion is presented. It leads to a
nonlinear system of equations for the free set of Bézier points, resulting
from a sufficiently high degree of the Bézier curve, and for the Lagrange
multiplier. The resulting curve meets all constraints and minimizes the
fairness criterion. The computational effort is fairly high what suggests
possible improvements by relaxing some constraints into inequalities.

H. PRAUTZSCH -z
A_Fast Algorithm to Raise the Degree of B-Spline Curves
The number of operations existing algorithms need to raise the degree

m-n
of a B-spline curve s(x) =1?:l < Nin(x) by one is of order O(n?m) where m

denotes the number of knots the spline s(x) depends on and n the degree
of the spline. A new algorithm is presented which 1s faster than the known
algorithms for any degree and where the nubmer of operations needed is of
order O(nm).

J. A. GREGORY, M. SARFAZ

A Rational Cubic Spline with Tension

A rational cubic spline curve is described which has tension control para-
meters for manipulating the shape of the curve. The spline is presented in
both interpolatory and rational B-spline forms, and the behaviour of the
resulting representations is analysed with respect to variation of the
control parameters.

G. FARIN

Surfaces over Dirichlet Tessellations

We develop a class of surfaces that are based on the concept of Sibson's
interpolant. This is a generalization of one-dimensional piecewise linear
interpolation to the case of two or more variables. The interpolant is obtain-
ed as the ratio of certain areas arising in the recursive generation of
Dirichlet tesselations. We reinterpret Sibson's interpolant as the projection
of higher dimensional Bézier simplices and generalize to arbitrary degrees

of those simplices. An application is a C' scattered data interpolant with
local control and quadratic precision.
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G. GEISE, U. LANGBECKER

For suitable segments the problem is solved how to get a representation as
rational TP Bézier surface which is smooth in the sense of differential geo-
metry and which has the boundary curves as u and v lines. The intuitive idea
of sweeping out the surface by one conic may be realized by application of
known facts concerning rational Bézier representation of conics in the view
of stereographic projection. The resulting representation x{u,v) is of degree
m £ 6 in u and of degree n £ 2 in v. Some special problems are considered too.

A.WORSEY

Contouring Quadratics for Surface Analysis

We consider the problem of robustly contouring a trivariate quadratic poly-
nomial defined over a tetrahedron. We show how the contour can always be
described by a collection of rational quadratic patches. These patches are
easily parametrized after considering the contouring problem on faces of the
tetrahedorn. A completely robust method for solving this problem is also
developed which, to within machine accuracy, describes these contour curves
as rational quadratics with non-negative weights.

M. LUCIAN

An algorithm, symmetric in the input, is provided which interpolates a planar
set of data without introducing inflections extraneous to the data. The two
main features of the output (convexity and curvature continuity) are
independent. A simple extension allows for interpolating .data with
assoclated curvatures. )

R. KLASS

Intersection problems and solutions

Offset surfaces and singular points

Collisions problems between algebraic and parametric surfaces
Approximation with boundary conditions

Controlling surface shape

Design and milling problems with "Multisurfaces”

© 0O 0 0 o C
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N. PFEIFF

Using CAGD Methods in the System CASS for Styling Applications

C. de BOOR

Multivariate Polynomial Interpolation

With M a subset of d-space and Q a polynomial space, call the pair (M,Q)
correct in case interpolation from Q at M is possible and uniquely so,
i.e. in case the map on Q which carries the funcion f to its restriction to M
is 1-1 and onto.

The joint work with Amos Ron reported on provides a map which associates
with each finite subset M of d-space a polynomial space P(M)so that
(M,P(M)) is correct. The map has the following properties: (i} P(M) is defined
for every finite M. (ii) P(M) depends continuously on M (to the extent
possible). (iii) (acceptable) coalescence leads to osculation. (iv) P{(M) is
translation-invariant, hence D(ifferentiation)-invariant. (v) P{(M) is scale-
invariant, hence spanned by homogeneous polynomial. (vi) For any invertible
matrix A, P(AM) = P(M)AT. (vi1) P(M)is of minimal degree, in the sense that,
for any correct (M,Q) and any j}, dim Q < dim P(M); (with Q] denoting the
space of all polynomials of degree s] in Q). (va' The map is monotone
(hence a Newton form is available for the interpolating polynomial). (ix)
P(M x N) = P(M) x P(N) (with M x N the cartesian product and P{(M) x P(N)
the tensor product). (x) P(M) is constructible from M in finitely many
arithmetic steps.

Any such map must give the standard polynomial spaces in standard
situations. Further, any polynomial in P(M) must be constant in any direction
perpendicular to the affine hull of M.

P(M) is constructed as the 'least’ of the space H := expy := the span of all
exponentials e, (,):= exp(m.x) with m in M. This means that P(M) is the span
of all ‘least's of functions in H. One finds the ‘least’ of a function f as the
first nontrivial term fy in the Taylor expansion f = fo+f+...+fp+... in which
fy contains all terms of (exact) degree k.

P. ALFELD

Multivariate Splines

Splines (i.e. smooth plecewise polynomial functions) are used universally
throughout problems involving functions of one variable. It is natural to
contemplate the use of similar functions in the case of several variables.
However, problems that are trivial for one independent variable turn out to

be extremely difficult in the case of two or more variables. In this talk,
some unsolved problems concerning multivariate splines will be described

‘and some new results will be given.
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L. L. Schumaker

Data Dependent Triangulation

We consider the standard problem of fitting a surface to scattered data.
Our method is based on using C! piecewise cubics on the Clough-Tocher
split of a triangulation of the data. The main idea is to define a swap test
for changing the triangulation based on reducing the energy of the surface.
By using this swap thest, one can create data-dependent triangulations
which provide surfaces with improved smoothness and better fits than those
obtained using the usual Delaunay triangulation. The energy expressions

are obtained in terms of the Bernstein-Bézier representation of the splines.

R. WALTER

Differential Geometry and Surface Rendering

We develop a method for generating and employing contours and (self)inter-
sections of arbitrary. smooth surfaces for the purpose of visibility clarifying.
The result relies on differential geometric integer invariants, called sight
indices which describe the change of visibility. These are the means to
render distinguished curves like contours, (self)intersections, and boundaries,
including visibility. In the same manner, but with different types of index
formulas, arbitrary curves can be rendered. Also, more than one surface is
allowed. One advantage is that the (visible parts of) curves are drawn in one
stroke. Thus the method is especially suitable for gnerating high quality
plots on plotters.

W. DAHMEN

Some Remarks on Convexity Preserving Interpolation

Given any finite set of points in R® a method for constructing a tangent
plane continuous plecewise quadratic surface with prescribed topology is
described. This method interpolates the given data with prescribed normal
directions. In particular when the data come from a convex surface, i.e. when
a convex piecewise triangular interpolant exists, conditions are discussed
that ensure the piecewise quadratic interpolant to be convex as well. Specifi-
cally, the role of a certain free shape parameter in this context is il-

lustrated by some graphical examples. Efficient ways of rendering the
quadrics are indicated. :

Deutsche
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N. DYN
Recursive Subdivision Curves and Surfaces

A family of interpolatory subdivision schemes with tension control for the
design of curves and surfaces is reviewed. Smoothness properties of the
limit curves/surfaces are discussed and the performance of the schemes is
demonstrated by several pictures. In particular, the effect of the tension para-
meters is tested. All the schemes above are shown to be perturbations of
known schemes, with the tension parameter controlling the size of the per-
turbation. Small positive values of the tension parameter yield a scheme
which produces a limit curve/surface with one more degree of smoothness.

R. N. GOLDMAN

Algorithms in the Style of Boehm and Sablonniere

The de Boor algorithm can be extended to curves which are not strictly B-
splines by allowing either infinite or decreasing knots. Blossoming can then
be applied recursively to these curves to compute the dual functionals of
the corresponding polynomial bases. This observation leads to change of
basis formulas which are the analogues of knot insertion techniques for B-
splines. These methods are applied to generate transformations between the
B-spline, Bézier, monomial, and power forms of a curve which are the
direct analogues of Boehm's knot insertion algorithm and Sablonniere's
algorithm for converting from B-spline to Bézier form.

H.-P. SEIDEL

Symmetric Recursive Algorithms for Curves and Surfaces

We introduce the concept of a symmetric recursive algorithm and show that
in the case of curves this leads to B-splines. We then apply this concept to
surfaces and construct a new patch-representation for bivariate.polynomials:
The B-Patches share many properties with B-spline segments: Besides their
control points they are influenced by a 3-parameter family of knots. If all
knots coincide, we obtain the Bézier representation of a bivariate polynomial
w.r.t. A(R,S,T). Therefore B-Patches are a generalization of Bézier patches.
B-Patches have a de Boor like evaluation algorithm, and, as in the case of
B-spline curves, the control points of a B-Patch can be computed by simply
inserting a sequence of knots into the corresponding polar form. In particul-
ar this implies linear independence of the blending functions. Furthermore,
B-Patches can be joined smoothly and they have an algorithm for knot insert-
ion that is completely similar to Boehm's algorithm for curves.

After studying B-Patches we go back to curves and somewhat relax our sym-
metry conditions. This leads to geometric spline curves. In particular we

show that B- and y-splines have a de Casteljau type evaluation algorithm .

that starts with the given spline control points and computes the function
value by repeated linear interpolation. This is surprising since it has been
previously conjectured that no such algorithm for B- and y-splines exists.
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L. RAMSHAW

The Progressive Case of the de Casteljau Algorithm for Surfaces

The de Casteljau Algorithm for curves has two variants. The plain case
evaluates a plynomial curve segment given the coefficients of its Bernstein
expansion, that is, its Bézier points. The progressive case evaluates a spline
curve given the coefficients of its B-spline expansion. It turns out that the
de Casteljau Algorithm for surfaces can also be extended from the plain case
to an analogous progressive case. Unfortunately, the resulting algorithm can-
not be applied in any straightforward way to evaluate --say--a box spline

surface. Both polar forms and the symmetric variant of the tensor-product
construction are useful in studying this situation.

M. DAHLEN, T. DOKKEN, T. LYCHE, K. MORKEN

WMMEMWW
Curves

We provide a surprisingly simple cubic Bézier curve which gives a 6-th order
accurate approximation to a segment of a circle. Joining the Bézier segments
we obtain a G2-continuous approximation to the circle. The error is approx-
imately onetenth of what is obtained by applying the general method of de
Boor, Hbllig and Sabin to the case of a circle.

T. LYCHE
Exponential B-splines in Tensiop

Splines in tension were introduced by Schweikert in 1966 as a means of
eliminating wiggles in cubic spline interpolation. We will construct a B-
spline representation for tension splines allowing multiple knots and differ-
ent tension parameters o, and linear B-splines for large values of o, The
result is a local representation for a class of functions which has the
smoothness of a cubic spline and the shape of a piecewise linear approx-
imation.

K. HOLLIG, H. MORGELE
G-Splines

We introduce a new type of spline spaces for constructing GC™™! surfaces
for (general) networks of n-th degree Bézier patches. In particular,
"G-Splines” allow to incorporate singular vertices (the number of coincident
patches does not equal 4) into a tensor product network. Our approach is

based on an idea of Goodman for constructing biquadratic GC! tensor product
patch networks and a special choice of the Geometric Continuity constraints.
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J. PETERS

On Smoothness and Compatibility

B. PIPER
M;MMML&WJMML

The problem of designing surfaces by using sectional curves motivates the
consideration of 'curves’ and this can be 'shaped’ automatically by use of
fill-in regions. Results of an interpolation-like algorithm that produces 'fat’
planar curves will be presented along with a preliminary algorithm to use
"fat" curves in the creation of surfaces.

R.'T. FAROUKI

Although the notion of a "parallel” curve dates back to Leibnitz, such loci
merit only passing mention in contemporary differential geometry books.
Recently, however, they have enjoyed a resurgence of interest motivated by
their applications in areas such as N.C. machining, geometry optics, toler-
ance analysis, and path-planning. We examine certain fundamental pro-
perties of offset curves form an analytical, algebraical, and topological
perspective. Irregular points arise on an offset whenever the generator
curvature attains a certain critical value, an they may be cusps (sudden
tangent inversions) or extraordinary points (tangent-continuous points of
infinite curvature). Further, there exists a one-to-one correspondence
between certain regular "characteristic” points (turning points, inflections,
and vertices) on a given generator curve and each of its offsets.

From the algebraic perspective, we show that the "interior” and "exterior"” .

offsets to a polynomial generator of degree n, taken together, constitute an
algebraic curve of degree 4n- in general. A simple closed-form expression
for the implicit equation of the offset is presented, and it is seen that the
degree is reduced by 2 for each "cusp” of the generator. Algebraic methods
also furnish an algorithmic basis for identifying all self-intersections of the
offset which are required when "trimming" it.

G. M. NIELSON
Sphere Splines with Application -

Based upon control points on the surface of a sphere, we introduce a new
plecewise, C?, curve which remains on the sphere. The construction of this
curve is analogous to cubic B-splines where the individual cubic segments
are represented as Bernstein/Bézier curves. The spherical analogs of the
Bernstein/Bézier curves are defined by means of a spherical version of the
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de Casteljau algorithm based upon geodesic interpolation on the sphere rather
than linear interpolation. Several of the basic properties of these new curves
are established and some examples are given. Using quarternions and a
4D extension of our spherical curve we show how to animate rotations.

R. K.E. ANDERSSON

Curves as Boundaries of Surfaces with Prescribed Shape

We will discuss the problem to generate parametric polynomial space curves,

close to a set of fitting points and satisfying constraints. The constraints are

derived from desired properties of the surfaces, to be bounded by a network
' of these curves. The need to satisfy the conditions while keeping the curve

close to the fitting points gives rise to quadric minimization problems with

nonlinear constraints. The solution process for these problems, however, is
facilitated by benefitting from their separable character.

D. FERGUSON

Directions in Curve and Surface Design

" Curves and surfaces which are appropriate for manufacturing are difficult
to define. In this talk a brief review of the problems will be given. Then, two
approaches will be described. The first approach is constrained fitting of
data and can be described as a success. The second is a variant of the TF1
method of curve blending and represents work in progress.

Berichterstatter: H. Pottmann
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