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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e r ich t 18/1989

Riesz Spaces and Operator Theory

23.4. bis 29.4.1989

Die Tagung ;'·Riesz Spaces and Operator Theory" fand unter Leitung von Herrn Pro­
fessor W.A.J. Luxemburg (Pasadena) und Herrn Professor H.H. Schaefer (Tübingen)
statt. In 37 Vorträgen wurden aktuelle Forschungsresultate vorgestellt. Ferner wurde
die Tagung zum Knüpfen von Kontakten, zu intensivem Gedankenaustausch und zur
Zusammenarbeit genutzt.

Das Spektrum der Vorträge war weit gefächert. Ein großer Teil der Vorträge hatte
die Struktur von Riesz-Räumen und von Operatoren zwischen lliesz-Räumen zum
Gegenstand. Ergebnisse zur Struktur vc;>n Banachverbänden und Funktionenräumen,
positiven und regulären Operatoren, Operatorenklassen, Tensorprodukten und Ver­
bandsalgebren wurden vorgestellt. Ferner wurden Beiträge zur Ergodentheorie und
zu Operatorhalbgruppen geleistet.

In mehreren Vorträgen wurde über spektraltheoretische Untersuchungen bei posi­
tiven Operatoren und in Banachverbandsalgebren berichtet. Darüber hinaus gab
es Beiträge aus der nicht-kommutativen Theorie, zur Beweisbarkeit bestimmter Re­
sultate mit und ohne Auswahlax~omund zur Äquivalenz von Darstellungssätzen im
Axiomensystem ZF. .

Schließlich wurden Fragen au~ der Maßtheorie, der Ökonomie, der Topologie sowie
zu invarianten Teilräumen, Sätzen vom Hahn-Banach-Typ, konvexen Funktionen unde der Berechnung vemOperatornonnen behandelt.
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On the Daugavet equation

The following two statements provide a unified approach (ideologically going back
to G. Lozanovsky) allowing one to describe all previously known classes of operators
satisfying the Daugavet equation (DE). Let X be an AL- or an AM-space and let
T : X --+ X be a bounded operator.

Proposition 1. If the identity operator 1 and T are disjoint, then T satisfies (DE),
i.e., 111 + TI! = 1 + IIT II·
Proposition 2. H Xis, additionally, atomless, then each weakly compact operator e
T is disjoint with I.

Corollary 3. (Daugavet, Lozanovsky, Foias-Singer, Krasnoselsky, Babenko-Pichu­
gov, Holub, Kamowitz, Chauveheid) If X is atomless, then every weakly compact .
operator on X satisfies (DE).

The following theorem describes a new class of spaces with the same property. Let
Z = L 1(p) EBoo L 1(p) or Z = Loo(p) 6h Loo(Jl), where p, is atomless.

Theorem 4. Every weakly compact operator on Z satisfies (DE).

We conclude with the following result which is a slight generalization of a correspond-
ing result due to Holub. .

The~rem 5. For each T : X --+ X, where X is as above, thereexists / E {-I, I}
such that 111 + I'TII = 1 + IITII.

C.D. ALIPRANTIS

Inductive limits 0/ AM-spaces and the overlapping generation3 model

This work deals with the overlapping generations (OLG) model of P.A. Samuelson.
In this model there are a eountable number of overlapping generations and eaeh
generation.consists of a finite number of finitely lived agents. In the simplest case, a
generation eonsists of a single agent who lives for two periods. Each agent is endowed
with an infinite consumption stream Wt which is zero in every period except possibly
the two periods in whieh it is alive, i.e., w, = (0,0, ... ,w:'w:+1

, 0, 0, ... ). The model
presents a new commodity-prie~ space duality for the OLG model that also allows
for an interpretation of priees as rates of interest.
The eonstruction of the commodity space for the whole economy consists of "glu­
ing" together the overlapping eommodity spaces in a eoherent fashion. The natural
eonstruction is to form the inductive limit of the individual commodity spaees whieh
as it turns out are AM-spaees. The priee spaee is then taken to be the projective
limit of the AM-spaees. The main result of this work establishes that if the Riesz
dual system in eaeh period is symmetrie, then the OLG model has a competitive
equilibrium that can be supported by an order continuous positive price.
(This is a joint work with D.J. Brown and O. Burkinshaw.)
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W. ARENDT

S. BERNAU

Archimedean almo3t f-algebra3

It is weIl known that an Archimedean f-algebra is necessarily associ~tive and COffi­

mutative, and that these facts have elementary proofs. Recently it has been shown
that if we consider almost f-algebras (requi~ingonly that a A b = 0 implies ab = 0)
the Archimedean property does not force associativity but still forces commutativity.
In the talk I will discuss an elementary proof of this last fact. The discussiop is based
on arecent joint paper with C.B. Huijsmans..

G. BUSKES

Ultrapower3 0/ a Riesz space

We define the ultrapower Fv of an Archimedean Riesz space F over a filter .V. We use
these ultrapowers to show - in ZF - the equivalence of certain extension theorems.
As a result we obtain that some representation theorems are equivalent in ZF. As an
example of the latter we show that the following are equivalent:

Stone Representation Theorem for Boolean Algebras.
Kakutani Representation Theorem for AM-spaces with unit.
Gelfand Representation Theorem for Gelfand algebras.
Gelfand-Naimark-Segal Representation Theorem.
Maeda-Ogasawara for semisimple f-algebras.
Maeda-Ogasawara for Archimedean Riesz spaces with unit.

V. CASELLES

Continuity 0/ the spectral radius in the order topology

Let us suppose that 0 ~ T is an irreducible operator on a Banach lattice E and r(T)
is a Riesz point of G(T). Let 0 ~ Tn be a sequence of operators on E such that
(Tn ) order converges to T and II(Tn - T)+ 11 --+ O. Then r(Tn ) --+ r(T). Moreover if
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o "I- V n ~ 0 is a norm one solution of Tn V n = r(Tn)vn and Tv = r(T)v, 0 :/= v ~ 0,
IIvlI = 1, then V n -+v. To prove this we assurne .that T is AM-compact. We
should not worry to get a solution of Tn V n = r(Tn )vn because we show that for n

. sufficiently large r(Tn ) is also a Riesz point of a(Tn ). In all this work we suppose
that E is a Banach lattice with order continuous norm. Applications are given to
the computations of eigenvaJues and eigenvectors for infinite positive matrices and
integral kerneis.

P.G. DODDS

N on-commutative K öthe duality

We consider~ua1ityth~ (in the sense of Köthe) for (a dass of) symmetrie operator •
spaces L"'( M) .where M is the spaee of T-measurable operators (in the sense of
Nelson) affiliated with a given semi-finite von Neumann algebra M, equipped with a
normal faithful semi-finite trace T.

(This is joint work with Theresa K.-Y. Dodds and Ben de Pagter.)

T. DODDS

General M arlcm inequality

Let M be a von Neumann algebra on a Hilbert space H, with anormal faithful.
semi-finite trace T. Denote by M the set of all T-measurable operators in the sense
of E. Nelson. For x E M the generalized 3ingular value J1..(x) is defined by:

J1.t( x) = inf{s ~ 0 : T (X (s ,00) ( Ix1) :5 t} , t ~ o.
The following inequality holds: for x,y E M,

sUPIEI:5Q JE lJ.lt(x).- J.tt(y)ldt 5 Jo
Q

ßt(x - y)dt for all Q ~ o.
This generalizes the results of:
(1) A.S. Markus (1964) for the case that M = L(H), x, y are compact,
(2) F. Hiai and Y. Nakamura (1987) for the case that the trace T is finite,
(3) G.G. Lorentz and T. Shimogaki (1968) for the case that M is commutative.

(This is joint work with Ben de Pagter and Peter Dodds.) •

G.GODEFROY

Hypercyclic operator.,

In this joint work with J. Shapiro, we show that large classes of operators, modelIed
on the backward shift on Hilbert spaces, are such that there exists a de"nse linear
subspace such that every non-zero vector in this subspace has a dense orbit. Aß?ong
other results, we obtain a very general result which extends previous theorems of
Mac Lane andBirkhoff.
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J.J. GROBLER

ResultJ about cyclicity 0/ the peripheral spectrum

. Let A be a unital Banach lattice algebra and let z E A+ such that IIzll ~ 1. We prove
that the peripheral spectrum of z is a finite union of non-trivial finite subgroups of the
circle· group if and only if there exists an integer ko ~ 0 such that Ilzn- zn?-l:o 11 --+ 0 as
n --+ 00 and Ilzn

- zn+1:1l = 2 for all k with 1 ~ k < ko and for all n ~ 1. Moreover, ko
is the least common multiple of the orders of the finite groups of which the peripheral
spectrum is the union. In order to do this we prove a necessary condition for a positive
element to have a cyclic peripheral spectrum. The main result is a consequence of
the zero-two law for positive elements in the unit ball of A.

R. GRZASLEWICZ

On extreme p03itive operator3

Let 1 < P < 00. And let 0 ;j; T E .c+{lP, IP). We say that the entries of T are
maximal if Il(Tij + 1 6ii6jj)11 > 1 for every I > O. Put

M(T) = {(Xi) ~ 0: Ltij(LtjkXl:)P-l = xf-l}.
j k

Theorem. T is an extreme positive contraction if and only if
(i) the entries of T are maximal, and.

(ii) M(T) ~ 0 and yr-1tjiXi is an extreme doubly stochastic matrix with respect to
(yr), (xf), where (xd E M(T) and Yj = Ei tjkXk.

W.HACKENBROCH

Bands 0/ invariantly extensible measure3

Let A C 8 denote two u-algebras of subsets of some set fl; G denotes a semigroup
of A- and B-measurable tr~sformationsof 11. For a given IJ E M(A)a ( set of
finite G-invariant measures on A) we study the convexstructure of tbe set M(B; IJ)a
of G-invanant measure extensions of IJ; in particular we ask for those properties of
extensions such that the set of allIJ E M(A)a admitting such extensions farms (the
positive cone of) a band in the vector lattice of G-invariant measures on A.

Theorem. C C M(A)a is a band in M(A)a iff the following two implications hold:
(a) IJ E C => IJ' E C for each IJ' -< IJ in M(Aa);
(b) IJ E M(A)a, (Zn)nEN disjoint sequence in A with union Z, then IJZ E C if all

IJZn E C.

Using this characterization it is shown that the set C of all J.L E M(A)a, admit­
ting invariant extensions, such that each invariant extension v E M(8; J.I.)a has a
barycentric decomposition v = JexM(BiP) v'p(dv'), forms a band in M(A)a.
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F.L. HERNANDEZ

On IP -complemented subspaces in Orlicz function spaces

A Banach function space X([O, 1]) == X contains a singular IP-eomplemented copy if
there exists a complemented subspaee H in X isomorphie to IP, and H is not the
span of a sequence of pairwise disjoint charaet~ristiefunctions.
For any p > 1 we prove the existence of an Orlicz function space LF [0, 1] with index
p containing a singular IP-complemented copy. This extends a previous result of
N. Kalton given- for Orlicz sequence spaces [F. For p = 1 there is 00 separable
Orlicz function space LF [0, 1] containing a singular P-complemented copy. Before
we characterize when the inclusion map between Orlicz function spaces is a disjointly
singular operator.
(This is part of a joint work with B. R.-Salinas.) •

C.B. HUIJSMANS

The second order dual of f -algebras

Let A be an f-algebra with separating dual A'. Then the order bidual A" is again
an f-algebra with respect to the Arens multiplication. An essential ingredient of the
proof is the following: if (A')~ denotes the order continuous dual of A' and (A')~ the
singular dual of A', then F· G = G· F = 0 for all F E A", G E (A')~, and hence
F· G = G· F E (A')~ for all F, G E A".
An interesÜng corollary is that G2 = 0 for al1 G E (A')~, so if A" is semiprime with
respect to the Arens multiplication (which is eertainly the case if A, or even A", has
a unit element) then A" = (A')~.

Finally, if for F E A" the mapping VF : A' -+ A' is defined 1?y vF(f) = F· f for all
f- E A', then VF E Orth(A'). The mapping v: A" -+ Orth(A') defined by v(F) = VF
is an algebra and a Riesz homomorphism. It can be shown that v is injective iff A"
is semiprime and that v is surjective (equivalently, v is bijective) iff A" has a unit
element.

A.IWANIK

Multiple recurrence for Markov operators

For a single Markov operator T and its associated Markov process ~n there exists a •
point x in the phase space X (which is assumed metric compact) such that for every
I ~ 1 and every neighbourhood U of x one has Px(~m E U, ~2m E U, ... , ~'m E U) > 0
for some m ~ 1.
If ~ is a family of Markov operators on C(X) then we say that x is multiply recur~ent

w.r.t. cI» if there exists a sequence nk -+ 00 such that for any 0 f:. f 2: 0, fex) > 0,
and any T E cI» the inequality Tnlc f( x) > 0 holds for all sufficiently large k. The above
result shows that multiply recurrent points exist whenever ~ is a cyclic semigroup.
A stronger result, obtained jointly with T. Downarowicz, says that such points exist
if ~ is a commutative semigroup generated by two operators. The main tool is the
Furstenberg-Szemeredi recurrence theorem.
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H. KÖNIG

The abstract Hahn-Banach theorem due to Rode

Mo.re than ten years ago Rode [Areh. Math. 31 (1978), 474--481] fouod an abstract
Hahn-Banach theorem which is powerful and simple and compreheods the familiar
and less familiar "concrete" versions of that theorem. But his praof of the abstract
theorem was complicated "and could not be simplified over tbe years. The actual rea­
son for the present talk is tbat the speaker recently found an adequately simple proof
of Rode's theorem [Aequat. Math. 34 (1987), 89-95]. The short talk formulates the
theorem and indicates how the praof proceeds, the~ how to derive concrete versions
from it. As an application which seems to be not attainable by the usual Hahn­
Banach versions a result of Kuhn on partially convex funct10ns [General Inequalities

• IV, OberwolIach 1983] is discussed.

S. KOSHI

Dua13 0/ convex functions and convex operators

1. Let (!1,jJ) be a measure space ~d f(.,.) : IRd x n -+ IRU {co} a"function which
is convex on lRd for a fixed t E n. We will show the exact formula of the dual F* of
F which is defined as

F(a) = Lf(a, t)dv(t) for a E ]Rd,

2. Let E and F be Dedekind complete Riesz spaces and <P be a convex oper~tor from
E to F. We will define the dual of <p in a reasonable way in accordance with the
duality theorem.

c.c. LABUSCHAGNE

•
Tensor products 01 Riesz spaces

The Riesz tensor product E@F of Archimedean ,Riesz spaces E and F was introduced
by D.H. Fremlin in 1972. We prove:

H h E (E@F)+, then there exists (x, y) E E+ x F+ such that. for every c > 0
there exists V e E E+ ® F+ := {L:~=l Xi ® Yi : Xi E E+, Yi E F+, nEIN} such that
o~ h - V e < cX ® y.

This property improves the approximation of elements in the Riesz tensor product
by elements of the vector space tensor product as was done by D.H. Fremlin, H.H.
Schaefer and A.R. Schep.

S. LEVI

Topologies on hyperspaces

Let (X,d) be ametrie space and consider the hyperspaceof X, cL(X) = {F cX : F
is closed and nonempty}. There are several ways to topologize cL(X). The HausdortI
metric induces a topology on cL(X) that can be split ioto its "upper part" Hf and
its "lower part" Hi. Similarly for the Vietoris topology V = V+ V V-, the Wijsman
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topology Wd = wt v wi and Kuratowski convergence K = K+ V K-. It is known
that V- = Wi = K- and that V+ => Ht => wt => K+.

Theorem 1. i) V+ = sup{W: : p is ametrie equivalent to d} .
. ii) Ht = sup{W: : p is ametrie uniformly equivalent to d}.
Theorem 2. Ht = wt if and only if (X, d) is totally bounded.

Theorem 3. The suprema of Theorem 1 are actually maxima if and only if X is
compact in case i) and (X, d) is totally bounded in case ii).

An open' question is to characterize inf{W: : pis equivalent to d} and we conjecture
that this is the weakest topology on cL(X) which is stronger than upper Kuratowski
convergence.

z. LIPECKI

Ideals' and sublattices in linear lattices and F -lattices

The talk is based on joint work with Yu.A. Abramovich.
Let X be an F-Iattice, i.e., a topologicallinear lattice the topology of which is com­
plete and metrizable. Then:
(1) Every ,ideal in X of finite codimension is closed." (For X being a Banach lattice
and codimension 1 this result can be {ound in H.H. Schaefer's monograph, Banach
lattices and positive operators.)
(2) If X is infinite-dimensional, then it contains (a) a prime ideal of codimension at
least 2No (and so non-closed), (b) a dense (linear) sublattice of an arbitrary codimen-.
sion between 1 and 2No • (For codimension 1 part (b) was previously obtained by the
authors jointly with G.Y. Rotkovich)..
Both (1) and (2) fail without the assumption of metric completeness. In particu­
lar, every prime ideal of the linear lattice 5(20 ) of all real-valued functions on a set
n with finite range is of codimension 1, and every sublattice of 5(2°) is uniformly
closed. .

H.P. LOTZ

•

On the dual 0/ weaTe LI

Let (X, E, J.l) be a non-atomic "separable measure space. We give a representation
theorem for the dual of the Lorentz space W = L1,/X)(X, E, J.L). Let W:n be the
subspace of W' generated by the maximal elements of the unit ball. W:n is a closed •
sublattice and an AL-space. The ideal generated by the extreme points of the unit ball
of W' is a weak· dense band and lattice isometrie to aspace (2: ffiaEAL/X)(Ya),l(A)
where eard A = 2C

•

W.A.J. LUXEMBURG

Superreflezivity 0/ Orlicz spaces

The standard part or nonstandard huH of an enlargement of a Banach space has
a finite dimensional subspace .structure that is closely related to that of the given
Banach space. For instance, the "nonstandard huH is finitely representable in the
given Banaeh spaee. As a consequence we have the theorem of Henson and Moore,
that a Banach space is superreflexive iff its nonstandard huH is reflexive. This can
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be used. to show that certain Banach function spaces such as Orlicz spaces have
the property that they are superreflexive if and ooly if they are reflexive. A fact
well-known for the V-spaees, 1 < P < 00.

B. DEPAGTER

Norm convergence in rearrangement invariant Banach function spaces

Given a (u-finite) measure space (0, E, Jl) we denote by f* the decreasing rearrange­
ment oI I/I for a function / E LO(S1, Jl), i. e.,

f*(t) = inf{'\ ~ 0 : Jl(I/1 > A) ~ t}, t ~ O.

Let p : LO(lI4, m)+ ~ [0,00] (m = Lebesgue measure) be a function norm which is
rearrangement 'invariant (i. e. f* = g* implies p(/) = p(g)) and has the Riesz-Fismer
property. Furthermore we assume that 0 :::; fn --+ f a.e., p(f), p(fn} < 00, implies
that limin! p(/n) ~ p(f). For a measure space (0, E, Jl) we now define L p(!1, E, p.) =
{f E LO(n, p.): p(f*) < oo}, which is arearrangement invariant Banach function
space with respect to the norm li/Hp = p(f*). The main result in this talk is:

Theorem. Suppose in addition that pis order continuous. For /, fn E L p(!1, JJ) (n =
1,2, ... ) the following statements are equivalent: .
(i) 111 - fnllp ~ 0 (n --+ 00).

(ii) In ~ / weakly and pe!: - f*) --+ 0 (n ~ (0).

F. RÄBIGER

Dunjord-Petti& operator.! between certain classes 0/ Banach lattices

We introduce the dass of weak Schur spaces, i.e., Banach lattices in which rela­
tively weakly compact sets and almost order bounded sets coincide. There follows
a detailed study of Banach lattices in which every semi-normalized, order bounded,
weakly null sequence contains a subsequence satisfying a lower resp. an upper 2­
estimate. As a consequence we obtain that each bounded sequence in a weak Schur
space has a subsequence which either converges or satisfies a lower 2-estimate. This
generalizes a result of D.J. Aldous and D.H. Fremlin. From the previous results we
obtain conditions under which non-Dunford-Pettis operators between certain classes
of Banach lattices fix a copy of 12 • This generalizes results of H.P. Rosenthal and of
N. Ghoussoub and H.P. Rosenthal.

A. VAN ROOIJ

Repre.!entation theoremJ without the axiom 0/ choice

Most representation theorem.s for Riesz spaces, such as the Yosida, Maeda-Ogasawara
and Kakutani theorems, are based upon the Axiom of Choice or the Ultrafilter The­
orem. We present a systematic way to obtain consequences of these representation
theorems within the system ZF. To this end we prove a representation theorem·for
"small" Riesz subspaces and then proceed to an inductive limit.
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H.H. SCHAEFER

Dual characterization 0/ order continuity

We ".dualize" the concept of order continuity (or sequential order continuity) for lin­
ear operators between lliesz spaces. The general hypothesis is that the range space be
separated by its order continuous (or sequentially order continuous) linear function­
als. As applications, we pr~ve rather strong closure properties of the respective sets
of positive and of general order continuous linear operators in L(E, F) and Lr(E, F),
respectively, where E and F are lliesz spa~es. This entails, in particular, a character­
ization of one-parameter semigroups on LOO(p.) which are adjoints of Co-semigroups
on L1(p.).

E. SCHEFFOLD

Bidual von F -Banachverbandsalgebren

Es wird berichtet, daß der Bidual einer solchen Algebra wieder eine F-Banach­
verbanclsalgebra ist und somit direkte Summe seines Annulatorbandes und dessen
orthogonalen Komplements ist. Ferner werden diese heiden Summanden charak­
terisiert. Unter anderem wird gezeigt, daß die Banachverbandsalgebren Co(X) die
einzigen F-Banachverbandsalgebren sind, deren Bidual ein algebraisches Einselement
mit Norm 1 besitzt.

A.R. SCHEP

N orms 0/ positive operators on LP -spaces

Let 0 ~ T : V' -+ Lq, 1 ~ p, q ~ 00, and let IITllp,q denote the operator norm. We
show that solving T*(T/)q-1 = >../P-1 can be used to compute the exact value of
IITllp,q and that solving T*(T/)q-1 ~ >../p-1 can be used to bound IITl!p,q. As an
application we compute the exact value of IIVl!p,q, where V f(x) = fox f(t)dt is the
Volterra operator from LP([O, 1]) -+ Lq([O, 1]). Other applications consist of a new
proof of Maurey's factorization theorem for positive linear operators, interpolation
of positive linear operators, etc.

K.D. SCHMIDT

Daugavet's equation and orthomorphisms

Let E be a Banach space. A bounded linear operator T : E -+ E satisfies the
Daugavet equation if 111 + TII = 1 + IITII holds, where I denotes the identity
operator. It is remarkable that in most of the existing results on Daugavet 's equation
E is actually a Banach lattice, whereas Banach lattice methods have only been used
by Lozanovskii (1966) and Synnatzschk~(1978). The aim of this talk iso to show that
orthomorphisms in Banach lattices provide a useful tool for either extending known
results on D~ugavet'sequation or for unifying their proofs. In particular it is shown
that every Dunford-Pettis operator in an AL-space or an order complete AM-space
with unit which (in either case) is assumed to have no discrete elements, satisfies
Daugavet's equation.

•
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G. SWANEPOEL

Semi-Carleman operators in Riesz spaces

We define semi-Carleman operators in Riesz spaces and consider the duality between
Carleman operators and semi-Carleman operators.

L.M. VENTER

The periphera.l spectrum in Banach lattice algebras

In 1980 Scheffold published the following theorem:

H E is a Banach lattice algebra for which the set M of non-trivial multiplicative
linear functionals on E + iE is modulus-invariant, then M is cyclic.
H E is commutative and unital, and z E E + iE with r(z) = 1, the following holds:
(i) z ~ 0 =} ur(z) is cyclic.

(ii) z > 0 =} Ur ( z) = {I}.
(iii) z has period s => od:+l E u(z), o"k E u(lzl), 0 E ur(z), k E l.

We show· that this result may also be obtained without using representation theory..

J. VOIGT

Approximation 01 multipliers by regular operators

Let G be a locally compact Abelian group, Gits dual group, and A, >. the respective
Haar measures. For 1 < p < 00, let .ei(Lp(G» denote the operators commuting with
translations. Recall .ci(Lp(G)) C .ei(L2(G», and recall that, via Fourier t~ansfor­

mation, every operator T E .ci(L2 (G» corresponds to a multiplication operator by a
function t E Loo(G).

Theorem. Let 1 < p < 00, T E .ci(Lp(G», and assume T E .cr(Lp(G» (the

operator norm closure of the regular operators .er = linC+). Then T E B(G) the
(uniform closure of the Fourier-Stieltjes algebra on G).
Example. The Hilb~rt transformation on Lp(IR), Ip(l), Lp(II) (1 < P < 00), does
not belong to' .er.
As a consequence one ohtains that, for any infinite dimensional Lp-space (1 < p < 00),
.er(Lp) is not dense in .c(Lp). .

A.W. WICKSTEAD

Positive numerical range

H E is a (real) Banach lattice and T E L(E) then the positive numerical range of T
is V+(T) = {feTz) : x E E+, f E E+, IIfll = IIxll = fex) = I}, which is a non-empty
bounded interval in IR. The positive numerical radius of T is v+(T) = sup{IAI : A E
V+(T)}. My work on this is still in progress but results include:

1. H T ~ 0 ihen V+(T) ~ IR.;-, hut the converse is false.
2. H T ~ 0 then IITII ~ v+(T) ~ IITII/e. This does not extend to non-positive

operators even if E is 2-dimensional.
3. HT ~ 0 and Eis Dedekind u-complete or an M-space, then V+(T) ~ V+(T*) ~

V+(T).
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4. Wit~ hypotheses of (3) if there exists a > 0 such that A ~ a for all A E V+(T)
then T ~ alE.

5. If E is any Banach lattice, T E L(E), eT ~ 0 and IITII < log 2 then there exists
a > 0 such that eT ~ alE.

6. If A is a real 2 x 2-matrix and e.A 2:: 0 then the diagonal entries in eA are non-zero.

F. WIlD

_Choice fr~e repre8entation8 01 Rie8z spaces

We prove that Yosida's Representation theorem for uniformly complete Archimedean
Riesz spaces with strong unit can be appropriately rephrased to give a Representation
theorem not inclosing the axiom of choiee. We have:

The category of uniformly complete, unital, Arehimedean Riesz spaces is dually equiv­
alent tt? the category of completely regular compaet loeales.

. Dur methods are applieable to the other known representation theorems in Riesz
space theory. Applications to tensor products are given.

G. WITTSTOCK

The ideal 0/ completely positive compact maps on non-commutative LP -spaces

This is areport of results due to E. Neuhardt (Saarbrücken).
We show that the eompletely positive compact maps from LP(M) into Lq(N), M
and N von Neumann algebras, form an order ideal whenever p > 1 and q < 00. This
means that every completely positive map whieh is dominated by a compact map is
itself compact. Since a positive map from LP(M) into Lq(N) is already completely
positive if M or N is abelian, this ineludes the abelian result. The main idea to
the non-commutative extension consists in replaeing formulas for the infimum of two
linear operators by representation theorems for algebras and and linear functionals.
The order ideal of completely positive compact maps from M into Lq(N) , q < 00,

is monotone closed. Hence every completely positive map from M into Lq(N) is the
unique sum of two completely positive maps of which one is compact and the other
dominates no other compact map. This can be considered as a non-commutative
analogue of the band decomposition.

M. WOLFF

On the dilation 018trongly continuOU8 semigroups 01 contractions on LP

Let E = LP(O, I-J) where (n, Jl) is a finite measure space, and let (Tt)t~O b~ a Co­
semigroup of positive contraetions on E (satisfying an additional hypothesisin case
p > 1). Then there exists another measure space (f2, fi.), a CO-group (Ut)tER oflattice
isomorphisms on F = V(n, fi.), an embedding j : E --+ F, and a positive contraction
P -from F onto E such that the following diagram commutes for all t ~ 0

e·

E

F
VI

E

F
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This theorem answers a question raised by I. Prigogine.

R. ZAHAROPOL

.Ergodie decompositions 01 Banach lattices

We will be concemed with the description and the properties of two ergodie de­
compositions which we have recently obtained: an extension of the Hopf ergodie
decompo.sition and another decomposition which we call the OII-decomposition. As
an application, we will discuss a characterization of K B -spaces among the order
continuous Banach lattices; the characterization is stated in terms of subinvanant
elements for positive operators and of the two above-mentioned ergodie decomposi-
tions. .
Let E be a Banach lattice, let E' be the dual of E, let T : E -+ E be a positive
operator, and let T' be the dual of T. We will define two conservative ideals Ie, Be
in E, E', respectively, and two dissipative ideals Iv, Bv in E, E', respectively. It
turns out that E' = Be EB Bv; if E has order continuous norm, then E = 1e ffi ID~
Under fairly general conditions the conservative and the dissipative ideals have all
the properties the conservative and tbe dissipative parts (in the classical Hopf de-
composition) have. .
Given a Banach lattice E and a positive operator T : E -+ E, we will' define two
bands: II(T) and n(T). If E has the projection property, then E = II(T) ffi n(T) .
(we say that E has an OII-decomposition generated by T). The band II(T) plays an
important role in the study of T -subinvariant elements in E and in a characterization
of the K B-spaces among the Banach lattices having order continuous norm.

Berichterstatter: F. Räbiger
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