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Tbe conference was led by Professor F. Buekenhout (Brussels) and Professor D.R Hughes

(London). Tbere were three riiain strands of interest Many of the questions considered concerned

diagram geometries. Of particular interest was the construction of new geometries with given

groups of automorphisms, far instance using graphs on which such groups are .known to aet or by

construeting extensions of preexistirig g~etries. Another problem associated with diagram

geometries was that of classifying the geometries for a given diagram, usually subject to additional

constraints needed to malre the problem tractable. Further con~butionsestablished the existence or

nonexistence of sttuctures such as block designs and generalized quadrangles with prescribed

parameters and properties. Also discussed were problems conceming various subsets and

configurations in classical geomenies. Throughout the subject there is a rieh interplay between the

methods of group theory and of combinatorics.

Abstracts

A, Delandtsbeer:

Flag-transitive'linear spaces, maximal <V, tl-ares aild semiovals.

Current work of Buekenhout, Delandtsheer, Doyen, Kleidmann, Liebeck and SaxI aiming at

classification of the fmite linear spaces 5 with a flag-transitive automorphism group G provides

presently a complete list of such pairs (5, G) which are not of affine type (i.e., G has no

elementary abelian minimal normal subgroup acting regularlyon the points of S).

We derive from this partial result a classification of

(i) the secant-transitive maximal (v, k)-arcs;

(ü) the thick semiovals transitive on their ineident point-secant pairs in finite projective planes.
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W.Haemers:

Partial circle geometries.
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A ~artiaI'circle geometry (tbe name is still under discussion) is a one-point extension of a panial

geometry such that the tripies that are on a circle (= block) form a regular 2-graph.

Examples are provided by some known structures:

- extended generalized quadrangles with s =2;

- half of tbe circles of a Möbius plane;

- the tlnice tI 2-(16, 6, 2)-design.

Our new example can be constructed from the strongly regular graph on 176 vertices having Mn e:
as its gmup of automorphisms. By this example we have a better description of the corresponding

partial geometry (which was constructed earlier ~y the author).

A. Pasjnj:

On geometries which &Te Iocally polar spaces.

I give a sketch of one of the possible ways to prove uniqueness statements 'as the fmal step in the

classification of a given class of geometries.

This method relles on the fact that a 1lag-transitive geOmetty ris simply connected iffAut(I) is the

amalgamated product of the ~tabilizers in Aut(I) of the elements of achamber. I apply this trick to

the case of flag-transitive locally classical C2 geometries. We get a classification of this class of

geometries, putting together contributions by several people (Buekenhout-Hubaut,

Weiss-Yoshihara, DeI Fra-Ghinelli-Meixner-Pasini).

I show ODe way to write a unified version of the proof of tbat classification theorem (being

understood that other ways exist).

D. Ghjpellij

Extensions of<; geometries.

Let S be an extended generalized quadrangle of order (s, t) (i.e., a connected ineidence structure

such that every residue is a GQ(s, t». Recently"it has been proved that the diameter L1 of the

point-graph of S is at most s+1.

We show that L1 =s+l if and only if one ofthe following oceurs:

(i) t =1and S is isomorphie to the Johnson geometry on (2(S+1»)points (s>O);
s+l

(ü) s = 2, t = 2 or 4 and S is isomorphie to the affine polar space of order 2 and type~ or D2-.'

on 32 and 56 points respectively.

(ili) s = 1 and S is campiete tripartite on 3(t+1) points (r> 1).

(Joint work with A. DeI Fra.)
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S·Löwe:

Graups, strongly regular graphs, and stars.

A s~bset P of a finite group Gis called a (k, I, m)-star (ar partial addition set) if

p2 =(k-m)l + (/-m)p + mG

in the group algebra K[G). Let e be the exponent of~ and ~ be a primitive etth root of unity. Set

K:= Q(,;}. If 1t is a prime coprime with e, there exists an automorphismfn : K-+K induced by

~~c;n.

Theorem Let d := «1-m)/2"Y- + (k-m) and assume that P is a union of conjugacy classes.e (i) pllt) = {Pltl peP} = P (::) /J..Jd) = ..Jd ;

(ü) f J"d) = -vd => p[nJ nP = 0.

In case (i), G can be extended by at least the group of squares mod e (if each of them acts as a

morphism or an automorphisrn).

F. MazzoccB;

On (q+(. tl-ares of t)pe (0, 2, t> in PG(2, 12>'

Let T denote a (q+t)-point set in PG(2, q) such that the intersection numbers with respect to lines

are 0, 2, t (t = 0, 1, 2), i.e., a so-called (q+t, tl-are of type (0, 2, t).

Tbe results in the following have been obtained in a joint work with Gabor Korchmaros.

•
A simple counting argument shows that every point in T lies on just one t-secant and,

consequently, t divides q and q is even.

A class of examples is fouod for every q = 2' withr>2, and far every t = 2h with (r-h ) Ir.

Moreover, such examples have the remarkable property that all the t-secants are concurreot. We

conjecture that the same property holds for every T. This conjecture is proved to be true except far

q =2', r =(b+ l)c, t =2h, h = bc+1 with c>2, in which case the problem is still open.

Finally, a canooical representation ofT is provided in case all the t-secants be concurrent. Using

this representation, all sets T are classified for q = 8, 16 and t = 4.

Tbc generalized guadrangle of order (2.2) in an unusual setting.

Let K = Ze,l and M be a free K-module of rank 4. Let t/J : M xM~K be an hermitian fonn such

that there exists a basis (al'••. ,aJ of M with the following properties: t/J(ai, ai) = 2, <KaI'~) =
t/J(a3' a4) =-1, 4J(a2'~) =1+i, and t/J(ai, aj ) =0, for all 1 S i*.j S 4. Tben t/J is positive definite.
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WeputM2 =(m lmeM, ep(m, m)= 2). HmeM, letm· = {em; e a unitof K}, and

M 2* = (m* ImeM2).

In M2* there are pairwise orthogonal systems ofcardinality 4 which are detemrlned by each of their

elements. LetF =(E I E an orthogonal system as described above). Then IFI = ·15 and there is a

natural structure of GQ of order (2, 2) on F.

We deduce from this that 1M2*1 =60, 1M21= 240 and Aut(M, 4» is a nonsplit extension of 56 by

2+1+4*C4 with amalgamated subgroup of order 2.

Ir Hjrscbfeldj

Subsets of a finite plane.

IfP(;t) is the conic in PG(2,q) with equation yz - x2 = Az2, let K(A) = U P(;t) where A is a
A.eA

. subset of GF(q).

Theorem 1: For q an odd prime and 'a nonsquare in GF(q), the set K(A) is a Buekenhout-Metz

unita! when A = 'GF(~q).

Using the idea that P(Ä) is contained in E(Ä) (the internal points of P(Ä» if and only if Ä-jl i.s a

nonzero square and similarly P(Ä) is contained in I(Ä) (the intemal points of P(Ä» if Ä-J1 is a

nonsquare, it follows that, ifB, Aaresubsets of GF(q) with B contained in A and s is sufficiently_

small with respect to q, the set n E(Ä) n n I(Ä) has size -q/2s , where s =IAI. A
.teB .teA\B

disjoint union of such sets gives the following result:

Theorem 2: For every C E (0, 1) and every e>O, there is qO(E) such that, far any q>qo(E), in·

PG(2, q) there is a (k; Ä)-arc where n<cq and b(C-E)q2.

Ce Lefeyre-PemYj

New geometries for finite groups.

Let T be a transversal geometry on a set ß. Let t.O, I} be a subset of L1 and suppose the rank 2

residue Tal is an (undirected) graph without loops or multiple edges. If Tsatisfies some further

(weak) condition then we can construct a new geometry 1(0,1) with the same rank as Tand

whose diagram is derived from that of r.
Furthermore, if G is a chamber-transitive group of automorphisms on r then G also acts

chamber-transitivelyon 1(0,1).

A generalization of the theorem of Neumaier allows us to build from r (0,1) another geometry r',
which is chamber-transitive 1f r (0,1) is.

Some examples of these constructions are discussed.
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',U,yan Linl:

A new design: 2-(28, 10, 5l.

We eonstruct an (up to 1988 unknown) block design 2-(28, 10, 5). Tbe on.ly unknown design

with snialler v is 2-(22, 8, 4). This design disproves the following conjecture: ItIf a quasiresidual

design with k < v{l exists then the corresponding symmetrie design also exists. 11

(Since 2-(43, 15, 5) does not exist, the conjecture is false.)

Our main theorem is: Suppose a 2-(9m+l, 3m+l, (3m+l)l2) design exists, with an automorphism

f of order 3 fixing one point and the maximum number of blocks, i.e., 3(3m-l)nn Then the cyeles

offconsidered as points and the fixed blocks form a 2-(3m, m; (m-l )12) design and the incidence

structure of the nonfixed points and blocks is a partially balanced divisible design with group of

size 3, Al =1 and~ =m+l.

Z,Iankoj

Same new triplanes.

A triplane is a symmetrie design with parameters (v, k, 3). Tbe largest known triplanes have

parameters (71, 15, 3) and in fact with these parameters therre are known exactly 4 triplanes up to

isomorphism and duality and al1 these 4 ttiplanes are non-self-dual (Haemers).

We discuss here the following !wo new theorems

Theorem 1. Let T be a triplane far (71, 15,3) with a Frobenius group oforder 21 as a eollineation

group. Then there exist up to isomorphism and duality exactly 15 triplanes of whieh 13 are

non-self-dual and 2 are self-dual Also, two ofthese fifteen ttiplanes possess an elation of order 2

and four further triplanes possess an involution which has a centre but no axis.

Theoem 2. Let T be a self-dual triplane with parameters (71, 15, 3) on which operates a Frobenius

group of order 21 as a collineation group. Then there are exactly two such triplanes and in each

case the full collineation group is of order 21.

Three of the 15 niplanes in Theorem 1 were known befme.

It is also mentioned that if a triplane with parameters (81, 16, 3) exists then its full collineation

group must be a 2-group. It is very probable that such a triplane in fact possesses an involutory

homology.

T, Bjerbmuer;

A new family of block designs.

Theorem. Let q = 1I,fodd,ft3. Then there is a P~(q)-invariant block design with parameters
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4-(q+l, 6, 10) defmed on the projective line.

Its blocks are the P~(q)-orbitsof the sets (a, I/a, 1+a, 1+I/a, I/(a+I), 1+I/(a+I)} far

a E GF(q)\{O, I}.

Block designs with block size 6 defined on projective planes of even characteristic are also

considered.

Theorem There is exactly ODe PTI..:3(8)-invariant 4-(73, 6, Ä)-de·sign (up to taking the complement

in the complete design). It has Ä = 330.

Families of 3-designs are easily constructed. For example there is a PGL:3(q)-invariant design with

parameters 3-(q2+q+I, 6, 12(q-l)2(q-2)2) whenever q = 1/./= 1 (mod 4)./~ 9. e
One can also use the plane to glue together designs which are defined on the lines. Only ODe

example:

Theorem. Let q = Ll,f= I (mod 4). Ifthere is a 4-(q+l, 6, 3(q-I»-design, then there is also a

4_(q2+q+l, 6, 3(q-I»-design.

Lastly 1 give an easy construction of a 4-(21, 6, 16)-design defmed on the projective plane of

order 4.

M.de Resmipi:

On scattered derivation.

The Lorimer-Rahilly and Jo~nson-WaIkerplanes (LR and JW) share many properties: both are

translation planes of order 16 obtained by derivation from the semifield plane with kern GF(2); in

bath the full collineation group has two orbits on 100 of lengths 3 and 14; both admit shears, and all

shears determine the same involution on 100 and have centres in the shon orbit. 1 have shown that

they share 100 and nine pencils, with centres on 100, The finite points of a line not common to bOtheplanes are the affine points of a Baer subplane in the other plane.

To.get LR from JW and conversely.we may use a procedure similar to classical derivation and

called scattered derivation. Eight sets of five points of 100, none containing the centre of any of the

common pencils, behave as classical derivation sets and each of these provides sixteen Baer

subplanes, the affme points of which become the affme points of the unsh~ed lines in the other

plane. Applying this procedure twice one gets back 10 the original plane.

The link between IW and LR can also be viewed in terms oflatin squares: by "breaking up" eight

of the latin squares for one of the planes and reassembling them in a different way one gets the latin.

squares for the other plane, leaving the remaining squares unchang~
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Sc y. TsaranOYj

Two-graphs, related groUJ)s and root-lattices.

Let. r = (V, E) be a graph having vertex set V = { 1,...,n}; the edge set E will be represented by the

(I, -1) adjaceney matrix E(D with eü = 0, eij = -1 for (i, j)e E and eij = 1 for Ci, j) ~ E. Define the
group

G{l) = (xl""~"': xi
3 = 1, (Xr{ij)2 = 1 (i;t;j».

The following statements hold:

Theorem. (1) G(n is finite iff all eigenvalues of E(n are greater than -3.

(2) IfG{n is finite then it is isomorphie 10 the index 2 subgroup ofeven elements of the Weyl

group of type An' DII, E6, E, or Es·

(3) IfE(rj has unique least eigenvalue -3 then G(D is isomorphie to th~ index 2 subgroup of even

elements of a Weyl group of extended type "0"" "E6, "B, or "Es·

A. BIQkbujs:

ClassificatiaD pr campiere extemal sets.

A camplete extemal set with respecl to a conic einthe desarguesian projective plane Po(2, q), q

oclLt is a set of (q+ l)fl external points such that the line joining any two of them iS an exterior line,

i.e.~ misses the conic. We prove the following

Theorem (A. Blokhuis, A. Seress, H.A. Wilbrink) Ifq :5 1 (mod 4) then a camplete extemal set

eonsists of the (q+l)12 extemal points on an'exterior line~

The restrietion 10 q =1 (mod 4) is·in-,a wayessential since there exist non-collinear complete

extemal sets far q = 7, 11, 19,23,27, 31. However, I conjecmre that far sufficiently large q a11

camplete extemal sets are collinear.

N. PercsY:

zara &mphs and locally polar spaces.

.F. Zara has initiated the study offinite graphs in whieh, far any maximal clique M and any vertex

pe M, the setrrM af vertices adjacent 10p has a constant cardinality (independent ofM and p).

.A main step in the study of these graphs is a theorem of A. Blokhuis, T. KIoks and H. Wilbrink

stating that such a graph is (except far trivial cases) the collinearity graph of some locally polar

space~

New ideas of proof enable us.to.generalize this result and,obtain a unified proof of it together with

the Buekenhout-Shult theorem on polar spaces and the Buekenhout and Johnson-Shult theorem on

incidence sttuctures 5 of points and lines in which pl- satisfies the Buekenhout-Shult axiom for any

point p i! 51.:                                    
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Theorem. Assume G is a (not necessarily finite) connected and non-eomplet~graph with at least

one maximal clique of finite dimension, satisfying the following generalization of Zara's condition:

(GZ) for any maximal clique M and any vertex p e: M such that pl-rM ~ 0, there is a maximal

clique M containing p such dUlt MrM' is maximal in the set {XnM I Xyl:.M is a maximal clique}.

Then apart from trivial canonically described cases, G is the collinearity graph of some locally polar

geometry.

M.Hermand:

Computini intersectiQo matrices with CAYLEY

Intersection numbers have been defined by D. Higman. Let G be a finite transitive permutation

group acting on O. For each a in niet rI(a),..., ~(a) be the Ga-orbits on n, where Ga denates

the stabilizer of a in G. The number r is called the mnk of G on .Q; the notation is chosen so that

for all a in n, ginG, we have ·~(ag)=(~(a»g. The mappings Ti taking a to ri(a) are called the

m:hi1als of G. Far each orbital we define r(a) = (ag-I; ag e r(a)}. Wielandt has proved that r is

an orbital of the same length as r, r"=r anda E nb) iff b e r(a). H T= r' then Tis called a

self-paired orbital. For a particular orbital li we define a (directed) graph on the points of a
(a, b) is an edge iffb e ~(a). This~h is undirected iff Tis a self-paired orbital. Intersection

~ relative to Ti~ defined by: mjk =1~(b)~(a)1 (be Ij(a». Tbe (rxr) maf:rix Mi = (mjk)

is the intersection matrix of Ti.
We have written a little CAYLEY program to compute th~matrices when G and Ga are given.

As an application we have computed all intersection matriceS far primitive representations of the

Hall-Janko group, except when Ga =As (in this case the rank is 191). We faund interesting

semi-linear spaces such as a • (0,',10 • which is very probably
~ ~

embedded in PG(5, 5).

A. Prince:

Pennutations of Qpadratic residues and finite pmjectiye planes.

Tbe problem of constructing a projective plane of order p+1, ~tting a collineation of order p

with three fixed points, is considered.

Let p == 3 (4). Denote by Q the set 01' quadratic residues mod p . Let g be a pennutation of Q. For

each d E Z/p·' let Xd = {(a, b) e QxQ I a-b =d}, so that IXtf =(P-3)/4. Let AJ.g) =
{±(g(a)-g(b», ±(g(a)+g(b» I (a, b) e Xd }, so that l.:4J Sp-3.

Theorem. H tbere is a permutation-g ofQ satisfying both of

(I) IAJg)1 = p-3 far al1 d e Z/p*;

(ll) dCd ~ A,Jg) far al1 d E Z/p·
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then there is a projective plane of orderp+1.

lb.e permutation g(a) ="'a (where "'a denores the unique square IOOt of a in Q) satisfies (I) (but n~t
(ll), and gives rise to the completion of ap2xp2 block in the incidence matrix (which cannat,

however, be extended fully).

Lr SQjeberj

Geometries for Co} and the Suzuki seQJlence m»Ips.

We discuss strongly-connected flag-transitive geometries having diagrams ofthe type

(*)

where ~}4 is the incidence graph of the (7, 4, 2)-biplane. A certain chain of geometries of this type

with diagrams (*) having 2, 3, 4, 5, 6, 7 nodes have respective automorphism groups ~(2):2,

U3(3):2, J2:2, 02(4):2, 3·Suz:2 and Co}.

ArE. BmuWCrj

Shulfsth~on Aphs with odd cocligues.

In a graph r, denote by Xl. = (x}unx) the set ofvertices consisting ofx and all its neighbours.

A subset A is called Qdd wben t.r1rv11 is odd far all i. Consider the following two conditions.

(CC)d Any (d-l)-coclique is contained in an odd d-ccx:lique.

(Cl)d There exists an odd d-eoclique C and avertex x t! C such that~I = 1.

Theorem Let rsatisfy (CC)d and (Cl)dfor some d. Theo Tis known.

More precisely we have

Theorem Let d ~ 3 and let Tbe a reduced coconnected graph satisfying (CC)d and (Cl)tt Then r
is one of the graphs VQE(m, 2), QE(m, 2), TQE(m, 2), S~(2n, 2), NE(2n, 2), or the complement

ofT(n).

Ar Beutelspacberj

Subspaces pr a subspace.

We discuss the proof and generalizations of the following

Theorem Let L be a set of lines in PG(3,q) having the following properties.

(1) Any plane contains at least one line ofL.

(2) If a point P is on at leas two lines ofL then any plane on P contains at least one

line ofUP (:= {/eL IP e L}). Such apeint is called~                                   
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(3) There exists at least one thick point. .

Then ILI ~ q2+q+1 with equality if and only Ü one of two possibilities occurs:

(a) L is the set of lines of aplane, or
(b) the thiek points are the points Po,...,Pq+l on a Une I.and~ is the Union ofthe

penells of lines through Pi in 1Ei, where no,...,1t'q+l are the planes through I.

T, Siemonsj

The spectrum of an ineidence strueture.

Let L = (P, B; I) be a fmite incidence sttucture with point set P, block set B, incidence I and

incidence matrix S. Tbe spectrum ofL is tbe spectrum of ssr. If its distinct values are

Ä..o>".>Ät~O,put.f{x) = (x-Ä1)".(x-Ät). We shall say that L is (r, ~-reguJ.ar ~rovidedeach point

is incident witb r blocks ~d each block witb k points. J denotes the all-on~matrix.

Theorem 1 Let L be (r, k)-regular. Then L is connected.if and only if j(sSf) =lPl-l f(rk)J.

Let T be a ta.etieal decomposition of the points and blocks ofL and denote by C the matrix whose

i'tb row counts the number of blocks' in each elass incident with a point in the i'th point-class.

Define c+ dually and call the eigenvalues of CC+ the sm;ctrum ofT. Letft<x) = (~-Är~".(x-Ät')

where the product includes only those values ~. ~ Äowhich oceur in Spec(D. Let U denote the

matrix of constant rows whose entties are the numbers 'of points in each point-elass of T;

Theorem 2 In a connected (r, k)-regular sttueture let T be a taetical decomJX?si~onwith matrices

c+ and C. Thenf-l.C+C) =IPI-l ft.-rk)N.

We have complete information about spectta1 distributions far subset and subspace incidence

structures (in finite affine and projective spaces) and th~ir taetical decompositions.

A. A. Tyapoy:

On universal covers of certain P-geometries •
The talk: presents joint work with S.V. Shpectorov on flag-transitive geometries G with the

diagram

pm:
p

...-----41110-_8 ..• ----..

& a

where P stands for the geometry of the Petersen graph.

. Result 1 (S.V. Shpectorov) Ifm
J
=1 then G =G<Mn) or G(3·~).

Result 2 (S.V. Shpectorov) If m = 2 then the universal 2-cover of G. is isomorphie to that Qf

G(~3)' G(C02) or G(1J.

The geometries G(M23), G(Co2) and 0(14) eontain subgeometries H isomorphie to G(A7),

G(Sp6(2» andG~ respectively. Let G- be the universal2-cover of G andIr be a connected
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component of the preimage of Hin a-.
Result 3: (i) If G =G(Mn) then G- = G;

(ü) if G =G(Co2) tben either a- =G or Ir"= G(37'SP6(2»;

(ili) if G =G(J4) then Ir =H.

In"tbe case G = G(Co2), a- = G(37·SP6(2» the automorphism group ofG must have the form

323'Co2 (a nonsplit extension). We do not know whether such a group exists.

W.Lempken:

Amalgams of type (Alt6, SymJe

We consider the following group-theoretical situation:

Hyp(P): Gis a group containing two finite subgroups PI and P2 such that

(1) G = (Pt' P2) ~ Pi for i = 1, 2;

(2) B := PI () P2 contains no nontrivial normal subgroup of G.

(3) There exists a prime p such that each p-Sylow of B is also a Sylow of Pi' i = 1, 2.

(4) Qi:= 0p(Pi) contains its own centpllizer in Pi far i = 1,2..

This is the standard set-up far the study ofp-Iocal amalgams ofrank 2. We then prove the

Theorem Suppose that (G, PI' P2) satisfies Hyp(2) sueh that P lQI == Alt6 and P.jQ2 == Sym3'

Then B =Q IQ2 and is a 2-Sylow of both PI and P2' and one of the following occurs:

<p QI == Ex+(27) and QI/Z(Ql) is isomorphie to a 6-dimensional permutation module

over F2 far P11Q1; Bis oftype~ and in partieular IBI =210.

(ll) Q1 is .elementary abelian of order z4 er 25 such that the centralizer in PI of Q1 is

trivial and [QI' PI] == E(24) is an ~~ueible PlQ}-module; in particular, 181 E {27, 28}.

Moreover, the stIucture is known in each case.

U4(3) and U4(3):~ (ATLAS-notation) provide examples offinite completions in case (ll) if PI

splits over QI' We don't know of any finite completions in case (1).

M.Ljebeck:

Minimal degrees of primitive pennutation gmups.

For Ga primitive permutation group on a set nof size n, the minimal degree J1.{G) is

max{lsupp(g)I: g E G\{ I} }, where supp(g) ={m E n: mg ~ m}. Suppose first that G S; Aut (L)

containing L as normal subgroup, for some simple group L.

Theorem 1. H L =L(q) is ofLie~ over Fq then J.L(G) ~ (1-(4/3q»n, with some exceptions

when L =~(q), L4(2) er PSP4(3).

TheOrem 2. H L = ~then either J.L(G) ~ n/3 ar n is the set of k-subsets of m for some k.

Theorem 3. IfL is sporadic then p.(G) ~ n12.                                   
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Corollary. For arbitrary G, either Jl(G);:: n/3 or (Am>' < G ~ Sm wr Sr and n =(~r.

There is an application: if G = (x1,... 'xr) is a transitive subgroup of Sn with x1x2••.xr = 1 then G

is isomorphie 10 the monodromy group of aRiemann surface of genus g, where 2g+2(n-l) is equal

to the sum of the numbers ind(xi) := n-(number of orbits of (xi»' If g = 0 we call G a~

genus u:ro. It can be shown that some Xi fIXes at least n/85 points if G has genus zero, and then

Theorem 1 gives

Theorem 4. IfL =L(q) is a composition factor of a group of genus zero then q < 113 (if

L ~ ~(q» or q< 852 (L = ~(q».

',A Ibas:

New flockSt new Gas. new planes. a Charaelerizalion of aU classieal Gas. the eomplete

classification of a11 minimal eXternal sets and aremark on s.preads arid partial spreads of hennitian

varieties.

Let F0 be a flock of the quadratic cone K of PG(3, q), q odd. Then Bader, Lunardon and Thas

prove that from F0 q flocks can be derived. Applying this process of derivation 10 a elass of

flocks discovered by Kantor, they prove that there arises a new class of flocks fOT q = se, e>1.

Applying derivation 10 other known classes or'flocks, )ohnson discovered a few days ago two

further new classes of flocks, one for q = 34e • By the connection between flocks, planes and GQ

due 10 Thas, there arise new elasses of GQ of order (q, q~) and new classes ~f planes of order q2.

Recently Thas and Van Maldeghem obtained a new combinatorial characterlzation of all classical

GQ. They prove a generalization. to GQ of Baer's theorem on (p, L)-transitivity of projective

planes and then apply the Moufang theorem of Tits. Also characterizations of classes of

non-classical GQ are obtained

I prove that the hyperbolic quadric Q+(5, q), q odd, admits no maximal exterior set (MES),e
achieving the complete classification of al1 MES of the hyperbolic quadrics.

If S is a partial spread of H(3, q2) then I show that the size of S is at most cj3_q2+q+1; it follows

that H(3, q2) has no spread (a well-known result of Bmen and Thas). If S is a partial spread of

H(5, q2) then I show "that the size of S is at most q'2(Ql+q-l), whence H(5, q2) has no spread.

S, Pavue:

Generalized quadrangles of order <q2a.,q1

Let S = (P, B, I) be a genera1ized quadrangle of ord~r (s, t). Ifp, x are distinct points of a line L,

we say an (X, L, p)-symmetry is a collineation 6 of S which fixes each line through x, each point

on L and each line through p and such that if 6 fixes a line M meeting L in same point y then (J

fixes all ~es through y . .Under some additional hypothesis, for example that (s, t) = (q, q2), we

have:                                    
                                                                                                       ©
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Theorem. Let L, M be distinet lines meeting at a point p. Assume that for each point x of LrM,

p *x, there is a group H(x) of (p, px, x)-symmetries with lH(x)1 =s. Put A =(H(x): p ;t;x I L), .

B =(H(x): p ~x I M}, G =(A, B). Tbeo

(i) IGI = s2r, G aets regularlyon PyJJ- and fixes eaeh line through p.

(ü) A and B are elementary abelian normal subgroups of G with IAI =181 =st.

(iü) H s>t then C =Ar'\B is the center of G; ICl =1; Cis a group of symmetries about p (Le., C

acts triviallyon p-l); p is regular.

(iv) For eaeh point Z E pl-\(P}, H(z) = {Be G: 6 is a (z, zp, p)-symmetty) is a group of order s.

We say S = (sV'>, G) is a Moufang skew translation GQ.

• Until recently there were known seven infinite families of GQ of order (er, q) associated with

flocks and due to Thas, and one due 10 Tits. For q = 3e ~ 27 we eonsttuet a family not direcly

associated with a flock. FOT q = 5~ ~ 25, Bader, Lunardon and Thas have eonstroeted a new

family by a process of derivation of a flock 10 produce a new flock. N.L Johnson and I have

imitated this process to obtain another new family with q =3e~. Henee thete are now known

eleven infinite families of GQ with order (q2, q).

Ce Heri0e:

On the cardinality pf certain sets of geometrie objects

Many elassieal sets of geometrie objects in finite buildings have a eardinality of the form

where q E N, Wn<x) is the n'th cyclot0r:r»e pol~omial and e, t'"i E Nu{O}. A set of this kind

tends to have exceptional properties if the prime divisors of the numbers (I)n(q) are particularly

small. This leads 10 the following problem: determine all pairs(n, x) of natural numbers such that

• n ~ 3 and (J)n(x) is not di~sibleby any prime larger than 2n+1. We present an algorithm to

determine all integral solutions of

ax2+bx+c =pt,l···psYS

for given integers a, ~, c and primes pp..., ps. This allows to solve the above problem if n is a

power of 2 or apower of 3 er if n E {6, 18, 36}. 'The ease n =5', r>1, can be handled using

results of Nagell (1921) and others on diophantine equations of the form (.ra-1)/(x-I) =y.. By a

result of B. Mühlherr there is DO solution if n = 3'5" where r, s :> 1. If n = 5 OT 15 there is no

solution such that x is a prime power greater than 3.
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D. JUDwickeJ:

Divisible difference sets.

r-

Let.G be a group of order mn with a nonnal subgroup N of order n. A k-subset of G is called a

divisible differenee set with parameters (m, n, k, Ä
I
, Ä,2) if each element of lV\{ I} has exaetly Ä

1

representations as a "differeneen lie-1 witb d, e E D, while each element of GN has exaetly ~

such representations. Then dev D = (G,{Dg: g E GI) is a divisible design with the same

parameters admitting G as a Singer group. An automorphism of G is ealled a multiplier for D if it

is also an automorphism of dev D. We eonsider abelian DDD's far whieh -1 (tbe mapping x~x-l)

is a multiplier. Note that ~s does not necessarily imply that any tnuislate of D is fixed under -1. •

We obtain severe restrietions on the structure of D; for instance, at least one of the numbers k-A..l'

k-Ä"mn is a square and ifpis a prime dividing the squarefree part of k-Ä1 then either p = 2 or p == 1

(mod 4) and n is apower ofp. IfDis in fact reversible (Le., fIXed under -1) then only the ease

p=2 ean arise. We detennine all multipliers of a reversible DDS. A relative difference set with

multiplier -1 (i.~., A.l =0) has parameters m =k =nÄ., m even (and thus belangs to asymmetrie

transversal design); ifDis reversible then m is a perfect square. We also eonstruet families of

examples and partially eharaeterize the eyelie reversible DDD's and the DDS's with k-Ä
1

= 1. Tbe

proofs are mainly algebraic, using group algebras, characters both over the eomplex field and finite

fields, and same algebraic number theory.

E. Sbult:

Geometrie ß..v.per.planes.

Let H be a geometric hyperplane of a point-line geometry r= (P, L), that is, a subspace of rwhich

intersects each line nontrivially. Wesay H arises from an embedding e: r ~P, where

P == PG(d, k), ifHis the inverse image of e(p)ru' where Y is a ~rojective hyperplane of P. JoiJie
werk with B. Cooperstein shows that all geometrie hyperplanes arise from an embedding if ris

one of the geometries A~2' An;J (not over GF(2», Ds.s and E6•1. 1t is also shown that if His a

geometrie hyperplane of a near hexagon with quads whieh meets each quad at a star, then His a

generalized hexagon. H fls fmite with parameters, it is a dual polar space of type 0.(7, q) or

Sp(6,q), q even, and H is the generali~ hexagon of type G2(q).

A.Camina:

On the automomhisms of a <91, 6) regular linear space.

There are four known (91, 6)~regular linear spaces and each has a regular cyelic subgroup of

automorphisms. V.D. Tonchev and Stoichev have calculated their cemplete automorphism groups.
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Two of them are fine-transitive but point -imprimitive. This is a rare phenomenon fer block

designs, as is shown by ~ beautiful result ofDelandtsheer and Doyen. In fact the two (91, 6) linear

spaces are the only known examples of regular linear spaces with this property. Lino Di.Martino

and I have proved that ifL is a (91, 6) regular linear space and G =Aut L is point-primitive then G

is soluble, lFit(G)1 = 91 and G/Fit(G) is isomorphie,to a eyelic group of order 12.

R. Scharlau:

• Combinatorial methods for integral guadratic forms.

Consider an integrallattice L in areal vector spare V, that is, a positive definite scalar produet (xly)

is given such that (xly) is an integer whenever x, y are in L. A primitve vector veL is called a root

of L if the corresponding reflection sv: x --+ x - 2(xtv)j(vlv)v maps L into itself. Tbe set R(L) of all

roots is a root system. L is called reflectiye if its root system lUts greatest possible rank, that 'is, the

sublattice generated by roots is offinite index. Notice that ifL is not unimodular the mots do not

necessarily have length 1 or 2.

It turns out that, although the class of reflective lattiees is much larger than the class of ordinary _

root lattices (generated by vectors of lengh 1 or 2), the reflective lattiees can be classified in a

fashion only depending on the combinatorial type ofthe root system. As an example, consider the

following result in dimension 3, obtained by Britta Blaschke. We use the notatio~ aA." (mots of

length 2a), C%ß,. (short rOOts of length a), ac,. (short roots of length a) for "scaled" root systems.

Theorem. The root systems of the indecomposable 3-dimensional reflective lattiees are

aAlxfJAlxYAl (a</k'YJ, aA1xßJ32 (a= 0 (2), ß~ a_ 2jJ), ac;. «%83 (a=O (4». Foreaeh of

these there is a unique lattiee, except fOT 2aA1XlfJA1XlYAr where there are two.

Tbe point is that the values of a, ß, ydo not play"a role.

• E. MoorhQuse:

Planes, semibiplanes and related complex;es

From a projective plane n with involutory homology 't' one constructs asemibiplane I =1X.fl, 't)

whose "Points" and "Blocks u are the 'Z'-orbirs oflength 2 on the points and lines of n We are

interested in reversing this process: given 1:, what planes, if any, yield Iin this way?

From S we constroct a rank-2 cell complex r= l{2) whose vertices are the points and blocks of I;

its edges are the flags of X and its faces are the digons of X. Let F = GF(2), Ci =O(r, F) the

F-space freely spanned by the i-cells ofG, ö: 0-+0+1 the coboundary operator. We show that .

(i) "liftings" from Ito planes correspond bijectively to "admissi~le" elements of Cl, which (if

they exist) fonn a eoset ofZl =ker ö; cI -+C2;

(ü) if the cohomology Hl(I: F) = 0 then I lifts in at most one way up to equivalence;
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(iii) case (ü) occms if E arises from PG(2, p); and

(iv) the equivalence class of pairs (II, 'r) such that I(1I, 1') == X correspond bijectively with the

'orbits of Aut X on the set of admissible elemnts of Cl, modulo BI = D(CO) S Cl.

Tbe translation planes of order 16 provide examples with dim HI(r, F) = 0, 1,2,4. We also ask

how far these ideas apply if (~) is replaced by some other collineation group, especially one of odd

prime order.

E, Spence:

(45, 12, 3l-designs.

A (v, k, A)-graph is a graph with v vertices and degree kin which every pair of vertices has A

neighbours. Thus a (v, k, A)-graph G may be considered as a (v, k, Ä,)-~esign D(G) where the

points are the vertices of the ~ph and tbe blocks are the neighbours of the points. A

(v, k, Ä.)-design is a (v, k, Ä,)-graph if it possesses a polarity having n,? absolute points. During

investigations into the question of which (v, k, A)-graphs G have the property that

Aut(G);II!:Aut(D(G» (joint work at various stages with F.C. Bussemaker, W.H. "Haemers and

J.J. Seidel) a new family of (45, 12, 3)-designs was discovered. They were found originally by

looking at the adjacency matrix A of a (45, 12, 3)-graph far which Aut(G)~Aut(D(G». It tums out

that there must be an automorphism P of order 3 with either 3 er 9 fixed points, such that PAP =A.

Further examination öf A yields a certain block strocture far A, which, with minor modification,

gives rise to over 2550 designs (up 10 isomorphism) of which 550 have trivial automorphism

group. They all have automorphism group with order of the form 2Q 3bsc•

D.R. Hugbes:

Extended transversal designs and extended nets. •We attempt t~ fmd examples of, and to characterlze, (finite) extended transversal designs and

(finite) exteoded nets.

Theorem. (i) An exteoded 1D(s) is a 2-design or is a m(s+I); (ü) if s =2 then the extension is a

2-(7,4,2) or a 2-(22,6,4) (both unique), or is an extension of a dual affine plane of even order to

a TD(3) (examples exist fer all powers of 2); (iii) if s = 3 then there is no extension.

Nets are more difficult: we resbiet 10 extensions w~ch are partial·geometries.

Theorem. H an extended net is a partial geometry then it is one of the following: (a) an inversive

plane or "half-inversive plane"; (b) an extended TD(2) (examples exist for all prime powers); (c)

an extension of a (n, n-l)-net, havin~ (n+l)2 points (examples exist for all prime powers); (d) one

of an inimite class ofpossibilities extending (n, n-e)-nets (00 examples are known).
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