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The conference was led by Professor F. Buekenhout (Brussels) and Professor D.R Hughes
(London). There were three main strands of interest. Many of the questions considered concerned
diagram geometries. Of particular interest was the construction of new geometries with given
groups of automorphisms, for instance using graphs on which such groups are known to act or by
constructing extensions of preexisting geometries. Another problem associated with diagram
geometries was that of classifying the geometries for a given diagram, usually subject to additional
constraints needed to make the problem tractable. Further contributions established the existence or
nonexistence of structures such as block designs and generalized quadrangles with prescribed »
parameters and properties. Also discussed were problems concerning various subsets and
configurations in classical geometries. Throughout the subject there is a rich interplay between the
methods of group theory and of combinatorics.

Abstracts
A. Delandtsheer:
Flag-transitive linear spaces, maximal (v, k)-arcs and semiovals,

Current work of Buekenhout, Delandtsheer, Doyen, Kleidmann, Liebeck and SaxI aiming at
classification of the finite linear spaces S with a flag-transitive automorphism group G provides
presently a complete list of such pairs (S, G) which are not of affine type (i.e., G has no
elementary abelian minimal normal éubgmup acting regularly on the points of S).

We derive from this partial result a classification of
(i) the secant-transitive maximal (v, k)-arcs;
(ii) the thick semiovals transitive on their incident point-secant pairs in finite projective planes.
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W. Haemers:
Partial circl etries

A partial circle geomeﬁ'y (the name is still under discussion) is a one-point extension of a partial
geometry such that the triples that are on a circle (= block) form a regular 2-graph.

Examples are provided by some known structures:
- extended generalized quadrangles with s =2;
- half of the circles of a Mbius plane;
- the "nice" 2-(16, 6, 2)-design.

Our new example can be constructed from the strongly regular graph on 176 vertices having M, ‘
as its group of automorphisms. By this example we have a better description of the corresponding
partial geometry (which was constructed earlier by the author).

~

A Pasini:

n geometries which are locally pol: aces.

I give a sketch of one of the possible ways to prove uniqueness statements as the final step in the
classification of a given class of geometries. : A
This method relies on the fact that a flag-transitive geometry I"is simply connected iff Aut(I) is the
amalgamated product of the stabilizers in Aut(I') of the elements of a chamber. I apply this trick to
the case of flag-transitive locally classical C, geometries. We get a classification of this class of
geometries, putting together contributions by several people (Buekenhout-Hubaut,
Weiss-Yoshihara, Del Fra-Ghinelli-Meixner-Pasini).

I'show one way to write a unified version of the proof of that classification theorem (being
understood that other ways exist). :

D, Ghinelli (]
Extensions of C, geometries,

Let S be an extended generalized quadrangle of order (s, ) (i.e., a connected incidence structure
such that every residue is a GQ(s, 1). Recently it has been proved that the diameter A of the
point-graph of S is at most s+1.

We show that A = s+1 if and only if one of the following occurs:

(i) t=1andS isisomorphic to the Johnson geometry on (2(s+1))poims (s>0);
s+1

(i) s=2, r=20r4 and§ is isomorphic to the affine polar space of order 2 and type A, or D,
on 32 and 56 points respectively.

(iii) s =1 and S is complete tripartite on 3(¢+1) points (> 1). <

(Joint work with A. Del Fra.)




ups ngly regular h tars.

A subset P of a finite group G is called a (k, I, m)-star (or partial addition set) if

P2 = (k-m)1 + (I-m)P + mG
in the group algebra KTG). Let e be the exponent of G and & be a primitive ¢'th root of unity. Set
K :=Q(&). If nis a prime coprime with e, there exists an automorphism f, : K—K induced by
&8
Theorem Let d := ((I-m)/2)? + (k-m) and assume that P is a union of conjugacy classes.

@) P = (p"|peP} =P o f0d)=\d;

i) f(Nd)=Vd = PAAP=@.
In case (i), G can be extended by at least the group of squares mod e (if each of them acts as a
morphism or an automorphism).

E._Mazzocea:
On (g+t. n-arcs of 0.2. 1) in PG(2

Let T denote a (g+2)-point set in PG(2, g) such that the intersection numbers with respect to lines
are 0,2,r (t=0, 1,2), ie., a so-called (g+1, f)-arc of type (0, 2, 7).

The results in the following have been obtained in a joint work with Gabor Korchmaros.

A simple counting argument shows that every point in T lies on just one r-secant and,
consequently, ¢divides q and q is even.

A class of examples is found for every ¢ = 2" withr>2, and for every t = 28 with (r-h )| r.

. Moreover, such examples have the remarkable property that all the t-secants are concurrent. We
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conjecture that the same property holds for every T. This conjecture is proved to be true except for
q=2, r=(b+l)c, t =2" h=bc+l with ¢>2, in which case the problem is still open.

Finally, a canonical representation of T is provided in case all the ¢-secants be concurrent. Using
this representation, all sets T are classified for ¢ =8, 16 and r = 4.

E. Zara:
The generalized quadrangle of order (2.2) in an unusual setting,

Let K = Z[i] and M be a free K-module of rank 4. Let ¢ : M xM —K be an hermitian form such
that there exists a basis (a,,...,.ay) of M with the following properties: e, a)=2, ¢a,, a)) =
Kas, a4) =-1, ¢ay, a;) = 1+, and ¢(a, a) =0, forall 1 <i#j<4. Then ¢is positive definite.
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We put M, = (m lme M, ¢(m, m) =2). If meM, let m* = {em; e a unit oer(}, and . -
My* =(m* |meM,). ‘ )

In M,* there are pairwise orthogonal systems of cardinality 4 which are determined by each of their
elements. Let F = {E | E an orthogonal system as described above). Then IFl = 15 and there is a

natural structure of GQ of order (2, 2) on F. )

We deduce from this that IM,*I = 60, IM,| = 240 and Aut(M, ¢) is a nonsplit extension of Sy by
2,1+4*C, with amalgamated subgroup of order 2.

o
Subsets of a finite plane.

If P(A) is the conic in PG(2,q) with equation yz - 2% = A2, let K(A) = UkAP().) where A is a

. subset of GF(q).
Theorem 1: For ¢ an odd prime and { a nonsquare in GF(g), the set K(A) is a Buekenhout-Metz
unital when A = {GF(\g).
Using the idea that P(A) is contained in E(A) (the internal points of P(4)) if and only if A-pzisa
nonzero square and similarly P(A) is contained in /() (the internal points of P(4)) if A-p is a
nonsquare, it follows that, if B, A are subsets of GF(q) with B contained in A and s is sufficiently.
small with respect to g, the set (\AEBE(/'L) N (\AEA\BI(A,) has size ~q/2°, where s = Al. A

disjoint union of such sets gives the following result:
Theorem 2: For every ¢ € (0, 1) and every £0, there is gy(€) such that, for any g>g(€), in
PG(2, g) there is a (k; A)-arc where n<cq and k>(c-€)q>%.

C. Lefevre-Percsy:

W metri r fini

Let I' be a transversal geometry on a set A. Let {0, 1} be a subset of A and suppose the rank 2
residue I, is an (undirected) graph without loops or multiple edges. If I"satisfies some further
(weak) condition then we can construct a new geometry I (0,1) with the same rank as I"and
whose diagram is derived from that of I'.

Furthermore, if G is a chamber-transitive group of automorphisms on I' then G also acts
chamber-transitively on I (0,1).

A generalization of the theorem of Neumaier allows us to build from I™(0,1) another geometry I,
which is chamber-transitive if I'™(0,1) is.

Some examples of these constructions are discussed.

DFG Deutsche
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LH.van Lint:
A new design; 2-(28, 10, 5),

We construct an (up to 1988 unknown) block design 2-(28, 10, 5). The only unknown design
with smaller v is 2-(22, 8, 4). This design disproves the following conjecture: "If a quasiresidual
design with k < v/2 exists then the corresponding symmetric design also exists."

(Since 2-(43, 15, 5) does not exist, the conjecture is false.)

Our main theorem is: Suppose a 2-(9m+1, 3m+1, (3m+1)/2) design exists, with an automorphism
f of order 3 fixing one point and the maximum number of blocks, i.e., 3(3m-1)/2. Then the cycles
of f considered as points and the fixed blocks form a 2-(3m, m; (m-1)/2) design and the incidence
structure of the nonfixed points and blocks is a partially balanced divisible design with group of
size 3,4, =1 and A, =m+l.

Some new triplanes,

A triplane is a symmetric design with parameters (v, k, 3). The largest known triplanes have
parameters (71, 15, 3) and in fact with these parameters therre are known exactly 4 triplanes up to
isomorphism and duality and all these 4 triplanes are non-self-dual (Haemers).

We discuss here the following two new theorems

Theorem 1. Let T be a triplane for (71, 15, 3) with a Frobenius group of order 21 as a collineation
group. Then there exist up to isomorphism and duality exactly 15 triplanes of which 13 are ‘
non-self-dual and 2 are self-dual. Also, two of thes fifteen triplanes possess an elation of order 2
and four further triplanes possess an involution which has a centre but no axis.

Theoem 2, Let T be a self-dual triplane with parameters (71, 15, 3) on which operates a Frobenius
group of order 21 as a collineation group. Then there are exactly two such triplanes and in each
case the full collineation group is of order 21.

Three of the 15 triplanes in Theorem 1 were known before.

It is also mentioned that if a triplane with parameters (81, 16, 3) exists then its full collineation
group must be a 2-group. It is very probable that such a triplane in fact possesses an involutory
homology.

L Bierbrauer:
w family of block desi

Theorem, Let g =2/, fodd, f23. Then there is a PTL,(g)-invariant block design with parameters
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4-(g+1, 6, 10) defined on the projective line.

Its blocks are the PI'L,(g)-orbits of the sets {a, 1/a, 1+a, 1+1/a, 1/(a+1), 1+1/(a+1)} for

ae GF(@)\M0, 1}.

Block designs with block size 6 defined on projective planes of even characteristic are also
considered. )

Theorem. There is exactly one PI'L,(8)-invariant 4-(73, 6, 2)-design (up to taking the complement
in the complete design). It has A = 330.

Families of 3-designs are easily constructed. For example there is a PGL4(g)-invariant design with
parameters 3-(g2+q+1, 6, 12(g-1)%(¢-2)%) whenever ¢ =2/, f= 1 (mod 4), f>9.

One can also use the plane to glue together designs which are defined on the lines. Only one
example:

Theorem, Letq =2/, f=1 (mod 4). If there is a 4-(g+1, 6, 3(¢g-1))-design, then there is also a
4-(q+q+1, 6, 3(g-1))-design.

Lastly I give an easy construction of a 4-(21, 6, 16)-design defined on the projective plane of
order 4.

M.de R el
On scattered derivation.

The Lorimer-Rahilly and Johnson-Walker planes (LR and JW) share many properties: both are
translation planes of order 16 obtained by derivation from the semifield plane with kern GF(2); in

_ both the full collineation group has two orbits on /,, of lengths 3 and 14; both admit shears, and all
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shears determine the same involution on [, and have centres in the short orbit. I have shown that
they share /_, and nine pencils, with centres on /. The finite points of a line not common to both .

planes are the affine points of a Baer subplane in the other plane.

To get LR from JW and conversely we may use a procedure similar to classical derivation and
called scattered derivation. Eight sets of five points of /.., none containing the centre of any of the

common pencils, behave as classical derivation sets and each of these provides sixteen Baer
subplanes, the affine points of which become the affine points of the unshared lines in the other
plane. Applying this procedure twice one gets back to the original plane.

The link between JW and LR can also be viewed in terms of latin squares: by "breaking up" eight
of the latin squares for one of the planes and reassembling them in a different way one gets the latin.
squares for the other plane, leaving the remaining squares unchanqu.

o®
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Let I'= (V, E) be a graph having vertex set V = (1,...,n}; the edge set E will be represented by the
(1, -1) adjacency matrix E(I) with ¢;; =0, ¢;=-1for (i, je E and €= 1for (i, j) ¢ E. Define the
group

G(D) =0k, x3=1, (ex&i)2 =1 ().
The following statements hold:

Theorem. (1) G(I) is finite iff all eigenvalues of E(I') are greater than -3.

. (2) X G(I) is finite then it is isomorphic to the index 2 subgroup of even elements of the Weyl
group of type A,, D,,, E¢, E; or Eg.
(3) If E(IN has unique least eigenvalue -3 then G(I) is isomorphic to the index 2 subgroup of even
elements of a Weyl group of extended type AD,, AE, AE, or AE,. '

Jassification of coma] |

A complete external set with respect to a conic C in the desaxgur;sian projective plane PG(Z 9, q

odd, is a set of (¢+1)/2 external points such that the line joining any two of them is an exterior line, |
i.e., misses the conic. We prove the following |
Theorem (A. Blokhuis, A. Seress, H.A. Wilbrink) If ¢ =1 (mod 4) then a complete external set |
consists of the (¢+1)/2 external points on an-exterior line.

The restriction to ¢ =1 (miod 4) is-in'a way essential since there exist non-collinear complete
external sets for ¢ =7, 11, 19, 23, 27, 31. However, I conjecture that for sufficiently large ¢ all
complete external sets are collinear.

.F. Zara has initiated the study of finite graphs in which, for any maximal clique M and any vertex
Ppe M, the set ptM of vertices adjacent to p has a constant cardinality (independent of M and p).
-A main step in the study of these graphs is a theorem of A. Blokhuis, T. Kloks and H. Wilbrink
stating that such a graph is (except for trivial cases) the collinearity graph of some locally polar
space. A
New ideas of proof enable us.to.generalize this result and-obtain a unified proof of it together with
the Buekenhout-Shult theorem on polar spaces and the Buekenhout and Johnson-Shult theorem on
incidence structures S of points and lines in which p* satisfies the Buekenhout-Shult axiom for any
pointp ¢ S+:
DFG %0 oD
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Theorem. Assume G is a (not necessarily finite) connected and non-completg-. graph with at least )
one maximal clique of finite dimension, satisfying the following generalization of Zara's condition:
(GZ) for any maximal clique M and any vertex p & M such that p*M # O, there is a maximal
clique M’ containing p such that MMM’ is maximal in the set {XNM | XM is a maximal clique}.
Then apart from trivial canonically described cases, G is the collinearity graph of some locally polar

geometry.

Intersection numbers have been defined by D. Higman. Let G be a finite transitive permutation
group acting on Q2. For each a in Q let I'}(a),..., I, (a) be the G ,-orbits on £2, where G,, denotes
the stabilizer of @ in G. The number r is called the rank of G on (2 the notation is chosen so that
forallain €2, g in G, we have T (ag) = (I'(a))g. The mappings I taking a to I'(a) are called the
orbitals of G. For each orbital we define I'(a) = {ag"; ag €I'(a@)}. Wielandt has proved that I" is
an orbital of the same length as I', I'"=I" and a € I\b) iff beI'(a). If I'=I" then I'is called a
self-paired orbital . For a particular orbital I'l we define a (directed) graph on the points of £2
(a,b)isanedgeiff be I‘i(a). This graph is undirected iff I"is a self-paired orbital. Intersection
numbers relative to I are defined b);: my = lI'i(b)r\'I}(a)lb(be [}(a)). The (rxr) matrix M; = (my)
is the intersection matrix of I

We have written a little CAYLEY program to compute these matrices when G and G, are given.
As an application we have computed all intersection matrices for primitive repxekentaﬁons of the
Hall-Janko group, except when G, = A (in this case the rank is 191). We found interesting
semi-linear spaces such as a : 10,8, 10 - which is very probably
embedded in PG(5, 5).

The problem of constructing a projective plane of order p+1, admitting a collineation of order p
with three fixed points, is considered. ‘
Let p =3 (4). Denote by Q the set of quadratic residues mod p . Let g be a permutation of Q. For
eachde Z, %, letX,={(a, b) € OxQ | a-b=d}, so that X = (p-3)/4. LetA[g) =
{X(g(a)-g(®)), (g(a)+g(d))|(a,b) e X,},s0 thatlA ] <p-3.
Theorem. If there is a permutation g of Q satisfying both of

M U !=p-3forallde Z/P*;

(I di-de Afg)forallde Z,*
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then there is a projective plane of order p+1. )
The permutation g(a) = Va (where Va denotes the unique square root of a in Q) satisfies (I) (but not
(1)), and gives rise to the completion of a P?xp? block in the incidence matrix (which cannot,
however, be extended full'y). :

L. Soicher:

Geometries for Co, and the Suzuki sequence groups.

We discuss strongly-connected flag-transitive geometries having diagrams of the type
In *

. . , ER . 3 .
where I, , is the incidence graph of the (7, 4, 2)-biplane. A certain chain of geometries of this type
with diagrams (*) having 2, 3, 4, 5, 6, 7 nodes have respective automorphism groups L;(2):2,
U3(3):2, J5:2, Gy(4):2, 3-Suz:2 and Co,. ‘

A.E. Brouwer;

hult's theorer h
Inagraph I, denote by X+ = {x}UIx) the set of vertices consisting of x and all its neighbours.
A subset A is called odd when brlAl is odd for all x. Consider the following two conditions.
(CC), Any (d-1)-coclique is contained in an odd d-coclique.
(C1), There exists an odd d-coclique C and a vertex x ¢ C such that be'Cl = 1.
Theorem Let I'satisfy (CC), and (C1),, for some d. Then I"is known.
More precisely we have
Theorem Letd 23 and let I"be a reduced coconnected graph satisfying (CC),and (C1), Then I
is one of the graphs VO5(m, 2), O%(m, 2), TO%(m, 2), Sp(2n,2), N(2n, 2), or the complement
of T(n). ;

A.Beutelspacher:
Subspaces of a subspace,

We discuss the proof and generalizations of the following

Theorem, Let L be a set of lines in PG(3,q) having the following properties.

(1) Any plane contains at least one line of L.

(2) If a point P is on at leas two lines of L then any plane on P contains at least one
line of L/P (:= {leL | P € L}). Such a point is called thick.

o®
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(3) There exists at least one thick point. ) ) -
Then (L} = g?+g+1 with equality if and only if one of two possibilities occurs:
(a) L is the set of lines of a plane, or

(b) the thick points are the points Po, ,Pq,,

pencﬂs of lines through P; in 7, where m,...,z_, are the planes through L

ponaline/and L is the union of the

J. Siemons:

Th inciden; .
Let L = (P, B; I) be a finite incidence structure with point set P, block set B, incidence I and
incidence matrix S. The spectrum of L is the spectrum of SST. If its distinct values are
AO>...>lt20, put fix) = (x-ﬂ.l)...(x-lt). We shall say that L is (r, k)-regular provided each point
is incident with r blocks and each block with k points. J denotes the all-one matrix. '
Theorem 1, LetL be (r, k)-regular. Then L is connected if and only if AssT )= P firk).J.

Let T be a tactical decomposition of the points and blocks of L and denote by C- the matrix whose
i'th row counts the number of blocks in each class incident with a point in the i'th point-class.
Define C* dually and call the eigenvalues of C-C* the spectrum of 7. Let fi{x) = (x-4,)...(x-1,)
where the product includes only those values A, # A, which occur in Spec(T). Let U denote the
matrix of constant rows whose entries are the numbers of points in each point-class of T:
Theorem 2. In a connected (r, k)-regular structure let T be a tactical decomposition with matrices
Ctand C. Thenf{C*C")= IPILf{rk).N.

We have complete information about spectral distributions for subset and subspace mcldencc
structures (in finite affine and projective spaces) and their tactical decompositions.

niv Vi in P- i :
The talk presents joint work with S.V. Shpectorov on flag-transitive geometries G with the
diagram '

p™: (me2 wodes)

1 2 2 2 2
where P stands for the geometry of the Petersen graph.
Result 1 (S.V. Shpectorov) Ifm‘= 1 then G = G(M,,) or G(3‘M,,). .
Result 2 (S.V. Shpectorov) If m = 2 then the universal 2-cover of G.is isomorphic to that of
G(M,3), G(Co,) or G(J ).
The geometries G(M,;), G(Co,) and G(J,) contain subgeometries H isomorphic to G(A,),
G(S§6(2)) and G(M,,,) respectively. Let G™ be the universal 2-cover of G and H™ be a connected

Forschungsgemeinschaft : © @
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component of the preimage of H in G™.
Result3: (i) If G =G(M,;) then G~ =G;
(ii) if G = G(Co,) then either G~ =G or H~ = G(37-Spx(2));
(iii) if G = G(J,) then H™ = H.
In the case G = G(Cop), G~ = G(37'Sp6(2)) the automorphism group of G must have the form
3%-Co, (a nonsplit extension). We do not know whether such a group exists.

W, Lempken:

. Amal Alt, S

We consider the following group-theoretical situation:
Hyp(p): G is a group containing two finite subgroups P, and P, such that
(1) G=(P,,P))#P;fori=1,2;
(2) B :=P, N P,contains no nontrivial normal subgroup of G
| (3) There exists a prime p such that each p-Sylow of B is also a Sylow of P,,i=1, 2.
(4) Q,:=0,(P) contains its own centralizer in P;fori=1,2."
This is the standard set-up for the study of p-local amalgams of rank 2. We then prove the
Theorem Suppose that (G, P,, P,) satisfies Hyp(2) such that P /Q, = Alt, and P,/Q, = Sym,.
Then B = Q,0, and is a 2-Sylow of both P, and P,, and one of the following occurs:
(D Q, =Ex*(27) and Q,/Z(Q,) is isomorphic to a 6-dimensional permutation module
over F, for P,/Q,; B is of type Co, and in particular IBI = 210,
(I Q, is elementary abelian of order 2* or 25 such that the centralizer in P, of Q, is
trivial and [Q,, P,] = E(2%) is an irreducible P,/Q,-module; in particular, 1B € {27, 28).
Moreover, the structure is known in each case.
U,(3) and U4(3):2; (ATLAS-notation) provide examples of finite completions in case (II) if P,
. splits over Q,. We don't know of any finite completions in casé O.

M. Liebeck:
Minimal s of primitive permutation groups.
For G a primitive permutation group on a set 2 of size n, the minimal degree 1(G) is

max {lsupp(g)l: g € G\{1}}, where supp(g) = {we 2: wg # w}. Suppose first that G < Aut (L)
containing L as normal subgroup, for some simple group L.
Theorem 1, If L = L(g) is of Lie tyje over Fq then u(G) 2 (1-(4/3¢))n, with some exceptions
when L = L,(¢), L,(2) or PSp,(3).
Theorem 2. If L = A_then either #(G) 2 n/3 or Ris the set of k-subsets of m for some £.
Theorem 3. If L is sporadic then p(G) 2 n/2.
DFG 500 _ . oD
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Corollary. For arbitrary G, either u(G) 2 n/3 or (A, <G <§,wr§, andn =(m\" .

There is an application: if G = (xl,...,xrs is a transitive subgroup of S, withx,x,..x, = 1 then G
is isomorphic to the monodromy group of a Riemann surface of genus g, where 2g+2(n-1) is equal
to the sum of the numbers ind(x;) := n-(number of orbits of (x;)). If g =0 we call G a group of
genus zero. It can be shown that some x; fixes at least n/85 points if G has genus zero, and then

Theorem 1 gives
Theorem 4, If L =L(qg) is a composition factor of a group of genus zero then ¢ < 113 (if

L#Ly(g)or q<85%(L=Lyq)). . .
LA Thas:

New flocks, new s, new planes, a characterizati 1 ical h mple
lassification of all minimal external an mark on spreads and ial spreads of hermitian -
varieties.

Let F;, be a flock of the quadratic cone X of PG(3, q), ¢ odd. Then Bader, Lunardon and Thas

prove that from F;, q flocks can be derived. Applying this process of derivation to a class of

flocks discovered by Kantor, they prove that there arises a new class of flocks for g = 5¢, e>1.

Applying derivation to other known classes of flocks, Johnson discovered a few days ago two

further new classes of flocks, one for g = 3% . By the connection between flocks, planes and GQ

due to Thas, there arise new classes of GQ of order (¢, ¢2) and new classes of planes of order g2

Recently Thas and Van Maldeghem obtained a new combinatorial characterization of all classical

GQ. They prove a generalization.to GQ of Baer’s theorem on (p, L)-transitivity of projective

planes and then apply the Moufang theorem of Tits. Also characterizations of classes of

non-classical GQ are obtained.

I prove that the hyperbolic quadric Q*(5, g), ¢ odd, admits no maximal exterior set (MES), .

achieving the complete classification of all MES of the hyperbolic quadrics.

If § is a partial spread of H(3, g) then I show that the size of S is at most g*-q%+g+1; it follows

that H(3, g2) has no spread (a well-known result of Bruen and Thas). If § is a partial spread of

H(5, ¢°) then I show that the size of S is at most g%(g2+¢-1), whence H(S, ¢?) has no spread. |
|
|

S, Pavne:

Generalized qu les of order (g2, q). )

Let S = (P, B, I) be a generalized quadrangle of order (s, 7). If p, x are distinct points of a line L,
we say an (x, L, p)-symmetry is a collineation 6 of S which fixes each line through x, each point
on L and each line through p and such that if 6 fixes a line M meeting L in some point y then 6
fixes all lines through y. Under some additional hypothesis, for example that (s, 7) = (¢, q%), we

have: .
Forschungsgemeinschaft . ©
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Theorem. Let L, M be distinct lines meeting at a point p. Assume that for each point x of LM,
p #x, there is a group H(x) of (p, px, x)-symmetries with IH(x)| = 5. PutA = (H(x): p #x1 L),
B=(H(x): p#x1M), G =(A, B). Then

(i) IGt = s2; G acts regularly on P\p! and fixes each line through p.

(ii) A and B are elementary abelian normal subgroups of G with |Al = 1Bl = st.

(iii) If s> then C = AnB is the center of G; ICI=¢; C is a group of symmetries about p (i.e., C
acts trivially on p1); p is regular. »

(iv) For each point z € p\{p}, H(z) = {6e G: @is a (z, zp, p)-symmetry} is a group of order s.
We say S = (S¥), G) is a Moufang skew translation GQ.

. Until recently there were known seven infinite families of GQ of order (g2, q) associated with
flocks and due to Thas, and one due to Tits. For g = 3¢ 227 we construct a family not direcly
associated with a flock. For g = 5¢ 2 25, Bader, Lunardon and Thas have constructed a new
family by a process of derivation of a flock to produce a new flock. N.L Johnson and I have
imitated this process to obtain another new family with g = 3¢ 227. Hence there are now known
eleven infinite families of GQ with order (g2, ¢).

C. Hering:
Ontt finality of . ¢ ic obj
Many classical sets of geometric objects in finite buildings have a cardinality of the form

t
P‘ﬂ o, @

izt
where g € N, @, (x) is the n'th cyclotomic polynomial and e, 1, 4; € NuU{0}. A set of this kind
tends to have exceptional properties if tﬁe prime divisors of the numbers @, (q) are particularly
small. This leads to the following problem: determine all pairs (r, x) of natural numbers such that

. n2 3 and @ (x) is not divisible by any prime larger than 2n+1. We present an algorithm to
determine all integral solutions of
ax?+bx+c =ppL.py

for given integers a, b, ¢ and primes p, ..., p,. This allows to solve the above problem ifnisa
power of 2 or a power of 3 orif n e {6, 18, 36}. ‘The case n = 57, r>1, can be handled using
results of Nagell (1921) and others on diophantine equations of the form (x™-1)/(x-1) = y2 Bya
result of B. Miihlherr there is no solution if n = 3"5° where r, s > 1. If n =5 or 15 there is no
solution such that x is a prime power greater than 3.

DFG Deutsche
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Divisible difference sets.

Let G be a group of order mn with a normal subgroup N of order n. A k-subset of G is called a
divisible difference set with parameters (m, n, k, 4,, A,) if each element of M\\{1) has exactly 4,
representations as a "difference” de! with d, e € D, while each element of G\V has exactly 4,

such representations. Then dev D =(G,{Dg: g € G}) is a divisible design with the same

parameters admitting G as a Singer group. An automorphism of G is called a multiplier for D if it

is also an automorphism of dev D. We consider abelian DDD's for which -1 (the mapping x—x" Ly

is a multiplier. Note that this does not necessarily imply that any translate of D is fixed under -1. .
We obtain severe restrictions on the structure of D; for instance, at least one of the numbers k-ll,

k-A,mn is a square and if p is a prime dividing the squarefree part of k-A, then eitherp=2orp=1
(mod 4) and n is a power of p. If D is in fact reversible (i.e., fixed under -1) then only the case
p=2 can arise. We determine all multipliers of a reversible DDS. A relative difference set with
multiplier -1 (i.e., A, = 0) has parameters m = k = n4, m even (and thus beiongs to a symmetric
transversal design); if D is reversible then m is a perfect square. We also construct families of
examples and partially characterize the cyclic reversible DDD's and the DDS's with k-ll =1. The

proofs are mainly algebraic, using group algebras, characters both over the complex field and finite
fields, and some algebraic number theory.

E. Shult:

Geometric Hyperplanes.

Let H be a geometric hyperplane of a point-line geometry I"= (P, L), that is, a subspace of I"which
intersects each line nontrivially. We say H arises from an embedding e: =P, where

P =PG(d, k), if H is the inverse image of e(P)NY where Y is a projective hyperplane of P. Join

work with B. Cooperstein shows that all geometric hyperplanes arise from an embedding if I"is
one of the geometries An.z' An.3 (not over GF(2)), Ds,s and Es,r It is also shown that if H is a

geometric hyperplane of a near hexagon with quads which meets each quad at a star, then His a
generalized hexagon. If Iis finite with parameters, it is a dual polar space of type Q(7, g) or
Sp(6,9), q even, and H is the generalized hexagon of type G,(q).

A. Camina:
On the automorphi f 1, 6) regular line: 3

There are four known (91, 6)-regular linear spaces and each has a regular cyclic subgroup of
automorphisms. V.D. Tonchev and Stoichev have calculated their complete automorphism groups.

Deutsche
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Two of them are line-transitive but point -imprimitive. This is a rare phenomenon for block
designs, as is shown by a beautiful result of Delandtsheer and Doyen. In fact the two (91, 6) linear
spaces are the only known examples of regular linear spaces with this property. Lino Di Martino
and I have proved that if L is a (91, 6) regular linear space and G = Aut L is point-primitive then G
is soluble, [Fit(G)! = 91 and G/Fit(G) is isomorphic to a cyclic group of order 12.

R.Scharlau:

Combinatorial methods for integral quadratic forms,

Consider an integral lattice L in a real vector space V, that is, a positive definite scalar product (xly)
is given such that (xly) is an integer whenever x, y are in L. A primitve vector ve L is called a root
of L if the corresponding reflection s,: x — x - 2(xiv)/(viv)y maps L into itself. The set R(L) of all
roots is a root system. L is called reflective if its root system has greatest possible rank, that is, the
sublattice generated by roots is of finite index. Notice that if L is not unimodular the roots do not
necessarily have length 1 or 2. _ " )

It turns out that, although the class of reflective lattices is much larger than the class of ordinary _
root lattices (generated by vectors of lengh 1 or 2), the reflective lattices can be classified in a
fashion only depending on the combinatorial type of the root system. As an example, consider the
following result in dimension 3, obtained by Britta Blaschke. We use the notation *A,, (roots of
length 20), °B,, (shon‘robts of length @), *C,, (short roots of length @) for "scaled" root systems.
Theorem. The root systems of the indecomposable 3-dimensional reflective lattices are
2, <PA XTA, (a<p<p), “AxPB, (@=0(2), B# a=2p), °C,, “B, (=0 (4)). For each of
these there is a unique lattice, except for 2"l»\lxz”,‘\lxz”Al. where there are two.

The point is that the values of &, 8, ydo not play a rdle.

From a projective plane IT with involutory homology 7 one constructs a semibiplane £= X7, 7)
whose "Points" and "Blocks" are the 7-orbits of length 2 on the points and lines of 1. We are
interested in reversing this process: given Z, what planes, if any, yield £in this way?

From S we construct a rank-2 cell complex I'= IZX) whose vertices are the points and blocks of Z;
its edges are the flags of Zand its faces are the digons of Z. Let F = GF(2), Ci = Ci(T, F) the
F-space freely spanned by the i-cells of G, & Ci—Ci*! the coboundary operator. We show that
(i) "liftings" from Z'to planes correspond bijectively to "admissible" elements of C!, which (if
they exist) form a coset of Z! = ker & C1—-C%

(i) if the cohomology H\(T, F) = 0 then Zlifts in at most one way up to equivalence;

o®



(iv) the equivalence class of pairs (7, 7) such that (I, 7) = X correspond bijectively with the

- orbits of Aut X on the set of admissible elemnts of C!, modulo B! = §C% < CL.
The translation planes of order 16 provide examples with dim H'(I', F) =0, 1, 2, 4. We also ask
how far these ideas apply if {t) is replaced by some other collineation group, esbecially one of odd
prime order.

E.Spence: _
(45, 12, 3)-designs. .

A (v, k, A)-graph is a graph with v vertices and degree k in which every pair of vertices has 4
neighbours. Thus a (v, k, A)-graph G may be considered as a (v, k, 1)-design D(G) where the
points are the vertices of the graph and the blocks are the neighbours of the points. A

(v, k, A)-design is a (v, k, A)-graph if it possesses a polarity having no absolute points. During
investigations into the question of which (v, k, A)-graphs G have the property that
Aut(G)=Aut(D(G)) (joint work at various stages with F.C. Bussemaker, W.H. Haemers and

J.J. Seidel) a new family of (45, 12, 3)-designs was discovered. They were found originally by
looking at the adjacency matrix A of a (45, 12, 3)-graph for which Aut(G)#Aut(D(G)). It turns out
that there must be an automorphism P of order 3 with either 3 or 9 fixed points, such that PAP =A.
Further examination of A yields a certain block structure for A, which, with minor modification,
gives rise to over 2550 designs (up to isomorphism) of which 550 have trivial automorphism
group. They all have automorphism group with order of the form 223%5¢,

|

|

|

\

\

\

- 16 - #
(iii) case (ii) occurs if Z arises from PG(2, p); and ’

D.R.Hughes:

xten v signs and exten n .

We attempt to find examples of, and to characterize, (finite) extended transversal designs and
(finite) extended nets.
Theorem, (i) An extended TD(s) is a 2-design or is a TD(s+1); (ii) if s =2 then the extension is a
2-(7, 4, 2) or a 2-(22, 6, 4) (both unique), or is an extension of a dual affine plane of even order to
a TD(3) (examples exist for all powers of 2); (iii) if s = 3 then there is no extension.
Nets are more difficult: we restrict to extensions which are partial geometries.
Theorem. If an extended net is a partial geometry then it is one of the following: (a) an inversive

| ) plane or "half-inversive plane”; (b) an extended TD(2) (examples exist for all prime powers); (c)
an extension of a (n, n-1)-net, having (n+1)? points (examples exist for all prime powers); (d) one
of an infinite class of possibilities extending (n, n-e)-nets (no examples are known).

. Berichterstatter: .G. Weetman
DFG %40 oD
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